cpufreq_ondemand.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/cpu.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mutex.h>
  20. #include <linux/hrtimer.h>
  21. #include <linux/tick.h>
  22. #include <linux/ktime.h>
  23. #include <linux/sched.h>
  24. /*
  25. * dbs is used in this file as a shortform for demandbased switching
  26. * It helps to keep variable names smaller, simpler
  27. */
  28. #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define DEF_SAMPLING_DOWN_FACTOR (1)
  31. #define MAX_SAMPLING_DOWN_FACTOR (100000)
  32. #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
  33. #define MICRO_FREQUENCY_UP_THRESHOLD (95)
  34. #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
  35. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  36. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  37. /*
  38. * The polling frequency of this governor depends on the capability of
  39. * the processor. Default polling frequency is 1000 times the transition
  40. * latency of the processor. The governor will work on any processor with
  41. * transition latency <= 10mS, using appropriate sampling
  42. * rate.
  43. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  44. * this governor will not work.
  45. * All times here are in uS.
  46. */
  47. #define MIN_SAMPLING_RATE_RATIO (2)
  48. static unsigned int min_sampling_rate;
  49. #define LATENCY_MULTIPLIER (1000)
  50. #define MIN_LATENCY_MULTIPLIER (100)
  51. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  52. static void do_dbs_timer(struct work_struct *work);
  53. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  54. unsigned int event);
  55. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  56. static
  57. #endif
  58. struct cpufreq_governor cpufreq_gov_ondemand = {
  59. .name = "ondemand",
  60. .governor = cpufreq_governor_dbs,
  61. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  62. .owner = THIS_MODULE,
  63. };
  64. /* Sampling types */
  65. enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
  66. struct cpu_dbs_info_s {
  67. cputime64_t prev_cpu_idle;
  68. cputime64_t prev_cpu_iowait;
  69. cputime64_t prev_cpu_wall;
  70. cputime64_t prev_cpu_nice;
  71. struct cpufreq_policy *cur_policy;
  72. struct delayed_work work;
  73. struct cpufreq_frequency_table *freq_table;
  74. unsigned int freq_lo;
  75. unsigned int freq_lo_jiffies;
  76. unsigned int freq_hi_jiffies;
  77. unsigned int rate_mult;
  78. int cpu;
  79. unsigned int sample_type:1;
  80. /*
  81. * percpu mutex that serializes governor limit change with
  82. * do_dbs_timer invocation. We do not want do_dbs_timer to run
  83. * when user is changing the governor or limits.
  84. */
  85. struct mutex timer_mutex;
  86. };
  87. static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
  88. static unsigned int dbs_enable; /* number of CPUs using this policy */
  89. /*
  90. * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
  91. * different CPUs. It protects dbs_enable in governor start/stop.
  92. */
  93. static DEFINE_MUTEX(dbs_mutex);
  94. static struct workqueue_struct *kondemand_wq;
  95. static struct dbs_tuners {
  96. unsigned int sampling_rate;
  97. unsigned int up_threshold;
  98. unsigned int down_differential;
  99. unsigned int ignore_nice;
  100. unsigned int sampling_down_factor;
  101. unsigned int powersave_bias;
  102. unsigned int io_is_busy;
  103. } dbs_tuners_ins = {
  104. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  105. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  106. .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
  107. .ignore_nice = 0,
  108. .powersave_bias = 0,
  109. };
  110. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  111. cputime64_t *wall)
  112. {
  113. cputime64_t idle_time;
  114. cputime64_t cur_wall_time;
  115. cputime64_t busy_time;
  116. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  117. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  118. kstat_cpu(cpu).cpustat.system);
  119. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  120. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  121. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  122. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  123. idle_time = cputime64_sub(cur_wall_time, busy_time);
  124. if (wall)
  125. *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
  126. return (cputime64_t)jiffies_to_usecs(idle_time);
  127. }
  128. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  129. {
  130. u64 idle_time = get_cpu_idle_time_us(cpu, wall);
  131. if (idle_time == -1ULL)
  132. return get_cpu_idle_time_jiffy(cpu, wall);
  133. return idle_time;
  134. }
  135. static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
  136. {
  137. u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
  138. if (iowait_time == -1ULL)
  139. return 0;
  140. return iowait_time;
  141. }
  142. /*
  143. * Find right freq to be set now with powersave_bias on.
  144. * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
  145. * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
  146. */
  147. static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
  148. unsigned int freq_next,
  149. unsigned int relation)
  150. {
  151. unsigned int freq_req, freq_reduc, freq_avg;
  152. unsigned int freq_hi, freq_lo;
  153. unsigned int index = 0;
  154. unsigned int jiffies_total, jiffies_hi, jiffies_lo;
  155. struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
  156. policy->cpu);
  157. if (!dbs_info->freq_table) {
  158. dbs_info->freq_lo = 0;
  159. dbs_info->freq_lo_jiffies = 0;
  160. return freq_next;
  161. }
  162. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
  163. relation, &index);
  164. freq_req = dbs_info->freq_table[index].frequency;
  165. freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
  166. freq_avg = freq_req - freq_reduc;
  167. /* Find freq bounds for freq_avg in freq_table */
  168. index = 0;
  169. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  170. CPUFREQ_RELATION_H, &index);
  171. freq_lo = dbs_info->freq_table[index].frequency;
  172. index = 0;
  173. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  174. CPUFREQ_RELATION_L, &index);
  175. freq_hi = dbs_info->freq_table[index].frequency;
  176. /* Find out how long we have to be in hi and lo freqs */
  177. if (freq_hi == freq_lo) {
  178. dbs_info->freq_lo = 0;
  179. dbs_info->freq_lo_jiffies = 0;
  180. return freq_lo;
  181. }
  182. jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  183. jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
  184. jiffies_hi += ((freq_hi - freq_lo) / 2);
  185. jiffies_hi /= (freq_hi - freq_lo);
  186. jiffies_lo = jiffies_total - jiffies_hi;
  187. dbs_info->freq_lo = freq_lo;
  188. dbs_info->freq_lo_jiffies = jiffies_lo;
  189. dbs_info->freq_hi_jiffies = jiffies_hi;
  190. return freq_hi;
  191. }
  192. static void ondemand_powersave_bias_init_cpu(int cpu)
  193. {
  194. struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
  195. dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
  196. dbs_info->freq_lo = 0;
  197. }
  198. static void ondemand_powersave_bias_init(void)
  199. {
  200. int i;
  201. for_each_online_cpu(i) {
  202. ondemand_powersave_bias_init_cpu(i);
  203. }
  204. }
  205. /************************** sysfs interface ************************/
  206. static ssize_t show_sampling_rate_max(struct kobject *kobj,
  207. struct attribute *attr, char *buf)
  208. {
  209. printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
  210. "sysfs file is deprecated - used by: %s\n", current->comm);
  211. return sprintf(buf, "%u\n", -1U);
  212. }
  213. static ssize_t show_sampling_rate_min(struct kobject *kobj,
  214. struct attribute *attr, char *buf)
  215. {
  216. return sprintf(buf, "%u\n", min_sampling_rate);
  217. }
  218. define_one_global_ro(sampling_rate_max);
  219. define_one_global_ro(sampling_rate_min);
  220. /* cpufreq_ondemand Governor Tunables */
  221. #define show_one(file_name, object) \
  222. static ssize_t show_##file_name \
  223. (struct kobject *kobj, struct attribute *attr, char *buf) \
  224. { \
  225. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  226. }
  227. show_one(sampling_rate, sampling_rate);
  228. show_one(io_is_busy, io_is_busy);
  229. show_one(up_threshold, up_threshold);
  230. show_one(sampling_down_factor, sampling_down_factor);
  231. show_one(ignore_nice_load, ignore_nice);
  232. show_one(powersave_bias, powersave_bias);
  233. /*** delete after deprecation time ***/
  234. #define DEPRECATION_MSG(file_name) \
  235. printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
  236. "interface is deprecated - " #file_name "\n");
  237. #define show_one_old(file_name) \
  238. static ssize_t show_##file_name##_old \
  239. (struct cpufreq_policy *unused, char *buf) \
  240. { \
  241. printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
  242. "interface is deprecated - " #file_name "\n"); \
  243. return show_##file_name(NULL, NULL, buf); \
  244. }
  245. show_one_old(sampling_rate);
  246. show_one_old(up_threshold);
  247. show_one_old(ignore_nice_load);
  248. show_one_old(powersave_bias);
  249. show_one_old(sampling_rate_min);
  250. show_one_old(sampling_rate_max);
  251. cpufreq_freq_attr_ro_old(sampling_rate_min);
  252. cpufreq_freq_attr_ro_old(sampling_rate_max);
  253. /*** delete after deprecation time ***/
  254. static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
  255. const char *buf, size_t count)
  256. {
  257. unsigned int input;
  258. int ret;
  259. ret = sscanf(buf, "%u", &input);
  260. if (ret != 1)
  261. return -EINVAL;
  262. mutex_lock(&dbs_mutex);
  263. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  264. mutex_unlock(&dbs_mutex);
  265. return count;
  266. }
  267. static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
  268. const char *buf, size_t count)
  269. {
  270. unsigned int input;
  271. int ret;
  272. ret = sscanf(buf, "%u", &input);
  273. if (ret != 1)
  274. return -EINVAL;
  275. mutex_lock(&dbs_mutex);
  276. dbs_tuners_ins.io_is_busy = !!input;
  277. mutex_unlock(&dbs_mutex);
  278. return count;
  279. }
  280. static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
  281. const char *buf, size_t count)
  282. {
  283. unsigned int input;
  284. int ret;
  285. ret = sscanf(buf, "%u", &input);
  286. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  287. input < MIN_FREQUENCY_UP_THRESHOLD) {
  288. return -EINVAL;
  289. }
  290. mutex_lock(&dbs_mutex);
  291. dbs_tuners_ins.up_threshold = input;
  292. mutex_unlock(&dbs_mutex);
  293. return count;
  294. }
  295. static ssize_t store_sampling_down_factor(struct kobject *a,
  296. struct attribute *b, const char *buf, size_t count)
  297. {
  298. unsigned int input, j;
  299. int ret;
  300. ret = sscanf(buf, "%u", &input);
  301. if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  302. return -EINVAL;
  303. mutex_lock(&dbs_mutex);
  304. dbs_tuners_ins.sampling_down_factor = input;
  305. /* Reset down sampling multiplier in case it was active */
  306. for_each_online_cpu(j) {
  307. struct cpu_dbs_info_s *dbs_info;
  308. dbs_info = &per_cpu(od_cpu_dbs_info, j);
  309. dbs_info->rate_mult = 1;
  310. }
  311. mutex_unlock(&dbs_mutex);
  312. return count;
  313. }
  314. static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
  315. const char *buf, size_t count)
  316. {
  317. unsigned int input;
  318. int ret;
  319. unsigned int j;
  320. ret = sscanf(buf, "%u", &input);
  321. if (ret != 1)
  322. return -EINVAL;
  323. if (input > 1)
  324. input = 1;
  325. mutex_lock(&dbs_mutex);
  326. if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
  327. mutex_unlock(&dbs_mutex);
  328. return count;
  329. }
  330. dbs_tuners_ins.ignore_nice = input;
  331. /* we need to re-evaluate prev_cpu_idle */
  332. for_each_online_cpu(j) {
  333. struct cpu_dbs_info_s *dbs_info;
  334. dbs_info = &per_cpu(od_cpu_dbs_info, j);
  335. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  336. &dbs_info->prev_cpu_wall);
  337. if (dbs_tuners_ins.ignore_nice)
  338. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  339. }
  340. mutex_unlock(&dbs_mutex);
  341. return count;
  342. }
  343. static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
  344. const char *buf, size_t count)
  345. {
  346. unsigned int input;
  347. int ret;
  348. ret = sscanf(buf, "%u", &input);
  349. if (ret != 1)
  350. return -EINVAL;
  351. if (input > 1000)
  352. input = 1000;
  353. mutex_lock(&dbs_mutex);
  354. dbs_tuners_ins.powersave_bias = input;
  355. ondemand_powersave_bias_init();
  356. mutex_unlock(&dbs_mutex);
  357. return count;
  358. }
  359. define_one_global_rw(sampling_rate);
  360. define_one_global_rw(io_is_busy);
  361. define_one_global_rw(up_threshold);
  362. define_one_global_rw(sampling_down_factor);
  363. define_one_global_rw(ignore_nice_load);
  364. define_one_global_rw(powersave_bias);
  365. static struct attribute *dbs_attributes[] = {
  366. &sampling_rate_max.attr,
  367. &sampling_rate_min.attr,
  368. &sampling_rate.attr,
  369. &up_threshold.attr,
  370. &sampling_down_factor.attr,
  371. &ignore_nice_load.attr,
  372. &powersave_bias.attr,
  373. &io_is_busy.attr,
  374. NULL
  375. };
  376. static struct attribute_group dbs_attr_group = {
  377. .attrs = dbs_attributes,
  378. .name = "ondemand",
  379. };
  380. /*** delete after deprecation time ***/
  381. #define write_one_old(file_name) \
  382. static ssize_t store_##file_name##_old \
  383. (struct cpufreq_policy *unused, const char *buf, size_t count) \
  384. { \
  385. printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
  386. "interface is deprecated - " #file_name "\n"); \
  387. return store_##file_name(NULL, NULL, buf, count); \
  388. }
  389. write_one_old(sampling_rate);
  390. write_one_old(up_threshold);
  391. write_one_old(ignore_nice_load);
  392. write_one_old(powersave_bias);
  393. cpufreq_freq_attr_rw_old(sampling_rate);
  394. cpufreq_freq_attr_rw_old(up_threshold);
  395. cpufreq_freq_attr_rw_old(ignore_nice_load);
  396. cpufreq_freq_attr_rw_old(powersave_bias);
  397. static struct attribute *dbs_attributes_old[] = {
  398. &sampling_rate_max_old.attr,
  399. &sampling_rate_min_old.attr,
  400. &sampling_rate_old.attr,
  401. &up_threshold_old.attr,
  402. &ignore_nice_load_old.attr,
  403. &powersave_bias_old.attr,
  404. NULL
  405. };
  406. static struct attribute_group dbs_attr_group_old = {
  407. .attrs = dbs_attributes_old,
  408. .name = "ondemand",
  409. };
  410. /*** delete after deprecation time ***/
  411. /************************** sysfs end ************************/
  412. static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
  413. {
  414. if (dbs_tuners_ins.powersave_bias)
  415. freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
  416. else if (p->cur == p->max)
  417. return;
  418. __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
  419. CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
  420. }
  421. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  422. {
  423. unsigned int max_load_freq;
  424. struct cpufreq_policy *policy;
  425. unsigned int j;
  426. this_dbs_info->freq_lo = 0;
  427. policy = this_dbs_info->cur_policy;
  428. /*
  429. * Every sampling_rate, we check, if current idle time is less
  430. * than 20% (default), then we try to increase frequency
  431. * Every sampling_rate, we look for a the lowest
  432. * frequency which can sustain the load while keeping idle time over
  433. * 30%. If such a frequency exist, we try to decrease to this frequency.
  434. *
  435. * Any frequency increase takes it to the maximum frequency.
  436. * Frequency reduction happens at minimum steps of
  437. * 5% (default) of current frequency
  438. */
  439. /* Get Absolute Load - in terms of freq */
  440. max_load_freq = 0;
  441. for_each_cpu(j, policy->cpus) {
  442. struct cpu_dbs_info_s *j_dbs_info;
  443. cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
  444. unsigned int idle_time, wall_time, iowait_time;
  445. unsigned int load, load_freq;
  446. int freq_avg;
  447. j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
  448. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  449. cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
  450. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  451. j_dbs_info->prev_cpu_wall);
  452. j_dbs_info->prev_cpu_wall = cur_wall_time;
  453. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  454. j_dbs_info->prev_cpu_idle);
  455. j_dbs_info->prev_cpu_idle = cur_idle_time;
  456. iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
  457. j_dbs_info->prev_cpu_iowait);
  458. j_dbs_info->prev_cpu_iowait = cur_iowait_time;
  459. if (dbs_tuners_ins.ignore_nice) {
  460. cputime64_t cur_nice;
  461. unsigned long cur_nice_jiffies;
  462. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  463. j_dbs_info->prev_cpu_nice);
  464. /*
  465. * Assumption: nice time between sampling periods will
  466. * be less than 2^32 jiffies for 32 bit sys
  467. */
  468. cur_nice_jiffies = (unsigned long)
  469. cputime64_to_jiffies64(cur_nice);
  470. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  471. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  472. }
  473. /*
  474. * For the purpose of ondemand, waiting for disk IO is an
  475. * indication that you're performance critical, and not that
  476. * the system is actually idle. So subtract the iowait time
  477. * from the cpu idle time.
  478. */
  479. if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
  480. idle_time -= iowait_time;
  481. if (unlikely(!wall_time || wall_time < idle_time))
  482. continue;
  483. load = 100 * (wall_time - idle_time) / wall_time;
  484. freq_avg = __cpufreq_driver_getavg(policy, j);
  485. if (freq_avg <= 0)
  486. freq_avg = policy->cur;
  487. load_freq = load * freq_avg;
  488. if (load_freq > max_load_freq)
  489. max_load_freq = load_freq;
  490. }
  491. /* Check for frequency increase */
  492. if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
  493. /* If switching to max speed, apply sampling_down_factor */
  494. if (policy->cur < policy->max)
  495. this_dbs_info->rate_mult =
  496. dbs_tuners_ins.sampling_down_factor;
  497. dbs_freq_increase(policy, policy->max);
  498. return;
  499. }
  500. /* Check for frequency decrease */
  501. /* if we cannot reduce the frequency anymore, break out early */
  502. if (policy->cur == policy->min)
  503. return;
  504. /*
  505. * The optimal frequency is the frequency that is the lowest that
  506. * can support the current CPU usage without triggering the up
  507. * policy. To be safe, we focus 10 points under the threshold.
  508. */
  509. if (max_load_freq <
  510. (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
  511. policy->cur) {
  512. unsigned int freq_next;
  513. freq_next = max_load_freq /
  514. (dbs_tuners_ins.up_threshold -
  515. dbs_tuners_ins.down_differential);
  516. /* No longer fully busy, reset rate_mult */
  517. this_dbs_info->rate_mult = 1;
  518. if (freq_next < policy->min)
  519. freq_next = policy->min;
  520. if (!dbs_tuners_ins.powersave_bias) {
  521. __cpufreq_driver_target(policy, freq_next,
  522. CPUFREQ_RELATION_L);
  523. } else {
  524. int freq = powersave_bias_target(policy, freq_next,
  525. CPUFREQ_RELATION_L);
  526. __cpufreq_driver_target(policy, freq,
  527. CPUFREQ_RELATION_L);
  528. }
  529. }
  530. }
  531. static void do_dbs_timer(struct work_struct *work)
  532. {
  533. struct cpu_dbs_info_s *dbs_info =
  534. container_of(work, struct cpu_dbs_info_s, work.work);
  535. unsigned int cpu = dbs_info->cpu;
  536. int sample_type = dbs_info->sample_type;
  537. /* We want all CPUs to do sampling nearly on same jiffy */
  538. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
  539. * dbs_info->rate_mult);
  540. if (num_online_cpus() > 1)
  541. delay -= jiffies % delay;
  542. mutex_lock(&dbs_info->timer_mutex);
  543. /* Common NORMAL_SAMPLE setup */
  544. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  545. if (!dbs_tuners_ins.powersave_bias ||
  546. sample_type == DBS_NORMAL_SAMPLE) {
  547. dbs_check_cpu(dbs_info);
  548. if (dbs_info->freq_lo) {
  549. /* Setup timer for SUB_SAMPLE */
  550. dbs_info->sample_type = DBS_SUB_SAMPLE;
  551. delay = dbs_info->freq_hi_jiffies;
  552. }
  553. } else {
  554. __cpufreq_driver_target(dbs_info->cur_policy,
  555. dbs_info->freq_lo, CPUFREQ_RELATION_H);
  556. }
  557. queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
  558. mutex_unlock(&dbs_info->timer_mutex);
  559. }
  560. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  561. {
  562. /* We want all CPUs to do sampling nearly on same jiffy */
  563. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  564. if (num_online_cpus() > 1)
  565. delay -= jiffies % delay;
  566. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  567. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  568. queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
  569. delay);
  570. }
  571. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  572. {
  573. cancel_delayed_work_sync(&dbs_info->work);
  574. }
  575. /*
  576. * Not all CPUs want IO time to be accounted as busy; this dependson how
  577. * efficient idling at a higher frequency/voltage is.
  578. * Pavel Machek says this is not so for various generations of AMD and old
  579. * Intel systems.
  580. * Mike Chan (androidlcom) calis this is also not true for ARM.
  581. * Because of this, whitelist specific known (series) of CPUs by default, and
  582. * leave all others up to the user.
  583. */
  584. static int should_io_be_busy(void)
  585. {
  586. #if defined(CONFIG_X86)
  587. /*
  588. * For Intel, Core 2 (model 15) andl later have an efficient idle.
  589. */
  590. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  591. boot_cpu_data.x86 == 6 &&
  592. boot_cpu_data.x86_model >= 15)
  593. return 1;
  594. #endif
  595. return 0;
  596. }
  597. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  598. unsigned int event)
  599. {
  600. unsigned int cpu = policy->cpu;
  601. struct cpu_dbs_info_s *this_dbs_info;
  602. unsigned int j;
  603. int rc;
  604. this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
  605. switch (event) {
  606. case CPUFREQ_GOV_START:
  607. if ((!cpu_online(cpu)) || (!policy->cur))
  608. return -EINVAL;
  609. mutex_lock(&dbs_mutex);
  610. rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
  611. if (rc) {
  612. mutex_unlock(&dbs_mutex);
  613. return rc;
  614. }
  615. dbs_enable++;
  616. for_each_cpu(j, policy->cpus) {
  617. struct cpu_dbs_info_s *j_dbs_info;
  618. j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
  619. j_dbs_info->cur_policy = policy;
  620. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  621. &j_dbs_info->prev_cpu_wall);
  622. if (dbs_tuners_ins.ignore_nice) {
  623. j_dbs_info->prev_cpu_nice =
  624. kstat_cpu(j).cpustat.nice;
  625. }
  626. }
  627. this_dbs_info->cpu = cpu;
  628. this_dbs_info->rate_mult = 1;
  629. ondemand_powersave_bias_init_cpu(cpu);
  630. /*
  631. * Start the timerschedule work, when this governor
  632. * is used for first time
  633. */
  634. if (dbs_enable == 1) {
  635. unsigned int latency;
  636. rc = sysfs_create_group(cpufreq_global_kobject,
  637. &dbs_attr_group);
  638. if (rc) {
  639. mutex_unlock(&dbs_mutex);
  640. return rc;
  641. }
  642. /* policy latency is in nS. Convert it to uS first */
  643. latency = policy->cpuinfo.transition_latency / 1000;
  644. if (latency == 0)
  645. latency = 1;
  646. /* Bring kernel and HW constraints together */
  647. min_sampling_rate = max(min_sampling_rate,
  648. MIN_LATENCY_MULTIPLIER * latency);
  649. dbs_tuners_ins.sampling_rate =
  650. max(min_sampling_rate,
  651. latency * LATENCY_MULTIPLIER);
  652. dbs_tuners_ins.io_is_busy = should_io_be_busy();
  653. }
  654. mutex_unlock(&dbs_mutex);
  655. mutex_init(&this_dbs_info->timer_mutex);
  656. dbs_timer_init(this_dbs_info);
  657. break;
  658. case CPUFREQ_GOV_STOP:
  659. dbs_timer_exit(this_dbs_info);
  660. mutex_lock(&dbs_mutex);
  661. sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
  662. mutex_destroy(&this_dbs_info->timer_mutex);
  663. dbs_enable--;
  664. mutex_unlock(&dbs_mutex);
  665. if (!dbs_enable)
  666. sysfs_remove_group(cpufreq_global_kobject,
  667. &dbs_attr_group);
  668. break;
  669. case CPUFREQ_GOV_LIMITS:
  670. mutex_lock(&this_dbs_info->timer_mutex);
  671. if (policy->max < this_dbs_info->cur_policy->cur)
  672. __cpufreq_driver_target(this_dbs_info->cur_policy,
  673. policy->max, CPUFREQ_RELATION_H);
  674. else if (policy->min > this_dbs_info->cur_policy->cur)
  675. __cpufreq_driver_target(this_dbs_info->cur_policy,
  676. policy->min, CPUFREQ_RELATION_L);
  677. mutex_unlock(&this_dbs_info->timer_mutex);
  678. break;
  679. }
  680. return 0;
  681. }
  682. static int __init cpufreq_gov_dbs_init(void)
  683. {
  684. int err;
  685. cputime64_t wall;
  686. u64 idle_time;
  687. int cpu = get_cpu();
  688. idle_time = get_cpu_idle_time_us(cpu, &wall);
  689. put_cpu();
  690. if (idle_time != -1ULL) {
  691. /* Idle micro accounting is supported. Use finer thresholds */
  692. dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
  693. dbs_tuners_ins.down_differential =
  694. MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
  695. /*
  696. * In no_hz/micro accounting case we set the minimum frequency
  697. * not depending on HZ, but fixed (very low). The deferred
  698. * timer might skip some samples if idle/sleeping as needed.
  699. */
  700. min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
  701. } else {
  702. /* For correct statistics, we need 10 ticks for each measure */
  703. min_sampling_rate =
  704. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  705. }
  706. kondemand_wq = create_workqueue("kondemand");
  707. if (!kondemand_wq) {
  708. printk(KERN_ERR "Creation of kondemand failed\n");
  709. return -EFAULT;
  710. }
  711. err = cpufreq_register_governor(&cpufreq_gov_ondemand);
  712. if (err)
  713. destroy_workqueue(kondemand_wq);
  714. return err;
  715. }
  716. static void __exit cpufreq_gov_dbs_exit(void)
  717. {
  718. cpufreq_unregister_governor(&cpufreq_gov_ondemand);
  719. destroy_workqueue(kondemand_wq);
  720. }
  721. MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  722. MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
  723. MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  724. "Low Latency Frequency Transition capable processors");
  725. MODULE_LICENSE("GPL");
  726. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  727. fs_initcall(cpufreq_gov_dbs_init);
  728. #else
  729. module_init(cpufreq_gov_dbs_init);
  730. #endif
  731. module_exit(cpufreq_gov_dbs_exit);