cfq-iosched.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private)
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. struct rb_node *active;
  79. };
  80. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  81. .count = 0, .min_vdisktime = 0, }
  82. /*
  83. * Per process-grouping structure
  84. */
  85. struct cfq_queue {
  86. /* reference count */
  87. atomic_t ref;
  88. /* various state flags, see below */
  89. unsigned int flags;
  90. /* parent cfq_data */
  91. struct cfq_data *cfqd;
  92. /* service_tree member */
  93. struct rb_node rb_node;
  94. /* service_tree key */
  95. unsigned long rb_key;
  96. /* prio tree member */
  97. struct rb_node p_node;
  98. /* prio tree root we belong to, if any */
  99. struct rb_root *p_root;
  100. /* sorted list of pending requests */
  101. struct rb_root sort_list;
  102. /* if fifo isn't expired, next request to serve */
  103. struct request *next_rq;
  104. /* requests queued in sort_list */
  105. int queued[2];
  106. /* currently allocated requests */
  107. int allocated[2];
  108. /* fifo list of requests in sort_list */
  109. struct list_head fifo;
  110. /* time when queue got scheduled in to dispatch first request. */
  111. unsigned long dispatch_start;
  112. unsigned int allocated_slice;
  113. unsigned int slice_dispatch;
  114. /* time when first request from queue completed and slice started. */
  115. unsigned long slice_start;
  116. unsigned long slice_end;
  117. long slice_resid;
  118. /* pending metadata requests */
  119. int meta_pending;
  120. /* number of requests that are on the dispatch list or inside driver */
  121. int dispatched;
  122. /* io prio of this group */
  123. unsigned short ioprio, org_ioprio;
  124. unsigned short ioprio_class, org_ioprio_class;
  125. pid_t pid;
  126. u32 seek_history;
  127. sector_t last_request_pos;
  128. struct cfq_rb_root *service_tree;
  129. struct cfq_queue *new_cfqq;
  130. struct cfq_group *cfqg;
  131. struct cfq_group *orig_cfqg;
  132. /* Number of sectors dispatched from queue in single dispatch round */
  133. unsigned long nr_sectors;
  134. };
  135. /*
  136. * First index in the service_trees.
  137. * IDLE is handled separately, so it has negative index
  138. */
  139. enum wl_prio_t {
  140. BE_WORKLOAD = 0,
  141. RT_WORKLOAD = 1,
  142. IDLE_WORKLOAD = 2,
  143. CFQ_PRIO_NR,
  144. };
  145. /*
  146. * Second index in the service_trees.
  147. */
  148. enum wl_type_t {
  149. ASYNC_WORKLOAD = 0,
  150. SYNC_NOIDLE_WORKLOAD = 1,
  151. SYNC_WORKLOAD = 2
  152. };
  153. /* This is per cgroup per device grouping structure */
  154. struct cfq_group {
  155. /* group service_tree member */
  156. struct rb_node rb_node;
  157. /* group service_tree key */
  158. u64 vdisktime;
  159. unsigned int weight;
  160. bool on_st;
  161. /* number of cfqq currently on this group */
  162. int nr_cfqq;
  163. /*
  164. * Per group busy queus average. Useful for workload slice calc. We
  165. * create the array for each prio class but at run time it is used
  166. * only for RT and BE class and slot for IDLE class remains unused.
  167. * This is primarily done to avoid confusion and a gcc warning.
  168. */
  169. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  170. /*
  171. * rr lists of queues with requests. We maintain service trees for
  172. * RT and BE classes. These trees are subdivided in subclasses
  173. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  174. * class there is no subclassification and all the cfq queues go on
  175. * a single tree service_tree_idle.
  176. * Counts are embedded in the cfq_rb_root
  177. */
  178. struct cfq_rb_root service_trees[2][3];
  179. struct cfq_rb_root service_tree_idle;
  180. unsigned long saved_workload_slice;
  181. enum wl_type_t saved_workload;
  182. enum wl_prio_t saved_serving_prio;
  183. struct blkio_group blkg;
  184. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  185. struct hlist_node cfqd_node;
  186. atomic_t ref;
  187. #endif
  188. /* number of requests that are on the dispatch list or inside driver */
  189. int dispatched;
  190. };
  191. /*
  192. * Per block device queue structure
  193. */
  194. struct cfq_data {
  195. struct request_queue *queue;
  196. /* Root service tree for cfq_groups */
  197. struct cfq_rb_root grp_service_tree;
  198. struct cfq_group root_group;
  199. /*
  200. * The priority currently being served
  201. */
  202. enum wl_prio_t serving_prio;
  203. enum wl_type_t serving_type;
  204. unsigned long workload_expires;
  205. struct cfq_group *serving_group;
  206. /*
  207. * Each priority tree is sorted by next_request position. These
  208. * trees are used when determining if two or more queues are
  209. * interleaving requests (see cfq_close_cooperator).
  210. */
  211. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  212. unsigned int busy_queues;
  213. int rq_in_driver;
  214. int rq_in_flight[2];
  215. /*
  216. * queue-depth detection
  217. */
  218. int rq_queued;
  219. int hw_tag;
  220. /*
  221. * hw_tag can be
  222. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  223. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  224. * 0 => no NCQ
  225. */
  226. int hw_tag_est_depth;
  227. unsigned int hw_tag_samples;
  228. /*
  229. * idle window management
  230. */
  231. struct timer_list idle_slice_timer;
  232. struct work_struct unplug_work;
  233. struct cfq_queue *active_queue;
  234. struct cfq_io_context *active_cic;
  235. /*
  236. * async queue for each priority case
  237. */
  238. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  239. struct cfq_queue *async_idle_cfqq;
  240. sector_t last_position;
  241. /*
  242. * tunables, see top of file
  243. */
  244. unsigned int cfq_quantum;
  245. unsigned int cfq_fifo_expire[2];
  246. unsigned int cfq_back_penalty;
  247. unsigned int cfq_back_max;
  248. unsigned int cfq_slice[2];
  249. unsigned int cfq_slice_async_rq;
  250. unsigned int cfq_slice_idle;
  251. unsigned int cfq_group_idle;
  252. unsigned int cfq_latency;
  253. unsigned int cfq_group_isolation;
  254. unsigned int cic_index;
  255. struct list_head cic_list;
  256. /*
  257. * Fallback dummy cfqq for extreme OOM conditions
  258. */
  259. struct cfq_queue oom_cfqq;
  260. unsigned long last_delayed_sync;
  261. /* List of cfq groups being managed on this device*/
  262. struct hlist_head cfqg_list;
  263. struct rcu_head rcu;
  264. };
  265. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  266. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  267. enum wl_prio_t prio,
  268. enum wl_type_t type)
  269. {
  270. if (!cfqg)
  271. return NULL;
  272. if (prio == IDLE_WORKLOAD)
  273. return &cfqg->service_tree_idle;
  274. return &cfqg->service_trees[prio][type];
  275. }
  276. enum cfqq_state_flags {
  277. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  278. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  279. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  280. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  281. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  282. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  283. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  284. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  285. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  286. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  287. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  288. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  289. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  290. };
  291. #define CFQ_CFQQ_FNS(name) \
  292. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  293. { \
  294. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  295. } \
  296. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  297. { \
  298. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  299. } \
  300. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  301. { \
  302. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  303. }
  304. CFQ_CFQQ_FNS(on_rr);
  305. CFQ_CFQQ_FNS(wait_request);
  306. CFQ_CFQQ_FNS(must_dispatch);
  307. CFQ_CFQQ_FNS(must_alloc_slice);
  308. CFQ_CFQQ_FNS(fifo_expire);
  309. CFQ_CFQQ_FNS(idle_window);
  310. CFQ_CFQQ_FNS(prio_changed);
  311. CFQ_CFQQ_FNS(slice_new);
  312. CFQ_CFQQ_FNS(sync);
  313. CFQ_CFQQ_FNS(coop);
  314. CFQ_CFQQ_FNS(split_coop);
  315. CFQ_CFQQ_FNS(deep);
  316. CFQ_CFQQ_FNS(wait_busy);
  317. #undef CFQ_CFQQ_FNS
  318. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  319. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  320. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  321. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  322. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  323. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  324. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  325. blkg_path(&(cfqg)->blkg), ##args); \
  326. #else
  327. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  328. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  329. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  330. #endif
  331. #define cfq_log(cfqd, fmt, args...) \
  332. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  333. /* Traverses through cfq group service trees */
  334. #define for_each_cfqg_st(cfqg, i, j, st) \
  335. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  336. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  337. : &cfqg->service_tree_idle; \
  338. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  339. (i == IDLE_WORKLOAD && j == 0); \
  340. j++, st = i < IDLE_WORKLOAD ? \
  341. &cfqg->service_trees[i][j]: NULL) \
  342. static inline bool iops_mode(struct cfq_data *cfqd)
  343. {
  344. /*
  345. * If we are not idling on queues and it is a NCQ drive, parallel
  346. * execution of requests is on and measuring time is not possible
  347. * in most of the cases until and unless we drive shallower queue
  348. * depths and that becomes a performance bottleneck. In such cases
  349. * switch to start providing fairness in terms of number of IOs.
  350. */
  351. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  352. return true;
  353. else
  354. return false;
  355. }
  356. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  357. {
  358. if (cfq_class_idle(cfqq))
  359. return IDLE_WORKLOAD;
  360. if (cfq_class_rt(cfqq))
  361. return RT_WORKLOAD;
  362. return BE_WORKLOAD;
  363. }
  364. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  365. {
  366. if (!cfq_cfqq_sync(cfqq))
  367. return ASYNC_WORKLOAD;
  368. if (!cfq_cfqq_idle_window(cfqq))
  369. return SYNC_NOIDLE_WORKLOAD;
  370. return SYNC_WORKLOAD;
  371. }
  372. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  373. struct cfq_data *cfqd,
  374. struct cfq_group *cfqg)
  375. {
  376. if (wl == IDLE_WORKLOAD)
  377. return cfqg->service_tree_idle.count;
  378. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  379. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  380. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  381. }
  382. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  383. struct cfq_group *cfqg)
  384. {
  385. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  386. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  387. }
  388. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  389. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  390. struct io_context *, gfp_t);
  391. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  392. struct io_context *);
  393. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  394. bool is_sync)
  395. {
  396. return cic->cfqq[is_sync];
  397. }
  398. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  399. struct cfq_queue *cfqq, bool is_sync)
  400. {
  401. cic->cfqq[is_sync] = cfqq;
  402. }
  403. #define CIC_DEAD_KEY 1ul
  404. #define CIC_DEAD_INDEX_SHIFT 1
  405. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  406. {
  407. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  408. }
  409. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  410. {
  411. struct cfq_data *cfqd = cic->key;
  412. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  413. return NULL;
  414. return cfqd;
  415. }
  416. /*
  417. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  418. * set (in which case it could also be direct WRITE).
  419. */
  420. static inline bool cfq_bio_sync(struct bio *bio)
  421. {
  422. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  423. }
  424. /*
  425. * scheduler run of queue, if there are requests pending and no one in the
  426. * driver that will restart queueing
  427. */
  428. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  429. {
  430. if (cfqd->busy_queues) {
  431. cfq_log(cfqd, "schedule dispatch");
  432. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  433. }
  434. }
  435. static int cfq_queue_empty(struct request_queue *q)
  436. {
  437. struct cfq_data *cfqd = q->elevator->elevator_data;
  438. return !cfqd->rq_queued;
  439. }
  440. /*
  441. * Scale schedule slice based on io priority. Use the sync time slice only
  442. * if a queue is marked sync and has sync io queued. A sync queue with async
  443. * io only, should not get full sync slice length.
  444. */
  445. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  446. unsigned short prio)
  447. {
  448. const int base_slice = cfqd->cfq_slice[sync];
  449. WARN_ON(prio >= IOPRIO_BE_NR);
  450. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  451. }
  452. static inline int
  453. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  454. {
  455. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  456. }
  457. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  458. {
  459. u64 d = delta << CFQ_SERVICE_SHIFT;
  460. d = d * BLKIO_WEIGHT_DEFAULT;
  461. do_div(d, cfqg->weight);
  462. return d;
  463. }
  464. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  465. {
  466. s64 delta = (s64)(vdisktime - min_vdisktime);
  467. if (delta > 0)
  468. min_vdisktime = vdisktime;
  469. return min_vdisktime;
  470. }
  471. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  472. {
  473. s64 delta = (s64)(vdisktime - min_vdisktime);
  474. if (delta < 0)
  475. min_vdisktime = vdisktime;
  476. return min_vdisktime;
  477. }
  478. static void update_min_vdisktime(struct cfq_rb_root *st)
  479. {
  480. u64 vdisktime = st->min_vdisktime;
  481. struct cfq_group *cfqg;
  482. if (st->active) {
  483. cfqg = rb_entry_cfqg(st->active);
  484. vdisktime = cfqg->vdisktime;
  485. }
  486. if (st->left) {
  487. cfqg = rb_entry_cfqg(st->left);
  488. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  489. }
  490. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  491. }
  492. /*
  493. * get averaged number of queues of RT/BE priority.
  494. * average is updated, with a formula that gives more weight to higher numbers,
  495. * to quickly follows sudden increases and decrease slowly
  496. */
  497. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  498. struct cfq_group *cfqg, bool rt)
  499. {
  500. unsigned min_q, max_q;
  501. unsigned mult = cfq_hist_divisor - 1;
  502. unsigned round = cfq_hist_divisor / 2;
  503. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  504. min_q = min(cfqg->busy_queues_avg[rt], busy);
  505. max_q = max(cfqg->busy_queues_avg[rt], busy);
  506. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  507. cfq_hist_divisor;
  508. return cfqg->busy_queues_avg[rt];
  509. }
  510. static inline unsigned
  511. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  512. {
  513. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  514. return cfq_target_latency * cfqg->weight / st->total_weight;
  515. }
  516. static inline void
  517. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  518. {
  519. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  520. if (cfqd->cfq_latency) {
  521. /*
  522. * interested queues (we consider only the ones with the same
  523. * priority class in the cfq group)
  524. */
  525. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  526. cfq_class_rt(cfqq));
  527. unsigned sync_slice = cfqd->cfq_slice[1];
  528. unsigned expect_latency = sync_slice * iq;
  529. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  530. if (expect_latency > group_slice) {
  531. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  532. /* scale low_slice according to IO priority
  533. * and sync vs async */
  534. unsigned low_slice =
  535. min(slice, base_low_slice * slice / sync_slice);
  536. /* the adapted slice value is scaled to fit all iqs
  537. * into the target latency */
  538. slice = max(slice * group_slice / expect_latency,
  539. low_slice);
  540. }
  541. }
  542. cfqq->slice_start = jiffies;
  543. cfqq->slice_end = jiffies + slice;
  544. cfqq->allocated_slice = slice;
  545. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  546. }
  547. /*
  548. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  549. * isn't valid until the first request from the dispatch is activated
  550. * and the slice time set.
  551. */
  552. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  553. {
  554. if (cfq_cfqq_slice_new(cfqq))
  555. return 0;
  556. if (time_before(jiffies, cfqq->slice_end))
  557. return 0;
  558. return 1;
  559. }
  560. /*
  561. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  562. * We choose the request that is closest to the head right now. Distance
  563. * behind the head is penalized and only allowed to a certain extent.
  564. */
  565. static struct request *
  566. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  567. {
  568. sector_t s1, s2, d1 = 0, d2 = 0;
  569. unsigned long back_max;
  570. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  571. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  572. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  573. if (rq1 == NULL || rq1 == rq2)
  574. return rq2;
  575. if (rq2 == NULL)
  576. return rq1;
  577. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  578. return rq1;
  579. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  580. return rq2;
  581. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  582. return rq1;
  583. else if ((rq2->cmd_flags & REQ_META) &&
  584. !(rq1->cmd_flags & REQ_META))
  585. return rq2;
  586. s1 = blk_rq_pos(rq1);
  587. s2 = blk_rq_pos(rq2);
  588. /*
  589. * by definition, 1KiB is 2 sectors
  590. */
  591. back_max = cfqd->cfq_back_max * 2;
  592. /*
  593. * Strict one way elevator _except_ in the case where we allow
  594. * short backward seeks which are biased as twice the cost of a
  595. * similar forward seek.
  596. */
  597. if (s1 >= last)
  598. d1 = s1 - last;
  599. else if (s1 + back_max >= last)
  600. d1 = (last - s1) * cfqd->cfq_back_penalty;
  601. else
  602. wrap |= CFQ_RQ1_WRAP;
  603. if (s2 >= last)
  604. d2 = s2 - last;
  605. else if (s2 + back_max >= last)
  606. d2 = (last - s2) * cfqd->cfq_back_penalty;
  607. else
  608. wrap |= CFQ_RQ2_WRAP;
  609. /* Found required data */
  610. /*
  611. * By doing switch() on the bit mask "wrap" we avoid having to
  612. * check two variables for all permutations: --> faster!
  613. */
  614. switch (wrap) {
  615. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  616. if (d1 < d2)
  617. return rq1;
  618. else if (d2 < d1)
  619. return rq2;
  620. else {
  621. if (s1 >= s2)
  622. return rq1;
  623. else
  624. return rq2;
  625. }
  626. case CFQ_RQ2_WRAP:
  627. return rq1;
  628. case CFQ_RQ1_WRAP:
  629. return rq2;
  630. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  631. default:
  632. /*
  633. * Since both rqs are wrapped,
  634. * start with the one that's further behind head
  635. * (--> only *one* back seek required),
  636. * since back seek takes more time than forward.
  637. */
  638. if (s1 <= s2)
  639. return rq1;
  640. else
  641. return rq2;
  642. }
  643. }
  644. /*
  645. * The below is leftmost cache rbtree addon
  646. */
  647. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  648. {
  649. /* Service tree is empty */
  650. if (!root->count)
  651. return NULL;
  652. if (!root->left)
  653. root->left = rb_first(&root->rb);
  654. if (root->left)
  655. return rb_entry(root->left, struct cfq_queue, rb_node);
  656. return NULL;
  657. }
  658. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  659. {
  660. if (!root->left)
  661. root->left = rb_first(&root->rb);
  662. if (root->left)
  663. return rb_entry_cfqg(root->left);
  664. return NULL;
  665. }
  666. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  667. {
  668. rb_erase(n, root);
  669. RB_CLEAR_NODE(n);
  670. }
  671. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  672. {
  673. if (root->left == n)
  674. root->left = NULL;
  675. rb_erase_init(n, &root->rb);
  676. --root->count;
  677. }
  678. /*
  679. * would be nice to take fifo expire time into account as well
  680. */
  681. static struct request *
  682. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  683. struct request *last)
  684. {
  685. struct rb_node *rbnext = rb_next(&last->rb_node);
  686. struct rb_node *rbprev = rb_prev(&last->rb_node);
  687. struct request *next = NULL, *prev = NULL;
  688. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  689. if (rbprev)
  690. prev = rb_entry_rq(rbprev);
  691. if (rbnext)
  692. next = rb_entry_rq(rbnext);
  693. else {
  694. rbnext = rb_first(&cfqq->sort_list);
  695. if (rbnext && rbnext != &last->rb_node)
  696. next = rb_entry_rq(rbnext);
  697. }
  698. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  699. }
  700. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  701. struct cfq_queue *cfqq)
  702. {
  703. /*
  704. * just an approximation, should be ok.
  705. */
  706. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  707. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  708. }
  709. static inline s64
  710. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  711. {
  712. return cfqg->vdisktime - st->min_vdisktime;
  713. }
  714. static void
  715. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  716. {
  717. struct rb_node **node = &st->rb.rb_node;
  718. struct rb_node *parent = NULL;
  719. struct cfq_group *__cfqg;
  720. s64 key = cfqg_key(st, cfqg);
  721. int left = 1;
  722. while (*node != NULL) {
  723. parent = *node;
  724. __cfqg = rb_entry_cfqg(parent);
  725. if (key < cfqg_key(st, __cfqg))
  726. node = &parent->rb_left;
  727. else {
  728. node = &parent->rb_right;
  729. left = 0;
  730. }
  731. }
  732. if (left)
  733. st->left = &cfqg->rb_node;
  734. rb_link_node(&cfqg->rb_node, parent, node);
  735. rb_insert_color(&cfqg->rb_node, &st->rb);
  736. }
  737. static void
  738. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  739. {
  740. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  741. struct cfq_group *__cfqg;
  742. struct rb_node *n;
  743. cfqg->nr_cfqq++;
  744. if (cfqg->on_st)
  745. return;
  746. /*
  747. * Currently put the group at the end. Later implement something
  748. * so that groups get lesser vtime based on their weights, so that
  749. * if group does not loose all if it was not continously backlogged.
  750. */
  751. n = rb_last(&st->rb);
  752. if (n) {
  753. __cfqg = rb_entry_cfqg(n);
  754. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  755. } else
  756. cfqg->vdisktime = st->min_vdisktime;
  757. __cfq_group_service_tree_add(st, cfqg);
  758. cfqg->on_st = true;
  759. st->total_weight += cfqg->weight;
  760. }
  761. static void
  762. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  763. {
  764. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  765. if (st->active == &cfqg->rb_node)
  766. st->active = NULL;
  767. BUG_ON(cfqg->nr_cfqq < 1);
  768. cfqg->nr_cfqq--;
  769. /* If there are other cfq queues under this group, don't delete it */
  770. if (cfqg->nr_cfqq)
  771. return;
  772. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  773. cfqg->on_st = false;
  774. st->total_weight -= cfqg->weight;
  775. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  776. cfq_rb_erase(&cfqg->rb_node, st);
  777. cfqg->saved_workload_slice = 0;
  778. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  779. }
  780. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  781. {
  782. unsigned int slice_used;
  783. /*
  784. * Queue got expired before even a single request completed or
  785. * got expired immediately after first request completion.
  786. */
  787. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  788. /*
  789. * Also charge the seek time incurred to the group, otherwise
  790. * if there are mutiple queues in the group, each can dispatch
  791. * a single request on seeky media and cause lots of seek time
  792. * and group will never know it.
  793. */
  794. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  795. 1);
  796. } else {
  797. slice_used = jiffies - cfqq->slice_start;
  798. if (slice_used > cfqq->allocated_slice)
  799. slice_used = cfqq->allocated_slice;
  800. }
  801. return slice_used;
  802. }
  803. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  804. struct cfq_queue *cfqq)
  805. {
  806. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  807. unsigned int used_sl, charge;
  808. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  809. - cfqg->service_tree_idle.count;
  810. BUG_ON(nr_sync < 0);
  811. used_sl = charge = cfq_cfqq_slice_usage(cfqq);
  812. if (iops_mode(cfqd))
  813. charge = cfqq->slice_dispatch;
  814. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  815. charge = cfqq->allocated_slice;
  816. /* Can't update vdisktime while group is on service tree */
  817. cfq_rb_erase(&cfqg->rb_node, st);
  818. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  819. __cfq_group_service_tree_add(st, cfqg);
  820. /* This group is being expired. Save the context */
  821. if (time_after(cfqd->workload_expires, jiffies)) {
  822. cfqg->saved_workload_slice = cfqd->workload_expires
  823. - jiffies;
  824. cfqg->saved_workload = cfqd->serving_type;
  825. cfqg->saved_serving_prio = cfqd->serving_prio;
  826. } else
  827. cfqg->saved_workload_slice = 0;
  828. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  829. st->min_vdisktime);
  830. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  831. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  832. iops_mode(cfqd), cfqq->nr_sectors);
  833. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  834. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  835. }
  836. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  837. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  838. {
  839. if (blkg)
  840. return container_of(blkg, struct cfq_group, blkg);
  841. return NULL;
  842. }
  843. void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  844. unsigned int weight)
  845. {
  846. cfqg_of_blkg(blkg)->weight = weight;
  847. }
  848. static struct cfq_group *
  849. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  850. {
  851. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  852. struct cfq_group *cfqg = NULL;
  853. void *key = cfqd;
  854. int i, j;
  855. struct cfq_rb_root *st;
  856. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  857. unsigned int major, minor;
  858. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  859. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  860. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  861. cfqg->blkg.dev = MKDEV(major, minor);
  862. goto done;
  863. }
  864. if (cfqg || !create)
  865. goto done;
  866. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  867. if (!cfqg)
  868. goto done;
  869. for_each_cfqg_st(cfqg, i, j, st)
  870. *st = CFQ_RB_ROOT;
  871. RB_CLEAR_NODE(&cfqg->rb_node);
  872. /*
  873. * Take the initial reference that will be released on destroy
  874. * This can be thought of a joint reference by cgroup and
  875. * elevator which will be dropped by either elevator exit
  876. * or cgroup deletion path depending on who is exiting first.
  877. */
  878. atomic_set(&cfqg->ref, 1);
  879. /*
  880. * Add group onto cgroup list. It might happen that bdi->dev is
  881. * not initiliazed yet. Initialize this new group without major
  882. * and minor info and this info will be filled in once a new thread
  883. * comes for IO. See code above.
  884. */
  885. if (bdi->dev) {
  886. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  887. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  888. MKDEV(major, minor));
  889. } else
  890. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  891. 0);
  892. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  893. /* Add group on cfqd list */
  894. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  895. done:
  896. return cfqg;
  897. }
  898. /*
  899. * Search for the cfq group current task belongs to. If create = 1, then also
  900. * create the cfq group if it does not exist. request_queue lock must be held.
  901. */
  902. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  903. {
  904. struct cgroup *cgroup;
  905. struct cfq_group *cfqg = NULL;
  906. rcu_read_lock();
  907. cgroup = task_cgroup(current, blkio_subsys_id);
  908. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  909. if (!cfqg && create)
  910. cfqg = &cfqd->root_group;
  911. rcu_read_unlock();
  912. return cfqg;
  913. }
  914. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  915. {
  916. atomic_inc(&cfqg->ref);
  917. return cfqg;
  918. }
  919. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  920. {
  921. /* Currently, all async queues are mapped to root group */
  922. if (!cfq_cfqq_sync(cfqq))
  923. cfqg = &cfqq->cfqd->root_group;
  924. cfqq->cfqg = cfqg;
  925. /* cfqq reference on cfqg */
  926. atomic_inc(&cfqq->cfqg->ref);
  927. }
  928. static void cfq_put_cfqg(struct cfq_group *cfqg)
  929. {
  930. struct cfq_rb_root *st;
  931. int i, j;
  932. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  933. if (!atomic_dec_and_test(&cfqg->ref))
  934. return;
  935. for_each_cfqg_st(cfqg, i, j, st)
  936. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  937. kfree(cfqg);
  938. }
  939. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  940. {
  941. /* Something wrong if we are trying to remove same group twice */
  942. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  943. hlist_del_init(&cfqg->cfqd_node);
  944. /*
  945. * Put the reference taken at the time of creation so that when all
  946. * queues are gone, group can be destroyed.
  947. */
  948. cfq_put_cfqg(cfqg);
  949. }
  950. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  951. {
  952. struct hlist_node *pos, *n;
  953. struct cfq_group *cfqg;
  954. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  955. /*
  956. * If cgroup removal path got to blk_group first and removed
  957. * it from cgroup list, then it will take care of destroying
  958. * cfqg also.
  959. */
  960. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  961. cfq_destroy_cfqg(cfqd, cfqg);
  962. }
  963. }
  964. /*
  965. * Blk cgroup controller notification saying that blkio_group object is being
  966. * delinked as associated cgroup object is going away. That also means that
  967. * no new IO will come in this group. So get rid of this group as soon as
  968. * any pending IO in the group is finished.
  969. *
  970. * This function is called under rcu_read_lock(). key is the rcu protected
  971. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  972. * read lock.
  973. *
  974. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  975. * it should not be NULL as even if elevator was exiting, cgroup deltion
  976. * path got to it first.
  977. */
  978. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  979. {
  980. unsigned long flags;
  981. struct cfq_data *cfqd = key;
  982. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  983. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  984. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  985. }
  986. #else /* GROUP_IOSCHED */
  987. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  988. {
  989. return &cfqd->root_group;
  990. }
  991. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  992. {
  993. return cfqg;
  994. }
  995. static inline void
  996. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  997. cfqq->cfqg = cfqg;
  998. }
  999. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1000. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1001. #endif /* GROUP_IOSCHED */
  1002. /*
  1003. * The cfqd->service_trees holds all pending cfq_queue's that have
  1004. * requests waiting to be processed. It is sorted in the order that
  1005. * we will service the queues.
  1006. */
  1007. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1008. bool add_front)
  1009. {
  1010. struct rb_node **p, *parent;
  1011. struct cfq_queue *__cfqq;
  1012. unsigned long rb_key;
  1013. struct cfq_rb_root *service_tree;
  1014. int left;
  1015. int new_cfqq = 1;
  1016. int group_changed = 0;
  1017. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  1018. if (!cfqd->cfq_group_isolation
  1019. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  1020. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  1021. /* Move this cfq to root group */
  1022. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  1023. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1024. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1025. cfqq->orig_cfqg = cfqq->cfqg;
  1026. cfqq->cfqg = &cfqd->root_group;
  1027. atomic_inc(&cfqd->root_group.ref);
  1028. group_changed = 1;
  1029. } else if (!cfqd->cfq_group_isolation
  1030. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  1031. /* cfqq is sequential now needs to go to its original group */
  1032. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  1033. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1034. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1035. cfq_put_cfqg(cfqq->cfqg);
  1036. cfqq->cfqg = cfqq->orig_cfqg;
  1037. cfqq->orig_cfqg = NULL;
  1038. group_changed = 1;
  1039. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  1040. }
  1041. #endif
  1042. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1043. cfqq_type(cfqq));
  1044. if (cfq_class_idle(cfqq)) {
  1045. rb_key = CFQ_IDLE_DELAY;
  1046. parent = rb_last(&service_tree->rb);
  1047. if (parent && parent != &cfqq->rb_node) {
  1048. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1049. rb_key += __cfqq->rb_key;
  1050. } else
  1051. rb_key += jiffies;
  1052. } else if (!add_front) {
  1053. /*
  1054. * Get our rb key offset. Subtract any residual slice
  1055. * value carried from last service. A negative resid
  1056. * count indicates slice overrun, and this should position
  1057. * the next service time further away in the tree.
  1058. */
  1059. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1060. rb_key -= cfqq->slice_resid;
  1061. cfqq->slice_resid = 0;
  1062. } else {
  1063. rb_key = -HZ;
  1064. __cfqq = cfq_rb_first(service_tree);
  1065. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1066. }
  1067. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1068. new_cfqq = 0;
  1069. /*
  1070. * same position, nothing more to do
  1071. */
  1072. if (rb_key == cfqq->rb_key &&
  1073. cfqq->service_tree == service_tree)
  1074. return;
  1075. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1076. cfqq->service_tree = NULL;
  1077. }
  1078. left = 1;
  1079. parent = NULL;
  1080. cfqq->service_tree = service_tree;
  1081. p = &service_tree->rb.rb_node;
  1082. while (*p) {
  1083. struct rb_node **n;
  1084. parent = *p;
  1085. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1086. /*
  1087. * sort by key, that represents service time.
  1088. */
  1089. if (time_before(rb_key, __cfqq->rb_key))
  1090. n = &(*p)->rb_left;
  1091. else {
  1092. n = &(*p)->rb_right;
  1093. left = 0;
  1094. }
  1095. p = n;
  1096. }
  1097. if (left)
  1098. service_tree->left = &cfqq->rb_node;
  1099. cfqq->rb_key = rb_key;
  1100. rb_link_node(&cfqq->rb_node, parent, p);
  1101. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1102. service_tree->count++;
  1103. if ((add_front || !new_cfqq) && !group_changed)
  1104. return;
  1105. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1106. }
  1107. static struct cfq_queue *
  1108. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1109. sector_t sector, struct rb_node **ret_parent,
  1110. struct rb_node ***rb_link)
  1111. {
  1112. struct rb_node **p, *parent;
  1113. struct cfq_queue *cfqq = NULL;
  1114. parent = NULL;
  1115. p = &root->rb_node;
  1116. while (*p) {
  1117. struct rb_node **n;
  1118. parent = *p;
  1119. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1120. /*
  1121. * Sort strictly based on sector. Smallest to the left,
  1122. * largest to the right.
  1123. */
  1124. if (sector > blk_rq_pos(cfqq->next_rq))
  1125. n = &(*p)->rb_right;
  1126. else if (sector < blk_rq_pos(cfqq->next_rq))
  1127. n = &(*p)->rb_left;
  1128. else
  1129. break;
  1130. p = n;
  1131. cfqq = NULL;
  1132. }
  1133. *ret_parent = parent;
  1134. if (rb_link)
  1135. *rb_link = p;
  1136. return cfqq;
  1137. }
  1138. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1139. {
  1140. struct rb_node **p, *parent;
  1141. struct cfq_queue *__cfqq;
  1142. if (cfqq->p_root) {
  1143. rb_erase(&cfqq->p_node, cfqq->p_root);
  1144. cfqq->p_root = NULL;
  1145. }
  1146. if (cfq_class_idle(cfqq))
  1147. return;
  1148. if (!cfqq->next_rq)
  1149. return;
  1150. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1151. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1152. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1153. if (!__cfqq) {
  1154. rb_link_node(&cfqq->p_node, parent, p);
  1155. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1156. } else
  1157. cfqq->p_root = NULL;
  1158. }
  1159. /*
  1160. * Update cfqq's position in the service tree.
  1161. */
  1162. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1163. {
  1164. /*
  1165. * Resorting requires the cfqq to be on the RR list already.
  1166. */
  1167. if (cfq_cfqq_on_rr(cfqq)) {
  1168. cfq_service_tree_add(cfqd, cfqq, 0);
  1169. cfq_prio_tree_add(cfqd, cfqq);
  1170. }
  1171. }
  1172. /*
  1173. * add to busy list of queues for service, trying to be fair in ordering
  1174. * the pending list according to last request service
  1175. */
  1176. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1177. {
  1178. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1179. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1180. cfq_mark_cfqq_on_rr(cfqq);
  1181. cfqd->busy_queues++;
  1182. cfq_resort_rr_list(cfqd, cfqq);
  1183. }
  1184. /*
  1185. * Called when the cfqq no longer has requests pending, remove it from
  1186. * the service tree.
  1187. */
  1188. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1189. {
  1190. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1191. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1192. cfq_clear_cfqq_on_rr(cfqq);
  1193. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1194. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1195. cfqq->service_tree = NULL;
  1196. }
  1197. if (cfqq->p_root) {
  1198. rb_erase(&cfqq->p_node, cfqq->p_root);
  1199. cfqq->p_root = NULL;
  1200. }
  1201. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1202. BUG_ON(!cfqd->busy_queues);
  1203. cfqd->busy_queues--;
  1204. }
  1205. /*
  1206. * rb tree support functions
  1207. */
  1208. static void cfq_del_rq_rb(struct request *rq)
  1209. {
  1210. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1211. const int sync = rq_is_sync(rq);
  1212. BUG_ON(!cfqq->queued[sync]);
  1213. cfqq->queued[sync]--;
  1214. elv_rb_del(&cfqq->sort_list, rq);
  1215. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1216. /*
  1217. * Queue will be deleted from service tree when we actually
  1218. * expire it later. Right now just remove it from prio tree
  1219. * as it is empty.
  1220. */
  1221. if (cfqq->p_root) {
  1222. rb_erase(&cfqq->p_node, cfqq->p_root);
  1223. cfqq->p_root = NULL;
  1224. }
  1225. }
  1226. }
  1227. static void cfq_add_rq_rb(struct request *rq)
  1228. {
  1229. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1230. struct cfq_data *cfqd = cfqq->cfqd;
  1231. struct request *__alias, *prev;
  1232. cfqq->queued[rq_is_sync(rq)]++;
  1233. /*
  1234. * looks a little odd, but the first insert might return an alias.
  1235. * if that happens, put the alias on the dispatch list
  1236. */
  1237. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1238. cfq_dispatch_insert(cfqd->queue, __alias);
  1239. if (!cfq_cfqq_on_rr(cfqq))
  1240. cfq_add_cfqq_rr(cfqd, cfqq);
  1241. /*
  1242. * check if this request is a better next-serve candidate
  1243. */
  1244. prev = cfqq->next_rq;
  1245. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1246. /*
  1247. * adjust priority tree position, if ->next_rq changes
  1248. */
  1249. if (prev != cfqq->next_rq)
  1250. cfq_prio_tree_add(cfqd, cfqq);
  1251. BUG_ON(!cfqq->next_rq);
  1252. }
  1253. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1254. {
  1255. elv_rb_del(&cfqq->sort_list, rq);
  1256. cfqq->queued[rq_is_sync(rq)]--;
  1257. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1258. rq_data_dir(rq), rq_is_sync(rq));
  1259. cfq_add_rq_rb(rq);
  1260. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1261. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1262. rq_is_sync(rq));
  1263. }
  1264. static struct request *
  1265. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1266. {
  1267. struct task_struct *tsk = current;
  1268. struct cfq_io_context *cic;
  1269. struct cfq_queue *cfqq;
  1270. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1271. if (!cic)
  1272. return NULL;
  1273. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1274. if (cfqq) {
  1275. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1276. return elv_rb_find(&cfqq->sort_list, sector);
  1277. }
  1278. return NULL;
  1279. }
  1280. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1281. {
  1282. struct cfq_data *cfqd = q->elevator->elevator_data;
  1283. cfqd->rq_in_driver++;
  1284. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1285. cfqd->rq_in_driver);
  1286. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1287. }
  1288. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1289. {
  1290. struct cfq_data *cfqd = q->elevator->elevator_data;
  1291. WARN_ON(!cfqd->rq_in_driver);
  1292. cfqd->rq_in_driver--;
  1293. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1294. cfqd->rq_in_driver);
  1295. }
  1296. static void cfq_remove_request(struct request *rq)
  1297. {
  1298. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1299. if (cfqq->next_rq == rq)
  1300. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1301. list_del_init(&rq->queuelist);
  1302. cfq_del_rq_rb(rq);
  1303. cfqq->cfqd->rq_queued--;
  1304. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1305. rq_data_dir(rq), rq_is_sync(rq));
  1306. if (rq->cmd_flags & REQ_META) {
  1307. WARN_ON(!cfqq->meta_pending);
  1308. cfqq->meta_pending--;
  1309. }
  1310. }
  1311. static int cfq_merge(struct request_queue *q, struct request **req,
  1312. struct bio *bio)
  1313. {
  1314. struct cfq_data *cfqd = q->elevator->elevator_data;
  1315. struct request *__rq;
  1316. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1317. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1318. *req = __rq;
  1319. return ELEVATOR_FRONT_MERGE;
  1320. }
  1321. return ELEVATOR_NO_MERGE;
  1322. }
  1323. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1324. int type)
  1325. {
  1326. if (type == ELEVATOR_FRONT_MERGE) {
  1327. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1328. cfq_reposition_rq_rb(cfqq, req);
  1329. }
  1330. }
  1331. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1332. struct bio *bio)
  1333. {
  1334. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1335. bio_data_dir(bio), cfq_bio_sync(bio));
  1336. }
  1337. static void
  1338. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1339. struct request *next)
  1340. {
  1341. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1342. /*
  1343. * reposition in fifo if next is older than rq
  1344. */
  1345. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1346. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1347. list_move(&rq->queuelist, &next->queuelist);
  1348. rq_set_fifo_time(rq, rq_fifo_time(next));
  1349. }
  1350. if (cfqq->next_rq == next)
  1351. cfqq->next_rq = rq;
  1352. cfq_remove_request(next);
  1353. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1354. rq_data_dir(next), rq_is_sync(next));
  1355. }
  1356. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1357. struct bio *bio)
  1358. {
  1359. struct cfq_data *cfqd = q->elevator->elevator_data;
  1360. struct cfq_io_context *cic;
  1361. struct cfq_queue *cfqq;
  1362. /*
  1363. * Disallow merge of a sync bio into an async request.
  1364. */
  1365. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1366. return false;
  1367. /*
  1368. * Lookup the cfqq that this bio will be queued with. Allow
  1369. * merge only if rq is queued there.
  1370. */
  1371. cic = cfq_cic_lookup(cfqd, current->io_context);
  1372. if (!cic)
  1373. return false;
  1374. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1375. return cfqq == RQ_CFQQ(rq);
  1376. }
  1377. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1378. {
  1379. del_timer(&cfqd->idle_slice_timer);
  1380. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1381. }
  1382. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1383. struct cfq_queue *cfqq)
  1384. {
  1385. if (cfqq) {
  1386. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1387. cfqd->serving_prio, cfqd->serving_type);
  1388. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1389. cfqq->slice_start = 0;
  1390. cfqq->dispatch_start = jiffies;
  1391. cfqq->allocated_slice = 0;
  1392. cfqq->slice_end = 0;
  1393. cfqq->slice_dispatch = 0;
  1394. cfqq->nr_sectors = 0;
  1395. cfq_clear_cfqq_wait_request(cfqq);
  1396. cfq_clear_cfqq_must_dispatch(cfqq);
  1397. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1398. cfq_clear_cfqq_fifo_expire(cfqq);
  1399. cfq_mark_cfqq_slice_new(cfqq);
  1400. cfq_del_timer(cfqd, cfqq);
  1401. }
  1402. cfqd->active_queue = cfqq;
  1403. }
  1404. /*
  1405. * current cfqq expired its slice (or was too idle), select new one
  1406. */
  1407. static void
  1408. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1409. bool timed_out)
  1410. {
  1411. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1412. if (cfq_cfqq_wait_request(cfqq))
  1413. cfq_del_timer(cfqd, cfqq);
  1414. cfq_clear_cfqq_wait_request(cfqq);
  1415. cfq_clear_cfqq_wait_busy(cfqq);
  1416. /*
  1417. * If this cfqq is shared between multiple processes, check to
  1418. * make sure that those processes are still issuing I/Os within
  1419. * the mean seek distance. If not, it may be time to break the
  1420. * queues apart again.
  1421. */
  1422. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1423. cfq_mark_cfqq_split_coop(cfqq);
  1424. /*
  1425. * store what was left of this slice, if the queue idled/timed out
  1426. */
  1427. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1428. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1429. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1430. }
  1431. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1432. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1433. cfq_del_cfqq_rr(cfqd, cfqq);
  1434. cfq_resort_rr_list(cfqd, cfqq);
  1435. if (cfqq == cfqd->active_queue)
  1436. cfqd->active_queue = NULL;
  1437. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1438. cfqd->grp_service_tree.active = NULL;
  1439. if (cfqd->active_cic) {
  1440. put_io_context(cfqd->active_cic->ioc);
  1441. cfqd->active_cic = NULL;
  1442. }
  1443. }
  1444. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1445. {
  1446. struct cfq_queue *cfqq = cfqd->active_queue;
  1447. if (cfqq)
  1448. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1449. }
  1450. /*
  1451. * Get next queue for service. Unless we have a queue preemption,
  1452. * we'll simply select the first cfqq in the service tree.
  1453. */
  1454. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1455. {
  1456. struct cfq_rb_root *service_tree =
  1457. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1458. cfqd->serving_type);
  1459. if (!cfqd->rq_queued)
  1460. return NULL;
  1461. /* There is nothing to dispatch */
  1462. if (!service_tree)
  1463. return NULL;
  1464. if (RB_EMPTY_ROOT(&service_tree->rb))
  1465. return NULL;
  1466. return cfq_rb_first(service_tree);
  1467. }
  1468. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1469. {
  1470. struct cfq_group *cfqg;
  1471. struct cfq_queue *cfqq;
  1472. int i, j;
  1473. struct cfq_rb_root *st;
  1474. if (!cfqd->rq_queued)
  1475. return NULL;
  1476. cfqg = cfq_get_next_cfqg(cfqd);
  1477. if (!cfqg)
  1478. return NULL;
  1479. for_each_cfqg_st(cfqg, i, j, st)
  1480. if ((cfqq = cfq_rb_first(st)) != NULL)
  1481. return cfqq;
  1482. return NULL;
  1483. }
  1484. /*
  1485. * Get and set a new active queue for service.
  1486. */
  1487. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1488. struct cfq_queue *cfqq)
  1489. {
  1490. if (!cfqq)
  1491. cfqq = cfq_get_next_queue(cfqd);
  1492. __cfq_set_active_queue(cfqd, cfqq);
  1493. return cfqq;
  1494. }
  1495. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1496. struct request *rq)
  1497. {
  1498. if (blk_rq_pos(rq) >= cfqd->last_position)
  1499. return blk_rq_pos(rq) - cfqd->last_position;
  1500. else
  1501. return cfqd->last_position - blk_rq_pos(rq);
  1502. }
  1503. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1504. struct request *rq)
  1505. {
  1506. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1507. }
  1508. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1509. struct cfq_queue *cur_cfqq)
  1510. {
  1511. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1512. struct rb_node *parent, *node;
  1513. struct cfq_queue *__cfqq;
  1514. sector_t sector = cfqd->last_position;
  1515. if (RB_EMPTY_ROOT(root))
  1516. return NULL;
  1517. /*
  1518. * First, if we find a request starting at the end of the last
  1519. * request, choose it.
  1520. */
  1521. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1522. if (__cfqq)
  1523. return __cfqq;
  1524. /*
  1525. * If the exact sector wasn't found, the parent of the NULL leaf
  1526. * will contain the closest sector.
  1527. */
  1528. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1529. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1530. return __cfqq;
  1531. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1532. node = rb_next(&__cfqq->p_node);
  1533. else
  1534. node = rb_prev(&__cfqq->p_node);
  1535. if (!node)
  1536. return NULL;
  1537. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1538. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1539. return __cfqq;
  1540. return NULL;
  1541. }
  1542. /*
  1543. * cfqd - obvious
  1544. * cur_cfqq - passed in so that we don't decide that the current queue is
  1545. * closely cooperating with itself.
  1546. *
  1547. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1548. * one request, and that cfqd->last_position reflects a position on the disk
  1549. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1550. * assumption.
  1551. */
  1552. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1553. struct cfq_queue *cur_cfqq)
  1554. {
  1555. struct cfq_queue *cfqq;
  1556. if (cfq_class_idle(cur_cfqq))
  1557. return NULL;
  1558. if (!cfq_cfqq_sync(cur_cfqq))
  1559. return NULL;
  1560. if (CFQQ_SEEKY(cur_cfqq))
  1561. return NULL;
  1562. /*
  1563. * Don't search priority tree if it's the only queue in the group.
  1564. */
  1565. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1566. return NULL;
  1567. /*
  1568. * We should notice if some of the queues are cooperating, eg
  1569. * working closely on the same area of the disk. In that case,
  1570. * we can group them together and don't waste time idling.
  1571. */
  1572. cfqq = cfqq_close(cfqd, cur_cfqq);
  1573. if (!cfqq)
  1574. return NULL;
  1575. /* If new queue belongs to different cfq_group, don't choose it */
  1576. if (cur_cfqq->cfqg != cfqq->cfqg)
  1577. return NULL;
  1578. /*
  1579. * It only makes sense to merge sync queues.
  1580. */
  1581. if (!cfq_cfqq_sync(cfqq))
  1582. return NULL;
  1583. if (CFQQ_SEEKY(cfqq))
  1584. return NULL;
  1585. /*
  1586. * Do not merge queues of different priority classes
  1587. */
  1588. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1589. return NULL;
  1590. return cfqq;
  1591. }
  1592. /*
  1593. * Determine whether we should enforce idle window for this queue.
  1594. */
  1595. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1596. {
  1597. enum wl_prio_t prio = cfqq_prio(cfqq);
  1598. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1599. BUG_ON(!service_tree);
  1600. BUG_ON(!service_tree->count);
  1601. if (!cfqd->cfq_slice_idle)
  1602. return false;
  1603. /* We never do for idle class queues. */
  1604. if (prio == IDLE_WORKLOAD)
  1605. return false;
  1606. /* We do for queues that were marked with idle window flag. */
  1607. if (cfq_cfqq_idle_window(cfqq) &&
  1608. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1609. return true;
  1610. /*
  1611. * Otherwise, we do only if they are the last ones
  1612. * in their service tree.
  1613. */
  1614. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1615. return 1;
  1616. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1617. service_tree->count);
  1618. return 0;
  1619. }
  1620. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1621. {
  1622. struct cfq_queue *cfqq = cfqd->active_queue;
  1623. struct cfq_io_context *cic;
  1624. unsigned long sl, group_idle = 0;
  1625. /*
  1626. * SSD device without seek penalty, disable idling. But only do so
  1627. * for devices that support queuing, otherwise we still have a problem
  1628. * with sync vs async workloads.
  1629. */
  1630. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1631. return;
  1632. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1633. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1634. /*
  1635. * idle is disabled, either manually or by past process history
  1636. */
  1637. if (!cfq_should_idle(cfqd, cfqq)) {
  1638. /* no queue idling. Check for group idling */
  1639. if (cfqd->cfq_group_idle)
  1640. group_idle = cfqd->cfq_group_idle;
  1641. else
  1642. return;
  1643. }
  1644. /*
  1645. * still active requests from this queue, don't idle
  1646. */
  1647. if (cfqq->dispatched)
  1648. return;
  1649. /*
  1650. * task has exited, don't wait
  1651. */
  1652. cic = cfqd->active_cic;
  1653. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1654. return;
  1655. /*
  1656. * If our average think time is larger than the remaining time
  1657. * slice, then don't idle. This avoids overrunning the allotted
  1658. * time slice.
  1659. */
  1660. if (sample_valid(cic->ttime_samples) &&
  1661. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1662. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1663. cic->ttime_mean);
  1664. return;
  1665. }
  1666. /* There are other queues in the group, don't do group idle */
  1667. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1668. return;
  1669. cfq_mark_cfqq_wait_request(cfqq);
  1670. if (group_idle)
  1671. sl = cfqd->cfq_group_idle;
  1672. else
  1673. sl = cfqd->cfq_slice_idle;
  1674. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1675. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1676. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1677. group_idle ? 1 : 0);
  1678. }
  1679. /*
  1680. * Move request from internal lists to the request queue dispatch list.
  1681. */
  1682. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1683. {
  1684. struct cfq_data *cfqd = q->elevator->elevator_data;
  1685. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1686. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1687. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1688. cfq_remove_request(rq);
  1689. cfqq->dispatched++;
  1690. (RQ_CFQG(rq))->dispatched++;
  1691. elv_dispatch_sort(q, rq);
  1692. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1693. cfqq->nr_sectors += blk_rq_sectors(rq);
  1694. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1695. rq_data_dir(rq), rq_is_sync(rq));
  1696. }
  1697. /*
  1698. * return expired entry, or NULL to just start from scratch in rbtree
  1699. */
  1700. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1701. {
  1702. struct request *rq = NULL;
  1703. if (cfq_cfqq_fifo_expire(cfqq))
  1704. return NULL;
  1705. cfq_mark_cfqq_fifo_expire(cfqq);
  1706. if (list_empty(&cfqq->fifo))
  1707. return NULL;
  1708. rq = rq_entry_fifo(cfqq->fifo.next);
  1709. if (time_before(jiffies, rq_fifo_time(rq)))
  1710. rq = NULL;
  1711. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1712. return rq;
  1713. }
  1714. static inline int
  1715. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1716. {
  1717. const int base_rq = cfqd->cfq_slice_async_rq;
  1718. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1719. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1720. }
  1721. /*
  1722. * Must be called with the queue_lock held.
  1723. */
  1724. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1725. {
  1726. int process_refs, io_refs;
  1727. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1728. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1729. BUG_ON(process_refs < 0);
  1730. return process_refs;
  1731. }
  1732. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1733. {
  1734. int process_refs, new_process_refs;
  1735. struct cfq_queue *__cfqq;
  1736. /*
  1737. * If there are no process references on the new_cfqq, then it is
  1738. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1739. * chain may have dropped their last reference (not just their
  1740. * last process reference).
  1741. */
  1742. if (!cfqq_process_refs(new_cfqq))
  1743. return;
  1744. /* Avoid a circular list and skip interim queue merges */
  1745. while ((__cfqq = new_cfqq->new_cfqq)) {
  1746. if (__cfqq == cfqq)
  1747. return;
  1748. new_cfqq = __cfqq;
  1749. }
  1750. process_refs = cfqq_process_refs(cfqq);
  1751. new_process_refs = cfqq_process_refs(new_cfqq);
  1752. /*
  1753. * If the process for the cfqq has gone away, there is no
  1754. * sense in merging the queues.
  1755. */
  1756. if (process_refs == 0 || new_process_refs == 0)
  1757. return;
  1758. /*
  1759. * Merge in the direction of the lesser amount of work.
  1760. */
  1761. if (new_process_refs >= process_refs) {
  1762. cfqq->new_cfqq = new_cfqq;
  1763. atomic_add(process_refs, &new_cfqq->ref);
  1764. } else {
  1765. new_cfqq->new_cfqq = cfqq;
  1766. atomic_add(new_process_refs, &cfqq->ref);
  1767. }
  1768. }
  1769. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1770. struct cfq_group *cfqg, enum wl_prio_t prio)
  1771. {
  1772. struct cfq_queue *queue;
  1773. int i;
  1774. bool key_valid = false;
  1775. unsigned long lowest_key = 0;
  1776. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1777. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1778. /* select the one with lowest rb_key */
  1779. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1780. if (queue &&
  1781. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1782. lowest_key = queue->rb_key;
  1783. cur_best = i;
  1784. key_valid = true;
  1785. }
  1786. }
  1787. return cur_best;
  1788. }
  1789. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1790. {
  1791. unsigned slice;
  1792. unsigned count;
  1793. struct cfq_rb_root *st;
  1794. unsigned group_slice;
  1795. if (!cfqg) {
  1796. cfqd->serving_prio = IDLE_WORKLOAD;
  1797. cfqd->workload_expires = jiffies + 1;
  1798. return;
  1799. }
  1800. /* Choose next priority. RT > BE > IDLE */
  1801. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1802. cfqd->serving_prio = RT_WORKLOAD;
  1803. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1804. cfqd->serving_prio = BE_WORKLOAD;
  1805. else {
  1806. cfqd->serving_prio = IDLE_WORKLOAD;
  1807. cfqd->workload_expires = jiffies + 1;
  1808. return;
  1809. }
  1810. /*
  1811. * For RT and BE, we have to choose also the type
  1812. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1813. * expiration time
  1814. */
  1815. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1816. count = st->count;
  1817. /*
  1818. * check workload expiration, and that we still have other queues ready
  1819. */
  1820. if (count && !time_after(jiffies, cfqd->workload_expires))
  1821. return;
  1822. /* otherwise select new workload type */
  1823. cfqd->serving_type =
  1824. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1825. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1826. count = st->count;
  1827. /*
  1828. * the workload slice is computed as a fraction of target latency
  1829. * proportional to the number of queues in that workload, over
  1830. * all the queues in the same priority class
  1831. */
  1832. group_slice = cfq_group_slice(cfqd, cfqg);
  1833. slice = group_slice * count /
  1834. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1835. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1836. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1837. unsigned int tmp;
  1838. /*
  1839. * Async queues are currently system wide. Just taking
  1840. * proportion of queues with-in same group will lead to higher
  1841. * async ratio system wide as generally root group is going
  1842. * to have higher weight. A more accurate thing would be to
  1843. * calculate system wide asnc/sync ratio.
  1844. */
  1845. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1846. tmp = tmp/cfqd->busy_queues;
  1847. slice = min_t(unsigned, slice, tmp);
  1848. /* async workload slice is scaled down according to
  1849. * the sync/async slice ratio. */
  1850. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1851. } else
  1852. /* sync workload slice is at least 2 * cfq_slice_idle */
  1853. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1854. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1855. cfq_log(cfqd, "workload slice:%d", slice);
  1856. cfqd->workload_expires = jiffies + slice;
  1857. }
  1858. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1859. {
  1860. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1861. struct cfq_group *cfqg;
  1862. if (RB_EMPTY_ROOT(&st->rb))
  1863. return NULL;
  1864. cfqg = cfq_rb_first_group(st);
  1865. st->active = &cfqg->rb_node;
  1866. update_min_vdisktime(st);
  1867. return cfqg;
  1868. }
  1869. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1870. {
  1871. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1872. cfqd->serving_group = cfqg;
  1873. /* Restore the workload type data */
  1874. if (cfqg->saved_workload_slice) {
  1875. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1876. cfqd->serving_type = cfqg->saved_workload;
  1877. cfqd->serving_prio = cfqg->saved_serving_prio;
  1878. } else
  1879. cfqd->workload_expires = jiffies - 1;
  1880. choose_service_tree(cfqd, cfqg);
  1881. }
  1882. /*
  1883. * Select a queue for service. If we have a current active queue,
  1884. * check whether to continue servicing it, or retrieve and set a new one.
  1885. */
  1886. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1887. {
  1888. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1889. cfqq = cfqd->active_queue;
  1890. if (!cfqq)
  1891. goto new_queue;
  1892. if (!cfqd->rq_queued)
  1893. return NULL;
  1894. /*
  1895. * We were waiting for group to get backlogged. Expire the queue
  1896. */
  1897. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1898. goto expire;
  1899. /*
  1900. * The active queue has run out of time, expire it and select new.
  1901. */
  1902. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1903. /*
  1904. * If slice had not expired at the completion of last request
  1905. * we might not have turned on wait_busy flag. Don't expire
  1906. * the queue yet. Allow the group to get backlogged.
  1907. *
  1908. * The very fact that we have used the slice, that means we
  1909. * have been idling all along on this queue and it should be
  1910. * ok to wait for this request to complete.
  1911. */
  1912. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1913. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1914. cfqq = NULL;
  1915. goto keep_queue;
  1916. } else
  1917. goto check_group_idle;
  1918. }
  1919. /*
  1920. * The active queue has requests and isn't expired, allow it to
  1921. * dispatch.
  1922. */
  1923. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1924. goto keep_queue;
  1925. /*
  1926. * If another queue has a request waiting within our mean seek
  1927. * distance, let it run. The expire code will check for close
  1928. * cooperators and put the close queue at the front of the service
  1929. * tree. If possible, merge the expiring queue with the new cfqq.
  1930. */
  1931. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1932. if (new_cfqq) {
  1933. if (!cfqq->new_cfqq)
  1934. cfq_setup_merge(cfqq, new_cfqq);
  1935. goto expire;
  1936. }
  1937. /*
  1938. * No requests pending. If the active queue still has requests in
  1939. * flight or is idling for a new request, allow either of these
  1940. * conditions to happen (or time out) before selecting a new queue.
  1941. */
  1942. if (timer_pending(&cfqd->idle_slice_timer)) {
  1943. cfqq = NULL;
  1944. goto keep_queue;
  1945. }
  1946. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1947. cfqq = NULL;
  1948. goto keep_queue;
  1949. }
  1950. /*
  1951. * If group idle is enabled and there are requests dispatched from
  1952. * this group, wait for requests to complete.
  1953. */
  1954. check_group_idle:
  1955. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  1956. && cfqq->cfqg->dispatched) {
  1957. cfqq = NULL;
  1958. goto keep_queue;
  1959. }
  1960. expire:
  1961. cfq_slice_expired(cfqd, 0);
  1962. new_queue:
  1963. /*
  1964. * Current queue expired. Check if we have to switch to a new
  1965. * service tree
  1966. */
  1967. if (!new_cfqq)
  1968. cfq_choose_cfqg(cfqd);
  1969. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1970. keep_queue:
  1971. return cfqq;
  1972. }
  1973. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1974. {
  1975. int dispatched = 0;
  1976. while (cfqq->next_rq) {
  1977. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1978. dispatched++;
  1979. }
  1980. BUG_ON(!list_empty(&cfqq->fifo));
  1981. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1982. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1983. return dispatched;
  1984. }
  1985. /*
  1986. * Drain our current requests. Used for barriers and when switching
  1987. * io schedulers on-the-fly.
  1988. */
  1989. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1990. {
  1991. struct cfq_queue *cfqq;
  1992. int dispatched = 0;
  1993. /* Expire the timeslice of the current active queue first */
  1994. cfq_slice_expired(cfqd, 0);
  1995. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1996. __cfq_set_active_queue(cfqd, cfqq);
  1997. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1998. }
  1999. BUG_ON(cfqd->busy_queues);
  2000. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2001. return dispatched;
  2002. }
  2003. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2004. struct cfq_queue *cfqq)
  2005. {
  2006. /* the queue hasn't finished any request, can't estimate */
  2007. if (cfq_cfqq_slice_new(cfqq))
  2008. return 1;
  2009. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2010. cfqq->slice_end))
  2011. return 1;
  2012. return 0;
  2013. }
  2014. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2015. {
  2016. unsigned int max_dispatch;
  2017. /*
  2018. * Drain async requests before we start sync IO
  2019. */
  2020. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2021. return false;
  2022. /*
  2023. * If this is an async queue and we have sync IO in flight, let it wait
  2024. */
  2025. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2026. return false;
  2027. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2028. if (cfq_class_idle(cfqq))
  2029. max_dispatch = 1;
  2030. /*
  2031. * Does this cfqq already have too much IO in flight?
  2032. */
  2033. if (cfqq->dispatched >= max_dispatch) {
  2034. /*
  2035. * idle queue must always only have a single IO in flight
  2036. */
  2037. if (cfq_class_idle(cfqq))
  2038. return false;
  2039. /*
  2040. * We have other queues, don't allow more IO from this one
  2041. */
  2042. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  2043. return false;
  2044. /*
  2045. * Sole queue user, no limit
  2046. */
  2047. if (cfqd->busy_queues == 1)
  2048. max_dispatch = -1;
  2049. else
  2050. /*
  2051. * Normally we start throttling cfqq when cfq_quantum/2
  2052. * requests have been dispatched. But we can drive
  2053. * deeper queue depths at the beginning of slice
  2054. * subjected to upper limit of cfq_quantum.
  2055. * */
  2056. max_dispatch = cfqd->cfq_quantum;
  2057. }
  2058. /*
  2059. * Async queues must wait a bit before being allowed dispatch.
  2060. * We also ramp up the dispatch depth gradually for async IO,
  2061. * based on the last sync IO we serviced
  2062. */
  2063. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2064. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2065. unsigned int depth;
  2066. depth = last_sync / cfqd->cfq_slice[1];
  2067. if (!depth && !cfqq->dispatched)
  2068. depth = 1;
  2069. if (depth < max_dispatch)
  2070. max_dispatch = depth;
  2071. }
  2072. /*
  2073. * If we're below the current max, allow a dispatch
  2074. */
  2075. return cfqq->dispatched < max_dispatch;
  2076. }
  2077. /*
  2078. * Dispatch a request from cfqq, moving them to the request queue
  2079. * dispatch list.
  2080. */
  2081. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2082. {
  2083. struct request *rq;
  2084. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2085. if (!cfq_may_dispatch(cfqd, cfqq))
  2086. return false;
  2087. /*
  2088. * follow expired path, else get first next available
  2089. */
  2090. rq = cfq_check_fifo(cfqq);
  2091. if (!rq)
  2092. rq = cfqq->next_rq;
  2093. /*
  2094. * insert request into driver dispatch list
  2095. */
  2096. cfq_dispatch_insert(cfqd->queue, rq);
  2097. if (!cfqd->active_cic) {
  2098. struct cfq_io_context *cic = RQ_CIC(rq);
  2099. atomic_long_inc(&cic->ioc->refcount);
  2100. cfqd->active_cic = cic;
  2101. }
  2102. return true;
  2103. }
  2104. /*
  2105. * Find the cfqq that we need to service and move a request from that to the
  2106. * dispatch list
  2107. */
  2108. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2109. {
  2110. struct cfq_data *cfqd = q->elevator->elevator_data;
  2111. struct cfq_queue *cfqq;
  2112. if (!cfqd->busy_queues)
  2113. return 0;
  2114. if (unlikely(force))
  2115. return cfq_forced_dispatch(cfqd);
  2116. cfqq = cfq_select_queue(cfqd);
  2117. if (!cfqq)
  2118. return 0;
  2119. /*
  2120. * Dispatch a request from this cfqq, if it is allowed
  2121. */
  2122. if (!cfq_dispatch_request(cfqd, cfqq))
  2123. return 0;
  2124. cfqq->slice_dispatch++;
  2125. cfq_clear_cfqq_must_dispatch(cfqq);
  2126. /*
  2127. * expire an async queue immediately if it has used up its slice. idle
  2128. * queue always expire after 1 dispatch round.
  2129. */
  2130. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2131. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2132. cfq_class_idle(cfqq))) {
  2133. cfqq->slice_end = jiffies + 1;
  2134. cfq_slice_expired(cfqd, 0);
  2135. }
  2136. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2137. return 1;
  2138. }
  2139. /*
  2140. * task holds one reference to the queue, dropped when task exits. each rq
  2141. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2142. *
  2143. * Each cfq queue took a reference on the parent group. Drop it now.
  2144. * queue lock must be held here.
  2145. */
  2146. static void cfq_put_queue(struct cfq_queue *cfqq)
  2147. {
  2148. struct cfq_data *cfqd = cfqq->cfqd;
  2149. struct cfq_group *cfqg, *orig_cfqg;
  2150. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2151. if (!atomic_dec_and_test(&cfqq->ref))
  2152. return;
  2153. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2154. BUG_ON(rb_first(&cfqq->sort_list));
  2155. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2156. cfqg = cfqq->cfqg;
  2157. orig_cfqg = cfqq->orig_cfqg;
  2158. if (unlikely(cfqd->active_queue == cfqq)) {
  2159. __cfq_slice_expired(cfqd, cfqq, 0);
  2160. cfq_schedule_dispatch(cfqd);
  2161. }
  2162. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2163. kmem_cache_free(cfq_pool, cfqq);
  2164. cfq_put_cfqg(cfqg);
  2165. if (orig_cfqg)
  2166. cfq_put_cfqg(orig_cfqg);
  2167. }
  2168. /*
  2169. * Must always be called with the rcu_read_lock() held
  2170. */
  2171. static void
  2172. __call_for_each_cic(struct io_context *ioc,
  2173. void (*func)(struct io_context *, struct cfq_io_context *))
  2174. {
  2175. struct cfq_io_context *cic;
  2176. struct hlist_node *n;
  2177. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2178. func(ioc, cic);
  2179. }
  2180. /*
  2181. * Call func for each cic attached to this ioc.
  2182. */
  2183. static void
  2184. call_for_each_cic(struct io_context *ioc,
  2185. void (*func)(struct io_context *, struct cfq_io_context *))
  2186. {
  2187. rcu_read_lock();
  2188. __call_for_each_cic(ioc, func);
  2189. rcu_read_unlock();
  2190. }
  2191. static void cfq_cic_free_rcu(struct rcu_head *head)
  2192. {
  2193. struct cfq_io_context *cic;
  2194. cic = container_of(head, struct cfq_io_context, rcu_head);
  2195. kmem_cache_free(cfq_ioc_pool, cic);
  2196. elv_ioc_count_dec(cfq_ioc_count);
  2197. if (ioc_gone) {
  2198. /*
  2199. * CFQ scheduler is exiting, grab exit lock and check
  2200. * the pending io context count. If it hits zero,
  2201. * complete ioc_gone and set it back to NULL
  2202. */
  2203. spin_lock(&ioc_gone_lock);
  2204. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2205. complete(ioc_gone);
  2206. ioc_gone = NULL;
  2207. }
  2208. spin_unlock(&ioc_gone_lock);
  2209. }
  2210. }
  2211. static void cfq_cic_free(struct cfq_io_context *cic)
  2212. {
  2213. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2214. }
  2215. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2216. {
  2217. unsigned long flags;
  2218. unsigned long dead_key = (unsigned long) cic->key;
  2219. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2220. spin_lock_irqsave(&ioc->lock, flags);
  2221. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2222. hlist_del_rcu(&cic->cic_list);
  2223. spin_unlock_irqrestore(&ioc->lock, flags);
  2224. cfq_cic_free(cic);
  2225. }
  2226. /*
  2227. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2228. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2229. * and ->trim() which is called with the task lock held
  2230. */
  2231. static void cfq_free_io_context(struct io_context *ioc)
  2232. {
  2233. /*
  2234. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2235. * so no more cic's are allowed to be linked into this ioc. So it
  2236. * should be ok to iterate over the known list, we will see all cic's
  2237. * since no new ones are added.
  2238. */
  2239. __call_for_each_cic(ioc, cic_free_func);
  2240. }
  2241. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2242. {
  2243. struct cfq_queue *__cfqq, *next;
  2244. /*
  2245. * If this queue was scheduled to merge with another queue, be
  2246. * sure to drop the reference taken on that queue (and others in
  2247. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2248. */
  2249. __cfqq = cfqq->new_cfqq;
  2250. while (__cfqq) {
  2251. if (__cfqq == cfqq) {
  2252. WARN(1, "cfqq->new_cfqq loop detected\n");
  2253. break;
  2254. }
  2255. next = __cfqq->new_cfqq;
  2256. cfq_put_queue(__cfqq);
  2257. __cfqq = next;
  2258. }
  2259. }
  2260. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2261. {
  2262. if (unlikely(cfqq == cfqd->active_queue)) {
  2263. __cfq_slice_expired(cfqd, cfqq, 0);
  2264. cfq_schedule_dispatch(cfqd);
  2265. }
  2266. cfq_put_cooperator(cfqq);
  2267. cfq_put_queue(cfqq);
  2268. }
  2269. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2270. struct cfq_io_context *cic)
  2271. {
  2272. struct io_context *ioc = cic->ioc;
  2273. list_del_init(&cic->queue_list);
  2274. /*
  2275. * Make sure dead mark is seen for dead queues
  2276. */
  2277. smp_wmb();
  2278. cic->key = cfqd_dead_key(cfqd);
  2279. if (ioc->ioc_data == cic)
  2280. rcu_assign_pointer(ioc->ioc_data, NULL);
  2281. if (cic->cfqq[BLK_RW_ASYNC]) {
  2282. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2283. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2284. }
  2285. if (cic->cfqq[BLK_RW_SYNC]) {
  2286. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2287. cic->cfqq[BLK_RW_SYNC] = NULL;
  2288. }
  2289. }
  2290. static void cfq_exit_single_io_context(struct io_context *ioc,
  2291. struct cfq_io_context *cic)
  2292. {
  2293. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2294. if (cfqd) {
  2295. struct request_queue *q = cfqd->queue;
  2296. unsigned long flags;
  2297. spin_lock_irqsave(q->queue_lock, flags);
  2298. /*
  2299. * Ensure we get a fresh copy of the ->key to prevent
  2300. * race between exiting task and queue
  2301. */
  2302. smp_read_barrier_depends();
  2303. if (cic->key == cfqd)
  2304. __cfq_exit_single_io_context(cfqd, cic);
  2305. spin_unlock_irqrestore(q->queue_lock, flags);
  2306. }
  2307. }
  2308. /*
  2309. * The process that ioc belongs to has exited, we need to clean up
  2310. * and put the internal structures we have that belongs to that process.
  2311. */
  2312. static void cfq_exit_io_context(struct io_context *ioc)
  2313. {
  2314. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2315. }
  2316. static struct cfq_io_context *
  2317. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2318. {
  2319. struct cfq_io_context *cic;
  2320. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2321. cfqd->queue->node);
  2322. if (cic) {
  2323. cic->last_end_request = jiffies;
  2324. INIT_LIST_HEAD(&cic->queue_list);
  2325. INIT_HLIST_NODE(&cic->cic_list);
  2326. cic->dtor = cfq_free_io_context;
  2327. cic->exit = cfq_exit_io_context;
  2328. elv_ioc_count_inc(cfq_ioc_count);
  2329. }
  2330. return cic;
  2331. }
  2332. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2333. {
  2334. struct task_struct *tsk = current;
  2335. int ioprio_class;
  2336. if (!cfq_cfqq_prio_changed(cfqq))
  2337. return;
  2338. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2339. switch (ioprio_class) {
  2340. default:
  2341. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2342. case IOPRIO_CLASS_NONE:
  2343. /*
  2344. * no prio set, inherit CPU scheduling settings
  2345. */
  2346. cfqq->ioprio = task_nice_ioprio(tsk);
  2347. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2348. break;
  2349. case IOPRIO_CLASS_RT:
  2350. cfqq->ioprio = task_ioprio(ioc);
  2351. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2352. break;
  2353. case IOPRIO_CLASS_BE:
  2354. cfqq->ioprio = task_ioprio(ioc);
  2355. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2356. break;
  2357. case IOPRIO_CLASS_IDLE:
  2358. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2359. cfqq->ioprio = 7;
  2360. cfq_clear_cfqq_idle_window(cfqq);
  2361. break;
  2362. }
  2363. /*
  2364. * keep track of original prio settings in case we have to temporarily
  2365. * elevate the priority of this queue
  2366. */
  2367. cfqq->org_ioprio = cfqq->ioprio;
  2368. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2369. cfq_clear_cfqq_prio_changed(cfqq);
  2370. }
  2371. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2372. {
  2373. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2374. struct cfq_queue *cfqq;
  2375. unsigned long flags;
  2376. if (unlikely(!cfqd))
  2377. return;
  2378. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2379. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2380. if (cfqq) {
  2381. struct cfq_queue *new_cfqq;
  2382. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2383. GFP_ATOMIC);
  2384. if (new_cfqq) {
  2385. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2386. cfq_put_queue(cfqq);
  2387. }
  2388. }
  2389. cfqq = cic->cfqq[BLK_RW_SYNC];
  2390. if (cfqq)
  2391. cfq_mark_cfqq_prio_changed(cfqq);
  2392. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2393. }
  2394. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2395. {
  2396. call_for_each_cic(ioc, changed_ioprio);
  2397. ioc->ioprio_changed = 0;
  2398. }
  2399. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2400. pid_t pid, bool is_sync)
  2401. {
  2402. RB_CLEAR_NODE(&cfqq->rb_node);
  2403. RB_CLEAR_NODE(&cfqq->p_node);
  2404. INIT_LIST_HEAD(&cfqq->fifo);
  2405. atomic_set(&cfqq->ref, 0);
  2406. cfqq->cfqd = cfqd;
  2407. cfq_mark_cfqq_prio_changed(cfqq);
  2408. if (is_sync) {
  2409. if (!cfq_class_idle(cfqq))
  2410. cfq_mark_cfqq_idle_window(cfqq);
  2411. cfq_mark_cfqq_sync(cfqq);
  2412. }
  2413. cfqq->pid = pid;
  2414. }
  2415. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2416. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2417. {
  2418. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2419. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2420. unsigned long flags;
  2421. struct request_queue *q;
  2422. if (unlikely(!cfqd))
  2423. return;
  2424. q = cfqd->queue;
  2425. spin_lock_irqsave(q->queue_lock, flags);
  2426. if (sync_cfqq) {
  2427. /*
  2428. * Drop reference to sync queue. A new sync queue will be
  2429. * assigned in new group upon arrival of a fresh request.
  2430. */
  2431. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2432. cic_set_cfqq(cic, NULL, 1);
  2433. cfq_put_queue(sync_cfqq);
  2434. }
  2435. spin_unlock_irqrestore(q->queue_lock, flags);
  2436. }
  2437. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2438. {
  2439. call_for_each_cic(ioc, changed_cgroup);
  2440. ioc->cgroup_changed = 0;
  2441. }
  2442. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2443. static struct cfq_queue *
  2444. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2445. struct io_context *ioc, gfp_t gfp_mask)
  2446. {
  2447. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2448. struct cfq_io_context *cic;
  2449. struct cfq_group *cfqg;
  2450. retry:
  2451. cfqg = cfq_get_cfqg(cfqd, 1);
  2452. cic = cfq_cic_lookup(cfqd, ioc);
  2453. /* cic always exists here */
  2454. cfqq = cic_to_cfqq(cic, is_sync);
  2455. /*
  2456. * Always try a new alloc if we fell back to the OOM cfqq
  2457. * originally, since it should just be a temporary situation.
  2458. */
  2459. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2460. cfqq = NULL;
  2461. if (new_cfqq) {
  2462. cfqq = new_cfqq;
  2463. new_cfqq = NULL;
  2464. } else if (gfp_mask & __GFP_WAIT) {
  2465. spin_unlock_irq(cfqd->queue->queue_lock);
  2466. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2467. gfp_mask | __GFP_ZERO,
  2468. cfqd->queue->node);
  2469. spin_lock_irq(cfqd->queue->queue_lock);
  2470. if (new_cfqq)
  2471. goto retry;
  2472. } else {
  2473. cfqq = kmem_cache_alloc_node(cfq_pool,
  2474. gfp_mask | __GFP_ZERO,
  2475. cfqd->queue->node);
  2476. }
  2477. if (cfqq) {
  2478. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2479. cfq_init_prio_data(cfqq, ioc);
  2480. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2481. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2482. } else
  2483. cfqq = &cfqd->oom_cfqq;
  2484. }
  2485. if (new_cfqq)
  2486. kmem_cache_free(cfq_pool, new_cfqq);
  2487. return cfqq;
  2488. }
  2489. static struct cfq_queue **
  2490. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2491. {
  2492. switch (ioprio_class) {
  2493. case IOPRIO_CLASS_RT:
  2494. return &cfqd->async_cfqq[0][ioprio];
  2495. case IOPRIO_CLASS_BE:
  2496. return &cfqd->async_cfqq[1][ioprio];
  2497. case IOPRIO_CLASS_IDLE:
  2498. return &cfqd->async_idle_cfqq;
  2499. default:
  2500. BUG();
  2501. }
  2502. }
  2503. static struct cfq_queue *
  2504. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2505. gfp_t gfp_mask)
  2506. {
  2507. const int ioprio = task_ioprio(ioc);
  2508. const int ioprio_class = task_ioprio_class(ioc);
  2509. struct cfq_queue **async_cfqq = NULL;
  2510. struct cfq_queue *cfqq = NULL;
  2511. if (!is_sync) {
  2512. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2513. cfqq = *async_cfqq;
  2514. }
  2515. if (!cfqq)
  2516. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2517. /*
  2518. * pin the queue now that it's allocated, scheduler exit will prune it
  2519. */
  2520. if (!is_sync && !(*async_cfqq)) {
  2521. atomic_inc(&cfqq->ref);
  2522. *async_cfqq = cfqq;
  2523. }
  2524. atomic_inc(&cfqq->ref);
  2525. return cfqq;
  2526. }
  2527. /*
  2528. * We drop cfq io contexts lazily, so we may find a dead one.
  2529. */
  2530. static void
  2531. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2532. struct cfq_io_context *cic)
  2533. {
  2534. unsigned long flags;
  2535. WARN_ON(!list_empty(&cic->queue_list));
  2536. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2537. spin_lock_irqsave(&ioc->lock, flags);
  2538. BUG_ON(ioc->ioc_data == cic);
  2539. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2540. hlist_del_rcu(&cic->cic_list);
  2541. spin_unlock_irqrestore(&ioc->lock, flags);
  2542. cfq_cic_free(cic);
  2543. }
  2544. static struct cfq_io_context *
  2545. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2546. {
  2547. struct cfq_io_context *cic;
  2548. unsigned long flags;
  2549. if (unlikely(!ioc))
  2550. return NULL;
  2551. rcu_read_lock();
  2552. /*
  2553. * we maintain a last-hit cache, to avoid browsing over the tree
  2554. */
  2555. cic = rcu_dereference(ioc->ioc_data);
  2556. if (cic && cic->key == cfqd) {
  2557. rcu_read_unlock();
  2558. return cic;
  2559. }
  2560. do {
  2561. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2562. rcu_read_unlock();
  2563. if (!cic)
  2564. break;
  2565. if (unlikely(cic->key != cfqd)) {
  2566. cfq_drop_dead_cic(cfqd, ioc, cic);
  2567. rcu_read_lock();
  2568. continue;
  2569. }
  2570. spin_lock_irqsave(&ioc->lock, flags);
  2571. rcu_assign_pointer(ioc->ioc_data, cic);
  2572. spin_unlock_irqrestore(&ioc->lock, flags);
  2573. break;
  2574. } while (1);
  2575. return cic;
  2576. }
  2577. /*
  2578. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2579. * the process specific cfq io context when entered from the block layer.
  2580. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2581. */
  2582. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2583. struct cfq_io_context *cic, gfp_t gfp_mask)
  2584. {
  2585. unsigned long flags;
  2586. int ret;
  2587. ret = radix_tree_preload(gfp_mask);
  2588. if (!ret) {
  2589. cic->ioc = ioc;
  2590. cic->key = cfqd;
  2591. spin_lock_irqsave(&ioc->lock, flags);
  2592. ret = radix_tree_insert(&ioc->radix_root,
  2593. cfqd->cic_index, cic);
  2594. if (!ret)
  2595. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2596. spin_unlock_irqrestore(&ioc->lock, flags);
  2597. radix_tree_preload_end();
  2598. if (!ret) {
  2599. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2600. list_add(&cic->queue_list, &cfqd->cic_list);
  2601. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2602. }
  2603. }
  2604. if (ret)
  2605. printk(KERN_ERR "cfq: cic link failed!\n");
  2606. return ret;
  2607. }
  2608. /*
  2609. * Setup general io context and cfq io context. There can be several cfq
  2610. * io contexts per general io context, if this process is doing io to more
  2611. * than one device managed by cfq.
  2612. */
  2613. static struct cfq_io_context *
  2614. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2615. {
  2616. struct io_context *ioc = NULL;
  2617. struct cfq_io_context *cic;
  2618. might_sleep_if(gfp_mask & __GFP_WAIT);
  2619. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2620. if (!ioc)
  2621. return NULL;
  2622. cic = cfq_cic_lookup(cfqd, ioc);
  2623. if (cic)
  2624. goto out;
  2625. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2626. if (cic == NULL)
  2627. goto err;
  2628. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2629. goto err_free;
  2630. out:
  2631. smp_read_barrier_depends();
  2632. if (unlikely(ioc->ioprio_changed))
  2633. cfq_ioc_set_ioprio(ioc);
  2634. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2635. if (unlikely(ioc->cgroup_changed))
  2636. cfq_ioc_set_cgroup(ioc);
  2637. #endif
  2638. return cic;
  2639. err_free:
  2640. cfq_cic_free(cic);
  2641. err:
  2642. put_io_context(ioc);
  2643. return NULL;
  2644. }
  2645. static void
  2646. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2647. {
  2648. unsigned long elapsed = jiffies - cic->last_end_request;
  2649. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2650. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2651. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2652. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2653. }
  2654. static void
  2655. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2656. struct request *rq)
  2657. {
  2658. sector_t sdist = 0;
  2659. sector_t n_sec = blk_rq_sectors(rq);
  2660. if (cfqq->last_request_pos) {
  2661. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2662. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2663. else
  2664. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2665. }
  2666. cfqq->seek_history <<= 1;
  2667. if (blk_queue_nonrot(cfqd->queue))
  2668. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2669. else
  2670. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2671. }
  2672. /*
  2673. * Disable idle window if the process thinks too long or seeks so much that
  2674. * it doesn't matter
  2675. */
  2676. static void
  2677. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2678. struct cfq_io_context *cic)
  2679. {
  2680. int old_idle, enable_idle;
  2681. /*
  2682. * Don't idle for async or idle io prio class
  2683. */
  2684. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2685. return;
  2686. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2687. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2688. cfq_mark_cfqq_deep(cfqq);
  2689. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2690. enable_idle = 0;
  2691. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2692. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2693. enable_idle = 0;
  2694. else if (sample_valid(cic->ttime_samples)) {
  2695. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2696. enable_idle = 0;
  2697. else
  2698. enable_idle = 1;
  2699. }
  2700. if (old_idle != enable_idle) {
  2701. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2702. if (enable_idle)
  2703. cfq_mark_cfqq_idle_window(cfqq);
  2704. else
  2705. cfq_clear_cfqq_idle_window(cfqq);
  2706. }
  2707. }
  2708. /*
  2709. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2710. * no or if we aren't sure, a 1 will cause a preempt.
  2711. */
  2712. static bool
  2713. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2714. struct request *rq)
  2715. {
  2716. struct cfq_queue *cfqq;
  2717. cfqq = cfqd->active_queue;
  2718. if (!cfqq)
  2719. return false;
  2720. if (cfq_class_idle(new_cfqq))
  2721. return false;
  2722. if (cfq_class_idle(cfqq))
  2723. return true;
  2724. /*
  2725. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2726. */
  2727. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2728. return false;
  2729. /*
  2730. * if the new request is sync, but the currently running queue is
  2731. * not, let the sync request have priority.
  2732. */
  2733. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2734. return true;
  2735. if (new_cfqq->cfqg != cfqq->cfqg)
  2736. return false;
  2737. if (cfq_slice_used(cfqq))
  2738. return true;
  2739. /* Allow preemption only if we are idling on sync-noidle tree */
  2740. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2741. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2742. new_cfqq->service_tree->count == 2 &&
  2743. RB_EMPTY_ROOT(&cfqq->sort_list))
  2744. return true;
  2745. /*
  2746. * So both queues are sync. Let the new request get disk time if
  2747. * it's a metadata request and the current queue is doing regular IO.
  2748. */
  2749. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2750. return true;
  2751. /*
  2752. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2753. */
  2754. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2755. return true;
  2756. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2757. return false;
  2758. /*
  2759. * if this request is as-good as one we would expect from the
  2760. * current cfqq, let it preempt
  2761. */
  2762. if (cfq_rq_close(cfqd, cfqq, rq))
  2763. return true;
  2764. return false;
  2765. }
  2766. /*
  2767. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2768. * let it have half of its nominal slice.
  2769. */
  2770. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2771. {
  2772. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2773. cfq_slice_expired(cfqd, 1);
  2774. /*
  2775. * Put the new queue at the front of the of the current list,
  2776. * so we know that it will be selected next.
  2777. */
  2778. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2779. cfq_service_tree_add(cfqd, cfqq, 1);
  2780. cfqq->slice_end = 0;
  2781. cfq_mark_cfqq_slice_new(cfqq);
  2782. }
  2783. /*
  2784. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2785. * something we should do about it
  2786. */
  2787. static void
  2788. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2789. struct request *rq)
  2790. {
  2791. struct cfq_io_context *cic = RQ_CIC(rq);
  2792. cfqd->rq_queued++;
  2793. if (rq->cmd_flags & REQ_META)
  2794. cfqq->meta_pending++;
  2795. cfq_update_io_thinktime(cfqd, cic);
  2796. cfq_update_io_seektime(cfqd, cfqq, rq);
  2797. cfq_update_idle_window(cfqd, cfqq, cic);
  2798. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2799. if (cfqq == cfqd->active_queue) {
  2800. /*
  2801. * Remember that we saw a request from this process, but
  2802. * don't start queuing just yet. Otherwise we risk seeing lots
  2803. * of tiny requests, because we disrupt the normal plugging
  2804. * and merging. If the request is already larger than a single
  2805. * page, let it rip immediately. For that case we assume that
  2806. * merging is already done. Ditto for a busy system that
  2807. * has other work pending, don't risk delaying until the
  2808. * idle timer unplug to continue working.
  2809. */
  2810. if (cfq_cfqq_wait_request(cfqq)) {
  2811. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2812. cfqd->busy_queues > 1) {
  2813. cfq_del_timer(cfqd, cfqq);
  2814. cfq_clear_cfqq_wait_request(cfqq);
  2815. __blk_run_queue(cfqd->queue);
  2816. } else {
  2817. cfq_blkiocg_update_idle_time_stats(
  2818. &cfqq->cfqg->blkg);
  2819. cfq_mark_cfqq_must_dispatch(cfqq);
  2820. }
  2821. }
  2822. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2823. /*
  2824. * not the active queue - expire current slice if it is
  2825. * idle and has expired it's mean thinktime or this new queue
  2826. * has some old slice time left and is of higher priority or
  2827. * this new queue is RT and the current one is BE
  2828. */
  2829. cfq_preempt_queue(cfqd, cfqq);
  2830. __blk_run_queue(cfqd->queue);
  2831. }
  2832. }
  2833. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2834. {
  2835. struct cfq_data *cfqd = q->elevator->elevator_data;
  2836. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2837. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2838. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2839. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2840. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2841. cfq_add_rq_rb(rq);
  2842. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2843. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2844. rq_is_sync(rq));
  2845. cfq_rq_enqueued(cfqd, cfqq, rq);
  2846. }
  2847. /*
  2848. * Update hw_tag based on peak queue depth over 50 samples under
  2849. * sufficient load.
  2850. */
  2851. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2852. {
  2853. struct cfq_queue *cfqq = cfqd->active_queue;
  2854. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2855. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2856. if (cfqd->hw_tag == 1)
  2857. return;
  2858. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2859. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2860. return;
  2861. /*
  2862. * If active queue hasn't enough requests and can idle, cfq might not
  2863. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2864. * case
  2865. */
  2866. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2867. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2868. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2869. return;
  2870. if (cfqd->hw_tag_samples++ < 50)
  2871. return;
  2872. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2873. cfqd->hw_tag = 1;
  2874. else
  2875. cfqd->hw_tag = 0;
  2876. }
  2877. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2878. {
  2879. struct cfq_io_context *cic = cfqd->active_cic;
  2880. /* If there are other queues in the group, don't wait */
  2881. if (cfqq->cfqg->nr_cfqq > 1)
  2882. return false;
  2883. if (cfq_slice_used(cfqq))
  2884. return true;
  2885. /* if slice left is less than think time, wait busy */
  2886. if (cic && sample_valid(cic->ttime_samples)
  2887. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2888. return true;
  2889. /*
  2890. * If think times is less than a jiffy than ttime_mean=0 and above
  2891. * will not be true. It might happen that slice has not expired yet
  2892. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2893. * case where think time is less than a jiffy, mark the queue wait
  2894. * busy if only 1 jiffy is left in the slice.
  2895. */
  2896. if (cfqq->slice_end - jiffies == 1)
  2897. return true;
  2898. return false;
  2899. }
  2900. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2901. {
  2902. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2903. struct cfq_data *cfqd = cfqq->cfqd;
  2904. const int sync = rq_is_sync(rq);
  2905. unsigned long now;
  2906. now = jiffies;
  2907. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2908. !!(rq->cmd_flags & REQ_NOIDLE));
  2909. cfq_update_hw_tag(cfqd);
  2910. WARN_ON(!cfqd->rq_in_driver);
  2911. WARN_ON(!cfqq->dispatched);
  2912. cfqd->rq_in_driver--;
  2913. cfqq->dispatched--;
  2914. (RQ_CFQG(rq))->dispatched--;
  2915. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2916. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2917. rq_data_dir(rq), rq_is_sync(rq));
  2918. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2919. if (sync) {
  2920. RQ_CIC(rq)->last_end_request = now;
  2921. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2922. cfqd->last_delayed_sync = now;
  2923. }
  2924. /*
  2925. * If this is the active queue, check if it needs to be expired,
  2926. * or if we want to idle in case it has no pending requests.
  2927. */
  2928. if (cfqd->active_queue == cfqq) {
  2929. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2930. if (cfq_cfqq_slice_new(cfqq)) {
  2931. cfq_set_prio_slice(cfqd, cfqq);
  2932. cfq_clear_cfqq_slice_new(cfqq);
  2933. }
  2934. /*
  2935. * Should we wait for next request to come in before we expire
  2936. * the queue.
  2937. */
  2938. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2939. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2940. if (!cfqd->cfq_slice_idle)
  2941. extend_sl = cfqd->cfq_group_idle;
  2942. cfqq->slice_end = jiffies + extend_sl;
  2943. cfq_mark_cfqq_wait_busy(cfqq);
  2944. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2945. }
  2946. /*
  2947. * Idling is not enabled on:
  2948. * - expired queues
  2949. * - idle-priority queues
  2950. * - async queues
  2951. * - queues with still some requests queued
  2952. * - when there is a close cooperator
  2953. */
  2954. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2955. cfq_slice_expired(cfqd, 1);
  2956. else if (sync && cfqq_empty &&
  2957. !cfq_close_cooperator(cfqd, cfqq)) {
  2958. cfq_arm_slice_timer(cfqd);
  2959. }
  2960. }
  2961. if (!cfqd->rq_in_driver)
  2962. cfq_schedule_dispatch(cfqd);
  2963. }
  2964. /*
  2965. * we temporarily boost lower priority queues if they are holding fs exclusive
  2966. * resources. they are boosted to normal prio (CLASS_BE/4)
  2967. */
  2968. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2969. {
  2970. if (has_fs_excl()) {
  2971. /*
  2972. * boost idle prio on transactions that would lock out other
  2973. * users of the filesystem
  2974. */
  2975. if (cfq_class_idle(cfqq))
  2976. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2977. if (cfqq->ioprio > IOPRIO_NORM)
  2978. cfqq->ioprio = IOPRIO_NORM;
  2979. } else {
  2980. /*
  2981. * unboost the queue (if needed)
  2982. */
  2983. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2984. cfqq->ioprio = cfqq->org_ioprio;
  2985. }
  2986. }
  2987. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2988. {
  2989. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2990. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2991. return ELV_MQUEUE_MUST;
  2992. }
  2993. return ELV_MQUEUE_MAY;
  2994. }
  2995. static int cfq_may_queue(struct request_queue *q, int rw)
  2996. {
  2997. struct cfq_data *cfqd = q->elevator->elevator_data;
  2998. struct task_struct *tsk = current;
  2999. struct cfq_io_context *cic;
  3000. struct cfq_queue *cfqq;
  3001. /*
  3002. * don't force setup of a queue from here, as a call to may_queue
  3003. * does not necessarily imply that a request actually will be queued.
  3004. * so just lookup a possibly existing queue, or return 'may queue'
  3005. * if that fails
  3006. */
  3007. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3008. if (!cic)
  3009. return ELV_MQUEUE_MAY;
  3010. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3011. if (cfqq) {
  3012. cfq_init_prio_data(cfqq, cic->ioc);
  3013. cfq_prio_boost(cfqq);
  3014. return __cfq_may_queue(cfqq);
  3015. }
  3016. return ELV_MQUEUE_MAY;
  3017. }
  3018. /*
  3019. * queue lock held here
  3020. */
  3021. static void cfq_put_request(struct request *rq)
  3022. {
  3023. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3024. if (cfqq) {
  3025. const int rw = rq_data_dir(rq);
  3026. BUG_ON(!cfqq->allocated[rw]);
  3027. cfqq->allocated[rw]--;
  3028. put_io_context(RQ_CIC(rq)->ioc);
  3029. rq->elevator_private = NULL;
  3030. rq->elevator_private2 = NULL;
  3031. /* Put down rq reference on cfqg */
  3032. cfq_put_cfqg(RQ_CFQG(rq));
  3033. rq->elevator_private3 = NULL;
  3034. cfq_put_queue(cfqq);
  3035. }
  3036. }
  3037. static struct cfq_queue *
  3038. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3039. struct cfq_queue *cfqq)
  3040. {
  3041. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3042. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3043. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3044. cfq_put_queue(cfqq);
  3045. return cic_to_cfqq(cic, 1);
  3046. }
  3047. /*
  3048. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3049. * was the last process referring to said cfqq.
  3050. */
  3051. static struct cfq_queue *
  3052. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3053. {
  3054. if (cfqq_process_refs(cfqq) == 1) {
  3055. cfqq->pid = current->pid;
  3056. cfq_clear_cfqq_coop(cfqq);
  3057. cfq_clear_cfqq_split_coop(cfqq);
  3058. return cfqq;
  3059. }
  3060. cic_set_cfqq(cic, NULL, 1);
  3061. cfq_put_cooperator(cfqq);
  3062. cfq_put_queue(cfqq);
  3063. return NULL;
  3064. }
  3065. /*
  3066. * Allocate cfq data structures associated with this request.
  3067. */
  3068. static int
  3069. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3070. {
  3071. struct cfq_data *cfqd = q->elevator->elevator_data;
  3072. struct cfq_io_context *cic;
  3073. const int rw = rq_data_dir(rq);
  3074. const bool is_sync = rq_is_sync(rq);
  3075. struct cfq_queue *cfqq;
  3076. unsigned long flags;
  3077. might_sleep_if(gfp_mask & __GFP_WAIT);
  3078. cic = cfq_get_io_context(cfqd, gfp_mask);
  3079. spin_lock_irqsave(q->queue_lock, flags);
  3080. if (!cic)
  3081. goto queue_fail;
  3082. new_queue:
  3083. cfqq = cic_to_cfqq(cic, is_sync);
  3084. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3085. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3086. cic_set_cfqq(cic, cfqq, is_sync);
  3087. } else {
  3088. /*
  3089. * If the queue was seeky for too long, break it apart.
  3090. */
  3091. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3092. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3093. cfqq = split_cfqq(cic, cfqq);
  3094. if (!cfqq)
  3095. goto new_queue;
  3096. }
  3097. /*
  3098. * Check to see if this queue is scheduled to merge with
  3099. * another, closely cooperating queue. The merging of
  3100. * queues happens here as it must be done in process context.
  3101. * The reference on new_cfqq was taken in merge_cfqqs.
  3102. */
  3103. if (cfqq->new_cfqq)
  3104. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3105. }
  3106. cfqq->allocated[rw]++;
  3107. atomic_inc(&cfqq->ref);
  3108. spin_unlock_irqrestore(q->queue_lock, flags);
  3109. rq->elevator_private = cic;
  3110. rq->elevator_private2 = cfqq;
  3111. rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
  3112. return 0;
  3113. queue_fail:
  3114. if (cic)
  3115. put_io_context(cic->ioc);
  3116. cfq_schedule_dispatch(cfqd);
  3117. spin_unlock_irqrestore(q->queue_lock, flags);
  3118. cfq_log(cfqd, "set_request fail");
  3119. return 1;
  3120. }
  3121. static void cfq_kick_queue(struct work_struct *work)
  3122. {
  3123. struct cfq_data *cfqd =
  3124. container_of(work, struct cfq_data, unplug_work);
  3125. struct request_queue *q = cfqd->queue;
  3126. spin_lock_irq(q->queue_lock);
  3127. __blk_run_queue(cfqd->queue);
  3128. spin_unlock_irq(q->queue_lock);
  3129. }
  3130. /*
  3131. * Timer running if the active_queue is currently idling inside its time slice
  3132. */
  3133. static void cfq_idle_slice_timer(unsigned long data)
  3134. {
  3135. struct cfq_data *cfqd = (struct cfq_data *) data;
  3136. struct cfq_queue *cfqq;
  3137. unsigned long flags;
  3138. int timed_out = 1;
  3139. cfq_log(cfqd, "idle timer fired");
  3140. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3141. cfqq = cfqd->active_queue;
  3142. if (cfqq) {
  3143. timed_out = 0;
  3144. /*
  3145. * We saw a request before the queue expired, let it through
  3146. */
  3147. if (cfq_cfqq_must_dispatch(cfqq))
  3148. goto out_kick;
  3149. /*
  3150. * expired
  3151. */
  3152. if (cfq_slice_used(cfqq))
  3153. goto expire;
  3154. /*
  3155. * only expire and reinvoke request handler, if there are
  3156. * other queues with pending requests
  3157. */
  3158. if (!cfqd->busy_queues)
  3159. goto out_cont;
  3160. /*
  3161. * not expired and it has a request pending, let it dispatch
  3162. */
  3163. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3164. goto out_kick;
  3165. /*
  3166. * Queue depth flag is reset only when the idle didn't succeed
  3167. */
  3168. cfq_clear_cfqq_deep(cfqq);
  3169. }
  3170. expire:
  3171. cfq_slice_expired(cfqd, timed_out);
  3172. out_kick:
  3173. cfq_schedule_dispatch(cfqd);
  3174. out_cont:
  3175. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3176. }
  3177. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3178. {
  3179. del_timer_sync(&cfqd->idle_slice_timer);
  3180. cancel_work_sync(&cfqd->unplug_work);
  3181. }
  3182. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3183. {
  3184. int i;
  3185. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3186. if (cfqd->async_cfqq[0][i])
  3187. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3188. if (cfqd->async_cfqq[1][i])
  3189. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3190. }
  3191. if (cfqd->async_idle_cfqq)
  3192. cfq_put_queue(cfqd->async_idle_cfqq);
  3193. }
  3194. static void cfq_cfqd_free(struct rcu_head *head)
  3195. {
  3196. kfree(container_of(head, struct cfq_data, rcu));
  3197. }
  3198. static void cfq_exit_queue(struct elevator_queue *e)
  3199. {
  3200. struct cfq_data *cfqd = e->elevator_data;
  3201. struct request_queue *q = cfqd->queue;
  3202. cfq_shutdown_timer_wq(cfqd);
  3203. spin_lock_irq(q->queue_lock);
  3204. if (cfqd->active_queue)
  3205. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3206. while (!list_empty(&cfqd->cic_list)) {
  3207. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3208. struct cfq_io_context,
  3209. queue_list);
  3210. __cfq_exit_single_io_context(cfqd, cic);
  3211. }
  3212. cfq_put_async_queues(cfqd);
  3213. cfq_release_cfq_groups(cfqd);
  3214. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3215. spin_unlock_irq(q->queue_lock);
  3216. cfq_shutdown_timer_wq(cfqd);
  3217. spin_lock(&cic_index_lock);
  3218. ida_remove(&cic_index_ida, cfqd->cic_index);
  3219. spin_unlock(&cic_index_lock);
  3220. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3221. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3222. }
  3223. static int cfq_alloc_cic_index(void)
  3224. {
  3225. int index, error;
  3226. do {
  3227. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3228. return -ENOMEM;
  3229. spin_lock(&cic_index_lock);
  3230. error = ida_get_new(&cic_index_ida, &index);
  3231. spin_unlock(&cic_index_lock);
  3232. if (error && error != -EAGAIN)
  3233. return error;
  3234. } while (error);
  3235. return index;
  3236. }
  3237. static void *cfq_init_queue(struct request_queue *q)
  3238. {
  3239. struct cfq_data *cfqd;
  3240. int i, j;
  3241. struct cfq_group *cfqg;
  3242. struct cfq_rb_root *st;
  3243. i = cfq_alloc_cic_index();
  3244. if (i < 0)
  3245. return NULL;
  3246. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3247. if (!cfqd)
  3248. return NULL;
  3249. cfqd->cic_index = i;
  3250. /* Init root service tree */
  3251. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3252. /* Init root group */
  3253. cfqg = &cfqd->root_group;
  3254. for_each_cfqg_st(cfqg, i, j, st)
  3255. *st = CFQ_RB_ROOT;
  3256. RB_CLEAR_NODE(&cfqg->rb_node);
  3257. /* Give preference to root group over other groups */
  3258. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3259. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3260. /*
  3261. * Take a reference to root group which we never drop. This is just
  3262. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3263. */
  3264. atomic_set(&cfqg->ref, 1);
  3265. rcu_read_lock();
  3266. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3267. (void *)cfqd, 0);
  3268. rcu_read_unlock();
  3269. #endif
  3270. /*
  3271. * Not strictly needed (since RB_ROOT just clears the node and we
  3272. * zeroed cfqd on alloc), but better be safe in case someone decides
  3273. * to add magic to the rb code
  3274. */
  3275. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3276. cfqd->prio_trees[i] = RB_ROOT;
  3277. /*
  3278. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3279. * Grab a permanent reference to it, so that the normal code flow
  3280. * will not attempt to free it.
  3281. */
  3282. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3283. atomic_inc(&cfqd->oom_cfqq.ref);
  3284. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3285. INIT_LIST_HEAD(&cfqd->cic_list);
  3286. cfqd->queue = q;
  3287. init_timer(&cfqd->idle_slice_timer);
  3288. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3289. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3290. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3291. cfqd->cfq_quantum = cfq_quantum;
  3292. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3293. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3294. cfqd->cfq_back_max = cfq_back_max;
  3295. cfqd->cfq_back_penalty = cfq_back_penalty;
  3296. cfqd->cfq_slice[0] = cfq_slice_async;
  3297. cfqd->cfq_slice[1] = cfq_slice_sync;
  3298. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3299. cfqd->cfq_slice_idle = cfq_slice_idle;
  3300. cfqd->cfq_group_idle = cfq_group_idle;
  3301. cfqd->cfq_latency = 1;
  3302. cfqd->cfq_group_isolation = 0;
  3303. cfqd->hw_tag = -1;
  3304. /*
  3305. * we optimistically start assuming sync ops weren't delayed in last
  3306. * second, in order to have larger depth for async operations.
  3307. */
  3308. cfqd->last_delayed_sync = jiffies - HZ;
  3309. return cfqd;
  3310. }
  3311. static void cfq_slab_kill(void)
  3312. {
  3313. /*
  3314. * Caller already ensured that pending RCU callbacks are completed,
  3315. * so we should have no busy allocations at this point.
  3316. */
  3317. if (cfq_pool)
  3318. kmem_cache_destroy(cfq_pool);
  3319. if (cfq_ioc_pool)
  3320. kmem_cache_destroy(cfq_ioc_pool);
  3321. }
  3322. static int __init cfq_slab_setup(void)
  3323. {
  3324. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3325. if (!cfq_pool)
  3326. goto fail;
  3327. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3328. if (!cfq_ioc_pool)
  3329. goto fail;
  3330. return 0;
  3331. fail:
  3332. cfq_slab_kill();
  3333. return -ENOMEM;
  3334. }
  3335. /*
  3336. * sysfs parts below -->
  3337. */
  3338. static ssize_t
  3339. cfq_var_show(unsigned int var, char *page)
  3340. {
  3341. return sprintf(page, "%d\n", var);
  3342. }
  3343. static ssize_t
  3344. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3345. {
  3346. char *p = (char *) page;
  3347. *var = simple_strtoul(p, &p, 10);
  3348. return count;
  3349. }
  3350. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3351. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3352. { \
  3353. struct cfq_data *cfqd = e->elevator_data; \
  3354. unsigned int __data = __VAR; \
  3355. if (__CONV) \
  3356. __data = jiffies_to_msecs(__data); \
  3357. return cfq_var_show(__data, (page)); \
  3358. }
  3359. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3360. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3361. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3362. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3363. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3364. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3365. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3366. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3367. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3368. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3369. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3370. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3371. #undef SHOW_FUNCTION
  3372. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3373. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3374. { \
  3375. struct cfq_data *cfqd = e->elevator_data; \
  3376. unsigned int __data; \
  3377. int ret = cfq_var_store(&__data, (page), count); \
  3378. if (__data < (MIN)) \
  3379. __data = (MIN); \
  3380. else if (__data > (MAX)) \
  3381. __data = (MAX); \
  3382. if (__CONV) \
  3383. *(__PTR) = msecs_to_jiffies(__data); \
  3384. else \
  3385. *(__PTR) = __data; \
  3386. return ret; \
  3387. }
  3388. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3389. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3390. UINT_MAX, 1);
  3391. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3392. UINT_MAX, 1);
  3393. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3394. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3395. UINT_MAX, 0);
  3396. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3397. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3398. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3399. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3400. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3401. UINT_MAX, 0);
  3402. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3403. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3404. #undef STORE_FUNCTION
  3405. #define CFQ_ATTR(name) \
  3406. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3407. static struct elv_fs_entry cfq_attrs[] = {
  3408. CFQ_ATTR(quantum),
  3409. CFQ_ATTR(fifo_expire_sync),
  3410. CFQ_ATTR(fifo_expire_async),
  3411. CFQ_ATTR(back_seek_max),
  3412. CFQ_ATTR(back_seek_penalty),
  3413. CFQ_ATTR(slice_sync),
  3414. CFQ_ATTR(slice_async),
  3415. CFQ_ATTR(slice_async_rq),
  3416. CFQ_ATTR(slice_idle),
  3417. CFQ_ATTR(group_idle),
  3418. CFQ_ATTR(low_latency),
  3419. CFQ_ATTR(group_isolation),
  3420. __ATTR_NULL
  3421. };
  3422. static struct elevator_type iosched_cfq = {
  3423. .ops = {
  3424. .elevator_merge_fn = cfq_merge,
  3425. .elevator_merged_fn = cfq_merged_request,
  3426. .elevator_merge_req_fn = cfq_merged_requests,
  3427. .elevator_allow_merge_fn = cfq_allow_merge,
  3428. .elevator_bio_merged_fn = cfq_bio_merged,
  3429. .elevator_dispatch_fn = cfq_dispatch_requests,
  3430. .elevator_add_req_fn = cfq_insert_request,
  3431. .elevator_activate_req_fn = cfq_activate_request,
  3432. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3433. .elevator_queue_empty_fn = cfq_queue_empty,
  3434. .elevator_completed_req_fn = cfq_completed_request,
  3435. .elevator_former_req_fn = elv_rb_former_request,
  3436. .elevator_latter_req_fn = elv_rb_latter_request,
  3437. .elevator_set_req_fn = cfq_set_request,
  3438. .elevator_put_req_fn = cfq_put_request,
  3439. .elevator_may_queue_fn = cfq_may_queue,
  3440. .elevator_init_fn = cfq_init_queue,
  3441. .elevator_exit_fn = cfq_exit_queue,
  3442. .trim = cfq_free_io_context,
  3443. },
  3444. .elevator_attrs = cfq_attrs,
  3445. .elevator_name = "cfq",
  3446. .elevator_owner = THIS_MODULE,
  3447. };
  3448. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3449. static struct blkio_policy_type blkio_policy_cfq = {
  3450. .ops = {
  3451. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3452. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3453. },
  3454. .plid = BLKIO_POLICY_PROP,
  3455. };
  3456. #else
  3457. static struct blkio_policy_type blkio_policy_cfq;
  3458. #endif
  3459. static int __init cfq_init(void)
  3460. {
  3461. /*
  3462. * could be 0 on HZ < 1000 setups
  3463. */
  3464. if (!cfq_slice_async)
  3465. cfq_slice_async = 1;
  3466. if (!cfq_slice_idle)
  3467. cfq_slice_idle = 1;
  3468. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3469. if (!cfq_group_idle)
  3470. cfq_group_idle = 1;
  3471. #else
  3472. cfq_group_idle = 0;
  3473. #endif
  3474. if (cfq_slab_setup())
  3475. return -ENOMEM;
  3476. elv_register(&iosched_cfq);
  3477. blkio_policy_register(&blkio_policy_cfq);
  3478. return 0;
  3479. }
  3480. static void __exit cfq_exit(void)
  3481. {
  3482. DECLARE_COMPLETION_ONSTACK(all_gone);
  3483. blkio_policy_unregister(&blkio_policy_cfq);
  3484. elv_unregister(&iosched_cfq);
  3485. ioc_gone = &all_gone;
  3486. /* ioc_gone's update must be visible before reading ioc_count */
  3487. smp_wmb();
  3488. /*
  3489. * this also protects us from entering cfq_slab_kill() with
  3490. * pending RCU callbacks
  3491. */
  3492. if (elv_ioc_count_read(cfq_ioc_count))
  3493. wait_for_completion(&all_gone);
  3494. ida_destroy(&cic_index_ida);
  3495. cfq_slab_kill();
  3496. }
  3497. module_init(cfq_init);
  3498. module_exit(cfq_exit);
  3499. MODULE_AUTHOR("Jens Axboe");
  3500. MODULE_LICENSE("GPL");
  3501. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");