i915_gem.c 103 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  40. bool write);
  41. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  45. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  46. unsigned alignment,
  47. bool map_and_fenceable);
  48. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  49. struct drm_i915_fence_reg *reg);
  50. static int i915_gem_phys_pwrite(struct drm_device *dev,
  51. struct drm_i915_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file);
  54. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. int nr_to_scan,
  57. gfp_t gfp_mask);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. int
  72. i915_gem_check_is_wedged(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. /* Success, we reset the GPU! */
  84. if (!atomic_read(&dev_priv->mm.wedged))
  85. return 0;
  86. /* GPU is hung, bump the completion count to account for
  87. * the token we just consumed so that we never hit zero and
  88. * end up waiting upon a subsequent completion event that
  89. * will never happen.
  90. */
  91. spin_lock_irqsave(&x->wait.lock, flags);
  92. x->done++;
  93. spin_unlock_irqrestore(&x->wait.lock, flags);
  94. return -EIO;
  95. }
  96. int i915_mutex_lock_interruptible(struct drm_device *dev)
  97. {
  98. struct drm_i915_private *dev_priv = dev->dev_private;
  99. int ret;
  100. ret = i915_gem_check_is_wedged(dev);
  101. if (ret)
  102. return ret;
  103. ret = mutex_lock_interruptible(&dev->struct_mutex);
  104. if (ret)
  105. return ret;
  106. if (atomic_read(&dev_priv->mm.wedged)) {
  107. mutex_unlock(&dev->struct_mutex);
  108. return -EAGAIN;
  109. }
  110. WARN_ON(i915_verify_lists(dev));
  111. return 0;
  112. }
  113. static inline bool
  114. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  115. {
  116. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  117. }
  118. void i915_gem_do_init(struct drm_device *dev,
  119. unsigned long start,
  120. unsigned long mappable_end,
  121. unsigned long end)
  122. {
  123. drm_i915_private_t *dev_priv = dev->dev_private;
  124. drm_mm_init(&dev_priv->mm.gtt_space, start,
  125. end - start);
  126. dev_priv->mm.gtt_total = end - start;
  127. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  128. dev_priv->mm.gtt_mappable_end = mappable_end;
  129. }
  130. int
  131. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  132. struct drm_file *file)
  133. {
  134. struct drm_i915_gem_init *args = data;
  135. if (args->gtt_start >= args->gtt_end ||
  136. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  137. return -EINVAL;
  138. mutex_lock(&dev->struct_mutex);
  139. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  140. mutex_unlock(&dev->struct_mutex);
  141. return 0;
  142. }
  143. int
  144. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  145. struct drm_file *file)
  146. {
  147. struct drm_i915_private *dev_priv = dev->dev_private;
  148. struct drm_i915_gem_get_aperture *args = data;
  149. struct drm_i915_gem_object *obj;
  150. size_t pinned;
  151. if (!(dev->driver->driver_features & DRIVER_GEM))
  152. return -ENODEV;
  153. pinned = 0;
  154. mutex_lock(&dev->struct_mutex);
  155. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  156. pinned += obj->gtt_space->size;
  157. mutex_unlock(&dev->struct_mutex);
  158. args->aper_size = dev_priv->mm.gtt_total;
  159. args->aper_available_size = args->aper_size -pinned;
  160. return 0;
  161. }
  162. /**
  163. * Creates a new mm object and returns a handle to it.
  164. */
  165. int
  166. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  167. struct drm_file *file)
  168. {
  169. struct drm_i915_gem_create *args = data;
  170. struct drm_i915_gem_object *obj;
  171. int ret;
  172. u32 handle;
  173. args->size = roundup(args->size, PAGE_SIZE);
  174. /* Allocate the new object */
  175. obj = i915_gem_alloc_object(dev, args->size);
  176. if (obj == NULL)
  177. return -ENOMEM;
  178. ret = drm_gem_handle_create(file, &obj->base, &handle);
  179. if (ret) {
  180. drm_gem_object_release(&obj->base);
  181. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  182. kfree(obj);
  183. return ret;
  184. }
  185. /* drop reference from allocate - handle holds it now */
  186. drm_gem_object_unreference(&obj->base);
  187. trace_i915_gem_object_create(obj);
  188. args->handle = handle;
  189. return 0;
  190. }
  191. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  192. {
  193. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  194. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  195. obj->tiling_mode != I915_TILING_NONE;
  196. }
  197. static inline void
  198. slow_shmem_copy(struct page *dst_page,
  199. int dst_offset,
  200. struct page *src_page,
  201. int src_offset,
  202. int length)
  203. {
  204. char *dst_vaddr, *src_vaddr;
  205. dst_vaddr = kmap(dst_page);
  206. src_vaddr = kmap(src_page);
  207. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  208. kunmap(src_page);
  209. kunmap(dst_page);
  210. }
  211. static inline void
  212. slow_shmem_bit17_copy(struct page *gpu_page,
  213. int gpu_offset,
  214. struct page *cpu_page,
  215. int cpu_offset,
  216. int length,
  217. int is_read)
  218. {
  219. char *gpu_vaddr, *cpu_vaddr;
  220. /* Use the unswizzled path if this page isn't affected. */
  221. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  222. if (is_read)
  223. return slow_shmem_copy(cpu_page, cpu_offset,
  224. gpu_page, gpu_offset, length);
  225. else
  226. return slow_shmem_copy(gpu_page, gpu_offset,
  227. cpu_page, cpu_offset, length);
  228. }
  229. gpu_vaddr = kmap(gpu_page);
  230. cpu_vaddr = kmap(cpu_page);
  231. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  232. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  233. */
  234. while (length > 0) {
  235. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  236. int this_length = min(cacheline_end - gpu_offset, length);
  237. int swizzled_gpu_offset = gpu_offset ^ 64;
  238. if (is_read) {
  239. memcpy(cpu_vaddr + cpu_offset,
  240. gpu_vaddr + swizzled_gpu_offset,
  241. this_length);
  242. } else {
  243. memcpy(gpu_vaddr + swizzled_gpu_offset,
  244. cpu_vaddr + cpu_offset,
  245. this_length);
  246. }
  247. cpu_offset += this_length;
  248. gpu_offset += this_length;
  249. length -= this_length;
  250. }
  251. kunmap(cpu_page);
  252. kunmap(gpu_page);
  253. }
  254. /**
  255. * This is the fast shmem pread path, which attempts to copy_from_user directly
  256. * from the backing pages of the object to the user's address space. On a
  257. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  258. */
  259. static int
  260. i915_gem_shmem_pread_fast(struct drm_device *dev,
  261. struct drm_i915_gem_object *obj,
  262. struct drm_i915_gem_pread *args,
  263. struct drm_file *file)
  264. {
  265. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  266. ssize_t remain;
  267. loff_t offset;
  268. char __user *user_data;
  269. int page_offset, page_length;
  270. user_data = (char __user *) (uintptr_t) args->data_ptr;
  271. remain = args->size;
  272. offset = args->offset;
  273. while (remain > 0) {
  274. struct page *page;
  275. char *vaddr;
  276. int ret;
  277. /* Operation in this page
  278. *
  279. * page_offset = offset within page
  280. * page_length = bytes to copy for this page
  281. */
  282. page_offset = offset & (PAGE_SIZE-1);
  283. page_length = remain;
  284. if ((page_offset + remain) > PAGE_SIZE)
  285. page_length = PAGE_SIZE - page_offset;
  286. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  287. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  288. if (IS_ERR(page))
  289. return PTR_ERR(page);
  290. vaddr = kmap_atomic(page);
  291. ret = __copy_to_user_inatomic(user_data,
  292. vaddr + page_offset,
  293. page_length);
  294. kunmap_atomic(vaddr);
  295. mark_page_accessed(page);
  296. page_cache_release(page);
  297. if (ret)
  298. return -EFAULT;
  299. remain -= page_length;
  300. user_data += page_length;
  301. offset += page_length;
  302. }
  303. return 0;
  304. }
  305. /**
  306. * This is the fallback shmem pread path, which allocates temporary storage
  307. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  308. * can copy out of the object's backing pages while holding the struct mutex
  309. * and not take page faults.
  310. */
  311. static int
  312. i915_gem_shmem_pread_slow(struct drm_device *dev,
  313. struct drm_i915_gem_object *obj,
  314. struct drm_i915_gem_pread *args,
  315. struct drm_file *file)
  316. {
  317. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  318. struct mm_struct *mm = current->mm;
  319. struct page **user_pages;
  320. ssize_t remain;
  321. loff_t offset, pinned_pages, i;
  322. loff_t first_data_page, last_data_page, num_pages;
  323. int shmem_page_offset;
  324. int data_page_index, data_page_offset;
  325. int page_length;
  326. int ret;
  327. uint64_t data_ptr = args->data_ptr;
  328. int do_bit17_swizzling;
  329. remain = args->size;
  330. /* Pin the user pages containing the data. We can't fault while
  331. * holding the struct mutex, yet we want to hold it while
  332. * dereferencing the user data.
  333. */
  334. first_data_page = data_ptr / PAGE_SIZE;
  335. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  336. num_pages = last_data_page - first_data_page + 1;
  337. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  338. if (user_pages == NULL)
  339. return -ENOMEM;
  340. mutex_unlock(&dev->struct_mutex);
  341. down_read(&mm->mmap_sem);
  342. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  343. num_pages, 1, 0, user_pages, NULL);
  344. up_read(&mm->mmap_sem);
  345. mutex_lock(&dev->struct_mutex);
  346. if (pinned_pages < num_pages) {
  347. ret = -EFAULT;
  348. goto out;
  349. }
  350. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  351. args->offset,
  352. args->size);
  353. if (ret)
  354. goto out;
  355. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  356. offset = args->offset;
  357. while (remain > 0) {
  358. struct page *page;
  359. /* Operation in this page
  360. *
  361. * shmem_page_offset = offset within page in shmem file
  362. * data_page_index = page number in get_user_pages return
  363. * data_page_offset = offset with data_page_index page.
  364. * page_length = bytes to copy for this page
  365. */
  366. shmem_page_offset = offset & ~PAGE_MASK;
  367. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  368. data_page_offset = data_ptr & ~PAGE_MASK;
  369. page_length = remain;
  370. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  371. page_length = PAGE_SIZE - shmem_page_offset;
  372. if ((data_page_offset + page_length) > PAGE_SIZE)
  373. page_length = PAGE_SIZE - data_page_offset;
  374. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  375. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  376. if (IS_ERR(page))
  377. return PTR_ERR(page);
  378. if (do_bit17_swizzling) {
  379. slow_shmem_bit17_copy(page,
  380. shmem_page_offset,
  381. user_pages[data_page_index],
  382. data_page_offset,
  383. page_length,
  384. 1);
  385. } else {
  386. slow_shmem_copy(user_pages[data_page_index],
  387. data_page_offset,
  388. page,
  389. shmem_page_offset,
  390. page_length);
  391. }
  392. mark_page_accessed(page);
  393. page_cache_release(page);
  394. remain -= page_length;
  395. data_ptr += page_length;
  396. offset += page_length;
  397. }
  398. out:
  399. for (i = 0; i < pinned_pages; i++) {
  400. SetPageDirty(user_pages[i]);
  401. mark_page_accessed(user_pages[i]);
  402. page_cache_release(user_pages[i]);
  403. }
  404. drm_free_large(user_pages);
  405. return ret;
  406. }
  407. /**
  408. * Reads data from the object referenced by handle.
  409. *
  410. * On error, the contents of *data are undefined.
  411. */
  412. int
  413. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  414. struct drm_file *file)
  415. {
  416. struct drm_i915_gem_pread *args = data;
  417. struct drm_i915_gem_object *obj;
  418. int ret = 0;
  419. if (args->size == 0)
  420. return 0;
  421. if (!access_ok(VERIFY_WRITE,
  422. (char __user *)(uintptr_t)args->data_ptr,
  423. args->size))
  424. return -EFAULT;
  425. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  426. args->size);
  427. if (ret)
  428. return -EFAULT;
  429. ret = i915_mutex_lock_interruptible(dev);
  430. if (ret)
  431. return ret;
  432. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  433. if (obj == NULL) {
  434. ret = -ENOENT;
  435. goto unlock;
  436. }
  437. /* Bounds check source. */
  438. if (args->offset > obj->base.size ||
  439. args->size > obj->base.size - args->offset) {
  440. ret = -EINVAL;
  441. goto out;
  442. }
  443. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  444. args->offset,
  445. args->size);
  446. if (ret)
  447. goto out;
  448. ret = -EFAULT;
  449. if (!i915_gem_object_needs_bit17_swizzle(obj))
  450. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  451. if (ret == -EFAULT)
  452. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  453. out:
  454. drm_gem_object_unreference(&obj->base);
  455. unlock:
  456. mutex_unlock(&dev->struct_mutex);
  457. return ret;
  458. }
  459. /* This is the fast write path which cannot handle
  460. * page faults in the source data
  461. */
  462. static inline int
  463. fast_user_write(struct io_mapping *mapping,
  464. loff_t page_base, int page_offset,
  465. char __user *user_data,
  466. int length)
  467. {
  468. char *vaddr_atomic;
  469. unsigned long unwritten;
  470. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  471. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  472. user_data, length);
  473. io_mapping_unmap_atomic(vaddr_atomic);
  474. return unwritten;
  475. }
  476. /* Here's the write path which can sleep for
  477. * page faults
  478. */
  479. static inline void
  480. slow_kernel_write(struct io_mapping *mapping,
  481. loff_t gtt_base, int gtt_offset,
  482. struct page *user_page, int user_offset,
  483. int length)
  484. {
  485. char __iomem *dst_vaddr;
  486. char *src_vaddr;
  487. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  488. src_vaddr = kmap(user_page);
  489. memcpy_toio(dst_vaddr + gtt_offset,
  490. src_vaddr + user_offset,
  491. length);
  492. kunmap(user_page);
  493. io_mapping_unmap(dst_vaddr);
  494. }
  495. /**
  496. * This is the fast pwrite path, where we copy the data directly from the
  497. * user into the GTT, uncached.
  498. */
  499. static int
  500. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  501. struct drm_i915_gem_object *obj,
  502. struct drm_i915_gem_pwrite *args,
  503. struct drm_file *file)
  504. {
  505. drm_i915_private_t *dev_priv = dev->dev_private;
  506. ssize_t remain;
  507. loff_t offset, page_base;
  508. char __user *user_data;
  509. int page_offset, page_length;
  510. user_data = (char __user *) (uintptr_t) args->data_ptr;
  511. remain = args->size;
  512. offset = obj->gtt_offset + args->offset;
  513. while (remain > 0) {
  514. /* Operation in this page
  515. *
  516. * page_base = page offset within aperture
  517. * page_offset = offset within page
  518. * page_length = bytes to copy for this page
  519. */
  520. page_base = (offset & ~(PAGE_SIZE-1));
  521. page_offset = offset & (PAGE_SIZE-1);
  522. page_length = remain;
  523. if ((page_offset + remain) > PAGE_SIZE)
  524. page_length = PAGE_SIZE - page_offset;
  525. /* If we get a fault while copying data, then (presumably) our
  526. * source page isn't available. Return the error and we'll
  527. * retry in the slow path.
  528. */
  529. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  530. page_offset, user_data, page_length))
  531. return -EFAULT;
  532. remain -= page_length;
  533. user_data += page_length;
  534. offset += page_length;
  535. }
  536. return 0;
  537. }
  538. /**
  539. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  540. * the memory and maps it using kmap_atomic for copying.
  541. *
  542. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  543. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  544. */
  545. static int
  546. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  547. struct drm_i915_gem_object *obj,
  548. struct drm_i915_gem_pwrite *args,
  549. struct drm_file *file)
  550. {
  551. drm_i915_private_t *dev_priv = dev->dev_private;
  552. ssize_t remain;
  553. loff_t gtt_page_base, offset;
  554. loff_t first_data_page, last_data_page, num_pages;
  555. loff_t pinned_pages, i;
  556. struct page **user_pages;
  557. struct mm_struct *mm = current->mm;
  558. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  559. int ret;
  560. uint64_t data_ptr = args->data_ptr;
  561. remain = args->size;
  562. /* Pin the user pages containing the data. We can't fault while
  563. * holding the struct mutex, and all of the pwrite implementations
  564. * want to hold it while dereferencing the user data.
  565. */
  566. first_data_page = data_ptr / PAGE_SIZE;
  567. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  568. num_pages = last_data_page - first_data_page + 1;
  569. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  570. if (user_pages == NULL)
  571. return -ENOMEM;
  572. mutex_unlock(&dev->struct_mutex);
  573. down_read(&mm->mmap_sem);
  574. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  575. num_pages, 0, 0, user_pages, NULL);
  576. up_read(&mm->mmap_sem);
  577. mutex_lock(&dev->struct_mutex);
  578. if (pinned_pages < num_pages) {
  579. ret = -EFAULT;
  580. goto out_unpin_pages;
  581. }
  582. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  583. if (ret)
  584. goto out_unpin_pages;
  585. ret = i915_gem_object_put_fence(obj);
  586. if (ret)
  587. goto out_unpin_pages;
  588. offset = obj->gtt_offset + args->offset;
  589. while (remain > 0) {
  590. /* Operation in this page
  591. *
  592. * gtt_page_base = page offset within aperture
  593. * gtt_page_offset = offset within page in aperture
  594. * data_page_index = page number in get_user_pages return
  595. * data_page_offset = offset with data_page_index page.
  596. * page_length = bytes to copy for this page
  597. */
  598. gtt_page_base = offset & PAGE_MASK;
  599. gtt_page_offset = offset & ~PAGE_MASK;
  600. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  601. data_page_offset = data_ptr & ~PAGE_MASK;
  602. page_length = remain;
  603. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  604. page_length = PAGE_SIZE - gtt_page_offset;
  605. if ((data_page_offset + page_length) > PAGE_SIZE)
  606. page_length = PAGE_SIZE - data_page_offset;
  607. slow_kernel_write(dev_priv->mm.gtt_mapping,
  608. gtt_page_base, gtt_page_offset,
  609. user_pages[data_page_index],
  610. data_page_offset,
  611. page_length);
  612. remain -= page_length;
  613. offset += page_length;
  614. data_ptr += page_length;
  615. }
  616. out_unpin_pages:
  617. for (i = 0; i < pinned_pages; i++)
  618. page_cache_release(user_pages[i]);
  619. drm_free_large(user_pages);
  620. return ret;
  621. }
  622. /**
  623. * This is the fast shmem pwrite path, which attempts to directly
  624. * copy_from_user into the kmapped pages backing the object.
  625. */
  626. static int
  627. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  628. struct drm_i915_gem_object *obj,
  629. struct drm_i915_gem_pwrite *args,
  630. struct drm_file *file)
  631. {
  632. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  633. ssize_t remain;
  634. loff_t offset;
  635. char __user *user_data;
  636. int page_offset, page_length;
  637. user_data = (char __user *) (uintptr_t) args->data_ptr;
  638. remain = args->size;
  639. offset = args->offset;
  640. obj->dirty = 1;
  641. while (remain > 0) {
  642. struct page *page;
  643. char *vaddr;
  644. int ret;
  645. /* Operation in this page
  646. *
  647. * page_offset = offset within page
  648. * page_length = bytes to copy for this page
  649. */
  650. page_offset = offset & (PAGE_SIZE-1);
  651. page_length = remain;
  652. if ((page_offset + remain) > PAGE_SIZE)
  653. page_length = PAGE_SIZE - page_offset;
  654. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  655. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  656. if (IS_ERR(page))
  657. return PTR_ERR(page);
  658. vaddr = kmap_atomic(page, KM_USER0);
  659. ret = __copy_from_user_inatomic(vaddr + page_offset,
  660. user_data,
  661. page_length);
  662. kunmap_atomic(vaddr, KM_USER0);
  663. set_page_dirty(page);
  664. mark_page_accessed(page);
  665. page_cache_release(page);
  666. /* If we get a fault while copying data, then (presumably) our
  667. * source page isn't available. Return the error and we'll
  668. * retry in the slow path.
  669. */
  670. if (ret)
  671. return -EFAULT;
  672. remain -= page_length;
  673. user_data += page_length;
  674. offset += page_length;
  675. }
  676. return 0;
  677. }
  678. /**
  679. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  680. * the memory and maps it using kmap_atomic for copying.
  681. *
  682. * This avoids taking mmap_sem for faulting on the user's address while the
  683. * struct_mutex is held.
  684. */
  685. static int
  686. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  687. struct drm_i915_gem_object *obj,
  688. struct drm_i915_gem_pwrite *args,
  689. struct drm_file *file)
  690. {
  691. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  692. struct mm_struct *mm = current->mm;
  693. struct page **user_pages;
  694. ssize_t remain;
  695. loff_t offset, pinned_pages, i;
  696. loff_t first_data_page, last_data_page, num_pages;
  697. int shmem_page_offset;
  698. int data_page_index, data_page_offset;
  699. int page_length;
  700. int ret;
  701. uint64_t data_ptr = args->data_ptr;
  702. int do_bit17_swizzling;
  703. remain = args->size;
  704. /* Pin the user pages containing the data. We can't fault while
  705. * holding the struct mutex, and all of the pwrite implementations
  706. * want to hold it while dereferencing the user data.
  707. */
  708. first_data_page = data_ptr / PAGE_SIZE;
  709. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  710. num_pages = last_data_page - first_data_page + 1;
  711. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  712. if (user_pages == NULL)
  713. return -ENOMEM;
  714. mutex_unlock(&dev->struct_mutex);
  715. down_read(&mm->mmap_sem);
  716. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  717. num_pages, 0, 0, user_pages, NULL);
  718. up_read(&mm->mmap_sem);
  719. mutex_lock(&dev->struct_mutex);
  720. if (pinned_pages < num_pages) {
  721. ret = -EFAULT;
  722. goto out;
  723. }
  724. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  725. if (ret)
  726. goto out;
  727. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  728. offset = args->offset;
  729. obj->dirty = 1;
  730. while (remain > 0) {
  731. struct page *page;
  732. /* Operation in this page
  733. *
  734. * shmem_page_offset = offset within page in shmem file
  735. * data_page_index = page number in get_user_pages return
  736. * data_page_offset = offset with data_page_index page.
  737. * page_length = bytes to copy for this page
  738. */
  739. shmem_page_offset = offset & ~PAGE_MASK;
  740. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  741. data_page_offset = data_ptr & ~PAGE_MASK;
  742. page_length = remain;
  743. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  744. page_length = PAGE_SIZE - shmem_page_offset;
  745. if ((data_page_offset + page_length) > PAGE_SIZE)
  746. page_length = PAGE_SIZE - data_page_offset;
  747. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  748. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  749. if (IS_ERR(page)) {
  750. ret = PTR_ERR(page);
  751. goto out;
  752. }
  753. if (do_bit17_swizzling) {
  754. slow_shmem_bit17_copy(page,
  755. shmem_page_offset,
  756. user_pages[data_page_index],
  757. data_page_offset,
  758. page_length,
  759. 0);
  760. } else {
  761. slow_shmem_copy(page,
  762. shmem_page_offset,
  763. user_pages[data_page_index],
  764. data_page_offset,
  765. page_length);
  766. }
  767. set_page_dirty(page);
  768. mark_page_accessed(page);
  769. page_cache_release(page);
  770. remain -= page_length;
  771. data_ptr += page_length;
  772. offset += page_length;
  773. }
  774. out:
  775. for (i = 0; i < pinned_pages; i++)
  776. page_cache_release(user_pages[i]);
  777. drm_free_large(user_pages);
  778. return ret;
  779. }
  780. /**
  781. * Writes data to the object referenced by handle.
  782. *
  783. * On error, the contents of the buffer that were to be modified are undefined.
  784. */
  785. int
  786. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  787. struct drm_file *file)
  788. {
  789. struct drm_i915_gem_pwrite *args = data;
  790. struct drm_i915_gem_object *obj;
  791. int ret;
  792. if (args->size == 0)
  793. return 0;
  794. if (!access_ok(VERIFY_READ,
  795. (char __user *)(uintptr_t)args->data_ptr,
  796. args->size))
  797. return -EFAULT;
  798. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  799. args->size);
  800. if (ret)
  801. return -EFAULT;
  802. ret = i915_mutex_lock_interruptible(dev);
  803. if (ret)
  804. return ret;
  805. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  806. if (obj == NULL) {
  807. ret = -ENOENT;
  808. goto unlock;
  809. }
  810. /* Bounds check destination. */
  811. if (args->offset > obj->base.size ||
  812. args->size > obj->base.size - args->offset) {
  813. ret = -EINVAL;
  814. goto out;
  815. }
  816. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  817. * it would end up going through the fenced access, and we'll get
  818. * different detiling behavior between reading and writing.
  819. * pread/pwrite currently are reading and writing from the CPU
  820. * perspective, requiring manual detiling by the client.
  821. */
  822. if (obj->phys_obj)
  823. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  824. else if (obj->gtt_space &&
  825. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  826. ret = i915_gem_object_pin(obj, 0, true);
  827. if (ret)
  828. goto out;
  829. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  830. if (ret)
  831. goto out_unpin;
  832. ret = i915_gem_object_put_fence(obj);
  833. if (ret)
  834. goto out_unpin;
  835. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  836. if (ret == -EFAULT)
  837. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  838. out_unpin:
  839. i915_gem_object_unpin(obj);
  840. } else {
  841. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  842. if (ret)
  843. goto out;
  844. ret = -EFAULT;
  845. if (!i915_gem_object_needs_bit17_swizzle(obj))
  846. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  847. if (ret == -EFAULT)
  848. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  849. }
  850. out:
  851. drm_gem_object_unreference(&obj->base);
  852. unlock:
  853. mutex_unlock(&dev->struct_mutex);
  854. return ret;
  855. }
  856. /**
  857. * Called when user space prepares to use an object with the CPU, either
  858. * through the mmap ioctl's mapping or a GTT mapping.
  859. */
  860. int
  861. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  862. struct drm_file *file)
  863. {
  864. struct drm_i915_gem_set_domain *args = data;
  865. struct drm_i915_gem_object *obj;
  866. uint32_t read_domains = args->read_domains;
  867. uint32_t write_domain = args->write_domain;
  868. int ret;
  869. if (!(dev->driver->driver_features & DRIVER_GEM))
  870. return -ENODEV;
  871. /* Only handle setting domains to types used by the CPU. */
  872. if (write_domain & I915_GEM_GPU_DOMAINS)
  873. return -EINVAL;
  874. if (read_domains & I915_GEM_GPU_DOMAINS)
  875. return -EINVAL;
  876. /* Having something in the write domain implies it's in the read
  877. * domain, and only that read domain. Enforce that in the request.
  878. */
  879. if (write_domain != 0 && read_domains != write_domain)
  880. return -EINVAL;
  881. ret = i915_mutex_lock_interruptible(dev);
  882. if (ret)
  883. return ret;
  884. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  885. if (obj == NULL) {
  886. ret = -ENOENT;
  887. goto unlock;
  888. }
  889. if (read_domains & I915_GEM_DOMAIN_GTT) {
  890. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  891. /* Silently promote "you're not bound, there was nothing to do"
  892. * to success, since the client was just asking us to
  893. * make sure everything was done.
  894. */
  895. if (ret == -EINVAL)
  896. ret = 0;
  897. } else {
  898. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  899. }
  900. drm_gem_object_unreference(&obj->base);
  901. unlock:
  902. mutex_unlock(&dev->struct_mutex);
  903. return ret;
  904. }
  905. /**
  906. * Called when user space has done writes to this buffer
  907. */
  908. int
  909. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  910. struct drm_file *file)
  911. {
  912. struct drm_i915_gem_sw_finish *args = data;
  913. struct drm_i915_gem_object *obj;
  914. int ret = 0;
  915. if (!(dev->driver->driver_features & DRIVER_GEM))
  916. return -ENODEV;
  917. ret = i915_mutex_lock_interruptible(dev);
  918. if (ret)
  919. return ret;
  920. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  921. if (obj == NULL) {
  922. ret = -ENOENT;
  923. goto unlock;
  924. }
  925. /* Pinned buffers may be scanout, so flush the cache */
  926. if (obj->pin_count)
  927. i915_gem_object_flush_cpu_write_domain(obj);
  928. drm_gem_object_unreference(&obj->base);
  929. unlock:
  930. mutex_unlock(&dev->struct_mutex);
  931. return ret;
  932. }
  933. /**
  934. * Maps the contents of an object, returning the address it is mapped
  935. * into.
  936. *
  937. * While the mapping holds a reference on the contents of the object, it doesn't
  938. * imply a ref on the object itself.
  939. */
  940. int
  941. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  942. struct drm_file *file)
  943. {
  944. struct drm_i915_private *dev_priv = dev->dev_private;
  945. struct drm_i915_gem_mmap *args = data;
  946. struct drm_gem_object *obj;
  947. loff_t offset;
  948. unsigned long addr;
  949. if (!(dev->driver->driver_features & DRIVER_GEM))
  950. return -ENODEV;
  951. obj = drm_gem_object_lookup(dev, file, args->handle);
  952. if (obj == NULL)
  953. return -ENOENT;
  954. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  955. drm_gem_object_unreference_unlocked(obj);
  956. return -E2BIG;
  957. }
  958. offset = args->offset;
  959. down_write(&current->mm->mmap_sem);
  960. addr = do_mmap(obj->filp, 0, args->size,
  961. PROT_READ | PROT_WRITE, MAP_SHARED,
  962. args->offset);
  963. up_write(&current->mm->mmap_sem);
  964. drm_gem_object_unreference_unlocked(obj);
  965. if (IS_ERR((void *)addr))
  966. return addr;
  967. args->addr_ptr = (uint64_t) addr;
  968. return 0;
  969. }
  970. /**
  971. * i915_gem_fault - fault a page into the GTT
  972. * vma: VMA in question
  973. * vmf: fault info
  974. *
  975. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  976. * from userspace. The fault handler takes care of binding the object to
  977. * the GTT (if needed), allocating and programming a fence register (again,
  978. * only if needed based on whether the old reg is still valid or the object
  979. * is tiled) and inserting a new PTE into the faulting process.
  980. *
  981. * Note that the faulting process may involve evicting existing objects
  982. * from the GTT and/or fence registers to make room. So performance may
  983. * suffer if the GTT working set is large or there are few fence registers
  984. * left.
  985. */
  986. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  987. {
  988. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  989. struct drm_device *dev = obj->base.dev;
  990. drm_i915_private_t *dev_priv = dev->dev_private;
  991. pgoff_t page_offset;
  992. unsigned long pfn;
  993. int ret = 0;
  994. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  995. /* We don't use vmf->pgoff since that has the fake offset */
  996. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  997. PAGE_SHIFT;
  998. /* Now bind it into the GTT if needed */
  999. mutex_lock(&dev->struct_mutex);
  1000. if (!obj->map_and_fenceable) {
  1001. ret = i915_gem_object_unbind(obj);
  1002. if (ret)
  1003. goto unlock;
  1004. }
  1005. if (!obj->gtt_space) {
  1006. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1007. if (ret)
  1008. goto unlock;
  1009. }
  1010. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1011. if (ret)
  1012. goto unlock;
  1013. if (obj->tiling_mode == I915_TILING_NONE)
  1014. ret = i915_gem_object_put_fence(obj);
  1015. else
  1016. ret = i915_gem_object_get_fence(obj, NULL, true);
  1017. if (ret)
  1018. goto unlock;
  1019. if (i915_gem_object_is_inactive(obj))
  1020. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1021. obj->fault_mappable = true;
  1022. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1023. page_offset;
  1024. /* Finally, remap it using the new GTT offset */
  1025. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1026. unlock:
  1027. mutex_unlock(&dev->struct_mutex);
  1028. switch (ret) {
  1029. case -EAGAIN:
  1030. set_need_resched();
  1031. case 0:
  1032. case -ERESTARTSYS:
  1033. return VM_FAULT_NOPAGE;
  1034. case -ENOMEM:
  1035. return VM_FAULT_OOM;
  1036. default:
  1037. return VM_FAULT_SIGBUS;
  1038. }
  1039. }
  1040. /**
  1041. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1042. * @obj: obj in question
  1043. *
  1044. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1045. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1046. * up the object based on the offset and sets up the various memory mapping
  1047. * structures.
  1048. *
  1049. * This routine allocates and attaches a fake offset for @obj.
  1050. */
  1051. static int
  1052. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1053. {
  1054. struct drm_device *dev = obj->base.dev;
  1055. struct drm_gem_mm *mm = dev->mm_private;
  1056. struct drm_map_list *list;
  1057. struct drm_local_map *map;
  1058. int ret = 0;
  1059. /* Set the object up for mmap'ing */
  1060. list = &obj->base.map_list;
  1061. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1062. if (!list->map)
  1063. return -ENOMEM;
  1064. map = list->map;
  1065. map->type = _DRM_GEM;
  1066. map->size = obj->base.size;
  1067. map->handle = obj;
  1068. /* Get a DRM GEM mmap offset allocated... */
  1069. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1070. obj->base.size / PAGE_SIZE,
  1071. 0, 0);
  1072. if (!list->file_offset_node) {
  1073. DRM_ERROR("failed to allocate offset for bo %d\n",
  1074. obj->base.name);
  1075. ret = -ENOSPC;
  1076. goto out_free_list;
  1077. }
  1078. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1079. obj->base.size / PAGE_SIZE,
  1080. 0);
  1081. if (!list->file_offset_node) {
  1082. ret = -ENOMEM;
  1083. goto out_free_list;
  1084. }
  1085. list->hash.key = list->file_offset_node->start;
  1086. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1087. if (ret) {
  1088. DRM_ERROR("failed to add to map hash\n");
  1089. goto out_free_mm;
  1090. }
  1091. return 0;
  1092. out_free_mm:
  1093. drm_mm_put_block(list->file_offset_node);
  1094. out_free_list:
  1095. kfree(list->map);
  1096. list->map = NULL;
  1097. return ret;
  1098. }
  1099. /**
  1100. * i915_gem_release_mmap - remove physical page mappings
  1101. * @obj: obj in question
  1102. *
  1103. * Preserve the reservation of the mmapping with the DRM core code, but
  1104. * relinquish ownership of the pages back to the system.
  1105. *
  1106. * It is vital that we remove the page mapping if we have mapped a tiled
  1107. * object through the GTT and then lose the fence register due to
  1108. * resource pressure. Similarly if the object has been moved out of the
  1109. * aperture, than pages mapped into userspace must be revoked. Removing the
  1110. * mapping will then trigger a page fault on the next user access, allowing
  1111. * fixup by i915_gem_fault().
  1112. */
  1113. void
  1114. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1115. {
  1116. if (!obj->fault_mappable)
  1117. return;
  1118. unmap_mapping_range(obj->base.dev->dev_mapping,
  1119. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1120. obj->base.size, 1);
  1121. obj->fault_mappable = false;
  1122. }
  1123. static void
  1124. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1125. {
  1126. struct drm_device *dev = obj->base.dev;
  1127. struct drm_gem_mm *mm = dev->mm_private;
  1128. struct drm_map_list *list = &obj->base.map_list;
  1129. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1130. drm_mm_put_block(list->file_offset_node);
  1131. kfree(list->map);
  1132. list->map = NULL;
  1133. }
  1134. static uint32_t
  1135. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1136. {
  1137. struct drm_device *dev = obj->base.dev;
  1138. uint32_t size;
  1139. if (INTEL_INFO(dev)->gen >= 4 ||
  1140. obj->tiling_mode == I915_TILING_NONE)
  1141. return obj->base.size;
  1142. /* Previous chips need a power-of-two fence region when tiling */
  1143. if (INTEL_INFO(dev)->gen == 3)
  1144. size = 1024*1024;
  1145. else
  1146. size = 512*1024;
  1147. while (size < obj->base.size)
  1148. size <<= 1;
  1149. return size;
  1150. }
  1151. /**
  1152. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1153. * @obj: object to check
  1154. *
  1155. * Return the required GTT alignment for an object, taking into account
  1156. * potential fence register mapping.
  1157. */
  1158. static uint32_t
  1159. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1160. {
  1161. struct drm_device *dev = obj->base.dev;
  1162. /*
  1163. * Minimum alignment is 4k (GTT page size), but might be greater
  1164. * if a fence register is needed for the object.
  1165. */
  1166. if (INTEL_INFO(dev)->gen >= 4 ||
  1167. obj->tiling_mode == I915_TILING_NONE)
  1168. return 4096;
  1169. /*
  1170. * Previous chips need to be aligned to the size of the smallest
  1171. * fence register that can contain the object.
  1172. */
  1173. return i915_gem_get_gtt_size(obj);
  1174. }
  1175. /**
  1176. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1177. * unfenced object
  1178. * @obj: object to check
  1179. *
  1180. * Return the required GTT alignment for an object, only taking into account
  1181. * unfenced tiled surface requirements.
  1182. */
  1183. static uint32_t
  1184. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1185. {
  1186. struct drm_device *dev = obj->base.dev;
  1187. int tile_height;
  1188. /*
  1189. * Minimum alignment is 4k (GTT page size) for sane hw.
  1190. */
  1191. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1192. obj->tiling_mode == I915_TILING_NONE)
  1193. return 4096;
  1194. /*
  1195. * Older chips need unfenced tiled buffers to be aligned to the left
  1196. * edge of an even tile row (where tile rows are counted as if the bo is
  1197. * placed in a fenced gtt region).
  1198. */
  1199. if (IS_GEN2(dev) ||
  1200. (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1201. tile_height = 32;
  1202. else
  1203. tile_height = 8;
  1204. return tile_height * obj->stride * 2;
  1205. }
  1206. /**
  1207. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1208. * @dev: DRM device
  1209. * @data: GTT mapping ioctl data
  1210. * @file: GEM object info
  1211. *
  1212. * Simply returns the fake offset to userspace so it can mmap it.
  1213. * The mmap call will end up in drm_gem_mmap(), which will set things
  1214. * up so we can get faults in the handler above.
  1215. *
  1216. * The fault handler will take care of binding the object into the GTT
  1217. * (since it may have been evicted to make room for something), allocating
  1218. * a fence register, and mapping the appropriate aperture address into
  1219. * userspace.
  1220. */
  1221. int
  1222. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1223. struct drm_file *file)
  1224. {
  1225. struct drm_i915_private *dev_priv = dev->dev_private;
  1226. struct drm_i915_gem_mmap_gtt *args = data;
  1227. struct drm_i915_gem_object *obj;
  1228. int ret;
  1229. if (!(dev->driver->driver_features & DRIVER_GEM))
  1230. return -ENODEV;
  1231. ret = i915_mutex_lock_interruptible(dev);
  1232. if (ret)
  1233. return ret;
  1234. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1235. if (obj == NULL) {
  1236. ret = -ENOENT;
  1237. goto unlock;
  1238. }
  1239. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1240. ret = -E2BIG;
  1241. goto unlock;
  1242. }
  1243. if (obj->madv != I915_MADV_WILLNEED) {
  1244. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1245. ret = -EINVAL;
  1246. goto out;
  1247. }
  1248. if (!obj->base.map_list.map) {
  1249. ret = i915_gem_create_mmap_offset(obj);
  1250. if (ret)
  1251. goto out;
  1252. }
  1253. args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1254. out:
  1255. drm_gem_object_unreference(&obj->base);
  1256. unlock:
  1257. mutex_unlock(&dev->struct_mutex);
  1258. return ret;
  1259. }
  1260. static int
  1261. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1262. gfp_t gfpmask)
  1263. {
  1264. int page_count, i;
  1265. struct address_space *mapping;
  1266. struct inode *inode;
  1267. struct page *page;
  1268. /* Get the list of pages out of our struct file. They'll be pinned
  1269. * at this point until we release them.
  1270. */
  1271. page_count = obj->base.size / PAGE_SIZE;
  1272. BUG_ON(obj->pages != NULL);
  1273. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1274. if (obj->pages == NULL)
  1275. return -ENOMEM;
  1276. inode = obj->base.filp->f_path.dentry->d_inode;
  1277. mapping = inode->i_mapping;
  1278. for (i = 0; i < page_count; i++) {
  1279. page = read_cache_page_gfp(mapping, i,
  1280. GFP_HIGHUSER |
  1281. __GFP_COLD |
  1282. __GFP_RECLAIMABLE |
  1283. gfpmask);
  1284. if (IS_ERR(page))
  1285. goto err_pages;
  1286. obj->pages[i] = page;
  1287. }
  1288. if (obj->tiling_mode != I915_TILING_NONE)
  1289. i915_gem_object_do_bit_17_swizzle(obj);
  1290. return 0;
  1291. err_pages:
  1292. while (i--)
  1293. page_cache_release(obj->pages[i]);
  1294. drm_free_large(obj->pages);
  1295. obj->pages = NULL;
  1296. return PTR_ERR(page);
  1297. }
  1298. static void
  1299. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1300. {
  1301. int page_count = obj->base.size / PAGE_SIZE;
  1302. int i;
  1303. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1304. if (obj->tiling_mode != I915_TILING_NONE)
  1305. i915_gem_object_save_bit_17_swizzle(obj);
  1306. if (obj->madv == I915_MADV_DONTNEED)
  1307. obj->dirty = 0;
  1308. for (i = 0; i < page_count; i++) {
  1309. if (obj->dirty)
  1310. set_page_dirty(obj->pages[i]);
  1311. if (obj->madv == I915_MADV_WILLNEED)
  1312. mark_page_accessed(obj->pages[i]);
  1313. page_cache_release(obj->pages[i]);
  1314. }
  1315. obj->dirty = 0;
  1316. drm_free_large(obj->pages);
  1317. obj->pages = NULL;
  1318. }
  1319. void
  1320. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1321. struct intel_ring_buffer *ring,
  1322. u32 seqno)
  1323. {
  1324. struct drm_device *dev = obj->base.dev;
  1325. struct drm_i915_private *dev_priv = dev->dev_private;
  1326. BUG_ON(ring == NULL);
  1327. obj->ring = ring;
  1328. /* Add a reference if we're newly entering the active list. */
  1329. if (!obj->active) {
  1330. drm_gem_object_reference(&obj->base);
  1331. obj->active = 1;
  1332. }
  1333. /* Move from whatever list we were on to the tail of execution. */
  1334. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1335. list_move_tail(&obj->ring_list, &ring->active_list);
  1336. obj->last_rendering_seqno = seqno;
  1337. if (obj->fenced_gpu_access) {
  1338. struct drm_i915_fence_reg *reg;
  1339. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1340. obj->last_fenced_seqno = seqno;
  1341. obj->last_fenced_ring = ring;
  1342. reg = &dev_priv->fence_regs[obj->fence_reg];
  1343. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1344. }
  1345. }
  1346. static void
  1347. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1348. {
  1349. list_del_init(&obj->ring_list);
  1350. obj->last_rendering_seqno = 0;
  1351. }
  1352. static void
  1353. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1354. {
  1355. struct drm_device *dev = obj->base.dev;
  1356. drm_i915_private_t *dev_priv = dev->dev_private;
  1357. BUG_ON(!obj->active);
  1358. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1359. i915_gem_object_move_off_active(obj);
  1360. }
  1361. static void
  1362. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1363. {
  1364. struct drm_device *dev = obj->base.dev;
  1365. struct drm_i915_private *dev_priv = dev->dev_private;
  1366. if (obj->pin_count != 0)
  1367. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1368. else
  1369. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1370. BUG_ON(!list_empty(&obj->gpu_write_list));
  1371. BUG_ON(!obj->active);
  1372. obj->ring = NULL;
  1373. i915_gem_object_move_off_active(obj);
  1374. obj->fenced_gpu_access = false;
  1375. obj->active = 0;
  1376. obj->pending_gpu_write = false;
  1377. drm_gem_object_unreference(&obj->base);
  1378. WARN_ON(i915_verify_lists(dev));
  1379. }
  1380. /* Immediately discard the backing storage */
  1381. static void
  1382. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1383. {
  1384. struct inode *inode;
  1385. /* Our goal here is to return as much of the memory as
  1386. * is possible back to the system as we are called from OOM.
  1387. * To do this we must instruct the shmfs to drop all of its
  1388. * backing pages, *now*. Here we mirror the actions taken
  1389. * when by shmem_delete_inode() to release the backing store.
  1390. */
  1391. inode = obj->base.filp->f_path.dentry->d_inode;
  1392. truncate_inode_pages(inode->i_mapping, 0);
  1393. if (inode->i_op->truncate_range)
  1394. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1395. obj->madv = __I915_MADV_PURGED;
  1396. }
  1397. static inline int
  1398. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1399. {
  1400. return obj->madv == I915_MADV_DONTNEED;
  1401. }
  1402. static void
  1403. i915_gem_process_flushing_list(struct drm_device *dev,
  1404. uint32_t flush_domains,
  1405. struct intel_ring_buffer *ring)
  1406. {
  1407. struct drm_i915_gem_object *obj, *next;
  1408. list_for_each_entry_safe(obj, next,
  1409. &ring->gpu_write_list,
  1410. gpu_write_list) {
  1411. if (obj->base.write_domain & flush_domains) {
  1412. uint32_t old_write_domain = obj->base.write_domain;
  1413. obj->base.write_domain = 0;
  1414. list_del_init(&obj->gpu_write_list);
  1415. i915_gem_object_move_to_active(obj, ring,
  1416. i915_gem_next_request_seqno(dev, ring));
  1417. trace_i915_gem_object_change_domain(obj,
  1418. obj->base.read_domains,
  1419. old_write_domain);
  1420. }
  1421. }
  1422. }
  1423. int
  1424. i915_add_request(struct drm_device *dev,
  1425. struct drm_file *file,
  1426. struct drm_i915_gem_request *request,
  1427. struct intel_ring_buffer *ring)
  1428. {
  1429. drm_i915_private_t *dev_priv = dev->dev_private;
  1430. struct drm_i915_file_private *file_priv = NULL;
  1431. uint32_t seqno;
  1432. int was_empty;
  1433. int ret;
  1434. BUG_ON(request == NULL);
  1435. if (file != NULL)
  1436. file_priv = file->driver_priv;
  1437. ret = ring->add_request(ring, &seqno);
  1438. if (ret)
  1439. return ret;
  1440. ring->outstanding_lazy_request = false;
  1441. request->seqno = seqno;
  1442. request->ring = ring;
  1443. request->emitted_jiffies = jiffies;
  1444. was_empty = list_empty(&ring->request_list);
  1445. list_add_tail(&request->list, &ring->request_list);
  1446. if (file_priv) {
  1447. spin_lock(&file_priv->mm.lock);
  1448. request->file_priv = file_priv;
  1449. list_add_tail(&request->client_list,
  1450. &file_priv->mm.request_list);
  1451. spin_unlock(&file_priv->mm.lock);
  1452. }
  1453. if (!dev_priv->mm.suspended) {
  1454. mod_timer(&dev_priv->hangcheck_timer,
  1455. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1456. if (was_empty)
  1457. queue_delayed_work(dev_priv->wq,
  1458. &dev_priv->mm.retire_work, HZ);
  1459. }
  1460. return 0;
  1461. }
  1462. static inline void
  1463. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1464. {
  1465. struct drm_i915_file_private *file_priv = request->file_priv;
  1466. if (!file_priv)
  1467. return;
  1468. spin_lock(&file_priv->mm.lock);
  1469. list_del(&request->client_list);
  1470. request->file_priv = NULL;
  1471. spin_unlock(&file_priv->mm.lock);
  1472. }
  1473. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1474. struct intel_ring_buffer *ring)
  1475. {
  1476. while (!list_empty(&ring->request_list)) {
  1477. struct drm_i915_gem_request *request;
  1478. request = list_first_entry(&ring->request_list,
  1479. struct drm_i915_gem_request,
  1480. list);
  1481. list_del(&request->list);
  1482. i915_gem_request_remove_from_client(request);
  1483. kfree(request);
  1484. }
  1485. while (!list_empty(&ring->active_list)) {
  1486. struct drm_i915_gem_object *obj;
  1487. obj = list_first_entry(&ring->active_list,
  1488. struct drm_i915_gem_object,
  1489. ring_list);
  1490. obj->base.write_domain = 0;
  1491. list_del_init(&obj->gpu_write_list);
  1492. i915_gem_object_move_to_inactive(obj);
  1493. }
  1494. }
  1495. static void i915_gem_reset_fences(struct drm_device *dev)
  1496. {
  1497. struct drm_i915_private *dev_priv = dev->dev_private;
  1498. int i;
  1499. for (i = 0; i < 16; i++) {
  1500. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1501. struct drm_i915_gem_object *obj = reg->obj;
  1502. if (!obj)
  1503. continue;
  1504. if (obj->tiling_mode)
  1505. i915_gem_release_mmap(obj);
  1506. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1507. reg->obj->fenced_gpu_access = false;
  1508. reg->obj->last_fenced_seqno = 0;
  1509. reg->obj->last_fenced_ring = NULL;
  1510. i915_gem_clear_fence_reg(dev, reg);
  1511. }
  1512. }
  1513. void i915_gem_reset(struct drm_device *dev)
  1514. {
  1515. struct drm_i915_private *dev_priv = dev->dev_private;
  1516. struct drm_i915_gem_object *obj;
  1517. int i;
  1518. for (i = 0; i < I915_NUM_RINGS; i++)
  1519. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1520. /* Remove anything from the flushing lists. The GPU cache is likely
  1521. * to be lost on reset along with the data, so simply move the
  1522. * lost bo to the inactive list.
  1523. */
  1524. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1525. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1526. struct drm_i915_gem_object,
  1527. mm_list);
  1528. obj->base.write_domain = 0;
  1529. list_del_init(&obj->gpu_write_list);
  1530. i915_gem_object_move_to_inactive(obj);
  1531. }
  1532. /* Move everything out of the GPU domains to ensure we do any
  1533. * necessary invalidation upon reuse.
  1534. */
  1535. list_for_each_entry(obj,
  1536. &dev_priv->mm.inactive_list,
  1537. mm_list)
  1538. {
  1539. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1540. }
  1541. /* The fence registers are invalidated so clear them out */
  1542. i915_gem_reset_fences(dev);
  1543. }
  1544. /**
  1545. * This function clears the request list as sequence numbers are passed.
  1546. */
  1547. static void
  1548. i915_gem_retire_requests_ring(struct drm_device *dev,
  1549. struct intel_ring_buffer *ring)
  1550. {
  1551. drm_i915_private_t *dev_priv = dev->dev_private;
  1552. uint32_t seqno;
  1553. int i;
  1554. if (!ring->status_page.page_addr ||
  1555. list_empty(&ring->request_list))
  1556. return;
  1557. WARN_ON(i915_verify_lists(dev));
  1558. seqno = ring->get_seqno(ring);
  1559. for (i = 0; i < I915_NUM_RINGS; i++)
  1560. if (seqno >= ring->sync_seqno[i])
  1561. ring->sync_seqno[i] = 0;
  1562. while (!list_empty(&ring->request_list)) {
  1563. struct drm_i915_gem_request *request;
  1564. request = list_first_entry(&ring->request_list,
  1565. struct drm_i915_gem_request,
  1566. list);
  1567. if (!i915_seqno_passed(seqno, request->seqno))
  1568. break;
  1569. trace_i915_gem_request_retire(dev, request->seqno);
  1570. list_del(&request->list);
  1571. i915_gem_request_remove_from_client(request);
  1572. kfree(request);
  1573. }
  1574. /* Move any buffers on the active list that are no longer referenced
  1575. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1576. */
  1577. while (!list_empty(&ring->active_list)) {
  1578. struct drm_i915_gem_object *obj;
  1579. obj= list_first_entry(&ring->active_list,
  1580. struct drm_i915_gem_object,
  1581. ring_list);
  1582. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1583. break;
  1584. if (obj->base.write_domain != 0)
  1585. i915_gem_object_move_to_flushing(obj);
  1586. else
  1587. i915_gem_object_move_to_inactive(obj);
  1588. }
  1589. if (unlikely (dev_priv->trace_irq_seqno &&
  1590. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1591. ring->irq_put(ring);
  1592. dev_priv->trace_irq_seqno = 0;
  1593. }
  1594. WARN_ON(i915_verify_lists(dev));
  1595. }
  1596. void
  1597. i915_gem_retire_requests(struct drm_device *dev)
  1598. {
  1599. drm_i915_private_t *dev_priv = dev->dev_private;
  1600. int i;
  1601. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1602. struct drm_i915_gem_object *obj, *next;
  1603. /* We must be careful that during unbind() we do not
  1604. * accidentally infinitely recurse into retire requests.
  1605. * Currently:
  1606. * retire -> free -> unbind -> wait -> retire_ring
  1607. */
  1608. list_for_each_entry_safe(obj, next,
  1609. &dev_priv->mm.deferred_free_list,
  1610. mm_list)
  1611. i915_gem_free_object_tail(obj);
  1612. }
  1613. for (i = 0; i < I915_NUM_RINGS; i++)
  1614. i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
  1615. }
  1616. static void
  1617. i915_gem_retire_work_handler(struct work_struct *work)
  1618. {
  1619. drm_i915_private_t *dev_priv;
  1620. struct drm_device *dev;
  1621. bool idle;
  1622. int i;
  1623. dev_priv = container_of(work, drm_i915_private_t,
  1624. mm.retire_work.work);
  1625. dev = dev_priv->dev;
  1626. /* Come back later if the device is busy... */
  1627. if (!mutex_trylock(&dev->struct_mutex)) {
  1628. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1629. return;
  1630. }
  1631. i915_gem_retire_requests(dev);
  1632. /* Send a periodic flush down the ring so we don't hold onto GEM
  1633. * objects indefinitely.
  1634. */
  1635. idle = true;
  1636. for (i = 0; i < I915_NUM_RINGS; i++) {
  1637. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1638. if (!list_empty(&ring->gpu_write_list)) {
  1639. struct drm_i915_gem_request *request;
  1640. int ret;
  1641. ret = i915_gem_flush_ring(dev, ring, 0,
  1642. I915_GEM_GPU_DOMAINS);
  1643. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1644. if (ret || request == NULL ||
  1645. i915_add_request(dev, NULL, request, ring))
  1646. kfree(request);
  1647. }
  1648. idle &= list_empty(&ring->request_list);
  1649. }
  1650. if (!dev_priv->mm.suspended && !idle)
  1651. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1652. mutex_unlock(&dev->struct_mutex);
  1653. }
  1654. int
  1655. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1656. bool interruptible, struct intel_ring_buffer *ring)
  1657. {
  1658. drm_i915_private_t *dev_priv = dev->dev_private;
  1659. u32 ier;
  1660. int ret = 0;
  1661. BUG_ON(seqno == 0);
  1662. if (atomic_read(&dev_priv->mm.wedged))
  1663. return -EAGAIN;
  1664. if (seqno == ring->outstanding_lazy_request) {
  1665. struct drm_i915_gem_request *request;
  1666. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1667. if (request == NULL)
  1668. return -ENOMEM;
  1669. ret = i915_add_request(dev, NULL, request, ring);
  1670. if (ret) {
  1671. kfree(request);
  1672. return ret;
  1673. }
  1674. seqno = request->seqno;
  1675. }
  1676. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1677. if (HAS_PCH_SPLIT(dev))
  1678. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1679. else
  1680. ier = I915_READ(IER);
  1681. if (!ier) {
  1682. DRM_ERROR("something (likely vbetool) disabled "
  1683. "interrupts, re-enabling\n");
  1684. i915_driver_irq_preinstall(dev);
  1685. i915_driver_irq_postinstall(dev);
  1686. }
  1687. trace_i915_gem_request_wait_begin(dev, seqno);
  1688. ring->waiting_seqno = seqno;
  1689. if (ring->irq_get(ring)) {
  1690. if (interruptible)
  1691. ret = wait_event_interruptible(ring->irq_queue,
  1692. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1693. || atomic_read(&dev_priv->mm.wedged));
  1694. else
  1695. wait_event(ring->irq_queue,
  1696. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1697. || atomic_read(&dev_priv->mm.wedged));
  1698. ring->irq_put(ring);
  1699. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1700. seqno) ||
  1701. atomic_read(&dev_priv->mm.wedged), 3000))
  1702. ret = -EBUSY;
  1703. ring->waiting_seqno = 0;
  1704. trace_i915_gem_request_wait_end(dev, seqno);
  1705. }
  1706. if (atomic_read(&dev_priv->mm.wedged))
  1707. ret = -EAGAIN;
  1708. if (ret && ret != -ERESTARTSYS)
  1709. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1710. __func__, ret, seqno, ring->get_seqno(ring),
  1711. dev_priv->next_seqno);
  1712. /* Directly dispatch request retiring. While we have the work queue
  1713. * to handle this, the waiter on a request often wants an associated
  1714. * buffer to have made it to the inactive list, and we would need
  1715. * a separate wait queue to handle that.
  1716. */
  1717. if (ret == 0)
  1718. i915_gem_retire_requests_ring(dev, ring);
  1719. return ret;
  1720. }
  1721. /**
  1722. * Waits for a sequence number to be signaled, and cleans up the
  1723. * request and object lists appropriately for that event.
  1724. */
  1725. static int
  1726. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1727. struct intel_ring_buffer *ring)
  1728. {
  1729. return i915_do_wait_request(dev, seqno, 1, ring);
  1730. }
  1731. /**
  1732. * Ensures that all rendering to the object has completed and the object is
  1733. * safe to unbind from the GTT or access from the CPU.
  1734. */
  1735. int
  1736. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  1737. bool interruptible)
  1738. {
  1739. struct drm_device *dev = obj->base.dev;
  1740. int ret;
  1741. /* This function only exists to support waiting for existing rendering,
  1742. * not for emitting required flushes.
  1743. */
  1744. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1745. /* If there is rendering queued on the buffer being evicted, wait for
  1746. * it.
  1747. */
  1748. if (obj->active) {
  1749. ret = i915_do_wait_request(dev,
  1750. obj->last_rendering_seqno,
  1751. interruptible,
  1752. obj->ring);
  1753. if (ret)
  1754. return ret;
  1755. }
  1756. return 0;
  1757. }
  1758. /**
  1759. * Unbinds an object from the GTT aperture.
  1760. */
  1761. int
  1762. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1763. {
  1764. int ret = 0;
  1765. if (obj->gtt_space == NULL)
  1766. return 0;
  1767. if (obj->pin_count != 0) {
  1768. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1769. return -EINVAL;
  1770. }
  1771. /* blow away mappings if mapped through GTT */
  1772. i915_gem_release_mmap(obj);
  1773. /* Move the object to the CPU domain to ensure that
  1774. * any possible CPU writes while it's not in the GTT
  1775. * are flushed when we go to remap it. This will
  1776. * also ensure that all pending GPU writes are finished
  1777. * before we unbind.
  1778. */
  1779. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1780. if (ret == -ERESTARTSYS)
  1781. return ret;
  1782. /* Continue on if we fail due to EIO, the GPU is hung so we
  1783. * should be safe and we need to cleanup or else we might
  1784. * cause memory corruption through use-after-free.
  1785. */
  1786. if (ret) {
  1787. i915_gem_clflush_object(obj);
  1788. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1789. }
  1790. /* release the fence reg _after_ flushing */
  1791. ret = i915_gem_object_put_fence(obj);
  1792. if (ret == -ERESTARTSYS)
  1793. return ret;
  1794. i915_gem_gtt_unbind_object(obj);
  1795. i915_gem_object_put_pages_gtt(obj);
  1796. list_del_init(&obj->gtt_list);
  1797. list_del_init(&obj->mm_list);
  1798. /* Avoid an unnecessary call to unbind on rebind. */
  1799. obj->map_and_fenceable = true;
  1800. drm_mm_put_block(obj->gtt_space);
  1801. obj->gtt_space = NULL;
  1802. obj->gtt_offset = 0;
  1803. if (i915_gem_object_is_purgeable(obj))
  1804. i915_gem_object_truncate(obj);
  1805. trace_i915_gem_object_unbind(obj);
  1806. return ret;
  1807. }
  1808. int
  1809. i915_gem_flush_ring(struct drm_device *dev,
  1810. struct intel_ring_buffer *ring,
  1811. uint32_t invalidate_domains,
  1812. uint32_t flush_domains)
  1813. {
  1814. int ret;
  1815. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1816. if (ret)
  1817. return ret;
  1818. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1819. return 0;
  1820. }
  1821. static int i915_ring_idle(struct drm_device *dev,
  1822. struct intel_ring_buffer *ring)
  1823. {
  1824. int ret;
  1825. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1826. return 0;
  1827. if (!list_empty(&ring->gpu_write_list)) {
  1828. ret = i915_gem_flush_ring(dev, ring,
  1829. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1830. if (ret)
  1831. return ret;
  1832. }
  1833. return i915_wait_request(dev,
  1834. i915_gem_next_request_seqno(dev, ring),
  1835. ring);
  1836. }
  1837. int
  1838. i915_gpu_idle(struct drm_device *dev)
  1839. {
  1840. drm_i915_private_t *dev_priv = dev->dev_private;
  1841. bool lists_empty;
  1842. int ret, i;
  1843. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1844. list_empty(&dev_priv->mm.active_list));
  1845. if (lists_empty)
  1846. return 0;
  1847. /* Flush everything onto the inactive list. */
  1848. for (i = 0; i < I915_NUM_RINGS; i++) {
  1849. ret = i915_ring_idle(dev, &dev_priv->ring[i]);
  1850. if (ret)
  1851. return ret;
  1852. }
  1853. return 0;
  1854. }
  1855. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1856. struct intel_ring_buffer *pipelined)
  1857. {
  1858. struct drm_device *dev = obj->base.dev;
  1859. drm_i915_private_t *dev_priv = dev->dev_private;
  1860. u32 size = obj->gtt_space->size;
  1861. int regnum = obj->fence_reg;
  1862. uint64_t val;
  1863. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1864. 0xfffff000) << 32;
  1865. val |= obj->gtt_offset & 0xfffff000;
  1866. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1867. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1868. if (obj->tiling_mode == I915_TILING_Y)
  1869. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1870. val |= I965_FENCE_REG_VALID;
  1871. if (pipelined) {
  1872. int ret = intel_ring_begin(pipelined, 6);
  1873. if (ret)
  1874. return ret;
  1875. intel_ring_emit(pipelined, MI_NOOP);
  1876. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1877. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1878. intel_ring_emit(pipelined, (u32)val);
  1879. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1880. intel_ring_emit(pipelined, (u32)(val >> 32));
  1881. intel_ring_advance(pipelined);
  1882. } else
  1883. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1884. return 0;
  1885. }
  1886. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1887. struct intel_ring_buffer *pipelined)
  1888. {
  1889. struct drm_device *dev = obj->base.dev;
  1890. drm_i915_private_t *dev_priv = dev->dev_private;
  1891. u32 size = obj->gtt_space->size;
  1892. int regnum = obj->fence_reg;
  1893. uint64_t val;
  1894. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1895. 0xfffff000) << 32;
  1896. val |= obj->gtt_offset & 0xfffff000;
  1897. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1898. if (obj->tiling_mode == I915_TILING_Y)
  1899. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1900. val |= I965_FENCE_REG_VALID;
  1901. if (pipelined) {
  1902. int ret = intel_ring_begin(pipelined, 6);
  1903. if (ret)
  1904. return ret;
  1905. intel_ring_emit(pipelined, MI_NOOP);
  1906. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1907. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1908. intel_ring_emit(pipelined, (u32)val);
  1909. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1910. intel_ring_emit(pipelined, (u32)(val >> 32));
  1911. intel_ring_advance(pipelined);
  1912. } else
  1913. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1914. return 0;
  1915. }
  1916. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1917. struct intel_ring_buffer *pipelined)
  1918. {
  1919. struct drm_device *dev = obj->base.dev;
  1920. drm_i915_private_t *dev_priv = dev->dev_private;
  1921. u32 size = obj->gtt_space->size;
  1922. u32 fence_reg, val, pitch_val;
  1923. int tile_width;
  1924. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1925. (size & -size) != size ||
  1926. (obj->gtt_offset & (size - 1)),
  1927. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1928. obj->gtt_offset, obj->map_and_fenceable, size))
  1929. return -EINVAL;
  1930. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1931. tile_width = 128;
  1932. else
  1933. tile_width = 512;
  1934. /* Note: pitch better be a power of two tile widths */
  1935. pitch_val = obj->stride / tile_width;
  1936. pitch_val = ffs(pitch_val) - 1;
  1937. val = obj->gtt_offset;
  1938. if (obj->tiling_mode == I915_TILING_Y)
  1939. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1940. val |= I915_FENCE_SIZE_BITS(size);
  1941. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1942. val |= I830_FENCE_REG_VALID;
  1943. fence_reg = obj->fence_reg;
  1944. if (fence_reg < 8)
  1945. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1946. else
  1947. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1948. if (pipelined) {
  1949. int ret = intel_ring_begin(pipelined, 4);
  1950. if (ret)
  1951. return ret;
  1952. intel_ring_emit(pipelined, MI_NOOP);
  1953. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1954. intel_ring_emit(pipelined, fence_reg);
  1955. intel_ring_emit(pipelined, val);
  1956. intel_ring_advance(pipelined);
  1957. } else
  1958. I915_WRITE(fence_reg, val);
  1959. return 0;
  1960. }
  1961. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1962. struct intel_ring_buffer *pipelined)
  1963. {
  1964. struct drm_device *dev = obj->base.dev;
  1965. drm_i915_private_t *dev_priv = dev->dev_private;
  1966. u32 size = obj->gtt_space->size;
  1967. int regnum = obj->fence_reg;
  1968. uint32_t val;
  1969. uint32_t pitch_val;
  1970. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1971. (size & -size) != size ||
  1972. (obj->gtt_offset & (size - 1)),
  1973. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1974. obj->gtt_offset, size))
  1975. return -EINVAL;
  1976. pitch_val = obj->stride / 128;
  1977. pitch_val = ffs(pitch_val) - 1;
  1978. val = obj->gtt_offset;
  1979. if (obj->tiling_mode == I915_TILING_Y)
  1980. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1981. val |= I830_FENCE_SIZE_BITS(size);
  1982. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1983. val |= I830_FENCE_REG_VALID;
  1984. if (pipelined) {
  1985. int ret = intel_ring_begin(pipelined, 4);
  1986. if (ret)
  1987. return ret;
  1988. intel_ring_emit(pipelined, MI_NOOP);
  1989. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1990. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1991. intel_ring_emit(pipelined, val);
  1992. intel_ring_advance(pipelined);
  1993. } else
  1994. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1995. return 0;
  1996. }
  1997. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1998. {
  1999. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  2000. }
  2001. static int
  2002. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2003. struct intel_ring_buffer *pipelined,
  2004. bool interruptible)
  2005. {
  2006. int ret;
  2007. if (obj->fenced_gpu_access) {
  2008. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2009. ret = i915_gem_flush_ring(obj->base.dev,
  2010. obj->last_fenced_ring,
  2011. 0, obj->base.write_domain);
  2012. if (ret)
  2013. return ret;
  2014. }
  2015. obj->fenced_gpu_access = false;
  2016. }
  2017. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2018. if (!ring_passed_seqno(obj->last_fenced_ring,
  2019. obj->last_fenced_seqno)) {
  2020. ret = i915_do_wait_request(obj->base.dev,
  2021. obj->last_fenced_seqno,
  2022. interruptible,
  2023. obj->last_fenced_ring);
  2024. if (ret)
  2025. return ret;
  2026. }
  2027. obj->last_fenced_seqno = 0;
  2028. obj->last_fenced_ring = NULL;
  2029. }
  2030. /* Ensure that all CPU reads are completed before installing a fence
  2031. * and all writes before removing the fence.
  2032. */
  2033. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2034. mb();
  2035. return 0;
  2036. }
  2037. int
  2038. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2039. {
  2040. int ret;
  2041. if (obj->tiling_mode)
  2042. i915_gem_release_mmap(obj);
  2043. ret = i915_gem_object_flush_fence(obj, NULL, true);
  2044. if (ret)
  2045. return ret;
  2046. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2047. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2048. i915_gem_clear_fence_reg(obj->base.dev,
  2049. &dev_priv->fence_regs[obj->fence_reg]);
  2050. obj->fence_reg = I915_FENCE_REG_NONE;
  2051. }
  2052. return 0;
  2053. }
  2054. static struct drm_i915_fence_reg *
  2055. i915_find_fence_reg(struct drm_device *dev,
  2056. struct intel_ring_buffer *pipelined)
  2057. {
  2058. struct drm_i915_private *dev_priv = dev->dev_private;
  2059. struct drm_i915_fence_reg *reg, *first, *avail;
  2060. int i;
  2061. /* First try to find a free reg */
  2062. avail = NULL;
  2063. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2064. reg = &dev_priv->fence_regs[i];
  2065. if (!reg->obj)
  2066. return reg;
  2067. if (!reg->obj->pin_count)
  2068. avail = reg;
  2069. }
  2070. if (avail == NULL)
  2071. return NULL;
  2072. /* None available, try to steal one or wait for a user to finish */
  2073. avail = first = NULL;
  2074. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2075. if (reg->obj->pin_count)
  2076. continue;
  2077. if (first == NULL)
  2078. first = reg;
  2079. if (!pipelined ||
  2080. !reg->obj->last_fenced_ring ||
  2081. reg->obj->last_fenced_ring == pipelined) {
  2082. avail = reg;
  2083. break;
  2084. }
  2085. }
  2086. if (avail == NULL)
  2087. avail = first;
  2088. return avail;
  2089. }
  2090. /**
  2091. * i915_gem_object_get_fence - set up a fence reg for an object
  2092. * @obj: object to map through a fence reg
  2093. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2094. * @interruptible: must we wait uninterruptibly for the register to retire?
  2095. *
  2096. * When mapping objects through the GTT, userspace wants to be able to write
  2097. * to them without having to worry about swizzling if the object is tiled.
  2098. *
  2099. * This function walks the fence regs looking for a free one for @obj,
  2100. * stealing one if it can't find any.
  2101. *
  2102. * It then sets up the reg based on the object's properties: address, pitch
  2103. * and tiling format.
  2104. */
  2105. int
  2106. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2107. struct intel_ring_buffer *pipelined,
  2108. bool interruptible)
  2109. {
  2110. struct drm_device *dev = obj->base.dev;
  2111. struct drm_i915_private *dev_priv = dev->dev_private;
  2112. struct drm_i915_fence_reg *reg;
  2113. int ret;
  2114. /* XXX disable pipelining. There are bugs. Shocking. */
  2115. pipelined = NULL;
  2116. /* Just update our place in the LRU if our fence is getting reused. */
  2117. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2118. reg = &dev_priv->fence_regs[obj->fence_reg];
  2119. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2120. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2121. pipelined = NULL;
  2122. if (!pipelined) {
  2123. if (reg->setup_seqno) {
  2124. if (!ring_passed_seqno(obj->last_fenced_ring,
  2125. reg->setup_seqno)) {
  2126. ret = i915_do_wait_request(obj->base.dev,
  2127. reg->setup_seqno,
  2128. interruptible,
  2129. obj->last_fenced_ring);
  2130. if (ret)
  2131. return ret;
  2132. }
  2133. reg->setup_seqno = 0;
  2134. }
  2135. } else if (obj->last_fenced_ring &&
  2136. obj->last_fenced_ring != pipelined) {
  2137. ret = i915_gem_object_flush_fence(obj,
  2138. pipelined,
  2139. interruptible);
  2140. if (ret)
  2141. return ret;
  2142. } else if (obj->tiling_changed) {
  2143. if (obj->fenced_gpu_access) {
  2144. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2145. ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
  2146. 0, obj->base.write_domain);
  2147. if (ret)
  2148. return ret;
  2149. }
  2150. obj->fenced_gpu_access = false;
  2151. }
  2152. }
  2153. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2154. pipelined = NULL;
  2155. BUG_ON(!pipelined && reg->setup_seqno);
  2156. if (obj->tiling_changed) {
  2157. if (pipelined) {
  2158. reg->setup_seqno =
  2159. i915_gem_next_request_seqno(dev, pipelined);
  2160. obj->last_fenced_seqno = reg->setup_seqno;
  2161. obj->last_fenced_ring = pipelined;
  2162. }
  2163. goto update;
  2164. }
  2165. return 0;
  2166. }
  2167. reg = i915_find_fence_reg(dev, pipelined);
  2168. if (reg == NULL)
  2169. return -ENOSPC;
  2170. ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
  2171. if (ret)
  2172. return ret;
  2173. if (reg->obj) {
  2174. struct drm_i915_gem_object *old = reg->obj;
  2175. drm_gem_object_reference(&old->base);
  2176. if (old->tiling_mode)
  2177. i915_gem_release_mmap(old);
  2178. ret = i915_gem_object_flush_fence(old,
  2179. pipelined,
  2180. interruptible);
  2181. if (ret) {
  2182. drm_gem_object_unreference(&old->base);
  2183. return ret;
  2184. }
  2185. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2186. pipelined = NULL;
  2187. old->fence_reg = I915_FENCE_REG_NONE;
  2188. old->last_fenced_ring = pipelined;
  2189. old->last_fenced_seqno =
  2190. pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
  2191. drm_gem_object_unreference(&old->base);
  2192. } else if (obj->last_fenced_seqno == 0)
  2193. pipelined = NULL;
  2194. reg->obj = obj;
  2195. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2196. obj->fence_reg = reg - dev_priv->fence_regs;
  2197. obj->last_fenced_ring = pipelined;
  2198. reg->setup_seqno =
  2199. pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
  2200. obj->last_fenced_seqno = reg->setup_seqno;
  2201. update:
  2202. obj->tiling_changed = false;
  2203. switch (INTEL_INFO(dev)->gen) {
  2204. case 6:
  2205. ret = sandybridge_write_fence_reg(obj, pipelined);
  2206. break;
  2207. case 5:
  2208. case 4:
  2209. ret = i965_write_fence_reg(obj, pipelined);
  2210. break;
  2211. case 3:
  2212. ret = i915_write_fence_reg(obj, pipelined);
  2213. break;
  2214. case 2:
  2215. ret = i830_write_fence_reg(obj, pipelined);
  2216. break;
  2217. }
  2218. return ret;
  2219. }
  2220. /**
  2221. * i915_gem_clear_fence_reg - clear out fence register info
  2222. * @obj: object to clear
  2223. *
  2224. * Zeroes out the fence register itself and clears out the associated
  2225. * data structures in dev_priv and obj.
  2226. */
  2227. static void
  2228. i915_gem_clear_fence_reg(struct drm_device *dev,
  2229. struct drm_i915_fence_reg *reg)
  2230. {
  2231. drm_i915_private_t *dev_priv = dev->dev_private;
  2232. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2233. switch (INTEL_INFO(dev)->gen) {
  2234. case 6:
  2235. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2236. break;
  2237. case 5:
  2238. case 4:
  2239. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2240. break;
  2241. case 3:
  2242. if (fence_reg >= 8)
  2243. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2244. else
  2245. case 2:
  2246. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2247. I915_WRITE(fence_reg, 0);
  2248. break;
  2249. }
  2250. list_del_init(&reg->lru_list);
  2251. reg->obj = NULL;
  2252. reg->setup_seqno = 0;
  2253. }
  2254. /**
  2255. * Finds free space in the GTT aperture and binds the object there.
  2256. */
  2257. static int
  2258. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2259. unsigned alignment,
  2260. bool map_and_fenceable)
  2261. {
  2262. struct drm_device *dev = obj->base.dev;
  2263. drm_i915_private_t *dev_priv = dev->dev_private;
  2264. struct drm_mm_node *free_space;
  2265. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2266. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2267. bool mappable, fenceable;
  2268. int ret;
  2269. if (obj->madv != I915_MADV_WILLNEED) {
  2270. DRM_ERROR("Attempting to bind a purgeable object\n");
  2271. return -EINVAL;
  2272. }
  2273. fence_size = i915_gem_get_gtt_size(obj);
  2274. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2275. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2276. if (alignment == 0)
  2277. alignment = map_and_fenceable ? fence_alignment :
  2278. unfenced_alignment;
  2279. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2280. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2281. return -EINVAL;
  2282. }
  2283. size = map_and_fenceable ? fence_size : obj->base.size;
  2284. /* If the object is bigger than the entire aperture, reject it early
  2285. * before evicting everything in a vain attempt to find space.
  2286. */
  2287. if (obj->base.size >
  2288. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2289. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2290. return -E2BIG;
  2291. }
  2292. search_free:
  2293. if (map_and_fenceable)
  2294. free_space =
  2295. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2296. size, alignment, 0,
  2297. dev_priv->mm.gtt_mappable_end,
  2298. 0);
  2299. else
  2300. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2301. size, alignment, 0);
  2302. if (free_space != NULL) {
  2303. if (map_and_fenceable)
  2304. obj->gtt_space =
  2305. drm_mm_get_block_range_generic(free_space,
  2306. size, alignment, 0,
  2307. dev_priv->mm.gtt_mappable_end,
  2308. 0);
  2309. else
  2310. obj->gtt_space =
  2311. drm_mm_get_block(free_space, size, alignment);
  2312. }
  2313. if (obj->gtt_space == NULL) {
  2314. /* If the gtt is empty and we're still having trouble
  2315. * fitting our object in, we're out of memory.
  2316. */
  2317. ret = i915_gem_evict_something(dev, size, alignment,
  2318. map_and_fenceable);
  2319. if (ret)
  2320. return ret;
  2321. goto search_free;
  2322. }
  2323. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2324. if (ret) {
  2325. drm_mm_put_block(obj->gtt_space);
  2326. obj->gtt_space = NULL;
  2327. if (ret == -ENOMEM) {
  2328. /* first try to reclaim some memory by clearing the GTT */
  2329. ret = i915_gem_evict_everything(dev, false);
  2330. if (ret) {
  2331. /* now try to shrink everyone else */
  2332. if (gfpmask) {
  2333. gfpmask = 0;
  2334. goto search_free;
  2335. }
  2336. return -ENOMEM;
  2337. }
  2338. goto search_free;
  2339. }
  2340. return ret;
  2341. }
  2342. ret = i915_gem_gtt_bind_object(obj);
  2343. if (ret) {
  2344. i915_gem_object_put_pages_gtt(obj);
  2345. drm_mm_put_block(obj->gtt_space);
  2346. obj->gtt_space = NULL;
  2347. if (i915_gem_evict_everything(dev, false))
  2348. return ret;
  2349. goto search_free;
  2350. }
  2351. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2352. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2353. /* Assert that the object is not currently in any GPU domain. As it
  2354. * wasn't in the GTT, there shouldn't be any way it could have been in
  2355. * a GPU cache
  2356. */
  2357. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2358. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2359. obj->gtt_offset = obj->gtt_space->start;
  2360. fenceable =
  2361. obj->gtt_space->size == fence_size &&
  2362. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2363. mappable =
  2364. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2365. obj->map_and_fenceable = mappable && fenceable;
  2366. trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
  2367. return 0;
  2368. }
  2369. void
  2370. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2371. {
  2372. /* If we don't have a page list set up, then we're not pinned
  2373. * to GPU, and we can ignore the cache flush because it'll happen
  2374. * again at bind time.
  2375. */
  2376. if (obj->pages == NULL)
  2377. return;
  2378. trace_i915_gem_object_clflush(obj);
  2379. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2380. }
  2381. /** Flushes any GPU write domain for the object if it's dirty. */
  2382. static int
  2383. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2384. {
  2385. struct drm_device *dev = obj->base.dev;
  2386. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2387. return 0;
  2388. /* Queue the GPU write cache flushing we need. */
  2389. return i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
  2390. }
  2391. /** Flushes the GTT write domain for the object if it's dirty. */
  2392. static void
  2393. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2394. {
  2395. uint32_t old_write_domain;
  2396. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2397. return;
  2398. /* No actual flushing is required for the GTT write domain. Writes
  2399. * to it immediately go to main memory as far as we know, so there's
  2400. * no chipset flush. It also doesn't land in render cache.
  2401. *
  2402. * However, we do have to enforce the order so that all writes through
  2403. * the GTT land before any writes to the device, such as updates to
  2404. * the GATT itself.
  2405. */
  2406. wmb();
  2407. i915_gem_release_mmap(obj);
  2408. old_write_domain = obj->base.write_domain;
  2409. obj->base.write_domain = 0;
  2410. trace_i915_gem_object_change_domain(obj,
  2411. obj->base.read_domains,
  2412. old_write_domain);
  2413. }
  2414. /** Flushes the CPU write domain for the object if it's dirty. */
  2415. static void
  2416. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2417. {
  2418. uint32_t old_write_domain;
  2419. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2420. return;
  2421. i915_gem_clflush_object(obj);
  2422. intel_gtt_chipset_flush();
  2423. old_write_domain = obj->base.write_domain;
  2424. obj->base.write_domain = 0;
  2425. trace_i915_gem_object_change_domain(obj,
  2426. obj->base.read_domains,
  2427. old_write_domain);
  2428. }
  2429. /**
  2430. * Moves a single object to the GTT read, and possibly write domain.
  2431. *
  2432. * This function returns when the move is complete, including waiting on
  2433. * flushes to occur.
  2434. */
  2435. int
  2436. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2437. {
  2438. uint32_t old_write_domain, old_read_domains;
  2439. int ret;
  2440. /* Not valid to be called on unbound objects. */
  2441. if (obj->gtt_space == NULL)
  2442. return -EINVAL;
  2443. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2444. if (ret)
  2445. return ret;
  2446. if (obj->pending_gpu_write || write) {
  2447. ret = i915_gem_object_wait_rendering(obj, true);
  2448. if (ret)
  2449. return ret;
  2450. }
  2451. i915_gem_object_flush_cpu_write_domain(obj);
  2452. old_write_domain = obj->base.write_domain;
  2453. old_read_domains = obj->base.read_domains;
  2454. /* It should now be out of any other write domains, and we can update
  2455. * the domain values for our changes.
  2456. */
  2457. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2458. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2459. if (write) {
  2460. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2461. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2462. obj->dirty = 1;
  2463. }
  2464. trace_i915_gem_object_change_domain(obj,
  2465. old_read_domains,
  2466. old_write_domain);
  2467. return 0;
  2468. }
  2469. /*
  2470. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2471. * wait, as in modesetting process we're not supposed to be interrupted.
  2472. */
  2473. int
  2474. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2475. struct intel_ring_buffer *pipelined)
  2476. {
  2477. uint32_t old_read_domains;
  2478. int ret;
  2479. /* Not valid to be called on unbound objects. */
  2480. if (obj->gtt_space == NULL)
  2481. return -EINVAL;
  2482. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2483. if (ret)
  2484. return ret;
  2485. /* Currently, we are always called from an non-interruptible context. */
  2486. if (pipelined != obj->ring) {
  2487. ret = i915_gem_object_wait_rendering(obj, false);
  2488. if (ret)
  2489. return ret;
  2490. }
  2491. i915_gem_object_flush_cpu_write_domain(obj);
  2492. old_read_domains = obj->base.read_domains;
  2493. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2494. trace_i915_gem_object_change_domain(obj,
  2495. old_read_domains,
  2496. obj->base.write_domain);
  2497. return 0;
  2498. }
  2499. int
  2500. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2501. bool interruptible)
  2502. {
  2503. int ret;
  2504. if (!obj->active)
  2505. return 0;
  2506. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2507. ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
  2508. 0, obj->base.write_domain);
  2509. if (ret)
  2510. return ret;
  2511. }
  2512. return i915_gem_object_wait_rendering(obj, interruptible);
  2513. }
  2514. /**
  2515. * Moves a single object to the CPU read, and possibly write domain.
  2516. *
  2517. * This function returns when the move is complete, including waiting on
  2518. * flushes to occur.
  2519. */
  2520. static int
  2521. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2522. {
  2523. uint32_t old_write_domain, old_read_domains;
  2524. int ret;
  2525. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2526. if (ret)
  2527. return ret;
  2528. ret = i915_gem_object_wait_rendering(obj, true);
  2529. if (ret)
  2530. return ret;
  2531. i915_gem_object_flush_gtt_write_domain(obj);
  2532. /* If we have a partially-valid cache of the object in the CPU,
  2533. * finish invalidating it and free the per-page flags.
  2534. */
  2535. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2536. old_write_domain = obj->base.write_domain;
  2537. old_read_domains = obj->base.read_domains;
  2538. /* Flush the CPU cache if it's still invalid. */
  2539. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2540. i915_gem_clflush_object(obj);
  2541. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2542. }
  2543. /* It should now be out of any other write domains, and we can update
  2544. * the domain values for our changes.
  2545. */
  2546. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2547. /* If we're writing through the CPU, then the GPU read domains will
  2548. * need to be invalidated at next use.
  2549. */
  2550. if (write) {
  2551. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2552. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2553. }
  2554. trace_i915_gem_object_change_domain(obj,
  2555. old_read_domains,
  2556. old_write_domain);
  2557. return 0;
  2558. }
  2559. /**
  2560. * Moves the object from a partially CPU read to a full one.
  2561. *
  2562. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2563. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2564. */
  2565. static void
  2566. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2567. {
  2568. if (!obj->page_cpu_valid)
  2569. return;
  2570. /* If we're partially in the CPU read domain, finish moving it in.
  2571. */
  2572. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2573. int i;
  2574. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2575. if (obj->page_cpu_valid[i])
  2576. continue;
  2577. drm_clflush_pages(obj->pages + i, 1);
  2578. }
  2579. }
  2580. /* Free the page_cpu_valid mappings which are now stale, whether
  2581. * or not we've got I915_GEM_DOMAIN_CPU.
  2582. */
  2583. kfree(obj->page_cpu_valid);
  2584. obj->page_cpu_valid = NULL;
  2585. }
  2586. /**
  2587. * Set the CPU read domain on a range of the object.
  2588. *
  2589. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2590. * not entirely valid. The page_cpu_valid member of the object flags which
  2591. * pages have been flushed, and will be respected by
  2592. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2593. * of the whole object.
  2594. *
  2595. * This function returns when the move is complete, including waiting on
  2596. * flushes to occur.
  2597. */
  2598. static int
  2599. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2600. uint64_t offset, uint64_t size)
  2601. {
  2602. uint32_t old_read_domains;
  2603. int i, ret;
  2604. if (offset == 0 && size == obj->base.size)
  2605. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2606. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2607. if (ret)
  2608. return ret;
  2609. ret = i915_gem_object_wait_rendering(obj, true);
  2610. if (ret)
  2611. return ret;
  2612. i915_gem_object_flush_gtt_write_domain(obj);
  2613. /* If we're already fully in the CPU read domain, we're done. */
  2614. if (obj->page_cpu_valid == NULL &&
  2615. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2616. return 0;
  2617. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2618. * newly adding I915_GEM_DOMAIN_CPU
  2619. */
  2620. if (obj->page_cpu_valid == NULL) {
  2621. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2622. GFP_KERNEL);
  2623. if (obj->page_cpu_valid == NULL)
  2624. return -ENOMEM;
  2625. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2626. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2627. /* Flush the cache on any pages that are still invalid from the CPU's
  2628. * perspective.
  2629. */
  2630. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2631. i++) {
  2632. if (obj->page_cpu_valid[i])
  2633. continue;
  2634. drm_clflush_pages(obj->pages + i, 1);
  2635. obj->page_cpu_valid[i] = 1;
  2636. }
  2637. /* It should now be out of any other write domains, and we can update
  2638. * the domain values for our changes.
  2639. */
  2640. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2641. old_read_domains = obj->base.read_domains;
  2642. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2643. trace_i915_gem_object_change_domain(obj,
  2644. old_read_domains,
  2645. obj->base.write_domain);
  2646. return 0;
  2647. }
  2648. /* Throttle our rendering by waiting until the ring has completed our requests
  2649. * emitted over 20 msec ago.
  2650. *
  2651. * Note that if we were to use the current jiffies each time around the loop,
  2652. * we wouldn't escape the function with any frames outstanding if the time to
  2653. * render a frame was over 20ms.
  2654. *
  2655. * This should get us reasonable parallelism between CPU and GPU but also
  2656. * relatively low latency when blocking on a particular request to finish.
  2657. */
  2658. static int
  2659. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2660. {
  2661. struct drm_i915_private *dev_priv = dev->dev_private;
  2662. struct drm_i915_file_private *file_priv = file->driver_priv;
  2663. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2664. struct drm_i915_gem_request *request;
  2665. struct intel_ring_buffer *ring = NULL;
  2666. u32 seqno = 0;
  2667. int ret;
  2668. spin_lock(&file_priv->mm.lock);
  2669. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2670. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2671. break;
  2672. ring = request->ring;
  2673. seqno = request->seqno;
  2674. }
  2675. spin_unlock(&file_priv->mm.lock);
  2676. if (seqno == 0)
  2677. return 0;
  2678. ret = 0;
  2679. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2680. /* And wait for the seqno passing without holding any locks and
  2681. * causing extra latency for others. This is safe as the irq
  2682. * generation is designed to be run atomically and so is
  2683. * lockless.
  2684. */
  2685. if (ring->irq_get(ring)) {
  2686. ret = wait_event_interruptible(ring->irq_queue,
  2687. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2688. || atomic_read(&dev_priv->mm.wedged));
  2689. ring->irq_put(ring);
  2690. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2691. ret = -EIO;
  2692. }
  2693. }
  2694. if (ret == 0)
  2695. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2696. return ret;
  2697. }
  2698. int
  2699. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2700. uint32_t alignment,
  2701. bool map_and_fenceable)
  2702. {
  2703. struct drm_device *dev = obj->base.dev;
  2704. struct drm_i915_private *dev_priv = dev->dev_private;
  2705. int ret;
  2706. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2707. WARN_ON(i915_verify_lists(dev));
  2708. if (obj->gtt_space != NULL) {
  2709. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2710. (map_and_fenceable && !obj->map_and_fenceable)) {
  2711. WARN(obj->pin_count,
  2712. "bo is already pinned with incorrect alignment:"
  2713. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2714. " obj->map_and_fenceable=%d\n",
  2715. obj->gtt_offset, alignment,
  2716. map_and_fenceable,
  2717. obj->map_and_fenceable);
  2718. ret = i915_gem_object_unbind(obj);
  2719. if (ret)
  2720. return ret;
  2721. }
  2722. }
  2723. if (obj->gtt_space == NULL) {
  2724. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2725. map_and_fenceable);
  2726. if (ret)
  2727. return ret;
  2728. }
  2729. if (obj->pin_count++ == 0) {
  2730. if (!obj->active)
  2731. list_move_tail(&obj->mm_list,
  2732. &dev_priv->mm.pinned_list);
  2733. }
  2734. obj->pin_mappable |= map_and_fenceable;
  2735. WARN_ON(i915_verify_lists(dev));
  2736. return 0;
  2737. }
  2738. void
  2739. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2740. {
  2741. struct drm_device *dev = obj->base.dev;
  2742. drm_i915_private_t *dev_priv = dev->dev_private;
  2743. WARN_ON(i915_verify_lists(dev));
  2744. BUG_ON(obj->pin_count == 0);
  2745. BUG_ON(obj->gtt_space == NULL);
  2746. if (--obj->pin_count == 0) {
  2747. if (!obj->active)
  2748. list_move_tail(&obj->mm_list,
  2749. &dev_priv->mm.inactive_list);
  2750. obj->pin_mappable = false;
  2751. }
  2752. WARN_ON(i915_verify_lists(dev));
  2753. }
  2754. int
  2755. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2756. struct drm_file *file)
  2757. {
  2758. struct drm_i915_gem_pin *args = data;
  2759. struct drm_i915_gem_object *obj;
  2760. int ret;
  2761. ret = i915_mutex_lock_interruptible(dev);
  2762. if (ret)
  2763. return ret;
  2764. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2765. if (obj == NULL) {
  2766. ret = -ENOENT;
  2767. goto unlock;
  2768. }
  2769. if (obj->madv != I915_MADV_WILLNEED) {
  2770. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2771. ret = -EINVAL;
  2772. goto out;
  2773. }
  2774. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2775. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2776. args->handle);
  2777. ret = -EINVAL;
  2778. goto out;
  2779. }
  2780. obj->user_pin_count++;
  2781. obj->pin_filp = file;
  2782. if (obj->user_pin_count == 1) {
  2783. ret = i915_gem_object_pin(obj, args->alignment, true);
  2784. if (ret)
  2785. goto out;
  2786. }
  2787. /* XXX - flush the CPU caches for pinned objects
  2788. * as the X server doesn't manage domains yet
  2789. */
  2790. i915_gem_object_flush_cpu_write_domain(obj);
  2791. args->offset = obj->gtt_offset;
  2792. out:
  2793. drm_gem_object_unreference(&obj->base);
  2794. unlock:
  2795. mutex_unlock(&dev->struct_mutex);
  2796. return ret;
  2797. }
  2798. int
  2799. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2800. struct drm_file *file)
  2801. {
  2802. struct drm_i915_gem_pin *args = data;
  2803. struct drm_i915_gem_object *obj;
  2804. int ret;
  2805. ret = i915_mutex_lock_interruptible(dev);
  2806. if (ret)
  2807. return ret;
  2808. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2809. if (obj == NULL) {
  2810. ret = -ENOENT;
  2811. goto unlock;
  2812. }
  2813. if (obj->pin_filp != file) {
  2814. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2815. args->handle);
  2816. ret = -EINVAL;
  2817. goto out;
  2818. }
  2819. obj->user_pin_count--;
  2820. if (obj->user_pin_count == 0) {
  2821. obj->pin_filp = NULL;
  2822. i915_gem_object_unpin(obj);
  2823. }
  2824. out:
  2825. drm_gem_object_unreference(&obj->base);
  2826. unlock:
  2827. mutex_unlock(&dev->struct_mutex);
  2828. return ret;
  2829. }
  2830. int
  2831. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2832. struct drm_file *file)
  2833. {
  2834. struct drm_i915_gem_busy *args = data;
  2835. struct drm_i915_gem_object *obj;
  2836. int ret;
  2837. ret = i915_mutex_lock_interruptible(dev);
  2838. if (ret)
  2839. return ret;
  2840. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2841. if (obj == NULL) {
  2842. ret = -ENOENT;
  2843. goto unlock;
  2844. }
  2845. /* Count all active objects as busy, even if they are currently not used
  2846. * by the gpu. Users of this interface expect objects to eventually
  2847. * become non-busy without any further actions, therefore emit any
  2848. * necessary flushes here.
  2849. */
  2850. args->busy = obj->active;
  2851. if (args->busy) {
  2852. /* Unconditionally flush objects, even when the gpu still uses this
  2853. * object. Userspace calling this function indicates that it wants to
  2854. * use this buffer rather sooner than later, so issuing the required
  2855. * flush earlier is beneficial.
  2856. */
  2857. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2858. ret = i915_gem_flush_ring(dev, obj->ring,
  2859. 0, obj->base.write_domain);
  2860. } else if (obj->ring->outstanding_lazy_request ==
  2861. obj->last_rendering_seqno) {
  2862. struct drm_i915_gem_request *request;
  2863. /* This ring is not being cleared by active usage,
  2864. * so emit a request to do so.
  2865. */
  2866. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2867. if (request)
  2868. ret = i915_add_request(dev,
  2869. NULL, request,
  2870. obj->ring);
  2871. else
  2872. ret = -ENOMEM;
  2873. }
  2874. /* Update the active list for the hardware's current position.
  2875. * Otherwise this only updates on a delayed timer or when irqs
  2876. * are actually unmasked, and our working set ends up being
  2877. * larger than required.
  2878. */
  2879. i915_gem_retire_requests_ring(dev, obj->ring);
  2880. args->busy = obj->active;
  2881. }
  2882. drm_gem_object_unreference(&obj->base);
  2883. unlock:
  2884. mutex_unlock(&dev->struct_mutex);
  2885. return ret;
  2886. }
  2887. int
  2888. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2889. struct drm_file *file_priv)
  2890. {
  2891. return i915_gem_ring_throttle(dev, file_priv);
  2892. }
  2893. int
  2894. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2895. struct drm_file *file_priv)
  2896. {
  2897. struct drm_i915_gem_madvise *args = data;
  2898. struct drm_i915_gem_object *obj;
  2899. int ret;
  2900. switch (args->madv) {
  2901. case I915_MADV_DONTNEED:
  2902. case I915_MADV_WILLNEED:
  2903. break;
  2904. default:
  2905. return -EINVAL;
  2906. }
  2907. ret = i915_mutex_lock_interruptible(dev);
  2908. if (ret)
  2909. return ret;
  2910. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2911. if (obj == NULL) {
  2912. ret = -ENOENT;
  2913. goto unlock;
  2914. }
  2915. if (obj->pin_count) {
  2916. ret = -EINVAL;
  2917. goto out;
  2918. }
  2919. if (obj->madv != __I915_MADV_PURGED)
  2920. obj->madv = args->madv;
  2921. /* if the object is no longer bound, discard its backing storage */
  2922. if (i915_gem_object_is_purgeable(obj) &&
  2923. obj->gtt_space == NULL)
  2924. i915_gem_object_truncate(obj);
  2925. args->retained = obj->madv != __I915_MADV_PURGED;
  2926. out:
  2927. drm_gem_object_unreference(&obj->base);
  2928. unlock:
  2929. mutex_unlock(&dev->struct_mutex);
  2930. return ret;
  2931. }
  2932. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2933. size_t size)
  2934. {
  2935. struct drm_i915_private *dev_priv = dev->dev_private;
  2936. struct drm_i915_gem_object *obj;
  2937. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2938. if (obj == NULL)
  2939. return NULL;
  2940. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2941. kfree(obj);
  2942. return NULL;
  2943. }
  2944. i915_gem_info_add_obj(dev_priv, size);
  2945. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2946. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2947. obj->agp_type = AGP_USER_MEMORY;
  2948. obj->base.driver_private = NULL;
  2949. obj->fence_reg = I915_FENCE_REG_NONE;
  2950. INIT_LIST_HEAD(&obj->mm_list);
  2951. INIT_LIST_HEAD(&obj->gtt_list);
  2952. INIT_LIST_HEAD(&obj->ring_list);
  2953. INIT_LIST_HEAD(&obj->exec_list);
  2954. INIT_LIST_HEAD(&obj->gpu_write_list);
  2955. obj->madv = I915_MADV_WILLNEED;
  2956. /* Avoid an unnecessary call to unbind on the first bind. */
  2957. obj->map_and_fenceable = true;
  2958. return obj;
  2959. }
  2960. int i915_gem_init_object(struct drm_gem_object *obj)
  2961. {
  2962. BUG();
  2963. return 0;
  2964. }
  2965. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2966. {
  2967. struct drm_device *dev = obj->base.dev;
  2968. drm_i915_private_t *dev_priv = dev->dev_private;
  2969. int ret;
  2970. ret = i915_gem_object_unbind(obj);
  2971. if (ret == -ERESTARTSYS) {
  2972. list_move(&obj->mm_list,
  2973. &dev_priv->mm.deferred_free_list);
  2974. return;
  2975. }
  2976. if (obj->base.map_list.map)
  2977. i915_gem_free_mmap_offset(obj);
  2978. drm_gem_object_release(&obj->base);
  2979. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2980. kfree(obj->page_cpu_valid);
  2981. kfree(obj->bit_17);
  2982. kfree(obj);
  2983. }
  2984. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2985. {
  2986. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2987. struct drm_device *dev = obj->base.dev;
  2988. trace_i915_gem_object_destroy(obj);
  2989. while (obj->pin_count > 0)
  2990. i915_gem_object_unpin(obj);
  2991. if (obj->phys_obj)
  2992. i915_gem_detach_phys_object(dev, obj);
  2993. i915_gem_free_object_tail(obj);
  2994. }
  2995. int
  2996. i915_gem_idle(struct drm_device *dev)
  2997. {
  2998. drm_i915_private_t *dev_priv = dev->dev_private;
  2999. int ret;
  3000. mutex_lock(&dev->struct_mutex);
  3001. if (dev_priv->mm.suspended) {
  3002. mutex_unlock(&dev->struct_mutex);
  3003. return 0;
  3004. }
  3005. ret = i915_gpu_idle(dev);
  3006. if (ret) {
  3007. mutex_unlock(&dev->struct_mutex);
  3008. return ret;
  3009. }
  3010. /* Under UMS, be paranoid and evict. */
  3011. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3012. ret = i915_gem_evict_inactive(dev, false);
  3013. if (ret) {
  3014. mutex_unlock(&dev->struct_mutex);
  3015. return ret;
  3016. }
  3017. }
  3018. i915_gem_reset_fences(dev);
  3019. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3020. * We need to replace this with a semaphore, or something.
  3021. * And not confound mm.suspended!
  3022. */
  3023. dev_priv->mm.suspended = 1;
  3024. del_timer_sync(&dev_priv->hangcheck_timer);
  3025. i915_kernel_lost_context(dev);
  3026. i915_gem_cleanup_ringbuffer(dev);
  3027. mutex_unlock(&dev->struct_mutex);
  3028. /* Cancel the retire work handler, which should be idle now. */
  3029. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3030. return 0;
  3031. }
  3032. int
  3033. i915_gem_init_ringbuffer(struct drm_device *dev)
  3034. {
  3035. drm_i915_private_t *dev_priv = dev->dev_private;
  3036. int ret;
  3037. ret = intel_init_render_ring_buffer(dev);
  3038. if (ret)
  3039. return ret;
  3040. if (HAS_BSD(dev)) {
  3041. ret = intel_init_bsd_ring_buffer(dev);
  3042. if (ret)
  3043. goto cleanup_render_ring;
  3044. }
  3045. if (HAS_BLT(dev)) {
  3046. ret = intel_init_blt_ring_buffer(dev);
  3047. if (ret)
  3048. goto cleanup_bsd_ring;
  3049. }
  3050. dev_priv->next_seqno = 1;
  3051. return 0;
  3052. cleanup_bsd_ring:
  3053. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3054. cleanup_render_ring:
  3055. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3056. return ret;
  3057. }
  3058. void
  3059. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3060. {
  3061. drm_i915_private_t *dev_priv = dev->dev_private;
  3062. int i;
  3063. for (i = 0; i < I915_NUM_RINGS; i++)
  3064. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3065. }
  3066. int
  3067. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3068. struct drm_file *file_priv)
  3069. {
  3070. drm_i915_private_t *dev_priv = dev->dev_private;
  3071. int ret, i;
  3072. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3073. return 0;
  3074. if (atomic_read(&dev_priv->mm.wedged)) {
  3075. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3076. atomic_set(&dev_priv->mm.wedged, 0);
  3077. }
  3078. mutex_lock(&dev->struct_mutex);
  3079. dev_priv->mm.suspended = 0;
  3080. ret = i915_gem_init_ringbuffer(dev);
  3081. if (ret != 0) {
  3082. mutex_unlock(&dev->struct_mutex);
  3083. return ret;
  3084. }
  3085. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3086. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3087. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3088. for (i = 0; i < I915_NUM_RINGS; i++) {
  3089. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3090. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3091. }
  3092. mutex_unlock(&dev->struct_mutex);
  3093. ret = drm_irq_install(dev);
  3094. if (ret)
  3095. goto cleanup_ringbuffer;
  3096. return 0;
  3097. cleanup_ringbuffer:
  3098. mutex_lock(&dev->struct_mutex);
  3099. i915_gem_cleanup_ringbuffer(dev);
  3100. dev_priv->mm.suspended = 1;
  3101. mutex_unlock(&dev->struct_mutex);
  3102. return ret;
  3103. }
  3104. int
  3105. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3106. struct drm_file *file_priv)
  3107. {
  3108. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3109. return 0;
  3110. drm_irq_uninstall(dev);
  3111. return i915_gem_idle(dev);
  3112. }
  3113. void
  3114. i915_gem_lastclose(struct drm_device *dev)
  3115. {
  3116. int ret;
  3117. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3118. return;
  3119. ret = i915_gem_idle(dev);
  3120. if (ret)
  3121. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3122. }
  3123. static void
  3124. init_ring_lists(struct intel_ring_buffer *ring)
  3125. {
  3126. INIT_LIST_HEAD(&ring->active_list);
  3127. INIT_LIST_HEAD(&ring->request_list);
  3128. INIT_LIST_HEAD(&ring->gpu_write_list);
  3129. }
  3130. void
  3131. i915_gem_load(struct drm_device *dev)
  3132. {
  3133. int i;
  3134. drm_i915_private_t *dev_priv = dev->dev_private;
  3135. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3136. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3137. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3138. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3139. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3140. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3141. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3142. for (i = 0; i < I915_NUM_RINGS; i++)
  3143. init_ring_lists(&dev_priv->ring[i]);
  3144. for (i = 0; i < 16; i++)
  3145. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3146. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3147. i915_gem_retire_work_handler);
  3148. init_completion(&dev_priv->error_completion);
  3149. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3150. if (IS_GEN3(dev)) {
  3151. u32 tmp = I915_READ(MI_ARB_STATE);
  3152. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3153. /* arb state is a masked write, so set bit + bit in mask */
  3154. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3155. I915_WRITE(MI_ARB_STATE, tmp);
  3156. }
  3157. }
  3158. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3159. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3160. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3161. dev_priv->fence_reg_start = 3;
  3162. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3163. dev_priv->num_fence_regs = 16;
  3164. else
  3165. dev_priv->num_fence_regs = 8;
  3166. /* Initialize fence registers to zero */
  3167. switch (INTEL_INFO(dev)->gen) {
  3168. case 6:
  3169. for (i = 0; i < 16; i++)
  3170. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3171. break;
  3172. case 5:
  3173. case 4:
  3174. for (i = 0; i < 16; i++)
  3175. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3176. break;
  3177. case 3:
  3178. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3179. for (i = 0; i < 8; i++)
  3180. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3181. case 2:
  3182. for (i = 0; i < 8; i++)
  3183. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3184. break;
  3185. }
  3186. i915_gem_detect_bit_6_swizzle(dev);
  3187. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3188. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3189. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3190. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3191. }
  3192. /*
  3193. * Create a physically contiguous memory object for this object
  3194. * e.g. for cursor + overlay regs
  3195. */
  3196. static int i915_gem_init_phys_object(struct drm_device *dev,
  3197. int id, int size, int align)
  3198. {
  3199. drm_i915_private_t *dev_priv = dev->dev_private;
  3200. struct drm_i915_gem_phys_object *phys_obj;
  3201. int ret;
  3202. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3203. return 0;
  3204. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3205. if (!phys_obj)
  3206. return -ENOMEM;
  3207. phys_obj->id = id;
  3208. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3209. if (!phys_obj->handle) {
  3210. ret = -ENOMEM;
  3211. goto kfree_obj;
  3212. }
  3213. #ifdef CONFIG_X86
  3214. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3215. #endif
  3216. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3217. return 0;
  3218. kfree_obj:
  3219. kfree(phys_obj);
  3220. return ret;
  3221. }
  3222. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3223. {
  3224. drm_i915_private_t *dev_priv = dev->dev_private;
  3225. struct drm_i915_gem_phys_object *phys_obj;
  3226. if (!dev_priv->mm.phys_objs[id - 1])
  3227. return;
  3228. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3229. if (phys_obj->cur_obj) {
  3230. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3231. }
  3232. #ifdef CONFIG_X86
  3233. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3234. #endif
  3235. drm_pci_free(dev, phys_obj->handle);
  3236. kfree(phys_obj);
  3237. dev_priv->mm.phys_objs[id - 1] = NULL;
  3238. }
  3239. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3240. {
  3241. int i;
  3242. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3243. i915_gem_free_phys_object(dev, i);
  3244. }
  3245. void i915_gem_detach_phys_object(struct drm_device *dev,
  3246. struct drm_i915_gem_object *obj)
  3247. {
  3248. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3249. char *vaddr;
  3250. int i;
  3251. int page_count;
  3252. if (!obj->phys_obj)
  3253. return;
  3254. vaddr = obj->phys_obj->handle->vaddr;
  3255. page_count = obj->base.size / PAGE_SIZE;
  3256. for (i = 0; i < page_count; i++) {
  3257. struct page *page = read_cache_page_gfp(mapping, i,
  3258. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3259. if (!IS_ERR(page)) {
  3260. char *dst = kmap_atomic(page);
  3261. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3262. kunmap_atomic(dst);
  3263. drm_clflush_pages(&page, 1);
  3264. set_page_dirty(page);
  3265. mark_page_accessed(page);
  3266. page_cache_release(page);
  3267. }
  3268. }
  3269. intel_gtt_chipset_flush();
  3270. obj->phys_obj->cur_obj = NULL;
  3271. obj->phys_obj = NULL;
  3272. }
  3273. int
  3274. i915_gem_attach_phys_object(struct drm_device *dev,
  3275. struct drm_i915_gem_object *obj,
  3276. int id,
  3277. int align)
  3278. {
  3279. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3280. drm_i915_private_t *dev_priv = dev->dev_private;
  3281. int ret = 0;
  3282. int page_count;
  3283. int i;
  3284. if (id > I915_MAX_PHYS_OBJECT)
  3285. return -EINVAL;
  3286. if (obj->phys_obj) {
  3287. if (obj->phys_obj->id == id)
  3288. return 0;
  3289. i915_gem_detach_phys_object(dev, obj);
  3290. }
  3291. /* create a new object */
  3292. if (!dev_priv->mm.phys_objs[id - 1]) {
  3293. ret = i915_gem_init_phys_object(dev, id,
  3294. obj->base.size, align);
  3295. if (ret) {
  3296. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3297. id, obj->base.size);
  3298. return ret;
  3299. }
  3300. }
  3301. /* bind to the object */
  3302. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3303. obj->phys_obj->cur_obj = obj;
  3304. page_count = obj->base.size / PAGE_SIZE;
  3305. for (i = 0; i < page_count; i++) {
  3306. struct page *page;
  3307. char *dst, *src;
  3308. page = read_cache_page_gfp(mapping, i,
  3309. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3310. if (IS_ERR(page))
  3311. return PTR_ERR(page);
  3312. src = kmap_atomic(page);
  3313. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3314. memcpy(dst, src, PAGE_SIZE);
  3315. kunmap_atomic(src);
  3316. mark_page_accessed(page);
  3317. page_cache_release(page);
  3318. }
  3319. return 0;
  3320. }
  3321. static int
  3322. i915_gem_phys_pwrite(struct drm_device *dev,
  3323. struct drm_i915_gem_object *obj,
  3324. struct drm_i915_gem_pwrite *args,
  3325. struct drm_file *file_priv)
  3326. {
  3327. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3328. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3329. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3330. unsigned long unwritten;
  3331. /* The physical object once assigned is fixed for the lifetime
  3332. * of the obj, so we can safely drop the lock and continue
  3333. * to access vaddr.
  3334. */
  3335. mutex_unlock(&dev->struct_mutex);
  3336. unwritten = copy_from_user(vaddr, user_data, args->size);
  3337. mutex_lock(&dev->struct_mutex);
  3338. if (unwritten)
  3339. return -EFAULT;
  3340. }
  3341. intel_gtt_chipset_flush();
  3342. return 0;
  3343. }
  3344. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3345. {
  3346. struct drm_i915_file_private *file_priv = file->driver_priv;
  3347. /* Clean up our request list when the client is going away, so that
  3348. * later retire_requests won't dereference our soon-to-be-gone
  3349. * file_priv.
  3350. */
  3351. spin_lock(&file_priv->mm.lock);
  3352. while (!list_empty(&file_priv->mm.request_list)) {
  3353. struct drm_i915_gem_request *request;
  3354. request = list_first_entry(&file_priv->mm.request_list,
  3355. struct drm_i915_gem_request,
  3356. client_list);
  3357. list_del(&request->client_list);
  3358. request->file_priv = NULL;
  3359. }
  3360. spin_unlock(&file_priv->mm.lock);
  3361. }
  3362. static int
  3363. i915_gpu_is_active(struct drm_device *dev)
  3364. {
  3365. drm_i915_private_t *dev_priv = dev->dev_private;
  3366. int lists_empty;
  3367. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3368. list_empty(&dev_priv->mm.active_list);
  3369. return !lists_empty;
  3370. }
  3371. static int
  3372. i915_gem_inactive_shrink(struct shrinker *shrinker,
  3373. int nr_to_scan,
  3374. gfp_t gfp_mask)
  3375. {
  3376. struct drm_i915_private *dev_priv =
  3377. container_of(shrinker,
  3378. struct drm_i915_private,
  3379. mm.inactive_shrinker);
  3380. struct drm_device *dev = dev_priv->dev;
  3381. struct drm_i915_gem_object *obj, *next;
  3382. int cnt;
  3383. if (!mutex_trylock(&dev->struct_mutex))
  3384. return 0;
  3385. /* "fast-path" to count number of available objects */
  3386. if (nr_to_scan == 0) {
  3387. cnt = 0;
  3388. list_for_each_entry(obj,
  3389. &dev_priv->mm.inactive_list,
  3390. mm_list)
  3391. cnt++;
  3392. mutex_unlock(&dev->struct_mutex);
  3393. return cnt / 100 * sysctl_vfs_cache_pressure;
  3394. }
  3395. rescan:
  3396. /* first scan for clean buffers */
  3397. i915_gem_retire_requests(dev);
  3398. list_for_each_entry_safe(obj, next,
  3399. &dev_priv->mm.inactive_list,
  3400. mm_list) {
  3401. if (i915_gem_object_is_purgeable(obj)) {
  3402. if (i915_gem_object_unbind(obj) == 0 &&
  3403. --nr_to_scan == 0)
  3404. break;
  3405. }
  3406. }
  3407. /* second pass, evict/count anything still on the inactive list */
  3408. cnt = 0;
  3409. list_for_each_entry_safe(obj, next,
  3410. &dev_priv->mm.inactive_list,
  3411. mm_list) {
  3412. if (nr_to_scan &&
  3413. i915_gem_object_unbind(obj) == 0)
  3414. nr_to_scan--;
  3415. else
  3416. cnt++;
  3417. }
  3418. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3419. /*
  3420. * We are desperate for pages, so as a last resort, wait
  3421. * for the GPU to finish and discard whatever we can.
  3422. * This has a dramatic impact to reduce the number of
  3423. * OOM-killer events whilst running the GPU aggressively.
  3424. */
  3425. if (i915_gpu_idle(dev) == 0)
  3426. goto rescan;
  3427. }
  3428. mutex_unlock(&dev->struct_mutex);
  3429. return cnt / 100 * sysctl_vfs_cache_pressure;
  3430. }