1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273 |
- The Definitive KVM (Kernel-based Virtual Machine) API Documentation
- ===================================================================
- 1. General description
- The kvm API is a set of ioctls that are issued to control various aspects
- of a virtual machine. The ioctls belong to three classes
- - System ioctls: These query and set global attributes which affect the
- whole kvm subsystem. In addition a system ioctl is used to create
- virtual machines
- - VM ioctls: These query and set attributes that affect an entire virtual
- machine, for example memory layout. In addition a VM ioctl is used to
- create virtual cpus (vcpus).
- Only run VM ioctls from the same process (address space) that was used
- to create the VM.
- - vcpu ioctls: These query and set attributes that control the operation
- of a single virtual cpu.
- Only run vcpu ioctls from the same thread that was used to create the
- vcpu.
- 2. File descriptors
- The kvm API is centered around file descriptors. An initial
- open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
- can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
- handle will create a VM file descriptor which can be used to issue VM
- ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
- and return a file descriptor pointing to it. Finally, ioctls on a vcpu
- fd can be used to control the vcpu, including the important task of
- actually running guest code.
- In general file descriptors can be migrated among processes by means
- of fork() and the SCM_RIGHTS facility of unix domain socket. These
- kinds of tricks are explicitly not supported by kvm. While they will
- not cause harm to the host, their actual behavior is not guaranteed by
- the API. The only supported use is one virtual machine per process,
- and one vcpu per thread.
- 3. Extensions
- As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
- incompatible change are allowed. However, there is an extension
- facility that allows backward-compatible extensions to the API to be
- queried and used.
- The extension mechanism is not based on on the Linux version number.
- Instead, kvm defines extension identifiers and a facility to query
- whether a particular extension identifier is available. If it is, a
- set of ioctls is available for application use.
- 4. API description
- This section describes ioctls that can be used to control kvm guests.
- For each ioctl, the following information is provided along with a
- description:
- Capability: which KVM extension provides this ioctl. Can be 'basic',
- which means that is will be provided by any kernel that supports
- API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
- means availability needs to be checked with KVM_CHECK_EXTENSION
- (see section 4.4).
- Architectures: which instruction set architectures provide this ioctl.
- x86 includes both i386 and x86_64.
- Type: system, vm, or vcpu.
- Parameters: what parameters are accepted by the ioctl.
- Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
- are not detailed, but errors with specific meanings are.
- 4.1 KVM_GET_API_VERSION
- Capability: basic
- Architectures: all
- Type: system ioctl
- Parameters: none
- Returns: the constant KVM_API_VERSION (=12)
- This identifies the API version as the stable kvm API. It is not
- expected that this number will change. However, Linux 2.6.20 and
- 2.6.21 report earlier versions; these are not documented and not
- supported. Applications should refuse to run if KVM_GET_API_VERSION
- returns a value other than 12. If this check passes, all ioctls
- described as 'basic' will be available.
- 4.2 KVM_CREATE_VM
- Capability: basic
- Architectures: all
- Type: system ioctl
- Parameters: none
- Returns: a VM fd that can be used to control the new virtual machine.
- The new VM has no virtual cpus and no memory. An mmap() of a VM fd
- will access the virtual machine's physical address space; offset zero
- corresponds to guest physical address zero. Use of mmap() on a VM fd
- is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
- available.
- 4.3 KVM_GET_MSR_INDEX_LIST
- Capability: basic
- Architectures: x86
- Type: system
- Parameters: struct kvm_msr_list (in/out)
- Returns: 0 on success; -1 on error
- Errors:
- E2BIG: the msr index list is to be to fit in the array specified by
- the user.
- struct kvm_msr_list {
- __u32 nmsrs; /* number of msrs in entries */
- __u32 indices[0];
- };
- This ioctl returns the guest msrs that are supported. The list varies
- by kvm version and host processor, but does not change otherwise. The
- user fills in the size of the indices array in nmsrs, and in return
- kvm adjusts nmsrs to reflect the actual number of msrs and fills in
- the indices array with their numbers.
- Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
- not returned in the MSR list, as different vcpus can have a different number
- of banks, as set via the KVM_X86_SETUP_MCE ioctl.
- 4.4 KVM_CHECK_EXTENSION
- Capability: basic
- Architectures: all
- Type: system ioctl
- Parameters: extension identifier (KVM_CAP_*)
- Returns: 0 if unsupported; 1 (or some other positive integer) if supported
- The API allows the application to query about extensions to the core
- kvm API. Userspace passes an extension identifier (an integer) and
- receives an integer that describes the extension availability.
- Generally 0 means no and 1 means yes, but some extensions may report
- additional information in the integer return value.
- 4.5 KVM_GET_VCPU_MMAP_SIZE
- Capability: basic
- Architectures: all
- Type: system ioctl
- Parameters: none
- Returns: size of vcpu mmap area, in bytes
- The KVM_RUN ioctl (cf.) communicates with userspace via a shared
- memory region. This ioctl returns the size of that region. See the
- KVM_RUN documentation for details.
- 4.6 KVM_SET_MEMORY_REGION
- Capability: basic
- Architectures: all
- Type: vm ioctl
- Parameters: struct kvm_memory_region (in)
- Returns: 0 on success, -1 on error
- This ioctl is obsolete and has been removed.
- 4.6 KVM_CREATE_VCPU
- Capability: basic
- Architectures: all
- Type: vm ioctl
- Parameters: vcpu id (apic id on x86)
- Returns: vcpu fd on success, -1 on error
- This API adds a vcpu to a virtual machine. The vcpu id is a small integer
- in the range [0, max_vcpus).
- 4.7 KVM_GET_DIRTY_LOG (vm ioctl)
- Capability: basic
- Architectures: x86
- Type: vm ioctl
- Parameters: struct kvm_dirty_log (in/out)
- Returns: 0 on success, -1 on error
- /* for KVM_GET_DIRTY_LOG */
- struct kvm_dirty_log {
- __u32 slot;
- __u32 padding;
- union {
- void __user *dirty_bitmap; /* one bit per page */
- __u64 padding;
- };
- };
- Given a memory slot, return a bitmap containing any pages dirtied
- since the last call to this ioctl. Bit 0 is the first page in the
- memory slot. Ensure the entire structure is cleared to avoid padding
- issues.
- 4.8 KVM_SET_MEMORY_ALIAS
- Capability: basic
- Architectures: x86
- Type: vm ioctl
- Parameters: struct kvm_memory_alias (in)
- Returns: 0 (success), -1 (error)
- This ioctl is obsolete and has been removed.
- 4.9 KVM_RUN
- Capability: basic
- Architectures: all
- Type: vcpu ioctl
- Parameters: none
- Returns: 0 on success, -1 on error
- Errors:
- EINTR: an unmasked signal is pending
- This ioctl is used to run a guest virtual cpu. While there are no
- explicit parameters, there is an implicit parameter block that can be
- obtained by mmap()ing the vcpu fd at offset 0, with the size given by
- KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
- kvm_run' (see below).
- 4.10 KVM_GET_REGS
- Capability: basic
- Architectures: all
- Type: vcpu ioctl
- Parameters: struct kvm_regs (out)
- Returns: 0 on success, -1 on error
- Reads the general purpose registers from the vcpu.
- /* x86 */
- struct kvm_regs {
- /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
- __u64 rax, rbx, rcx, rdx;
- __u64 rsi, rdi, rsp, rbp;
- __u64 r8, r9, r10, r11;
- __u64 r12, r13, r14, r15;
- __u64 rip, rflags;
- };
- 4.11 KVM_SET_REGS
- Capability: basic
- Architectures: all
- Type: vcpu ioctl
- Parameters: struct kvm_regs (in)
- Returns: 0 on success, -1 on error
- Writes the general purpose registers into the vcpu.
- See KVM_GET_REGS for the data structure.
- 4.12 KVM_GET_SREGS
- Capability: basic
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_sregs (out)
- Returns: 0 on success, -1 on error
- Reads special registers from the vcpu.
- /* x86 */
- struct kvm_sregs {
- struct kvm_segment cs, ds, es, fs, gs, ss;
- struct kvm_segment tr, ldt;
- struct kvm_dtable gdt, idt;
- __u64 cr0, cr2, cr3, cr4, cr8;
- __u64 efer;
- __u64 apic_base;
- __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
- };
- interrupt_bitmap is a bitmap of pending external interrupts. At most
- one bit may be set. This interrupt has been acknowledged by the APIC
- but not yet injected into the cpu core.
- 4.13 KVM_SET_SREGS
- Capability: basic
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_sregs (in)
- Returns: 0 on success, -1 on error
- Writes special registers into the vcpu. See KVM_GET_SREGS for the
- data structures.
- 4.14 KVM_TRANSLATE
- Capability: basic
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_translation (in/out)
- Returns: 0 on success, -1 on error
- Translates a virtual address according to the vcpu's current address
- translation mode.
- struct kvm_translation {
- /* in */
- __u64 linear_address;
- /* out */
- __u64 physical_address;
- __u8 valid;
- __u8 writeable;
- __u8 usermode;
- __u8 pad[5];
- };
- 4.15 KVM_INTERRUPT
- Capability: basic
- Architectures: x86, ppc
- Type: vcpu ioctl
- Parameters: struct kvm_interrupt (in)
- Returns: 0 on success, -1 on error
- Queues a hardware interrupt vector to be injected. This is only
- useful if in-kernel local APIC or equivalent is not used.
- /* for KVM_INTERRUPT */
- struct kvm_interrupt {
- /* in */
- __u32 irq;
- };
- X86:
- Note 'irq' is an interrupt vector, not an interrupt pin or line.
- PPC:
- Queues an external interrupt to be injected. This ioctl is overleaded
- with 3 different irq values:
- a) KVM_INTERRUPT_SET
- This injects an edge type external interrupt into the guest once it's ready
- to receive interrupts. When injected, the interrupt is done.
- b) KVM_INTERRUPT_UNSET
- This unsets any pending interrupt.
- Only available with KVM_CAP_PPC_UNSET_IRQ.
- c) KVM_INTERRUPT_SET_LEVEL
- This injects a level type external interrupt into the guest context. The
- interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
- is triggered.
- Only available with KVM_CAP_PPC_IRQ_LEVEL.
- Note that any value for 'irq' other than the ones stated above is invalid
- and incurs unexpected behavior.
- 4.16 KVM_DEBUG_GUEST
- Capability: basic
- Architectures: none
- Type: vcpu ioctl
- Parameters: none)
- Returns: -1 on error
- Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
- 4.17 KVM_GET_MSRS
- Capability: basic
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_msrs (in/out)
- Returns: 0 on success, -1 on error
- Reads model-specific registers from the vcpu. Supported msr indices can
- be obtained using KVM_GET_MSR_INDEX_LIST.
- struct kvm_msrs {
- __u32 nmsrs; /* number of msrs in entries */
- __u32 pad;
- struct kvm_msr_entry entries[0];
- };
- struct kvm_msr_entry {
- __u32 index;
- __u32 reserved;
- __u64 data;
- };
- Application code should set the 'nmsrs' member (which indicates the
- size of the entries array) and the 'index' member of each array entry.
- kvm will fill in the 'data' member.
- 4.18 KVM_SET_MSRS
- Capability: basic
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_msrs (in)
- Returns: 0 on success, -1 on error
- Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
- data structures.
- Application code should set the 'nmsrs' member (which indicates the
- size of the entries array), and the 'index' and 'data' members of each
- array entry.
- 4.19 KVM_SET_CPUID
- Capability: basic
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_cpuid (in)
- Returns: 0 on success, -1 on error
- Defines the vcpu responses to the cpuid instruction. Applications
- should use the KVM_SET_CPUID2 ioctl if available.
- struct kvm_cpuid_entry {
- __u32 function;
- __u32 eax;
- __u32 ebx;
- __u32 ecx;
- __u32 edx;
- __u32 padding;
- };
- /* for KVM_SET_CPUID */
- struct kvm_cpuid {
- __u32 nent;
- __u32 padding;
- struct kvm_cpuid_entry entries[0];
- };
- 4.20 KVM_SET_SIGNAL_MASK
- Capability: basic
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_signal_mask (in)
- Returns: 0 on success, -1 on error
- Defines which signals are blocked during execution of KVM_RUN. This
- signal mask temporarily overrides the threads signal mask. Any
- unblocked signal received (except SIGKILL and SIGSTOP, which retain
- their traditional behaviour) will cause KVM_RUN to return with -EINTR.
- Note the signal will only be delivered if not blocked by the original
- signal mask.
- /* for KVM_SET_SIGNAL_MASK */
- struct kvm_signal_mask {
- __u32 len;
- __u8 sigset[0];
- };
- 4.21 KVM_GET_FPU
- Capability: basic
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_fpu (out)
- Returns: 0 on success, -1 on error
- Reads the floating point state from the vcpu.
- /* for KVM_GET_FPU and KVM_SET_FPU */
- struct kvm_fpu {
- __u8 fpr[8][16];
- __u16 fcw;
- __u16 fsw;
- __u8 ftwx; /* in fxsave format */
- __u8 pad1;
- __u16 last_opcode;
- __u64 last_ip;
- __u64 last_dp;
- __u8 xmm[16][16];
- __u32 mxcsr;
- __u32 pad2;
- };
- 4.22 KVM_SET_FPU
- Capability: basic
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_fpu (in)
- Returns: 0 on success, -1 on error
- Writes the floating point state to the vcpu.
- /* for KVM_GET_FPU and KVM_SET_FPU */
- struct kvm_fpu {
- __u8 fpr[8][16];
- __u16 fcw;
- __u16 fsw;
- __u8 ftwx; /* in fxsave format */
- __u8 pad1;
- __u16 last_opcode;
- __u64 last_ip;
- __u64 last_dp;
- __u8 xmm[16][16];
- __u32 mxcsr;
- __u32 pad2;
- };
- 4.23 KVM_CREATE_IRQCHIP
- Capability: KVM_CAP_IRQCHIP
- Architectures: x86, ia64
- Type: vm ioctl
- Parameters: none
- Returns: 0 on success, -1 on error
- Creates an interrupt controller model in the kernel. On x86, creates a virtual
- ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
- local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
- only go to the IOAPIC. On ia64, a IOSAPIC is created.
- 4.24 KVM_IRQ_LINE
- Capability: KVM_CAP_IRQCHIP
- Architectures: x86, ia64
- Type: vm ioctl
- Parameters: struct kvm_irq_level
- Returns: 0 on success, -1 on error
- Sets the level of a GSI input to the interrupt controller model in the kernel.
- Requires that an interrupt controller model has been previously created with
- KVM_CREATE_IRQCHIP. Note that edge-triggered interrupts require the level
- to be set to 1 and then back to 0.
- struct kvm_irq_level {
- union {
- __u32 irq; /* GSI */
- __s32 status; /* not used for KVM_IRQ_LEVEL */
- };
- __u32 level; /* 0 or 1 */
- };
- 4.25 KVM_GET_IRQCHIP
- Capability: KVM_CAP_IRQCHIP
- Architectures: x86, ia64
- Type: vm ioctl
- Parameters: struct kvm_irqchip (in/out)
- Returns: 0 on success, -1 on error
- Reads the state of a kernel interrupt controller created with
- KVM_CREATE_IRQCHIP into a buffer provided by the caller.
- struct kvm_irqchip {
- __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
- __u32 pad;
- union {
- char dummy[512]; /* reserving space */
- struct kvm_pic_state pic;
- struct kvm_ioapic_state ioapic;
- } chip;
- };
- 4.26 KVM_SET_IRQCHIP
- Capability: KVM_CAP_IRQCHIP
- Architectures: x86, ia64
- Type: vm ioctl
- Parameters: struct kvm_irqchip (in)
- Returns: 0 on success, -1 on error
- Sets the state of a kernel interrupt controller created with
- KVM_CREATE_IRQCHIP from a buffer provided by the caller.
- struct kvm_irqchip {
- __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
- __u32 pad;
- union {
- char dummy[512]; /* reserving space */
- struct kvm_pic_state pic;
- struct kvm_ioapic_state ioapic;
- } chip;
- };
- 4.27 KVM_XEN_HVM_CONFIG
- Capability: KVM_CAP_XEN_HVM
- Architectures: x86
- Type: vm ioctl
- Parameters: struct kvm_xen_hvm_config (in)
- Returns: 0 on success, -1 on error
- Sets the MSR that the Xen HVM guest uses to initialize its hypercall
- page, and provides the starting address and size of the hypercall
- blobs in userspace. When the guest writes the MSR, kvm copies one
- page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
- memory.
- struct kvm_xen_hvm_config {
- __u32 flags;
- __u32 msr;
- __u64 blob_addr_32;
- __u64 blob_addr_64;
- __u8 blob_size_32;
- __u8 blob_size_64;
- __u8 pad2[30];
- };
- 4.27 KVM_GET_CLOCK
- Capability: KVM_CAP_ADJUST_CLOCK
- Architectures: x86
- Type: vm ioctl
- Parameters: struct kvm_clock_data (out)
- Returns: 0 on success, -1 on error
- Gets the current timestamp of kvmclock as seen by the current guest. In
- conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
- such as migration.
- struct kvm_clock_data {
- __u64 clock; /* kvmclock current value */
- __u32 flags;
- __u32 pad[9];
- };
- 4.28 KVM_SET_CLOCK
- Capability: KVM_CAP_ADJUST_CLOCK
- Architectures: x86
- Type: vm ioctl
- Parameters: struct kvm_clock_data (in)
- Returns: 0 on success, -1 on error
- Sets the current timestamp of kvmclock to the value specified in its parameter.
- In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
- such as migration.
- struct kvm_clock_data {
- __u64 clock; /* kvmclock current value */
- __u32 flags;
- __u32 pad[9];
- };
- 4.29 KVM_GET_VCPU_EVENTS
- Capability: KVM_CAP_VCPU_EVENTS
- Extended by: KVM_CAP_INTR_SHADOW
- Architectures: x86
- Type: vm ioctl
- Parameters: struct kvm_vcpu_event (out)
- Returns: 0 on success, -1 on error
- Gets currently pending exceptions, interrupts, and NMIs as well as related
- states of the vcpu.
- struct kvm_vcpu_events {
- struct {
- __u8 injected;
- __u8 nr;
- __u8 has_error_code;
- __u8 pad;
- __u32 error_code;
- } exception;
- struct {
- __u8 injected;
- __u8 nr;
- __u8 soft;
- __u8 shadow;
- } interrupt;
- struct {
- __u8 injected;
- __u8 pending;
- __u8 masked;
- __u8 pad;
- } nmi;
- __u32 sipi_vector;
- __u32 flags;
- };
- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
- interrupt.shadow contains a valid state. Otherwise, this field is undefined.
- 4.30 KVM_SET_VCPU_EVENTS
- Capability: KVM_CAP_VCPU_EVENTS
- Extended by: KVM_CAP_INTR_SHADOW
- Architectures: x86
- Type: vm ioctl
- Parameters: struct kvm_vcpu_event (in)
- Returns: 0 on success, -1 on error
- Set pending exceptions, interrupts, and NMIs as well as related states of the
- vcpu.
- See KVM_GET_VCPU_EVENTS for the data structure.
- Fields that may be modified asynchronously by running VCPUs can be excluded
- from the update. These fields are nmi.pending and sipi_vector. Keep the
- corresponding bits in the flags field cleared to suppress overwriting the
- current in-kernel state. The bits are:
- KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
- KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
- If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
- the flags field to signal that interrupt.shadow contains a valid state and
- shall be written into the VCPU.
- 4.32 KVM_GET_DEBUGREGS
- Capability: KVM_CAP_DEBUGREGS
- Architectures: x86
- Type: vm ioctl
- Parameters: struct kvm_debugregs (out)
- Returns: 0 on success, -1 on error
- Reads debug registers from the vcpu.
- struct kvm_debugregs {
- __u64 db[4];
- __u64 dr6;
- __u64 dr7;
- __u64 flags;
- __u64 reserved[9];
- };
- 4.33 KVM_SET_DEBUGREGS
- Capability: KVM_CAP_DEBUGREGS
- Architectures: x86
- Type: vm ioctl
- Parameters: struct kvm_debugregs (in)
- Returns: 0 on success, -1 on error
- Writes debug registers into the vcpu.
- See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
- yet and must be cleared on entry.
- 4.34 KVM_SET_USER_MEMORY_REGION
- Capability: KVM_CAP_USER_MEM
- Architectures: all
- Type: vm ioctl
- Parameters: struct kvm_userspace_memory_region (in)
- Returns: 0 on success, -1 on error
- struct kvm_userspace_memory_region {
- __u32 slot;
- __u32 flags;
- __u64 guest_phys_addr;
- __u64 memory_size; /* bytes */
- __u64 userspace_addr; /* start of the userspace allocated memory */
- };
- /* for kvm_memory_region::flags */
- #define KVM_MEM_LOG_DIRTY_PAGES 1UL
- This ioctl allows the user to create or modify a guest physical memory
- slot. When changing an existing slot, it may be moved in the guest
- physical memory space, or its flags may be modified. It may not be
- resized. Slots may not overlap in guest physical address space.
- Memory for the region is taken starting at the address denoted by the
- field userspace_addr, which must point at user addressable memory for
- the entire memory slot size. Any object may back this memory, including
- anonymous memory, ordinary files, and hugetlbfs.
- It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
- be identical. This allows large pages in the guest to be backed by large
- pages in the host.
- The flags field supports just one flag, KVM_MEM_LOG_DIRTY_PAGES, which
- instructs kvm to keep track of writes to memory within the slot. See
- the KVM_GET_DIRTY_LOG ioctl.
- When the KVM_CAP_SYNC_MMU capability, changes in the backing of the memory
- region are automatically reflected into the guest. For example, an mmap()
- that affects the region will be made visible immediately. Another example
- is madvise(MADV_DROP).
- It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
- The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
- allocation and is deprecated.
- 4.35 KVM_SET_TSS_ADDR
- Capability: KVM_CAP_SET_TSS_ADDR
- Architectures: x86
- Type: vm ioctl
- Parameters: unsigned long tss_address (in)
- Returns: 0 on success, -1 on error
- This ioctl defines the physical address of a three-page region in the guest
- physical address space. The region must be within the first 4GB of the
- guest physical address space and must not conflict with any memory slot
- or any mmio address. The guest may malfunction if it accesses this memory
- region.
- This ioctl is required on Intel-based hosts. This is needed on Intel hardware
- because of a quirk in the virtualization implementation (see the internals
- documentation when it pops into existence).
- 4.36 KVM_ENABLE_CAP
- Capability: KVM_CAP_ENABLE_CAP
- Architectures: ppc
- Type: vcpu ioctl
- Parameters: struct kvm_enable_cap (in)
- Returns: 0 on success; -1 on error
- +Not all extensions are enabled by default. Using this ioctl the application
- can enable an extension, making it available to the guest.
- On systems that do not support this ioctl, it always fails. On systems that
- do support it, it only works for extensions that are supported for enablement.
- To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
- be used.
- struct kvm_enable_cap {
- /* in */
- __u32 cap;
- The capability that is supposed to get enabled.
- __u32 flags;
- A bitfield indicating future enhancements. Has to be 0 for now.
- __u64 args[4];
- Arguments for enabling a feature. If a feature needs initial values to
- function properly, this is the place to put them.
- __u8 pad[64];
- };
- 4.37 KVM_GET_MP_STATE
- Capability: KVM_CAP_MP_STATE
- Architectures: x86, ia64
- Type: vcpu ioctl
- Parameters: struct kvm_mp_state (out)
- Returns: 0 on success; -1 on error
- struct kvm_mp_state {
- __u32 mp_state;
- };
- Returns the vcpu's current "multiprocessing state" (though also valid on
- uniprocessor guests).
- Possible values are:
- - KVM_MP_STATE_RUNNABLE: the vcpu is currently running
- - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
- which has not yet received an INIT signal
- - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
- now ready for a SIPI
- - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
- is waiting for an interrupt
- - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
- accesible via KVM_GET_VCPU_EVENTS)
- This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
- irqchip, the multiprocessing state must be maintained by userspace.
- 4.38 KVM_SET_MP_STATE
- Capability: KVM_CAP_MP_STATE
- Architectures: x86, ia64
- Type: vcpu ioctl
- Parameters: struct kvm_mp_state (in)
- Returns: 0 on success; -1 on error
- Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
- arguments.
- This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
- irqchip, the multiprocessing state must be maintained by userspace.
- 4.39 KVM_SET_IDENTITY_MAP_ADDR
- Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
- Architectures: x86
- Type: vm ioctl
- Parameters: unsigned long identity (in)
- Returns: 0 on success, -1 on error
- This ioctl defines the physical address of a one-page region in the guest
- physical address space. The region must be within the first 4GB of the
- guest physical address space and must not conflict with any memory slot
- or any mmio address. The guest may malfunction if it accesses this memory
- region.
- This ioctl is required on Intel-based hosts. This is needed on Intel hardware
- because of a quirk in the virtualization implementation (see the internals
- documentation when it pops into existence).
- 4.40 KVM_SET_BOOT_CPU_ID
- Capability: KVM_CAP_SET_BOOT_CPU_ID
- Architectures: x86, ia64
- Type: vm ioctl
- Parameters: unsigned long vcpu_id
- Returns: 0 on success, -1 on error
- Define which vcpu is the Bootstrap Processor (BSP). Values are the same
- as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
- is vcpu 0.
- 4.41 KVM_GET_XSAVE
- Capability: KVM_CAP_XSAVE
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_xsave (out)
- Returns: 0 on success, -1 on error
- struct kvm_xsave {
- __u32 region[1024];
- };
- This ioctl would copy current vcpu's xsave struct to the userspace.
- 4.42 KVM_SET_XSAVE
- Capability: KVM_CAP_XSAVE
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_xsave (in)
- Returns: 0 on success, -1 on error
- struct kvm_xsave {
- __u32 region[1024];
- };
- This ioctl would copy userspace's xsave struct to the kernel.
- 4.43 KVM_GET_XCRS
- Capability: KVM_CAP_XCRS
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_xcrs (out)
- Returns: 0 on success, -1 on error
- struct kvm_xcr {
- __u32 xcr;
- __u32 reserved;
- __u64 value;
- };
- struct kvm_xcrs {
- __u32 nr_xcrs;
- __u32 flags;
- struct kvm_xcr xcrs[KVM_MAX_XCRS];
- __u64 padding[16];
- };
- This ioctl would copy current vcpu's xcrs to the userspace.
- 4.44 KVM_SET_XCRS
- Capability: KVM_CAP_XCRS
- Architectures: x86
- Type: vcpu ioctl
- Parameters: struct kvm_xcrs (in)
- Returns: 0 on success, -1 on error
- struct kvm_xcr {
- __u32 xcr;
- __u32 reserved;
- __u64 value;
- };
- struct kvm_xcrs {
- __u32 nr_xcrs;
- __u32 flags;
- struct kvm_xcr xcrs[KVM_MAX_XCRS];
- __u64 padding[16];
- };
- This ioctl would set vcpu's xcr to the value userspace specified.
- 4.45 KVM_GET_SUPPORTED_CPUID
- Capability: KVM_CAP_EXT_CPUID
- Architectures: x86
- Type: system ioctl
- Parameters: struct kvm_cpuid2 (in/out)
- Returns: 0 on success, -1 on error
- struct kvm_cpuid2 {
- __u32 nent;
- __u32 padding;
- struct kvm_cpuid_entry2 entries[0];
- };
- #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1
- #define KVM_CPUID_FLAG_STATEFUL_FUNC 2
- #define KVM_CPUID_FLAG_STATE_READ_NEXT 4
- struct kvm_cpuid_entry2 {
- __u32 function;
- __u32 index;
- __u32 flags;
- __u32 eax;
- __u32 ebx;
- __u32 ecx;
- __u32 edx;
- __u32 padding[3];
- };
- This ioctl returns x86 cpuid features which are supported by both the hardware
- and kvm. Userspace can use the information returned by this ioctl to
- construct cpuid information (for KVM_SET_CPUID2) that is consistent with
- hardware, kernel, and userspace capabilities, and with user requirements (for
- example, the user may wish to constrain cpuid to emulate older hardware,
- or for feature consistency across a cluster).
- Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
- with the 'nent' field indicating the number of entries in the variable-size
- array 'entries'. If the number of entries is too low to describe the cpu
- capabilities, an error (E2BIG) is returned. If the number is too high,
- the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
- number is just right, the 'nent' field is adjusted to the number of valid
- entries in the 'entries' array, which is then filled.
- The entries returned are the host cpuid as returned by the cpuid instruction,
- with unknown or unsupported features masked out. Some features (for example,
- x2apic), may not be present in the host cpu, but are exposed by kvm if it can
- emulate them efficiently. The fields in each entry are defined as follows:
- function: the eax value used to obtain the entry
- index: the ecx value used to obtain the entry (for entries that are
- affected by ecx)
- flags: an OR of zero or more of the following:
- KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
- if the index field is valid
- KVM_CPUID_FLAG_STATEFUL_FUNC:
- if cpuid for this function returns different values for successive
- invocations; there will be several entries with the same function,
- all with this flag set
- KVM_CPUID_FLAG_STATE_READ_NEXT:
- for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
- the first entry to be read by a cpu
- eax, ebx, ecx, edx: the values returned by the cpuid instruction for
- this function/index combination
- 4.46 KVM_PPC_GET_PVINFO
- Capability: KVM_CAP_PPC_GET_PVINFO
- Architectures: ppc
- Type: vm ioctl
- Parameters: struct kvm_ppc_pvinfo (out)
- Returns: 0 on success, !0 on error
- struct kvm_ppc_pvinfo {
- __u32 flags;
- __u32 hcall[4];
- __u8 pad[108];
- };
- This ioctl fetches PV specific information that need to be passed to the guest
- using the device tree or other means from vm context.
- For now the only implemented piece of information distributed here is an array
- of 4 instructions that make up a hypercall.
- If any additional field gets added to this structure later on, a bit for that
- additional piece of information will be set in the flags bitmap.
- 5. The kvm_run structure
- Application code obtains a pointer to the kvm_run structure by
- mmap()ing a vcpu fd. From that point, application code can control
- execution by changing fields in kvm_run prior to calling the KVM_RUN
- ioctl, and obtain information about the reason KVM_RUN returned by
- looking up structure members.
- struct kvm_run {
- /* in */
- __u8 request_interrupt_window;
- Request that KVM_RUN return when it becomes possible to inject external
- interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
- __u8 padding1[7];
- /* out */
- __u32 exit_reason;
- When KVM_RUN has returned successfully (return value 0), this informs
- application code why KVM_RUN has returned. Allowable values for this
- field are detailed below.
- __u8 ready_for_interrupt_injection;
- If request_interrupt_window has been specified, this field indicates
- an interrupt can be injected now with KVM_INTERRUPT.
- __u8 if_flag;
- The value of the current interrupt flag. Only valid if in-kernel
- local APIC is not used.
- __u8 padding2[2];
- /* in (pre_kvm_run), out (post_kvm_run) */
- __u64 cr8;
- The value of the cr8 register. Only valid if in-kernel local APIC is
- not used. Both input and output.
- __u64 apic_base;
- The value of the APIC BASE msr. Only valid if in-kernel local
- APIC is not used. Both input and output.
- union {
- /* KVM_EXIT_UNKNOWN */
- struct {
- __u64 hardware_exit_reason;
- } hw;
- If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
- reasons. Further architecture-specific information is available in
- hardware_exit_reason.
- /* KVM_EXIT_FAIL_ENTRY */
- struct {
- __u64 hardware_entry_failure_reason;
- } fail_entry;
- If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
- to unknown reasons. Further architecture-specific information is
- available in hardware_entry_failure_reason.
- /* KVM_EXIT_EXCEPTION */
- struct {
- __u32 exception;
- __u32 error_code;
- } ex;
- Unused.
- /* KVM_EXIT_IO */
- struct {
- #define KVM_EXIT_IO_IN 0
- #define KVM_EXIT_IO_OUT 1
- __u8 direction;
- __u8 size; /* bytes */
- __u16 port;
- __u32 count;
- __u64 data_offset; /* relative to kvm_run start */
- } io;
- If exit_reason is KVM_EXIT_IO, then the vcpu has
- executed a port I/O instruction which could not be satisfied by kvm.
- data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
- where kvm expects application code to place the data for the next
- KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
- struct {
- struct kvm_debug_exit_arch arch;
- } debug;
- Unused.
- /* KVM_EXIT_MMIO */
- struct {
- __u64 phys_addr;
- __u8 data[8];
- __u32 len;
- __u8 is_write;
- } mmio;
- If exit_reason is KVM_EXIT_MMIO, then the vcpu has
- executed a memory-mapped I/O instruction which could not be satisfied
- by kvm. The 'data' member contains the written data if 'is_write' is
- true, and should be filled by application code otherwise.
- NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO and KVM_EXIT_OSI, the corresponding
- operations are complete (and guest state is consistent) only after userspace
- has re-entered the kernel with KVM_RUN. The kernel side will first finish
- incomplete operations and then check for pending signals. Userspace
- can re-enter the guest with an unmasked signal pending to complete
- pending operations.
- /* KVM_EXIT_HYPERCALL */
- struct {
- __u64 nr;
- __u64 args[6];
- __u64 ret;
- __u32 longmode;
- __u32 pad;
- } hypercall;
- Unused. This was once used for 'hypercall to userspace'. To implement
- such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
- Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
- /* KVM_EXIT_TPR_ACCESS */
- struct {
- __u64 rip;
- __u32 is_write;
- __u32 pad;
- } tpr_access;
- To be documented (KVM_TPR_ACCESS_REPORTING).
- /* KVM_EXIT_S390_SIEIC */
- struct {
- __u8 icptcode;
- __u64 mask; /* psw upper half */
- __u64 addr; /* psw lower half */
- __u16 ipa;
- __u32 ipb;
- } s390_sieic;
- s390 specific.
- /* KVM_EXIT_S390_RESET */
- #define KVM_S390_RESET_POR 1
- #define KVM_S390_RESET_CLEAR 2
- #define KVM_S390_RESET_SUBSYSTEM 4
- #define KVM_S390_RESET_CPU_INIT 8
- #define KVM_S390_RESET_IPL 16
- __u64 s390_reset_flags;
- s390 specific.
- /* KVM_EXIT_DCR */
- struct {
- __u32 dcrn;
- __u32 data;
- __u8 is_write;
- } dcr;
- powerpc specific.
- /* KVM_EXIT_OSI */
- struct {
- __u64 gprs[32];
- } osi;
- MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
- hypercalls and exit with this exit struct that contains all the guest gprs.
- If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
- Userspace can now handle the hypercall and when it's done modify the gprs as
- necessary. Upon guest entry all guest GPRs will then be replaced by the values
- in this struct.
- /* Fix the size of the union. */
- char padding[256];
- };
- };
|