ste_dma40.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954
  1. /*
  2. * Copyright (C) ST-Ericsson SA 2007-2010
  3. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  4. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  5. * License terms: GNU General Public License (GPL) version 2
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/slab.h>
  9. #include <linux/dmaengine.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/clk.h>
  12. #include <linux/delay.h>
  13. #include <linux/err.h>
  14. #include <plat/ste_dma40.h>
  15. #include "ste_dma40_ll.h"
  16. #define D40_NAME "dma40"
  17. #define D40_PHY_CHAN -1
  18. /* For masking out/in 2 bit channel positions */
  19. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  20. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  21. /* Maximum iterations taken before giving up suspending a channel */
  22. #define D40_SUSPEND_MAX_IT 500
  23. /* Hardware requirement on LCLA alignment */
  24. #define LCLA_ALIGNMENT 0x40000
  25. /* Max number of links per event group */
  26. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  27. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  28. /* Attempts before giving up to trying to get pages that are aligned */
  29. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  30. /* Bit markings for allocation map */
  31. #define D40_ALLOC_FREE (1 << 31)
  32. #define D40_ALLOC_PHY (1 << 30)
  33. #define D40_ALLOC_LOG_FREE 0
  34. /* Hardware designer of the block */
  35. #define D40_HW_DESIGNER 0x8
  36. /**
  37. * enum 40_command - The different commands and/or statuses.
  38. *
  39. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  40. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  41. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  42. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  43. */
  44. enum d40_command {
  45. D40_DMA_STOP = 0,
  46. D40_DMA_RUN = 1,
  47. D40_DMA_SUSPEND_REQ = 2,
  48. D40_DMA_SUSPENDED = 3
  49. };
  50. /**
  51. * struct d40_lli_pool - Structure for keeping LLIs in memory
  52. *
  53. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  54. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  55. * pre_alloc_lli is used.
  56. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  57. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  58. * one buffer to one buffer.
  59. */
  60. struct d40_lli_pool {
  61. void *base;
  62. int size;
  63. /* Space for dst and src, plus an extra for padding */
  64. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  65. };
  66. /**
  67. * struct d40_desc - A descriptor is one DMA job.
  68. *
  69. * @lli_phy: LLI settings for physical channel. Both src and dst=
  70. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  71. * lli_len equals one.
  72. * @lli_log: Same as above but for logical channels.
  73. * @lli_pool: The pool with two entries pre-allocated.
  74. * @lli_len: Number of llis of current descriptor.
  75. * @lli_current: Number of transfered llis.
  76. * @lcla_alloc: Number of LCLA entries allocated.
  77. * @txd: DMA engine struct. Used for among other things for communication
  78. * during a transfer.
  79. * @node: List entry.
  80. * @is_in_client_list: true if the client owns this descriptor.
  81. * @is_hw_linked: true if this job will automatically be continued for
  82. * the previous one.
  83. *
  84. * This descriptor is used for both logical and physical transfers.
  85. */
  86. struct d40_desc {
  87. /* LLI physical */
  88. struct d40_phy_lli_bidir lli_phy;
  89. /* LLI logical */
  90. struct d40_log_lli_bidir lli_log;
  91. struct d40_lli_pool lli_pool;
  92. int lli_len;
  93. int lli_current;
  94. int lcla_alloc;
  95. struct dma_async_tx_descriptor txd;
  96. struct list_head node;
  97. bool is_in_client_list;
  98. bool is_hw_linked;
  99. };
  100. /**
  101. * struct d40_lcla_pool - LCLA pool settings and data.
  102. *
  103. * @base: The virtual address of LCLA. 18 bit aligned.
  104. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  105. * This pointer is only there for clean-up on error.
  106. * @pages: The number of pages needed for all physical channels.
  107. * Only used later for clean-up on error
  108. * @lock: Lock to protect the content in this struct.
  109. * @alloc_map: big map over which LCLA entry is own by which job.
  110. */
  111. struct d40_lcla_pool {
  112. void *base;
  113. void *base_unaligned;
  114. int pages;
  115. spinlock_t lock;
  116. struct d40_desc **alloc_map;
  117. };
  118. /**
  119. * struct d40_phy_res - struct for handling eventlines mapped to physical
  120. * channels.
  121. *
  122. * @lock: A lock protection this entity.
  123. * @num: The physical channel number of this entity.
  124. * @allocated_src: Bit mapped to show which src event line's are mapped to
  125. * this physical channel. Can also be free or physically allocated.
  126. * @allocated_dst: Same as for src but is dst.
  127. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  128. * event line number.
  129. */
  130. struct d40_phy_res {
  131. spinlock_t lock;
  132. int num;
  133. u32 allocated_src;
  134. u32 allocated_dst;
  135. };
  136. struct d40_base;
  137. /**
  138. * struct d40_chan - Struct that describes a channel.
  139. *
  140. * @lock: A spinlock to protect this struct.
  141. * @log_num: The logical number, if any of this channel.
  142. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  143. * current cookie.
  144. * @pending_tx: The number of pending transfers. Used between interrupt handler
  145. * and tasklet.
  146. * @busy: Set to true when transfer is ongoing on this channel.
  147. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  148. * point is NULL, then the channel is not allocated.
  149. * @chan: DMA engine handle.
  150. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  151. * transfer and call client callback.
  152. * @client: Cliented owned descriptor list.
  153. * @active: Active descriptor.
  154. * @queue: Queued jobs.
  155. * @dma_cfg: The client configuration of this dma channel.
  156. * @configured: whether the dma_cfg configuration is valid
  157. * @base: Pointer to the device instance struct.
  158. * @src_def_cfg: Default cfg register setting for src.
  159. * @dst_def_cfg: Default cfg register setting for dst.
  160. * @log_def: Default logical channel settings.
  161. * @lcla: Space for one dst src pair for logical channel transfers.
  162. * @lcpa: Pointer to dst and src lcpa settings.
  163. *
  164. * This struct can either "be" a logical or a physical channel.
  165. */
  166. struct d40_chan {
  167. spinlock_t lock;
  168. int log_num;
  169. /* ID of the most recent completed transfer */
  170. int completed;
  171. int pending_tx;
  172. bool busy;
  173. struct d40_phy_res *phy_chan;
  174. struct dma_chan chan;
  175. struct tasklet_struct tasklet;
  176. struct list_head client;
  177. struct list_head active;
  178. struct list_head queue;
  179. struct stedma40_chan_cfg dma_cfg;
  180. bool configured;
  181. struct d40_base *base;
  182. /* Default register configurations */
  183. u32 src_def_cfg;
  184. u32 dst_def_cfg;
  185. struct d40_def_lcsp log_def;
  186. struct d40_log_lli_full *lcpa;
  187. /* Runtime reconfiguration */
  188. dma_addr_t runtime_addr;
  189. enum dma_data_direction runtime_direction;
  190. };
  191. /**
  192. * struct d40_base - The big global struct, one for each probe'd instance.
  193. *
  194. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  195. * @execmd_lock: Lock for execute command usage since several channels share
  196. * the same physical register.
  197. * @dev: The device structure.
  198. * @virtbase: The virtual base address of the DMA's register.
  199. * @rev: silicon revision detected.
  200. * @clk: Pointer to the DMA clock structure.
  201. * @phy_start: Physical memory start of the DMA registers.
  202. * @phy_size: Size of the DMA register map.
  203. * @irq: The IRQ number.
  204. * @num_phy_chans: The number of physical channels. Read from HW. This
  205. * is the number of available channels for this driver, not counting "Secure
  206. * mode" allocated physical channels.
  207. * @num_log_chans: The number of logical channels. Calculated from
  208. * num_phy_chans.
  209. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  210. * @dma_slave: dma_device channels that can do only do slave transfers.
  211. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  212. * @log_chans: Room for all possible logical channels in system.
  213. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  214. * to log_chans entries.
  215. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  216. * to phy_chans entries.
  217. * @plat_data: Pointer to provided platform_data which is the driver
  218. * configuration.
  219. * @phy_res: Vector containing all physical channels.
  220. * @lcla_pool: lcla pool settings and data.
  221. * @lcpa_base: The virtual mapped address of LCPA.
  222. * @phy_lcpa: The physical address of the LCPA.
  223. * @lcpa_size: The size of the LCPA area.
  224. * @desc_slab: cache for descriptors.
  225. */
  226. struct d40_base {
  227. spinlock_t interrupt_lock;
  228. spinlock_t execmd_lock;
  229. struct device *dev;
  230. void __iomem *virtbase;
  231. u8 rev:4;
  232. struct clk *clk;
  233. phys_addr_t phy_start;
  234. resource_size_t phy_size;
  235. int irq;
  236. int num_phy_chans;
  237. int num_log_chans;
  238. struct dma_device dma_both;
  239. struct dma_device dma_slave;
  240. struct dma_device dma_memcpy;
  241. struct d40_chan *phy_chans;
  242. struct d40_chan *log_chans;
  243. struct d40_chan **lookup_log_chans;
  244. struct d40_chan **lookup_phy_chans;
  245. struct stedma40_platform_data *plat_data;
  246. /* Physical half channels */
  247. struct d40_phy_res *phy_res;
  248. struct d40_lcla_pool lcla_pool;
  249. void *lcpa_base;
  250. dma_addr_t phy_lcpa;
  251. resource_size_t lcpa_size;
  252. struct kmem_cache *desc_slab;
  253. };
  254. /**
  255. * struct d40_interrupt_lookup - lookup table for interrupt handler
  256. *
  257. * @src: Interrupt mask register.
  258. * @clr: Interrupt clear register.
  259. * @is_error: true if this is an error interrupt.
  260. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  261. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  262. */
  263. struct d40_interrupt_lookup {
  264. u32 src;
  265. u32 clr;
  266. bool is_error;
  267. int offset;
  268. };
  269. /**
  270. * struct d40_reg_val - simple lookup struct
  271. *
  272. * @reg: The register.
  273. * @val: The value that belongs to the register in reg.
  274. */
  275. struct d40_reg_val {
  276. unsigned int reg;
  277. unsigned int val;
  278. };
  279. static int d40_pool_lli_alloc(struct d40_desc *d40d,
  280. int lli_len, bool is_log)
  281. {
  282. u32 align;
  283. void *base;
  284. if (is_log)
  285. align = sizeof(struct d40_log_lli);
  286. else
  287. align = sizeof(struct d40_phy_lli);
  288. if (lli_len == 1) {
  289. base = d40d->lli_pool.pre_alloc_lli;
  290. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  291. d40d->lli_pool.base = NULL;
  292. } else {
  293. d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
  294. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  295. d40d->lli_pool.base = base;
  296. if (d40d->lli_pool.base == NULL)
  297. return -ENOMEM;
  298. }
  299. if (is_log) {
  300. d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
  301. align);
  302. d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
  303. align);
  304. } else {
  305. d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
  306. align);
  307. d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
  308. align);
  309. }
  310. return 0;
  311. }
  312. static void d40_pool_lli_free(struct d40_desc *d40d)
  313. {
  314. kfree(d40d->lli_pool.base);
  315. d40d->lli_pool.base = NULL;
  316. d40d->lli_pool.size = 0;
  317. d40d->lli_log.src = NULL;
  318. d40d->lli_log.dst = NULL;
  319. d40d->lli_phy.src = NULL;
  320. d40d->lli_phy.dst = NULL;
  321. }
  322. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  323. struct d40_desc *d40d)
  324. {
  325. unsigned long flags;
  326. int i;
  327. int ret = -EINVAL;
  328. int p;
  329. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  330. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  331. /*
  332. * Allocate both src and dst at the same time, therefore the half
  333. * start on 1 since 0 can't be used since zero is used as end marker.
  334. */
  335. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  336. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  337. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  338. d40d->lcla_alloc++;
  339. ret = i;
  340. break;
  341. }
  342. }
  343. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  344. return ret;
  345. }
  346. static int d40_lcla_free_all(struct d40_chan *d40c,
  347. struct d40_desc *d40d)
  348. {
  349. unsigned long flags;
  350. int i;
  351. int ret = -EINVAL;
  352. if (d40c->log_num == D40_PHY_CHAN)
  353. return 0;
  354. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  355. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  356. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  357. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  358. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  359. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  360. d40d->lcla_alloc--;
  361. if (d40d->lcla_alloc == 0) {
  362. ret = 0;
  363. break;
  364. }
  365. }
  366. }
  367. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  368. return ret;
  369. }
  370. static void d40_desc_remove(struct d40_desc *d40d)
  371. {
  372. list_del(&d40d->node);
  373. }
  374. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  375. {
  376. struct d40_desc *desc = NULL;
  377. if (!list_empty(&d40c->client)) {
  378. struct d40_desc *d;
  379. struct d40_desc *_d;
  380. list_for_each_entry_safe(d, _d, &d40c->client, node)
  381. if (async_tx_test_ack(&d->txd)) {
  382. d40_pool_lli_free(d);
  383. d40_desc_remove(d);
  384. desc = d;
  385. memset(desc, 0, sizeof(*desc));
  386. break;
  387. }
  388. }
  389. if (!desc)
  390. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  391. if (desc)
  392. INIT_LIST_HEAD(&desc->node);
  393. return desc;
  394. }
  395. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  396. {
  397. d40_lcla_free_all(d40c, d40d);
  398. kmem_cache_free(d40c->base->desc_slab, d40d);
  399. }
  400. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  401. {
  402. list_add_tail(&desc->node, &d40c->active);
  403. }
  404. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  405. {
  406. int curr_lcla = -EINVAL, next_lcla;
  407. if (d40c->log_num == D40_PHY_CHAN) {
  408. d40_phy_lli_write(d40c->base->virtbase,
  409. d40c->phy_chan->num,
  410. d40d->lli_phy.dst,
  411. d40d->lli_phy.src);
  412. d40d->lli_current = d40d->lli_len;
  413. } else {
  414. if ((d40d->lli_len - d40d->lli_current) > 1)
  415. curr_lcla = d40_lcla_alloc_one(d40c, d40d);
  416. d40_log_lli_lcpa_write(d40c->lcpa,
  417. &d40d->lli_log.dst[d40d->lli_current],
  418. &d40d->lli_log.src[d40d->lli_current],
  419. curr_lcla);
  420. d40d->lli_current++;
  421. for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
  422. struct d40_log_lli *lcla;
  423. if (d40d->lli_current + 1 < d40d->lli_len)
  424. next_lcla = d40_lcla_alloc_one(d40c, d40d);
  425. else
  426. next_lcla = -EINVAL;
  427. lcla = d40c->base->lcla_pool.base +
  428. d40c->phy_chan->num * 1024 +
  429. 8 * curr_lcla * 2;
  430. d40_log_lli_lcla_write(lcla,
  431. &d40d->lli_log.dst[d40d->lli_current],
  432. &d40d->lli_log.src[d40d->lli_current],
  433. next_lcla);
  434. (void) dma_map_single(d40c->base->dev, lcla,
  435. 2 * sizeof(struct d40_log_lli),
  436. DMA_TO_DEVICE);
  437. curr_lcla = next_lcla;
  438. if (curr_lcla == -EINVAL) {
  439. d40d->lli_current++;
  440. break;
  441. }
  442. }
  443. }
  444. }
  445. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  446. {
  447. struct d40_desc *d;
  448. if (list_empty(&d40c->active))
  449. return NULL;
  450. d = list_first_entry(&d40c->active,
  451. struct d40_desc,
  452. node);
  453. return d;
  454. }
  455. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  456. {
  457. list_add_tail(&desc->node, &d40c->queue);
  458. }
  459. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  460. {
  461. struct d40_desc *d;
  462. if (list_empty(&d40c->queue))
  463. return NULL;
  464. d = list_first_entry(&d40c->queue,
  465. struct d40_desc,
  466. node);
  467. return d;
  468. }
  469. static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
  470. {
  471. struct d40_desc *d;
  472. if (list_empty(&d40c->queue))
  473. return NULL;
  474. list_for_each_entry(d, &d40c->queue, node)
  475. if (list_is_last(&d->node, &d40c->queue))
  476. break;
  477. return d;
  478. }
  479. /* Support functions for logical channels */
  480. static int d40_channel_execute_command(struct d40_chan *d40c,
  481. enum d40_command command)
  482. {
  483. u32 status;
  484. int i;
  485. void __iomem *active_reg;
  486. int ret = 0;
  487. unsigned long flags;
  488. u32 wmask;
  489. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  490. if (d40c->phy_chan->num % 2 == 0)
  491. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  492. else
  493. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  494. if (command == D40_DMA_SUSPEND_REQ) {
  495. status = (readl(active_reg) &
  496. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  497. D40_CHAN_POS(d40c->phy_chan->num);
  498. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  499. goto done;
  500. }
  501. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  502. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  503. active_reg);
  504. if (command == D40_DMA_SUSPEND_REQ) {
  505. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  506. status = (readl(active_reg) &
  507. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  508. D40_CHAN_POS(d40c->phy_chan->num);
  509. cpu_relax();
  510. /*
  511. * Reduce the number of bus accesses while
  512. * waiting for the DMA to suspend.
  513. */
  514. udelay(3);
  515. if (status == D40_DMA_STOP ||
  516. status == D40_DMA_SUSPENDED)
  517. break;
  518. }
  519. if (i == D40_SUSPEND_MAX_IT) {
  520. dev_err(&d40c->chan.dev->device,
  521. "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
  522. __func__, d40c->phy_chan->num, d40c->log_num,
  523. status);
  524. dump_stack();
  525. ret = -EBUSY;
  526. }
  527. }
  528. done:
  529. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  530. return ret;
  531. }
  532. static void d40_term_all(struct d40_chan *d40c)
  533. {
  534. struct d40_desc *d40d;
  535. /* Release active descriptors */
  536. while ((d40d = d40_first_active_get(d40c))) {
  537. d40_desc_remove(d40d);
  538. d40_desc_free(d40c, d40d);
  539. }
  540. /* Release queued descriptors waiting for transfer */
  541. while ((d40d = d40_first_queued(d40c))) {
  542. d40_desc_remove(d40d);
  543. d40_desc_free(d40c, d40d);
  544. }
  545. d40c->pending_tx = 0;
  546. d40c->busy = false;
  547. }
  548. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  549. {
  550. u32 val;
  551. unsigned long flags;
  552. /* Notice, that disable requires the physical channel to be stopped */
  553. if (do_enable)
  554. val = D40_ACTIVATE_EVENTLINE;
  555. else
  556. val = D40_DEACTIVATE_EVENTLINE;
  557. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  558. /* Enable event line connected to device (or memcpy) */
  559. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  560. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  561. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  562. writel((val << D40_EVENTLINE_POS(event)) |
  563. ~D40_EVENTLINE_MASK(event),
  564. d40c->base->virtbase + D40_DREG_PCBASE +
  565. d40c->phy_chan->num * D40_DREG_PCDELTA +
  566. D40_CHAN_REG_SSLNK);
  567. }
  568. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  569. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  570. writel((val << D40_EVENTLINE_POS(event)) |
  571. ~D40_EVENTLINE_MASK(event),
  572. d40c->base->virtbase + D40_DREG_PCBASE +
  573. d40c->phy_chan->num * D40_DREG_PCDELTA +
  574. D40_CHAN_REG_SDLNK);
  575. }
  576. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  577. }
  578. static u32 d40_chan_has_events(struct d40_chan *d40c)
  579. {
  580. u32 val;
  581. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  582. d40c->phy_chan->num * D40_DREG_PCDELTA +
  583. D40_CHAN_REG_SSLNK);
  584. val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
  585. d40c->phy_chan->num * D40_DREG_PCDELTA +
  586. D40_CHAN_REG_SDLNK);
  587. return val;
  588. }
  589. static u32 d40_get_prmo(struct d40_chan *d40c)
  590. {
  591. static const unsigned int phy_map[] = {
  592. [STEDMA40_PCHAN_BASIC_MODE]
  593. = D40_DREG_PRMO_PCHAN_BASIC,
  594. [STEDMA40_PCHAN_MODULO_MODE]
  595. = D40_DREG_PRMO_PCHAN_MODULO,
  596. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  597. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  598. };
  599. static const unsigned int log_map[] = {
  600. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  601. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  602. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  603. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  604. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  605. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  606. };
  607. if (d40c->log_num == D40_PHY_CHAN)
  608. return phy_map[d40c->dma_cfg.mode_opt];
  609. else
  610. return log_map[d40c->dma_cfg.mode_opt];
  611. }
  612. static void d40_config_write(struct d40_chan *d40c)
  613. {
  614. u32 addr_base;
  615. u32 var;
  616. /* Odd addresses are even addresses + 4 */
  617. addr_base = (d40c->phy_chan->num % 2) * 4;
  618. /* Setup channel mode to logical or physical */
  619. var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
  620. D40_CHAN_POS(d40c->phy_chan->num);
  621. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  622. /* Setup operational mode option register */
  623. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  624. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  625. if (d40c->log_num != D40_PHY_CHAN) {
  626. /* Set default config for CFG reg */
  627. writel(d40c->src_def_cfg,
  628. d40c->base->virtbase + D40_DREG_PCBASE +
  629. d40c->phy_chan->num * D40_DREG_PCDELTA +
  630. D40_CHAN_REG_SSCFG);
  631. writel(d40c->dst_def_cfg,
  632. d40c->base->virtbase + D40_DREG_PCBASE +
  633. d40c->phy_chan->num * D40_DREG_PCDELTA +
  634. D40_CHAN_REG_SDCFG);
  635. /* Set LIDX for lcla */
  636. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  637. D40_SREG_ELEM_LOG_LIDX_MASK,
  638. d40c->base->virtbase + D40_DREG_PCBASE +
  639. d40c->phy_chan->num * D40_DREG_PCDELTA +
  640. D40_CHAN_REG_SDELT);
  641. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  642. D40_SREG_ELEM_LOG_LIDX_MASK,
  643. d40c->base->virtbase + D40_DREG_PCBASE +
  644. d40c->phy_chan->num * D40_DREG_PCDELTA +
  645. D40_CHAN_REG_SSELT);
  646. }
  647. }
  648. static u32 d40_residue(struct d40_chan *d40c)
  649. {
  650. u32 num_elt;
  651. if (d40c->log_num != D40_PHY_CHAN)
  652. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  653. >> D40_MEM_LCSP2_ECNT_POS;
  654. else
  655. num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
  656. d40c->phy_chan->num * D40_DREG_PCDELTA +
  657. D40_CHAN_REG_SDELT) &
  658. D40_SREG_ELEM_PHY_ECNT_MASK) >>
  659. D40_SREG_ELEM_PHY_ECNT_POS;
  660. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  661. }
  662. static bool d40_tx_is_linked(struct d40_chan *d40c)
  663. {
  664. bool is_link;
  665. if (d40c->log_num != D40_PHY_CHAN)
  666. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  667. else
  668. is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  669. d40c->phy_chan->num * D40_DREG_PCDELTA +
  670. D40_CHAN_REG_SDLNK) &
  671. D40_SREG_LNK_PHYS_LNK_MASK;
  672. return is_link;
  673. }
  674. static int d40_pause(struct dma_chan *chan)
  675. {
  676. struct d40_chan *d40c =
  677. container_of(chan, struct d40_chan, chan);
  678. int res = 0;
  679. unsigned long flags;
  680. if (!d40c->busy)
  681. return 0;
  682. spin_lock_irqsave(&d40c->lock, flags);
  683. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  684. if (res == 0) {
  685. if (d40c->log_num != D40_PHY_CHAN) {
  686. d40_config_set_event(d40c, false);
  687. /* Resume the other logical channels if any */
  688. if (d40_chan_has_events(d40c))
  689. res = d40_channel_execute_command(d40c,
  690. D40_DMA_RUN);
  691. }
  692. }
  693. spin_unlock_irqrestore(&d40c->lock, flags);
  694. return res;
  695. }
  696. static int d40_resume(struct dma_chan *chan)
  697. {
  698. struct d40_chan *d40c =
  699. container_of(chan, struct d40_chan, chan);
  700. int res = 0;
  701. unsigned long flags;
  702. if (!d40c->busy)
  703. return 0;
  704. spin_lock_irqsave(&d40c->lock, flags);
  705. if (d40c->base->rev == 0)
  706. if (d40c->log_num != D40_PHY_CHAN) {
  707. res = d40_channel_execute_command(d40c,
  708. D40_DMA_SUSPEND_REQ);
  709. goto no_suspend;
  710. }
  711. /* If bytes left to transfer or linked tx resume job */
  712. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  713. if (d40c->log_num != D40_PHY_CHAN)
  714. d40_config_set_event(d40c, true);
  715. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  716. }
  717. no_suspend:
  718. spin_unlock_irqrestore(&d40c->lock, flags);
  719. return res;
  720. }
  721. static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
  722. {
  723. /* TODO: Write */
  724. }
  725. static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
  726. {
  727. struct d40_desc *d40d_prev = NULL;
  728. int i;
  729. u32 val;
  730. if (!list_empty(&d40c->queue))
  731. d40d_prev = d40_last_queued(d40c);
  732. else if (!list_empty(&d40c->active))
  733. d40d_prev = d40_first_active_get(d40c);
  734. if (!d40d_prev)
  735. return;
  736. /* Here we try to join this job with previous jobs */
  737. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  738. d40c->phy_chan->num * D40_DREG_PCDELTA +
  739. D40_CHAN_REG_SSLNK);
  740. /* Figure out which link we're currently transmitting */
  741. for (i = 0; i < d40d_prev->lli_len; i++)
  742. if (val == d40d_prev->lli_phy.src[i].reg_lnk)
  743. break;
  744. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  745. d40c->phy_chan->num * D40_DREG_PCDELTA +
  746. D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
  747. if (i == (d40d_prev->lli_len - 1) && val > 0) {
  748. /* Change the current one */
  749. writel(virt_to_phys(d40d->lli_phy.src),
  750. d40c->base->virtbase + D40_DREG_PCBASE +
  751. d40c->phy_chan->num * D40_DREG_PCDELTA +
  752. D40_CHAN_REG_SSLNK);
  753. writel(virt_to_phys(d40d->lli_phy.dst),
  754. d40c->base->virtbase + D40_DREG_PCBASE +
  755. d40c->phy_chan->num * D40_DREG_PCDELTA +
  756. D40_CHAN_REG_SDLNK);
  757. d40d->is_hw_linked = true;
  758. } else if (i < d40d_prev->lli_len) {
  759. (void) dma_unmap_single(d40c->base->dev,
  760. virt_to_phys(d40d_prev->lli_phy.src),
  761. d40d_prev->lli_pool.size,
  762. DMA_TO_DEVICE);
  763. /* Keep the settings */
  764. val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
  765. ~D40_SREG_LNK_PHYS_LNK_MASK;
  766. d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
  767. val | virt_to_phys(d40d->lli_phy.src);
  768. val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
  769. ~D40_SREG_LNK_PHYS_LNK_MASK;
  770. d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
  771. val | virt_to_phys(d40d->lli_phy.dst);
  772. (void) dma_map_single(d40c->base->dev,
  773. d40d_prev->lli_phy.src,
  774. d40d_prev->lli_pool.size,
  775. DMA_TO_DEVICE);
  776. d40d->is_hw_linked = true;
  777. }
  778. }
  779. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  780. {
  781. struct d40_chan *d40c = container_of(tx->chan,
  782. struct d40_chan,
  783. chan);
  784. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  785. unsigned long flags;
  786. (void) d40_pause(&d40c->chan);
  787. spin_lock_irqsave(&d40c->lock, flags);
  788. d40c->chan.cookie++;
  789. if (d40c->chan.cookie < 0)
  790. d40c->chan.cookie = 1;
  791. d40d->txd.cookie = d40c->chan.cookie;
  792. if (d40c->log_num == D40_PHY_CHAN)
  793. d40_tx_submit_phy(d40c, d40d);
  794. else
  795. d40_tx_submit_log(d40c, d40d);
  796. d40_desc_queue(d40c, d40d);
  797. spin_unlock_irqrestore(&d40c->lock, flags);
  798. (void) d40_resume(&d40c->chan);
  799. return tx->cookie;
  800. }
  801. static int d40_start(struct d40_chan *d40c)
  802. {
  803. if (d40c->base->rev == 0) {
  804. int err;
  805. if (d40c->log_num != D40_PHY_CHAN) {
  806. err = d40_channel_execute_command(d40c,
  807. D40_DMA_SUSPEND_REQ);
  808. if (err)
  809. return err;
  810. }
  811. }
  812. if (d40c->log_num != D40_PHY_CHAN)
  813. d40_config_set_event(d40c, true);
  814. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  815. }
  816. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  817. {
  818. struct d40_desc *d40d;
  819. int err;
  820. /* Start queued jobs, if any */
  821. d40d = d40_first_queued(d40c);
  822. if (d40d != NULL) {
  823. d40c->busy = true;
  824. /* Remove from queue */
  825. d40_desc_remove(d40d);
  826. /* Add to active queue */
  827. d40_desc_submit(d40c, d40d);
  828. /*
  829. * If this job is already linked in hw,
  830. * do not submit it.
  831. */
  832. if (!d40d->is_hw_linked) {
  833. /* Initiate DMA job */
  834. d40_desc_load(d40c, d40d);
  835. /* Start dma job */
  836. err = d40_start(d40c);
  837. if (err)
  838. return NULL;
  839. }
  840. }
  841. return d40d;
  842. }
  843. /* called from interrupt context */
  844. static void dma_tc_handle(struct d40_chan *d40c)
  845. {
  846. struct d40_desc *d40d;
  847. /* Get first active entry from list */
  848. d40d = d40_first_active_get(d40c);
  849. if (d40d == NULL)
  850. return;
  851. d40_lcla_free_all(d40c, d40d);
  852. if (d40d->lli_current < d40d->lli_len) {
  853. d40_desc_load(d40c, d40d);
  854. /* Start dma job */
  855. (void) d40_start(d40c);
  856. return;
  857. }
  858. if (d40_queue_start(d40c) == NULL)
  859. d40c->busy = false;
  860. d40c->pending_tx++;
  861. tasklet_schedule(&d40c->tasklet);
  862. }
  863. static void dma_tasklet(unsigned long data)
  864. {
  865. struct d40_chan *d40c = (struct d40_chan *) data;
  866. struct d40_desc *d40d;
  867. unsigned long flags;
  868. dma_async_tx_callback callback;
  869. void *callback_param;
  870. spin_lock_irqsave(&d40c->lock, flags);
  871. /* Get first active entry from list */
  872. d40d = d40_first_active_get(d40c);
  873. if (d40d == NULL)
  874. goto err;
  875. d40c->completed = d40d->txd.cookie;
  876. /*
  877. * If terminating a channel pending_tx is set to zero.
  878. * This prevents any finished active jobs to return to the client.
  879. */
  880. if (d40c->pending_tx == 0) {
  881. spin_unlock_irqrestore(&d40c->lock, flags);
  882. return;
  883. }
  884. /* Callback to client */
  885. callback = d40d->txd.callback;
  886. callback_param = d40d->txd.callback_param;
  887. if (async_tx_test_ack(&d40d->txd)) {
  888. d40_pool_lli_free(d40d);
  889. d40_desc_remove(d40d);
  890. d40_desc_free(d40c, d40d);
  891. } else {
  892. if (!d40d->is_in_client_list) {
  893. d40_desc_remove(d40d);
  894. d40_lcla_free_all(d40c, d40d);
  895. list_add_tail(&d40d->node, &d40c->client);
  896. d40d->is_in_client_list = true;
  897. }
  898. }
  899. d40c->pending_tx--;
  900. if (d40c->pending_tx)
  901. tasklet_schedule(&d40c->tasklet);
  902. spin_unlock_irqrestore(&d40c->lock, flags);
  903. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  904. callback(callback_param);
  905. return;
  906. err:
  907. /* Rescue manouver if receiving double interrupts */
  908. if (d40c->pending_tx > 0)
  909. d40c->pending_tx--;
  910. spin_unlock_irqrestore(&d40c->lock, flags);
  911. }
  912. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  913. {
  914. static const struct d40_interrupt_lookup il[] = {
  915. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  916. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  917. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  918. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  919. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  920. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  921. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  922. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  923. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  924. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  925. };
  926. int i;
  927. u32 regs[ARRAY_SIZE(il)];
  928. u32 idx;
  929. u32 row;
  930. long chan = -1;
  931. struct d40_chan *d40c;
  932. unsigned long flags;
  933. struct d40_base *base = data;
  934. spin_lock_irqsave(&base->interrupt_lock, flags);
  935. /* Read interrupt status of both logical and physical channels */
  936. for (i = 0; i < ARRAY_SIZE(il); i++)
  937. regs[i] = readl(base->virtbase + il[i].src);
  938. for (;;) {
  939. chan = find_next_bit((unsigned long *)regs,
  940. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  941. /* No more set bits found? */
  942. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  943. break;
  944. row = chan / BITS_PER_LONG;
  945. idx = chan & (BITS_PER_LONG - 1);
  946. /* ACK interrupt */
  947. writel(1 << idx, base->virtbase + il[row].clr);
  948. if (il[row].offset == D40_PHY_CHAN)
  949. d40c = base->lookup_phy_chans[idx];
  950. else
  951. d40c = base->lookup_log_chans[il[row].offset + idx];
  952. spin_lock(&d40c->lock);
  953. if (!il[row].is_error)
  954. dma_tc_handle(d40c);
  955. else
  956. dev_err(base->dev,
  957. "[%s] IRQ chan: %ld offset %d idx %d\n",
  958. __func__, chan, il[row].offset, idx);
  959. spin_unlock(&d40c->lock);
  960. }
  961. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  962. return IRQ_HANDLED;
  963. }
  964. static int d40_validate_conf(struct d40_chan *d40c,
  965. struct stedma40_chan_cfg *conf)
  966. {
  967. int res = 0;
  968. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  969. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  970. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  971. if (!conf->dir) {
  972. dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
  973. __func__);
  974. res = -EINVAL;
  975. }
  976. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  977. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  978. d40c->runtime_addr == 0) {
  979. dev_err(&d40c->chan.dev->device,
  980. "[%s] Invalid TX channel address (%d)\n",
  981. __func__, conf->dst_dev_type);
  982. res = -EINVAL;
  983. }
  984. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  985. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  986. d40c->runtime_addr == 0) {
  987. dev_err(&d40c->chan.dev->device,
  988. "[%s] Invalid RX channel address (%d)\n",
  989. __func__, conf->src_dev_type);
  990. res = -EINVAL;
  991. }
  992. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  993. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  994. dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
  995. __func__);
  996. res = -EINVAL;
  997. }
  998. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  999. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1000. dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
  1001. __func__);
  1002. res = -EINVAL;
  1003. }
  1004. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1005. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1006. dev_err(&d40c->chan.dev->device,
  1007. "[%s] No event line\n", __func__);
  1008. res = -EINVAL;
  1009. }
  1010. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1011. (src_event_group != dst_event_group)) {
  1012. dev_err(&d40c->chan.dev->device,
  1013. "[%s] Invalid event group\n", __func__);
  1014. res = -EINVAL;
  1015. }
  1016. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1017. /*
  1018. * DMAC HW supports it. Will be added to this driver,
  1019. * in case any dma client requires it.
  1020. */
  1021. dev_err(&d40c->chan.dev->device,
  1022. "[%s] periph to periph not supported\n",
  1023. __func__);
  1024. res = -EINVAL;
  1025. }
  1026. return res;
  1027. }
  1028. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1029. int log_event_line, bool is_log)
  1030. {
  1031. unsigned long flags;
  1032. spin_lock_irqsave(&phy->lock, flags);
  1033. if (!is_log) {
  1034. /* Physical interrupts are masked per physical full channel */
  1035. if (phy->allocated_src == D40_ALLOC_FREE &&
  1036. phy->allocated_dst == D40_ALLOC_FREE) {
  1037. phy->allocated_dst = D40_ALLOC_PHY;
  1038. phy->allocated_src = D40_ALLOC_PHY;
  1039. goto found;
  1040. } else
  1041. goto not_found;
  1042. }
  1043. /* Logical channel */
  1044. if (is_src) {
  1045. if (phy->allocated_src == D40_ALLOC_PHY)
  1046. goto not_found;
  1047. if (phy->allocated_src == D40_ALLOC_FREE)
  1048. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1049. if (!(phy->allocated_src & (1 << log_event_line))) {
  1050. phy->allocated_src |= 1 << log_event_line;
  1051. goto found;
  1052. } else
  1053. goto not_found;
  1054. } else {
  1055. if (phy->allocated_dst == D40_ALLOC_PHY)
  1056. goto not_found;
  1057. if (phy->allocated_dst == D40_ALLOC_FREE)
  1058. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1059. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1060. phy->allocated_dst |= 1 << log_event_line;
  1061. goto found;
  1062. } else
  1063. goto not_found;
  1064. }
  1065. not_found:
  1066. spin_unlock_irqrestore(&phy->lock, flags);
  1067. return false;
  1068. found:
  1069. spin_unlock_irqrestore(&phy->lock, flags);
  1070. return true;
  1071. }
  1072. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1073. int log_event_line)
  1074. {
  1075. unsigned long flags;
  1076. bool is_free = false;
  1077. spin_lock_irqsave(&phy->lock, flags);
  1078. if (!log_event_line) {
  1079. phy->allocated_dst = D40_ALLOC_FREE;
  1080. phy->allocated_src = D40_ALLOC_FREE;
  1081. is_free = true;
  1082. goto out;
  1083. }
  1084. /* Logical channel */
  1085. if (is_src) {
  1086. phy->allocated_src &= ~(1 << log_event_line);
  1087. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1088. phy->allocated_src = D40_ALLOC_FREE;
  1089. } else {
  1090. phy->allocated_dst &= ~(1 << log_event_line);
  1091. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1092. phy->allocated_dst = D40_ALLOC_FREE;
  1093. }
  1094. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1095. D40_ALLOC_FREE);
  1096. out:
  1097. spin_unlock_irqrestore(&phy->lock, flags);
  1098. return is_free;
  1099. }
  1100. static int d40_allocate_channel(struct d40_chan *d40c)
  1101. {
  1102. int dev_type;
  1103. int event_group;
  1104. int event_line;
  1105. struct d40_phy_res *phys;
  1106. int i;
  1107. int j;
  1108. int log_num;
  1109. bool is_src;
  1110. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1111. phys = d40c->base->phy_res;
  1112. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1113. dev_type = d40c->dma_cfg.src_dev_type;
  1114. log_num = 2 * dev_type;
  1115. is_src = true;
  1116. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1117. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1118. /* dst event lines are used for logical memcpy */
  1119. dev_type = d40c->dma_cfg.dst_dev_type;
  1120. log_num = 2 * dev_type + 1;
  1121. is_src = false;
  1122. } else
  1123. return -EINVAL;
  1124. event_group = D40_TYPE_TO_GROUP(dev_type);
  1125. event_line = D40_TYPE_TO_EVENT(dev_type);
  1126. if (!is_log) {
  1127. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1128. /* Find physical half channel */
  1129. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1130. if (d40_alloc_mask_set(&phys[i], is_src,
  1131. 0, is_log))
  1132. goto found_phy;
  1133. }
  1134. } else
  1135. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1136. int phy_num = j + event_group * 2;
  1137. for (i = phy_num; i < phy_num + 2; i++) {
  1138. if (d40_alloc_mask_set(&phys[i],
  1139. is_src,
  1140. 0,
  1141. is_log))
  1142. goto found_phy;
  1143. }
  1144. }
  1145. return -EINVAL;
  1146. found_phy:
  1147. d40c->phy_chan = &phys[i];
  1148. d40c->log_num = D40_PHY_CHAN;
  1149. goto out;
  1150. }
  1151. if (dev_type == -1)
  1152. return -EINVAL;
  1153. /* Find logical channel */
  1154. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1155. int phy_num = j + event_group * 2;
  1156. /*
  1157. * Spread logical channels across all available physical rather
  1158. * than pack every logical channel at the first available phy
  1159. * channels.
  1160. */
  1161. if (is_src) {
  1162. for (i = phy_num; i < phy_num + 2; i++) {
  1163. if (d40_alloc_mask_set(&phys[i], is_src,
  1164. event_line, is_log))
  1165. goto found_log;
  1166. }
  1167. } else {
  1168. for (i = phy_num + 1; i >= phy_num; i--) {
  1169. if (d40_alloc_mask_set(&phys[i], is_src,
  1170. event_line, is_log))
  1171. goto found_log;
  1172. }
  1173. }
  1174. }
  1175. return -EINVAL;
  1176. found_log:
  1177. d40c->phy_chan = &phys[i];
  1178. d40c->log_num = log_num;
  1179. out:
  1180. if (is_log)
  1181. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1182. else
  1183. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1184. return 0;
  1185. }
  1186. static int d40_config_memcpy(struct d40_chan *d40c)
  1187. {
  1188. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1189. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1190. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1191. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1192. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1193. memcpy[d40c->chan.chan_id];
  1194. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1195. dma_has_cap(DMA_SLAVE, cap)) {
  1196. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1197. } else {
  1198. dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
  1199. __func__);
  1200. return -EINVAL;
  1201. }
  1202. return 0;
  1203. }
  1204. static int d40_free_dma(struct d40_chan *d40c)
  1205. {
  1206. int res = 0;
  1207. u32 event;
  1208. struct d40_phy_res *phy = d40c->phy_chan;
  1209. bool is_src;
  1210. struct d40_desc *d;
  1211. struct d40_desc *_d;
  1212. /* Terminate all queued and active transfers */
  1213. d40_term_all(d40c);
  1214. /* Release client owned descriptors */
  1215. if (!list_empty(&d40c->client))
  1216. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1217. d40_pool_lli_free(d);
  1218. d40_desc_remove(d);
  1219. d40_desc_free(d40c, d);
  1220. }
  1221. if (phy == NULL) {
  1222. dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
  1223. __func__);
  1224. return -EINVAL;
  1225. }
  1226. if (phy->allocated_src == D40_ALLOC_FREE &&
  1227. phy->allocated_dst == D40_ALLOC_FREE) {
  1228. dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
  1229. __func__);
  1230. return -EINVAL;
  1231. }
  1232. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1233. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1234. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1235. is_src = false;
  1236. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1237. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1238. is_src = true;
  1239. } else {
  1240. dev_err(&d40c->chan.dev->device,
  1241. "[%s] Unknown direction\n", __func__);
  1242. return -EINVAL;
  1243. }
  1244. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1245. if (res) {
  1246. dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
  1247. __func__);
  1248. return res;
  1249. }
  1250. if (d40c->log_num != D40_PHY_CHAN) {
  1251. /* Release logical channel, deactivate the event line */
  1252. d40_config_set_event(d40c, false);
  1253. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1254. /*
  1255. * Check if there are more logical allocation
  1256. * on this phy channel.
  1257. */
  1258. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1259. /* Resume the other logical channels if any */
  1260. if (d40_chan_has_events(d40c)) {
  1261. res = d40_channel_execute_command(d40c,
  1262. D40_DMA_RUN);
  1263. if (res) {
  1264. dev_err(&d40c->chan.dev->device,
  1265. "[%s] Executing RUN command\n",
  1266. __func__);
  1267. return res;
  1268. }
  1269. }
  1270. return 0;
  1271. }
  1272. } else {
  1273. (void) d40_alloc_mask_free(phy, is_src, 0);
  1274. }
  1275. /* Release physical channel */
  1276. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1277. if (res) {
  1278. dev_err(&d40c->chan.dev->device,
  1279. "[%s] Failed to stop channel\n", __func__);
  1280. return res;
  1281. }
  1282. d40c->phy_chan = NULL;
  1283. d40c->configured = false;
  1284. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1285. return 0;
  1286. }
  1287. static bool d40_is_paused(struct d40_chan *d40c)
  1288. {
  1289. bool is_paused = false;
  1290. unsigned long flags;
  1291. void __iomem *active_reg;
  1292. u32 status;
  1293. u32 event;
  1294. spin_lock_irqsave(&d40c->lock, flags);
  1295. if (d40c->log_num == D40_PHY_CHAN) {
  1296. if (d40c->phy_chan->num % 2 == 0)
  1297. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1298. else
  1299. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1300. status = (readl(active_reg) &
  1301. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1302. D40_CHAN_POS(d40c->phy_chan->num);
  1303. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1304. is_paused = true;
  1305. goto _exit;
  1306. }
  1307. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1308. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1309. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1310. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1311. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1312. D40_CHAN_REG_SDLNK);
  1313. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1314. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1315. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1316. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1317. D40_CHAN_REG_SSLNK);
  1318. } else {
  1319. dev_err(&d40c->chan.dev->device,
  1320. "[%s] Unknown direction\n", __func__);
  1321. goto _exit;
  1322. }
  1323. status = (status & D40_EVENTLINE_MASK(event)) >>
  1324. D40_EVENTLINE_POS(event);
  1325. if (status != D40_DMA_RUN)
  1326. is_paused = true;
  1327. _exit:
  1328. spin_unlock_irqrestore(&d40c->lock, flags);
  1329. return is_paused;
  1330. }
  1331. static u32 stedma40_residue(struct dma_chan *chan)
  1332. {
  1333. struct d40_chan *d40c =
  1334. container_of(chan, struct d40_chan, chan);
  1335. u32 bytes_left;
  1336. unsigned long flags;
  1337. spin_lock_irqsave(&d40c->lock, flags);
  1338. bytes_left = d40_residue(d40c);
  1339. spin_unlock_irqrestore(&d40c->lock, flags);
  1340. return bytes_left;
  1341. }
  1342. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1343. struct scatterlist *sgl_dst,
  1344. struct scatterlist *sgl_src,
  1345. unsigned int sgl_len,
  1346. unsigned long dma_flags)
  1347. {
  1348. int res;
  1349. struct d40_desc *d40d;
  1350. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1351. chan);
  1352. unsigned long flags;
  1353. if (d40c->phy_chan == NULL) {
  1354. dev_err(&d40c->chan.dev->device,
  1355. "[%s] Unallocated channel.\n", __func__);
  1356. return ERR_PTR(-EINVAL);
  1357. }
  1358. spin_lock_irqsave(&d40c->lock, flags);
  1359. d40d = d40_desc_get(d40c);
  1360. if (d40d == NULL)
  1361. goto err;
  1362. d40d->lli_len = sgl_len;
  1363. d40d->lli_current = 0;
  1364. d40d->txd.flags = dma_flags;
  1365. if (d40c->log_num != D40_PHY_CHAN) {
  1366. if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
  1367. dev_err(&d40c->chan.dev->device,
  1368. "[%s] Out of memory\n", __func__);
  1369. goto err;
  1370. }
  1371. (void) d40_log_sg_to_lli(sgl_src,
  1372. sgl_len,
  1373. d40d->lli_log.src,
  1374. d40c->log_def.lcsp1,
  1375. d40c->dma_cfg.src_info.data_width);
  1376. (void) d40_log_sg_to_lli(sgl_dst,
  1377. sgl_len,
  1378. d40d->lli_log.dst,
  1379. d40c->log_def.lcsp3,
  1380. d40c->dma_cfg.dst_info.data_width);
  1381. } else {
  1382. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1383. dev_err(&d40c->chan.dev->device,
  1384. "[%s] Out of memory\n", __func__);
  1385. goto err;
  1386. }
  1387. res = d40_phy_sg_to_lli(sgl_src,
  1388. sgl_len,
  1389. 0,
  1390. d40d->lli_phy.src,
  1391. virt_to_phys(d40d->lli_phy.src),
  1392. d40c->src_def_cfg,
  1393. d40c->dma_cfg.src_info.data_width,
  1394. d40c->dma_cfg.src_info.psize);
  1395. if (res < 0)
  1396. goto err;
  1397. res = d40_phy_sg_to_lli(sgl_dst,
  1398. sgl_len,
  1399. 0,
  1400. d40d->lli_phy.dst,
  1401. virt_to_phys(d40d->lli_phy.dst),
  1402. d40c->dst_def_cfg,
  1403. d40c->dma_cfg.dst_info.data_width,
  1404. d40c->dma_cfg.dst_info.psize);
  1405. if (res < 0)
  1406. goto err;
  1407. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1408. d40d->lli_pool.size, DMA_TO_DEVICE);
  1409. }
  1410. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1411. d40d->txd.tx_submit = d40_tx_submit;
  1412. spin_unlock_irqrestore(&d40c->lock, flags);
  1413. return &d40d->txd;
  1414. err:
  1415. if (d40d)
  1416. d40_desc_free(d40c, d40d);
  1417. spin_unlock_irqrestore(&d40c->lock, flags);
  1418. return NULL;
  1419. }
  1420. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1421. bool stedma40_filter(struct dma_chan *chan, void *data)
  1422. {
  1423. struct stedma40_chan_cfg *info = data;
  1424. struct d40_chan *d40c =
  1425. container_of(chan, struct d40_chan, chan);
  1426. int err;
  1427. if (data) {
  1428. err = d40_validate_conf(d40c, info);
  1429. if (!err)
  1430. d40c->dma_cfg = *info;
  1431. } else
  1432. err = d40_config_memcpy(d40c);
  1433. if (!err)
  1434. d40c->configured = true;
  1435. return err == 0;
  1436. }
  1437. EXPORT_SYMBOL(stedma40_filter);
  1438. /* DMA ENGINE functions */
  1439. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1440. {
  1441. int err;
  1442. unsigned long flags;
  1443. struct d40_chan *d40c =
  1444. container_of(chan, struct d40_chan, chan);
  1445. bool is_free_phy;
  1446. spin_lock_irqsave(&d40c->lock, flags);
  1447. d40c->completed = chan->cookie = 1;
  1448. /* If no dma configuration is set use default configuration (memcpy) */
  1449. if (!d40c->configured) {
  1450. err = d40_config_memcpy(d40c);
  1451. if (err) {
  1452. dev_err(&d40c->chan.dev->device,
  1453. "[%s] Failed to configure memcpy channel\n",
  1454. __func__);
  1455. goto fail;
  1456. }
  1457. }
  1458. is_free_phy = (d40c->phy_chan == NULL);
  1459. err = d40_allocate_channel(d40c);
  1460. if (err) {
  1461. dev_err(&d40c->chan.dev->device,
  1462. "[%s] Failed to allocate channel\n", __func__);
  1463. goto fail;
  1464. }
  1465. /* Fill in basic CFG register values */
  1466. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1467. &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
  1468. if (d40c->log_num != D40_PHY_CHAN) {
  1469. d40_log_cfg(&d40c->dma_cfg,
  1470. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1471. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1472. d40c->lcpa = d40c->base->lcpa_base +
  1473. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1474. else
  1475. d40c->lcpa = d40c->base->lcpa_base +
  1476. d40c->dma_cfg.dst_dev_type *
  1477. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1478. }
  1479. /*
  1480. * Only write channel configuration to the DMA if the physical
  1481. * resource is free. In case of multiple logical channels
  1482. * on the same physical resource, only the first write is necessary.
  1483. */
  1484. if (is_free_phy)
  1485. d40_config_write(d40c);
  1486. fail:
  1487. spin_unlock_irqrestore(&d40c->lock, flags);
  1488. return err;
  1489. }
  1490. static void d40_free_chan_resources(struct dma_chan *chan)
  1491. {
  1492. struct d40_chan *d40c =
  1493. container_of(chan, struct d40_chan, chan);
  1494. int err;
  1495. unsigned long flags;
  1496. if (d40c->phy_chan == NULL) {
  1497. dev_err(&d40c->chan.dev->device,
  1498. "[%s] Cannot free unallocated channel\n", __func__);
  1499. return;
  1500. }
  1501. spin_lock_irqsave(&d40c->lock, flags);
  1502. err = d40_free_dma(d40c);
  1503. if (err)
  1504. dev_err(&d40c->chan.dev->device,
  1505. "[%s] Failed to free channel\n", __func__);
  1506. spin_unlock_irqrestore(&d40c->lock, flags);
  1507. }
  1508. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1509. dma_addr_t dst,
  1510. dma_addr_t src,
  1511. size_t size,
  1512. unsigned long dma_flags)
  1513. {
  1514. struct d40_desc *d40d;
  1515. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1516. chan);
  1517. unsigned long flags;
  1518. int err = 0;
  1519. if (d40c->phy_chan == NULL) {
  1520. dev_err(&d40c->chan.dev->device,
  1521. "[%s] Channel is not allocated.\n", __func__);
  1522. return ERR_PTR(-EINVAL);
  1523. }
  1524. spin_lock_irqsave(&d40c->lock, flags);
  1525. d40d = d40_desc_get(d40c);
  1526. if (d40d == NULL) {
  1527. dev_err(&d40c->chan.dev->device,
  1528. "[%s] Descriptor is NULL\n", __func__);
  1529. goto err;
  1530. }
  1531. d40d->txd.flags = dma_flags;
  1532. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1533. d40d->txd.tx_submit = d40_tx_submit;
  1534. if (d40c->log_num != D40_PHY_CHAN) {
  1535. if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
  1536. dev_err(&d40c->chan.dev->device,
  1537. "[%s] Out of memory\n", __func__);
  1538. goto err;
  1539. }
  1540. d40d->lli_len = 1;
  1541. d40d->lli_current = 0;
  1542. d40_log_fill_lli(d40d->lli_log.src,
  1543. src,
  1544. size,
  1545. d40c->log_def.lcsp1,
  1546. d40c->dma_cfg.src_info.data_width,
  1547. true);
  1548. d40_log_fill_lli(d40d->lli_log.dst,
  1549. dst,
  1550. size,
  1551. d40c->log_def.lcsp3,
  1552. d40c->dma_cfg.dst_info.data_width,
  1553. true);
  1554. } else {
  1555. if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
  1556. dev_err(&d40c->chan.dev->device,
  1557. "[%s] Out of memory\n", __func__);
  1558. goto err;
  1559. }
  1560. err = d40_phy_fill_lli(d40d->lli_phy.src,
  1561. src,
  1562. size,
  1563. d40c->dma_cfg.src_info.psize,
  1564. 0,
  1565. d40c->src_def_cfg,
  1566. true,
  1567. d40c->dma_cfg.src_info.data_width,
  1568. false);
  1569. if (err)
  1570. goto err_fill_lli;
  1571. err = d40_phy_fill_lli(d40d->lli_phy.dst,
  1572. dst,
  1573. size,
  1574. d40c->dma_cfg.dst_info.psize,
  1575. 0,
  1576. d40c->dst_def_cfg,
  1577. true,
  1578. d40c->dma_cfg.dst_info.data_width,
  1579. false);
  1580. if (err)
  1581. goto err_fill_lli;
  1582. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1583. d40d->lli_pool.size, DMA_TO_DEVICE);
  1584. }
  1585. spin_unlock_irqrestore(&d40c->lock, flags);
  1586. return &d40d->txd;
  1587. err_fill_lli:
  1588. dev_err(&d40c->chan.dev->device,
  1589. "[%s] Failed filling in PHY LLI\n", __func__);
  1590. err:
  1591. if (d40d)
  1592. d40_desc_free(d40c, d40d);
  1593. spin_unlock_irqrestore(&d40c->lock, flags);
  1594. return NULL;
  1595. }
  1596. static struct dma_async_tx_descriptor *
  1597. d40_prep_sg(struct dma_chan *chan,
  1598. struct scatterlist *dst_sg, unsigned int dst_nents,
  1599. struct scatterlist *src_sg, unsigned int src_nents,
  1600. unsigned long dma_flags)
  1601. {
  1602. if (dst_nents != src_nents)
  1603. return NULL;
  1604. return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
  1605. }
  1606. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1607. struct d40_chan *d40c,
  1608. struct scatterlist *sgl,
  1609. unsigned int sg_len,
  1610. enum dma_data_direction direction,
  1611. unsigned long dma_flags)
  1612. {
  1613. dma_addr_t dev_addr = 0;
  1614. int total_size;
  1615. if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
  1616. dev_err(&d40c->chan.dev->device,
  1617. "[%s] Out of memory\n", __func__);
  1618. return -ENOMEM;
  1619. }
  1620. d40d->lli_len = sg_len;
  1621. d40d->lli_current = 0;
  1622. if (direction == DMA_FROM_DEVICE)
  1623. if (d40c->runtime_addr)
  1624. dev_addr = d40c->runtime_addr;
  1625. else
  1626. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1627. else if (direction == DMA_TO_DEVICE)
  1628. if (d40c->runtime_addr)
  1629. dev_addr = d40c->runtime_addr;
  1630. else
  1631. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1632. else
  1633. return -EINVAL;
  1634. total_size = d40_log_sg_to_dev(sgl, sg_len,
  1635. &d40d->lli_log,
  1636. &d40c->log_def,
  1637. d40c->dma_cfg.src_info.data_width,
  1638. d40c->dma_cfg.dst_info.data_width,
  1639. direction,
  1640. dev_addr);
  1641. if (total_size < 0)
  1642. return -EINVAL;
  1643. return 0;
  1644. }
  1645. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1646. struct d40_chan *d40c,
  1647. struct scatterlist *sgl,
  1648. unsigned int sgl_len,
  1649. enum dma_data_direction direction,
  1650. unsigned long dma_flags)
  1651. {
  1652. dma_addr_t src_dev_addr;
  1653. dma_addr_t dst_dev_addr;
  1654. int res;
  1655. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1656. dev_err(&d40c->chan.dev->device,
  1657. "[%s] Out of memory\n", __func__);
  1658. return -ENOMEM;
  1659. }
  1660. d40d->lli_len = sgl_len;
  1661. d40d->lli_current = 0;
  1662. if (direction == DMA_FROM_DEVICE) {
  1663. dst_dev_addr = 0;
  1664. if (d40c->runtime_addr)
  1665. src_dev_addr = d40c->runtime_addr;
  1666. else
  1667. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1668. } else if (direction == DMA_TO_DEVICE) {
  1669. if (d40c->runtime_addr)
  1670. dst_dev_addr = d40c->runtime_addr;
  1671. else
  1672. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1673. src_dev_addr = 0;
  1674. } else
  1675. return -EINVAL;
  1676. res = d40_phy_sg_to_lli(sgl,
  1677. sgl_len,
  1678. src_dev_addr,
  1679. d40d->lli_phy.src,
  1680. virt_to_phys(d40d->lli_phy.src),
  1681. d40c->src_def_cfg,
  1682. d40c->dma_cfg.src_info.data_width,
  1683. d40c->dma_cfg.src_info.psize);
  1684. if (res < 0)
  1685. return res;
  1686. res = d40_phy_sg_to_lli(sgl,
  1687. sgl_len,
  1688. dst_dev_addr,
  1689. d40d->lli_phy.dst,
  1690. virt_to_phys(d40d->lli_phy.dst),
  1691. d40c->dst_def_cfg,
  1692. d40c->dma_cfg.dst_info.data_width,
  1693. d40c->dma_cfg.dst_info.psize);
  1694. if (res < 0)
  1695. return res;
  1696. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1697. d40d->lli_pool.size, DMA_TO_DEVICE);
  1698. return 0;
  1699. }
  1700. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1701. struct scatterlist *sgl,
  1702. unsigned int sg_len,
  1703. enum dma_data_direction direction,
  1704. unsigned long dma_flags)
  1705. {
  1706. struct d40_desc *d40d;
  1707. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1708. chan);
  1709. unsigned long flags;
  1710. int err;
  1711. if (d40c->phy_chan == NULL) {
  1712. dev_err(&d40c->chan.dev->device,
  1713. "[%s] Cannot prepare unallocated channel\n", __func__);
  1714. return ERR_PTR(-EINVAL);
  1715. }
  1716. spin_lock_irqsave(&d40c->lock, flags);
  1717. d40d = d40_desc_get(d40c);
  1718. if (d40d == NULL)
  1719. goto err;
  1720. if (d40c->log_num != D40_PHY_CHAN)
  1721. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1722. direction, dma_flags);
  1723. else
  1724. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1725. direction, dma_flags);
  1726. if (err) {
  1727. dev_err(&d40c->chan.dev->device,
  1728. "[%s] Failed to prepare %s slave sg job: %d\n",
  1729. __func__,
  1730. d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
  1731. goto err;
  1732. }
  1733. d40d->txd.flags = dma_flags;
  1734. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1735. d40d->txd.tx_submit = d40_tx_submit;
  1736. spin_unlock_irqrestore(&d40c->lock, flags);
  1737. return &d40d->txd;
  1738. err:
  1739. if (d40d)
  1740. d40_desc_free(d40c, d40d);
  1741. spin_unlock_irqrestore(&d40c->lock, flags);
  1742. return NULL;
  1743. }
  1744. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1745. dma_cookie_t cookie,
  1746. struct dma_tx_state *txstate)
  1747. {
  1748. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1749. dma_cookie_t last_used;
  1750. dma_cookie_t last_complete;
  1751. int ret;
  1752. if (d40c->phy_chan == NULL) {
  1753. dev_err(&d40c->chan.dev->device,
  1754. "[%s] Cannot read status of unallocated channel\n",
  1755. __func__);
  1756. return -EINVAL;
  1757. }
  1758. last_complete = d40c->completed;
  1759. last_used = chan->cookie;
  1760. if (d40_is_paused(d40c))
  1761. ret = DMA_PAUSED;
  1762. else
  1763. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1764. dma_set_tx_state(txstate, last_complete, last_used,
  1765. stedma40_residue(chan));
  1766. return ret;
  1767. }
  1768. static void d40_issue_pending(struct dma_chan *chan)
  1769. {
  1770. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1771. unsigned long flags;
  1772. if (d40c->phy_chan == NULL) {
  1773. dev_err(&d40c->chan.dev->device,
  1774. "[%s] Channel is not allocated!\n", __func__);
  1775. return;
  1776. }
  1777. spin_lock_irqsave(&d40c->lock, flags);
  1778. /* Busy means that pending jobs are already being processed */
  1779. if (!d40c->busy)
  1780. (void) d40_queue_start(d40c);
  1781. spin_unlock_irqrestore(&d40c->lock, flags);
  1782. }
  1783. /* Runtime reconfiguration extension */
  1784. static void d40_set_runtime_config(struct dma_chan *chan,
  1785. struct dma_slave_config *config)
  1786. {
  1787. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1788. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1789. enum dma_slave_buswidth config_addr_width;
  1790. dma_addr_t config_addr;
  1791. u32 config_maxburst;
  1792. enum stedma40_periph_data_width addr_width;
  1793. int psize;
  1794. if (config->direction == DMA_FROM_DEVICE) {
  1795. dma_addr_t dev_addr_rx =
  1796. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1797. config_addr = config->src_addr;
  1798. if (dev_addr_rx)
  1799. dev_dbg(d40c->base->dev,
  1800. "channel has a pre-wired RX address %08x "
  1801. "overriding with %08x\n",
  1802. dev_addr_rx, config_addr);
  1803. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1804. dev_dbg(d40c->base->dev,
  1805. "channel was not configured for peripheral "
  1806. "to memory transfer (%d) overriding\n",
  1807. cfg->dir);
  1808. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1809. config_addr_width = config->src_addr_width;
  1810. config_maxburst = config->src_maxburst;
  1811. } else if (config->direction == DMA_TO_DEVICE) {
  1812. dma_addr_t dev_addr_tx =
  1813. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1814. config_addr = config->dst_addr;
  1815. if (dev_addr_tx)
  1816. dev_dbg(d40c->base->dev,
  1817. "channel has a pre-wired TX address %08x "
  1818. "overriding with %08x\n",
  1819. dev_addr_tx, config_addr);
  1820. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1821. dev_dbg(d40c->base->dev,
  1822. "channel was not configured for memory "
  1823. "to peripheral transfer (%d) overriding\n",
  1824. cfg->dir);
  1825. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1826. config_addr_width = config->dst_addr_width;
  1827. config_maxburst = config->dst_maxburst;
  1828. } else {
  1829. dev_err(d40c->base->dev,
  1830. "unrecognized channel direction %d\n",
  1831. config->direction);
  1832. return;
  1833. }
  1834. switch (config_addr_width) {
  1835. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1836. addr_width = STEDMA40_BYTE_WIDTH;
  1837. break;
  1838. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1839. addr_width = STEDMA40_HALFWORD_WIDTH;
  1840. break;
  1841. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1842. addr_width = STEDMA40_WORD_WIDTH;
  1843. break;
  1844. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1845. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1846. break;
  1847. default:
  1848. dev_err(d40c->base->dev,
  1849. "illegal peripheral address width "
  1850. "requested (%d)\n",
  1851. config->src_addr_width);
  1852. return;
  1853. }
  1854. if (d40c->log_num != D40_PHY_CHAN) {
  1855. if (config_maxburst >= 16)
  1856. psize = STEDMA40_PSIZE_LOG_16;
  1857. else if (config_maxburst >= 8)
  1858. psize = STEDMA40_PSIZE_LOG_8;
  1859. else if (config_maxburst >= 4)
  1860. psize = STEDMA40_PSIZE_LOG_4;
  1861. else
  1862. psize = STEDMA40_PSIZE_LOG_1;
  1863. } else {
  1864. if (config_maxburst >= 16)
  1865. psize = STEDMA40_PSIZE_PHY_16;
  1866. else if (config_maxburst >= 8)
  1867. psize = STEDMA40_PSIZE_PHY_8;
  1868. else if (config_maxburst >= 4)
  1869. psize = STEDMA40_PSIZE_PHY_4;
  1870. else
  1871. psize = STEDMA40_PSIZE_PHY_1;
  1872. }
  1873. /* Set up all the endpoint configs */
  1874. cfg->src_info.data_width = addr_width;
  1875. cfg->src_info.psize = psize;
  1876. cfg->src_info.big_endian = false;
  1877. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1878. cfg->dst_info.data_width = addr_width;
  1879. cfg->dst_info.psize = psize;
  1880. cfg->dst_info.big_endian = false;
  1881. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1882. /* Fill in register values */
  1883. if (d40c->log_num != D40_PHY_CHAN)
  1884. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1885. else
  1886. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1887. &d40c->dst_def_cfg, false);
  1888. /* These settings will take precedence later */
  1889. d40c->runtime_addr = config_addr;
  1890. d40c->runtime_direction = config->direction;
  1891. dev_dbg(d40c->base->dev,
  1892. "configured channel %s for %s, data width %d, "
  1893. "maxburst %d bytes, LE, no flow control\n",
  1894. dma_chan_name(chan),
  1895. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1896. config_addr_width,
  1897. config_maxburst);
  1898. }
  1899. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1900. unsigned long arg)
  1901. {
  1902. unsigned long flags;
  1903. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1904. if (d40c->phy_chan == NULL) {
  1905. dev_err(&d40c->chan.dev->device,
  1906. "[%s] Channel is not allocated!\n", __func__);
  1907. return -EINVAL;
  1908. }
  1909. switch (cmd) {
  1910. case DMA_TERMINATE_ALL:
  1911. spin_lock_irqsave(&d40c->lock, flags);
  1912. d40_term_all(d40c);
  1913. spin_unlock_irqrestore(&d40c->lock, flags);
  1914. return 0;
  1915. case DMA_PAUSE:
  1916. return d40_pause(chan);
  1917. case DMA_RESUME:
  1918. return d40_resume(chan);
  1919. case DMA_SLAVE_CONFIG:
  1920. d40_set_runtime_config(chan,
  1921. (struct dma_slave_config *) arg);
  1922. return 0;
  1923. default:
  1924. break;
  1925. }
  1926. /* Other commands are unimplemented */
  1927. return -ENXIO;
  1928. }
  1929. /* Initialization functions */
  1930. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1931. struct d40_chan *chans, int offset,
  1932. int num_chans)
  1933. {
  1934. int i = 0;
  1935. struct d40_chan *d40c;
  1936. INIT_LIST_HEAD(&dma->channels);
  1937. for (i = offset; i < offset + num_chans; i++) {
  1938. d40c = &chans[i];
  1939. d40c->base = base;
  1940. d40c->chan.device = dma;
  1941. spin_lock_init(&d40c->lock);
  1942. d40c->log_num = D40_PHY_CHAN;
  1943. INIT_LIST_HEAD(&d40c->active);
  1944. INIT_LIST_HEAD(&d40c->queue);
  1945. INIT_LIST_HEAD(&d40c->client);
  1946. tasklet_init(&d40c->tasklet, dma_tasklet,
  1947. (unsigned long) d40c);
  1948. list_add_tail(&d40c->chan.device_node,
  1949. &dma->channels);
  1950. }
  1951. }
  1952. static int __init d40_dmaengine_init(struct d40_base *base,
  1953. int num_reserved_chans)
  1954. {
  1955. int err ;
  1956. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1957. 0, base->num_log_chans);
  1958. dma_cap_zero(base->dma_slave.cap_mask);
  1959. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1960. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1961. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1962. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1963. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  1964. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1965. base->dma_slave.device_tx_status = d40_tx_status;
  1966. base->dma_slave.device_issue_pending = d40_issue_pending;
  1967. base->dma_slave.device_control = d40_control;
  1968. base->dma_slave.dev = base->dev;
  1969. err = dma_async_device_register(&base->dma_slave);
  1970. if (err) {
  1971. dev_err(base->dev,
  1972. "[%s] Failed to register slave channels\n",
  1973. __func__);
  1974. goto failure1;
  1975. }
  1976. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1977. base->num_log_chans, base->plat_data->memcpy_len);
  1978. dma_cap_zero(base->dma_memcpy.cap_mask);
  1979. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1980. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  1981. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  1982. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  1983. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  1984. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  1985. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  1986. base->dma_memcpy.device_tx_status = d40_tx_status;
  1987. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  1988. base->dma_memcpy.device_control = d40_control;
  1989. base->dma_memcpy.dev = base->dev;
  1990. /*
  1991. * This controller can only access address at even
  1992. * 32bit boundaries, i.e. 2^2
  1993. */
  1994. base->dma_memcpy.copy_align = 2;
  1995. err = dma_async_device_register(&base->dma_memcpy);
  1996. if (err) {
  1997. dev_err(base->dev,
  1998. "[%s] Failed to regsiter memcpy only channels\n",
  1999. __func__);
  2000. goto failure2;
  2001. }
  2002. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2003. 0, num_reserved_chans);
  2004. dma_cap_zero(base->dma_both.cap_mask);
  2005. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2006. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2007. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  2008. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  2009. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  2010. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  2011. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  2012. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  2013. base->dma_both.device_tx_status = d40_tx_status;
  2014. base->dma_both.device_issue_pending = d40_issue_pending;
  2015. base->dma_both.device_control = d40_control;
  2016. base->dma_both.dev = base->dev;
  2017. base->dma_both.copy_align = 2;
  2018. err = dma_async_device_register(&base->dma_both);
  2019. if (err) {
  2020. dev_err(base->dev,
  2021. "[%s] Failed to register logical and physical capable channels\n",
  2022. __func__);
  2023. goto failure3;
  2024. }
  2025. return 0;
  2026. failure3:
  2027. dma_async_device_unregister(&base->dma_memcpy);
  2028. failure2:
  2029. dma_async_device_unregister(&base->dma_slave);
  2030. failure1:
  2031. return err;
  2032. }
  2033. /* Initialization functions. */
  2034. static int __init d40_phy_res_init(struct d40_base *base)
  2035. {
  2036. int i;
  2037. int num_phy_chans_avail = 0;
  2038. u32 val[2];
  2039. int odd_even_bit = -2;
  2040. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2041. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2042. for (i = 0; i < base->num_phy_chans; i++) {
  2043. base->phy_res[i].num = i;
  2044. odd_even_bit += 2 * ((i % 2) == 0);
  2045. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2046. /* Mark security only channels as occupied */
  2047. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2048. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2049. } else {
  2050. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2051. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2052. num_phy_chans_avail++;
  2053. }
  2054. spin_lock_init(&base->phy_res[i].lock);
  2055. }
  2056. /* Mark disabled channels as occupied */
  2057. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2058. int chan = base->plat_data->disabled_channels[i];
  2059. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2060. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2061. num_phy_chans_avail--;
  2062. }
  2063. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2064. num_phy_chans_avail, base->num_phy_chans);
  2065. /* Verify settings extended vs standard */
  2066. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2067. for (i = 0; i < base->num_phy_chans; i++) {
  2068. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2069. (val[0] & 0x3) != 1)
  2070. dev_info(base->dev,
  2071. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2072. __func__, i, val[0] & 0x3);
  2073. val[0] = val[0] >> 2;
  2074. }
  2075. return num_phy_chans_avail;
  2076. }
  2077. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2078. {
  2079. static const struct d40_reg_val dma_id_regs[] = {
  2080. /* Peripheral Id */
  2081. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2082. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2083. /*
  2084. * D40_DREG_PERIPHID2 Depends on HW revision:
  2085. * MOP500/HREF ED has 0x0008,
  2086. * ? has 0x0018,
  2087. * HREF V1 has 0x0028
  2088. */
  2089. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2090. /* PCell Id */
  2091. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2092. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2093. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2094. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2095. };
  2096. struct stedma40_platform_data *plat_data;
  2097. struct clk *clk = NULL;
  2098. void __iomem *virtbase = NULL;
  2099. struct resource *res = NULL;
  2100. struct d40_base *base = NULL;
  2101. int num_log_chans = 0;
  2102. int num_phy_chans;
  2103. int i;
  2104. u32 val;
  2105. u32 rev;
  2106. clk = clk_get(&pdev->dev, NULL);
  2107. if (IS_ERR(clk)) {
  2108. dev_err(&pdev->dev, "[%s] No matching clock found\n",
  2109. __func__);
  2110. goto failure;
  2111. }
  2112. clk_enable(clk);
  2113. /* Get IO for DMAC base address */
  2114. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2115. if (!res)
  2116. goto failure;
  2117. if (request_mem_region(res->start, resource_size(res),
  2118. D40_NAME " I/O base") == NULL)
  2119. goto failure;
  2120. virtbase = ioremap(res->start, resource_size(res));
  2121. if (!virtbase)
  2122. goto failure;
  2123. /* HW version check */
  2124. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2125. if (dma_id_regs[i].val !=
  2126. readl(virtbase + dma_id_regs[i].reg)) {
  2127. dev_err(&pdev->dev,
  2128. "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2129. __func__,
  2130. dma_id_regs[i].val,
  2131. dma_id_regs[i].reg,
  2132. readl(virtbase + dma_id_regs[i].reg));
  2133. goto failure;
  2134. }
  2135. }
  2136. /* Get silicon revision and designer */
  2137. val = readl(virtbase + D40_DREG_PERIPHID2);
  2138. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2139. D40_HW_DESIGNER) {
  2140. dev_err(&pdev->dev,
  2141. "[%s] Unknown designer! Got %x wanted %x\n",
  2142. __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2143. D40_HW_DESIGNER);
  2144. goto failure;
  2145. }
  2146. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2147. D40_DREG_PERIPHID2_REV_POS;
  2148. /* The number of physical channels on this HW */
  2149. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2150. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2151. rev, res->start);
  2152. plat_data = pdev->dev.platform_data;
  2153. /* Count the number of logical channels in use */
  2154. for (i = 0; i < plat_data->dev_len; i++)
  2155. if (plat_data->dev_rx[i] != 0)
  2156. num_log_chans++;
  2157. for (i = 0; i < plat_data->dev_len; i++)
  2158. if (plat_data->dev_tx[i] != 0)
  2159. num_log_chans++;
  2160. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2161. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2162. sizeof(struct d40_chan), GFP_KERNEL);
  2163. if (base == NULL) {
  2164. dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
  2165. goto failure;
  2166. }
  2167. base->rev = rev;
  2168. base->clk = clk;
  2169. base->num_phy_chans = num_phy_chans;
  2170. base->num_log_chans = num_log_chans;
  2171. base->phy_start = res->start;
  2172. base->phy_size = resource_size(res);
  2173. base->virtbase = virtbase;
  2174. base->plat_data = plat_data;
  2175. base->dev = &pdev->dev;
  2176. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2177. base->log_chans = &base->phy_chans[num_phy_chans];
  2178. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2179. GFP_KERNEL);
  2180. if (!base->phy_res)
  2181. goto failure;
  2182. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2183. sizeof(struct d40_chan *),
  2184. GFP_KERNEL);
  2185. if (!base->lookup_phy_chans)
  2186. goto failure;
  2187. if (num_log_chans + plat_data->memcpy_len) {
  2188. /*
  2189. * The max number of logical channels are event lines for all
  2190. * src devices and dst devices
  2191. */
  2192. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2193. sizeof(struct d40_chan *),
  2194. GFP_KERNEL);
  2195. if (!base->lookup_log_chans)
  2196. goto failure;
  2197. }
  2198. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2199. sizeof(struct d40_desc *) *
  2200. D40_LCLA_LINK_PER_EVENT_GRP,
  2201. GFP_KERNEL);
  2202. if (!base->lcla_pool.alloc_map)
  2203. goto failure;
  2204. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2205. 0, SLAB_HWCACHE_ALIGN,
  2206. NULL);
  2207. if (base->desc_slab == NULL)
  2208. goto failure;
  2209. return base;
  2210. failure:
  2211. if (!IS_ERR(clk)) {
  2212. clk_disable(clk);
  2213. clk_put(clk);
  2214. }
  2215. if (virtbase)
  2216. iounmap(virtbase);
  2217. if (res)
  2218. release_mem_region(res->start,
  2219. resource_size(res));
  2220. if (virtbase)
  2221. iounmap(virtbase);
  2222. if (base) {
  2223. kfree(base->lcla_pool.alloc_map);
  2224. kfree(base->lookup_log_chans);
  2225. kfree(base->lookup_phy_chans);
  2226. kfree(base->phy_res);
  2227. kfree(base);
  2228. }
  2229. return NULL;
  2230. }
  2231. static void __init d40_hw_init(struct d40_base *base)
  2232. {
  2233. static const struct d40_reg_val dma_init_reg[] = {
  2234. /* Clock every part of the DMA block from start */
  2235. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2236. /* Interrupts on all logical channels */
  2237. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2238. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2239. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2240. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2241. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2242. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2243. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2244. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2245. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2246. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2247. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2248. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2249. };
  2250. int i;
  2251. u32 prmseo[2] = {0, 0};
  2252. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2253. u32 pcmis = 0;
  2254. u32 pcicr = 0;
  2255. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2256. writel(dma_init_reg[i].val,
  2257. base->virtbase + dma_init_reg[i].reg);
  2258. /* Configure all our dma channels to default settings */
  2259. for (i = 0; i < base->num_phy_chans; i++) {
  2260. activeo[i % 2] = activeo[i % 2] << 2;
  2261. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2262. == D40_ALLOC_PHY) {
  2263. activeo[i % 2] |= 3;
  2264. continue;
  2265. }
  2266. /* Enable interrupt # */
  2267. pcmis = (pcmis << 1) | 1;
  2268. /* Clear interrupt # */
  2269. pcicr = (pcicr << 1) | 1;
  2270. /* Set channel to physical mode */
  2271. prmseo[i % 2] = prmseo[i % 2] << 2;
  2272. prmseo[i % 2] |= 1;
  2273. }
  2274. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2275. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2276. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2277. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2278. /* Write which interrupt to enable */
  2279. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2280. /* Write which interrupt to clear */
  2281. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2282. }
  2283. static int __init d40_lcla_allocate(struct d40_base *base)
  2284. {
  2285. unsigned long *page_list;
  2286. int i, j;
  2287. int ret = 0;
  2288. /*
  2289. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2290. * To full fill this hardware requirement without wasting 256 kb
  2291. * we allocate pages until we get an aligned one.
  2292. */
  2293. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2294. GFP_KERNEL);
  2295. if (!page_list) {
  2296. ret = -ENOMEM;
  2297. goto failure;
  2298. }
  2299. /* Calculating how many pages that are required */
  2300. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2301. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2302. page_list[i] = __get_free_pages(GFP_KERNEL,
  2303. base->lcla_pool.pages);
  2304. if (!page_list[i]) {
  2305. dev_err(base->dev,
  2306. "[%s] Failed to allocate %d pages.\n",
  2307. __func__, base->lcla_pool.pages);
  2308. for (j = 0; j < i; j++)
  2309. free_pages(page_list[j], base->lcla_pool.pages);
  2310. goto failure;
  2311. }
  2312. if ((virt_to_phys((void *)page_list[i]) &
  2313. (LCLA_ALIGNMENT - 1)) == 0)
  2314. break;
  2315. }
  2316. for (j = 0; j < i; j++)
  2317. free_pages(page_list[j], base->lcla_pool.pages);
  2318. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2319. base->lcla_pool.base = (void *)page_list[i];
  2320. } else {
  2321. /*
  2322. * After many attempts and no succees with finding the correct
  2323. * alignment, try with allocating a big buffer.
  2324. */
  2325. dev_warn(base->dev,
  2326. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2327. __func__, base->lcla_pool.pages);
  2328. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2329. base->num_phy_chans +
  2330. LCLA_ALIGNMENT,
  2331. GFP_KERNEL);
  2332. if (!base->lcla_pool.base_unaligned) {
  2333. ret = -ENOMEM;
  2334. goto failure;
  2335. }
  2336. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2337. LCLA_ALIGNMENT);
  2338. }
  2339. writel(virt_to_phys(base->lcla_pool.base),
  2340. base->virtbase + D40_DREG_LCLA);
  2341. failure:
  2342. kfree(page_list);
  2343. return ret;
  2344. }
  2345. static int __init d40_probe(struct platform_device *pdev)
  2346. {
  2347. int err;
  2348. int ret = -ENOENT;
  2349. struct d40_base *base;
  2350. struct resource *res = NULL;
  2351. int num_reserved_chans;
  2352. u32 val;
  2353. base = d40_hw_detect_init(pdev);
  2354. if (!base)
  2355. goto failure;
  2356. num_reserved_chans = d40_phy_res_init(base);
  2357. platform_set_drvdata(pdev, base);
  2358. spin_lock_init(&base->interrupt_lock);
  2359. spin_lock_init(&base->execmd_lock);
  2360. /* Get IO for logical channel parameter address */
  2361. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2362. if (!res) {
  2363. ret = -ENOENT;
  2364. dev_err(&pdev->dev,
  2365. "[%s] No \"lcpa\" memory resource\n",
  2366. __func__);
  2367. goto failure;
  2368. }
  2369. base->lcpa_size = resource_size(res);
  2370. base->phy_lcpa = res->start;
  2371. if (request_mem_region(res->start, resource_size(res),
  2372. D40_NAME " I/O lcpa") == NULL) {
  2373. ret = -EBUSY;
  2374. dev_err(&pdev->dev,
  2375. "[%s] Failed to request LCPA region 0x%x-0x%x\n",
  2376. __func__, res->start, res->end);
  2377. goto failure;
  2378. }
  2379. /* We make use of ESRAM memory for this. */
  2380. val = readl(base->virtbase + D40_DREG_LCPA);
  2381. if (res->start != val && val != 0) {
  2382. dev_warn(&pdev->dev,
  2383. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2384. __func__, val, res->start);
  2385. } else
  2386. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2387. base->lcpa_base = ioremap(res->start, resource_size(res));
  2388. if (!base->lcpa_base) {
  2389. ret = -ENOMEM;
  2390. dev_err(&pdev->dev,
  2391. "[%s] Failed to ioremap LCPA region\n",
  2392. __func__);
  2393. goto failure;
  2394. }
  2395. ret = d40_lcla_allocate(base);
  2396. if (ret) {
  2397. dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
  2398. __func__);
  2399. goto failure;
  2400. }
  2401. spin_lock_init(&base->lcla_pool.lock);
  2402. base->irq = platform_get_irq(pdev, 0);
  2403. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2404. if (ret) {
  2405. dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
  2406. goto failure;
  2407. }
  2408. err = d40_dmaengine_init(base, num_reserved_chans);
  2409. if (err)
  2410. goto failure;
  2411. d40_hw_init(base);
  2412. dev_info(base->dev, "initialized\n");
  2413. return 0;
  2414. failure:
  2415. if (base) {
  2416. if (base->desc_slab)
  2417. kmem_cache_destroy(base->desc_slab);
  2418. if (base->virtbase)
  2419. iounmap(base->virtbase);
  2420. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2421. free_pages((unsigned long)base->lcla_pool.base,
  2422. base->lcla_pool.pages);
  2423. kfree(base->lcla_pool.base_unaligned);
  2424. if (base->phy_lcpa)
  2425. release_mem_region(base->phy_lcpa,
  2426. base->lcpa_size);
  2427. if (base->phy_start)
  2428. release_mem_region(base->phy_start,
  2429. base->phy_size);
  2430. if (base->clk) {
  2431. clk_disable(base->clk);
  2432. clk_put(base->clk);
  2433. }
  2434. kfree(base->lcla_pool.alloc_map);
  2435. kfree(base->lookup_log_chans);
  2436. kfree(base->lookup_phy_chans);
  2437. kfree(base->phy_res);
  2438. kfree(base);
  2439. }
  2440. dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
  2441. return ret;
  2442. }
  2443. static struct platform_driver d40_driver = {
  2444. .driver = {
  2445. .owner = THIS_MODULE,
  2446. .name = D40_NAME,
  2447. },
  2448. };
  2449. int __init stedma40_init(void)
  2450. {
  2451. return platform_driver_probe(&d40_driver, d40_probe);
  2452. }
  2453. arch_initcall(stedma40_init);