ordered-data.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/writeback.h>
  21. #include <linux/pagevec.h>
  22. #include "ctree.h"
  23. #include "transaction.h"
  24. #include "btrfs_inode.h"
  25. #include "extent_io.h"
  26. static u64 entry_end(struct btrfs_ordered_extent *entry)
  27. {
  28. if (entry->file_offset + entry->len < entry->file_offset)
  29. return (u64)-1;
  30. return entry->file_offset + entry->len;
  31. }
  32. /* returns NULL if the insertion worked, or it returns the node it did find
  33. * in the tree
  34. */
  35. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  36. struct rb_node *node)
  37. {
  38. struct rb_node **p = &root->rb_node;
  39. struct rb_node *parent = NULL;
  40. struct btrfs_ordered_extent *entry;
  41. while (*p) {
  42. parent = *p;
  43. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  44. if (file_offset < entry->file_offset)
  45. p = &(*p)->rb_left;
  46. else if (file_offset >= entry_end(entry))
  47. p = &(*p)->rb_right;
  48. else
  49. return parent;
  50. }
  51. rb_link_node(node, parent, p);
  52. rb_insert_color(node, root);
  53. return NULL;
  54. }
  55. /*
  56. * look for a given offset in the tree, and if it can't be found return the
  57. * first lesser offset
  58. */
  59. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  60. struct rb_node **prev_ret)
  61. {
  62. struct rb_node *n = root->rb_node;
  63. struct rb_node *prev = NULL;
  64. struct rb_node *test;
  65. struct btrfs_ordered_extent *entry;
  66. struct btrfs_ordered_extent *prev_entry = NULL;
  67. while (n) {
  68. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  69. prev = n;
  70. prev_entry = entry;
  71. if (file_offset < entry->file_offset)
  72. n = n->rb_left;
  73. else if (file_offset >= entry_end(entry))
  74. n = n->rb_right;
  75. else
  76. return n;
  77. }
  78. if (!prev_ret)
  79. return NULL;
  80. while (prev && file_offset >= entry_end(prev_entry)) {
  81. test = rb_next(prev);
  82. if (!test)
  83. break;
  84. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  85. rb_node);
  86. if (file_offset < entry_end(prev_entry))
  87. break;
  88. prev = test;
  89. }
  90. if (prev)
  91. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  92. rb_node);
  93. while (prev && file_offset < entry_end(prev_entry)) {
  94. test = rb_prev(prev);
  95. if (!test)
  96. break;
  97. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  98. rb_node);
  99. prev = test;
  100. }
  101. *prev_ret = prev;
  102. return NULL;
  103. }
  104. /*
  105. * helper to check if a given offset is inside a given entry
  106. */
  107. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  108. {
  109. if (file_offset < entry->file_offset ||
  110. entry->file_offset + entry->len <= file_offset)
  111. return 0;
  112. return 1;
  113. }
  114. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  115. u64 len)
  116. {
  117. if (file_offset + len <= entry->file_offset ||
  118. entry->file_offset + entry->len <= file_offset)
  119. return 0;
  120. return 1;
  121. }
  122. /*
  123. * look find the first ordered struct that has this offset, otherwise
  124. * the first one less than this offset
  125. */
  126. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  127. u64 file_offset)
  128. {
  129. struct rb_root *root = &tree->tree;
  130. struct rb_node *prev = NULL;
  131. struct rb_node *ret;
  132. struct btrfs_ordered_extent *entry;
  133. if (tree->last) {
  134. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  135. rb_node);
  136. if (offset_in_entry(entry, file_offset))
  137. return tree->last;
  138. }
  139. ret = __tree_search(root, file_offset, &prev);
  140. if (!ret)
  141. ret = prev;
  142. if (ret)
  143. tree->last = ret;
  144. return ret;
  145. }
  146. /* allocate and add a new ordered_extent into the per-inode tree.
  147. * file_offset is the logical offset in the file
  148. *
  149. * start is the disk block number of an extent already reserved in the
  150. * extent allocation tree
  151. *
  152. * len is the length of the extent
  153. *
  154. * The tree is given a single reference on the ordered extent that was
  155. * inserted.
  156. */
  157. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  158. u64 start, u64 len, u64 disk_len,
  159. int type, int dio, int compress_type)
  160. {
  161. struct btrfs_ordered_inode_tree *tree;
  162. struct rb_node *node;
  163. struct btrfs_ordered_extent *entry;
  164. tree = &BTRFS_I(inode)->ordered_tree;
  165. entry = kzalloc(sizeof(*entry), GFP_NOFS);
  166. if (!entry)
  167. return -ENOMEM;
  168. entry->file_offset = file_offset;
  169. entry->start = start;
  170. entry->len = len;
  171. entry->disk_len = disk_len;
  172. entry->bytes_left = len;
  173. entry->inode = inode;
  174. entry->compress_type = compress_type;
  175. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  176. set_bit(type, &entry->flags);
  177. if (dio)
  178. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  179. /* one ref for the tree */
  180. atomic_set(&entry->refs, 1);
  181. init_waitqueue_head(&entry->wait);
  182. INIT_LIST_HEAD(&entry->list);
  183. INIT_LIST_HEAD(&entry->root_extent_list);
  184. spin_lock(&tree->lock);
  185. node = tree_insert(&tree->tree, file_offset,
  186. &entry->rb_node);
  187. BUG_ON(node);
  188. spin_unlock(&tree->lock);
  189. spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  190. list_add_tail(&entry->root_extent_list,
  191. &BTRFS_I(inode)->root->fs_info->ordered_extents);
  192. spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  193. BUG_ON(node);
  194. return 0;
  195. }
  196. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  197. u64 start, u64 len, u64 disk_len, int type)
  198. {
  199. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  200. disk_len, type, 0,
  201. BTRFS_COMPRESS_NONE);
  202. }
  203. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  204. u64 start, u64 len, u64 disk_len, int type)
  205. {
  206. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  207. disk_len, type, 1,
  208. BTRFS_COMPRESS_NONE);
  209. }
  210. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  211. u64 start, u64 len, u64 disk_len,
  212. int type, int compress_type)
  213. {
  214. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  215. disk_len, type, 0,
  216. compress_type);
  217. }
  218. /*
  219. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  220. * when an ordered extent is finished. If the list covers more than one
  221. * ordered extent, it is split across multiples.
  222. */
  223. int btrfs_add_ordered_sum(struct inode *inode,
  224. struct btrfs_ordered_extent *entry,
  225. struct btrfs_ordered_sum *sum)
  226. {
  227. struct btrfs_ordered_inode_tree *tree;
  228. tree = &BTRFS_I(inode)->ordered_tree;
  229. spin_lock(&tree->lock);
  230. list_add_tail(&sum->list, &entry->list);
  231. spin_unlock(&tree->lock);
  232. return 0;
  233. }
  234. /*
  235. * this is used to account for finished IO across a given range
  236. * of the file. The IO may span ordered extents. If
  237. * a given ordered_extent is completely done, 1 is returned, otherwise
  238. * 0.
  239. *
  240. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  241. * to make sure this function only returns 1 once for a given ordered extent.
  242. *
  243. * file_offset is updated to one byte past the range that is recorded as
  244. * complete. This allows you to walk forward in the file.
  245. */
  246. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  247. struct btrfs_ordered_extent **cached,
  248. u64 *file_offset, u64 io_size)
  249. {
  250. struct btrfs_ordered_inode_tree *tree;
  251. struct rb_node *node;
  252. struct btrfs_ordered_extent *entry = NULL;
  253. int ret;
  254. u64 dec_end;
  255. u64 dec_start;
  256. u64 to_dec;
  257. tree = &BTRFS_I(inode)->ordered_tree;
  258. spin_lock(&tree->lock);
  259. node = tree_search(tree, *file_offset);
  260. if (!node) {
  261. ret = 1;
  262. goto out;
  263. }
  264. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  265. if (!offset_in_entry(entry, *file_offset)) {
  266. ret = 1;
  267. goto out;
  268. }
  269. dec_start = max(*file_offset, entry->file_offset);
  270. dec_end = min(*file_offset + io_size, entry->file_offset +
  271. entry->len);
  272. *file_offset = dec_end;
  273. if (dec_start > dec_end) {
  274. printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
  275. (unsigned long long)dec_start,
  276. (unsigned long long)dec_end);
  277. }
  278. to_dec = dec_end - dec_start;
  279. if (to_dec > entry->bytes_left) {
  280. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  281. (unsigned long long)entry->bytes_left,
  282. (unsigned long long)to_dec);
  283. }
  284. entry->bytes_left -= to_dec;
  285. if (entry->bytes_left == 0)
  286. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  287. else
  288. ret = 1;
  289. out:
  290. if (!ret && cached && entry) {
  291. *cached = entry;
  292. atomic_inc(&entry->refs);
  293. }
  294. spin_unlock(&tree->lock);
  295. return ret == 0;
  296. }
  297. /*
  298. * this is used to account for finished IO across a given range
  299. * of the file. The IO should not span ordered extents. If
  300. * a given ordered_extent is completely done, 1 is returned, otherwise
  301. * 0.
  302. *
  303. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  304. * to make sure this function only returns 1 once for a given ordered extent.
  305. */
  306. int btrfs_dec_test_ordered_pending(struct inode *inode,
  307. struct btrfs_ordered_extent **cached,
  308. u64 file_offset, u64 io_size)
  309. {
  310. struct btrfs_ordered_inode_tree *tree;
  311. struct rb_node *node;
  312. struct btrfs_ordered_extent *entry = NULL;
  313. int ret;
  314. tree = &BTRFS_I(inode)->ordered_tree;
  315. spin_lock(&tree->lock);
  316. node = tree_search(tree, file_offset);
  317. if (!node) {
  318. ret = 1;
  319. goto out;
  320. }
  321. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  322. if (!offset_in_entry(entry, file_offset)) {
  323. ret = 1;
  324. goto out;
  325. }
  326. if (io_size > entry->bytes_left) {
  327. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  328. (unsigned long long)entry->bytes_left,
  329. (unsigned long long)io_size);
  330. }
  331. entry->bytes_left -= io_size;
  332. if (entry->bytes_left == 0)
  333. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  334. else
  335. ret = 1;
  336. out:
  337. if (!ret && cached && entry) {
  338. *cached = entry;
  339. atomic_inc(&entry->refs);
  340. }
  341. spin_unlock(&tree->lock);
  342. return ret == 0;
  343. }
  344. /*
  345. * used to drop a reference on an ordered extent. This will free
  346. * the extent if the last reference is dropped
  347. */
  348. int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  349. {
  350. struct list_head *cur;
  351. struct btrfs_ordered_sum *sum;
  352. if (atomic_dec_and_test(&entry->refs)) {
  353. while (!list_empty(&entry->list)) {
  354. cur = entry->list.next;
  355. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  356. list_del(&sum->list);
  357. kfree(sum);
  358. }
  359. kfree(entry);
  360. }
  361. return 0;
  362. }
  363. /*
  364. * remove an ordered extent from the tree. No references are dropped
  365. * and you must wake_up entry->wait. You must hold the tree lock
  366. * while you call this function.
  367. */
  368. static int __btrfs_remove_ordered_extent(struct inode *inode,
  369. struct btrfs_ordered_extent *entry)
  370. {
  371. struct btrfs_ordered_inode_tree *tree;
  372. struct btrfs_root *root = BTRFS_I(inode)->root;
  373. struct rb_node *node;
  374. tree = &BTRFS_I(inode)->ordered_tree;
  375. node = &entry->rb_node;
  376. rb_erase(node, &tree->tree);
  377. tree->last = NULL;
  378. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  379. spin_lock(&root->fs_info->ordered_extent_lock);
  380. list_del_init(&entry->root_extent_list);
  381. /*
  382. * we have no more ordered extents for this inode and
  383. * no dirty pages. We can safely remove it from the
  384. * list of ordered extents
  385. */
  386. if (RB_EMPTY_ROOT(&tree->tree) &&
  387. !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
  388. list_del_init(&BTRFS_I(inode)->ordered_operations);
  389. }
  390. spin_unlock(&root->fs_info->ordered_extent_lock);
  391. return 0;
  392. }
  393. /*
  394. * remove an ordered extent from the tree. No references are dropped
  395. * but any waiters are woken.
  396. */
  397. int btrfs_remove_ordered_extent(struct inode *inode,
  398. struct btrfs_ordered_extent *entry)
  399. {
  400. struct btrfs_ordered_inode_tree *tree;
  401. int ret;
  402. tree = &BTRFS_I(inode)->ordered_tree;
  403. spin_lock(&tree->lock);
  404. ret = __btrfs_remove_ordered_extent(inode, entry);
  405. spin_unlock(&tree->lock);
  406. wake_up(&entry->wait);
  407. return ret;
  408. }
  409. /*
  410. * wait for all the ordered extents in a root. This is done when balancing
  411. * space between drives.
  412. */
  413. int btrfs_wait_ordered_extents(struct btrfs_root *root,
  414. int nocow_only, int delay_iput)
  415. {
  416. struct list_head splice;
  417. struct list_head *cur;
  418. struct btrfs_ordered_extent *ordered;
  419. struct inode *inode;
  420. INIT_LIST_HEAD(&splice);
  421. spin_lock(&root->fs_info->ordered_extent_lock);
  422. list_splice_init(&root->fs_info->ordered_extents, &splice);
  423. while (!list_empty(&splice)) {
  424. cur = splice.next;
  425. ordered = list_entry(cur, struct btrfs_ordered_extent,
  426. root_extent_list);
  427. if (nocow_only &&
  428. !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
  429. !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
  430. list_move(&ordered->root_extent_list,
  431. &root->fs_info->ordered_extents);
  432. cond_resched_lock(&root->fs_info->ordered_extent_lock);
  433. continue;
  434. }
  435. list_del_init(&ordered->root_extent_list);
  436. atomic_inc(&ordered->refs);
  437. /*
  438. * the inode may be getting freed (in sys_unlink path).
  439. */
  440. inode = igrab(ordered->inode);
  441. spin_unlock(&root->fs_info->ordered_extent_lock);
  442. if (inode) {
  443. btrfs_start_ordered_extent(inode, ordered, 1);
  444. btrfs_put_ordered_extent(ordered);
  445. if (delay_iput)
  446. btrfs_add_delayed_iput(inode);
  447. else
  448. iput(inode);
  449. } else {
  450. btrfs_put_ordered_extent(ordered);
  451. }
  452. spin_lock(&root->fs_info->ordered_extent_lock);
  453. }
  454. spin_unlock(&root->fs_info->ordered_extent_lock);
  455. return 0;
  456. }
  457. /*
  458. * this is used during transaction commit to write all the inodes
  459. * added to the ordered operation list. These files must be fully on
  460. * disk before the transaction commits.
  461. *
  462. * we have two modes here, one is to just start the IO via filemap_flush
  463. * and the other is to wait for all the io. When we wait, we have an
  464. * extra check to make sure the ordered operation list really is empty
  465. * before we return
  466. */
  467. int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
  468. {
  469. struct btrfs_inode *btrfs_inode;
  470. struct inode *inode;
  471. struct list_head splice;
  472. INIT_LIST_HEAD(&splice);
  473. mutex_lock(&root->fs_info->ordered_operations_mutex);
  474. spin_lock(&root->fs_info->ordered_extent_lock);
  475. again:
  476. list_splice_init(&root->fs_info->ordered_operations, &splice);
  477. while (!list_empty(&splice)) {
  478. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  479. ordered_operations);
  480. inode = &btrfs_inode->vfs_inode;
  481. list_del_init(&btrfs_inode->ordered_operations);
  482. /*
  483. * the inode may be getting freed (in sys_unlink path).
  484. */
  485. inode = igrab(inode);
  486. if (!wait && inode) {
  487. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  488. &root->fs_info->ordered_operations);
  489. }
  490. spin_unlock(&root->fs_info->ordered_extent_lock);
  491. if (inode) {
  492. if (wait)
  493. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  494. else
  495. filemap_flush(inode->i_mapping);
  496. btrfs_add_delayed_iput(inode);
  497. }
  498. cond_resched();
  499. spin_lock(&root->fs_info->ordered_extent_lock);
  500. }
  501. if (wait && !list_empty(&root->fs_info->ordered_operations))
  502. goto again;
  503. spin_unlock(&root->fs_info->ordered_extent_lock);
  504. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  505. return 0;
  506. }
  507. /*
  508. * Used to start IO or wait for a given ordered extent to finish.
  509. *
  510. * If wait is one, this effectively waits on page writeback for all the pages
  511. * in the extent, and it waits on the io completion code to insert
  512. * metadata into the btree corresponding to the extent
  513. */
  514. void btrfs_start_ordered_extent(struct inode *inode,
  515. struct btrfs_ordered_extent *entry,
  516. int wait)
  517. {
  518. u64 start = entry->file_offset;
  519. u64 end = start + entry->len - 1;
  520. /*
  521. * pages in the range can be dirty, clean or writeback. We
  522. * start IO on any dirty ones so the wait doesn't stall waiting
  523. * for pdflush to find them
  524. */
  525. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  526. filemap_fdatawrite_range(inode->i_mapping, start, end);
  527. if (wait) {
  528. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  529. &entry->flags));
  530. }
  531. }
  532. /*
  533. * Used to wait on ordered extents across a large range of bytes.
  534. */
  535. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  536. {
  537. u64 end;
  538. u64 orig_end;
  539. struct btrfs_ordered_extent *ordered;
  540. int found;
  541. if (start + len < start) {
  542. orig_end = INT_LIMIT(loff_t);
  543. } else {
  544. orig_end = start + len - 1;
  545. if (orig_end > INT_LIMIT(loff_t))
  546. orig_end = INT_LIMIT(loff_t);
  547. }
  548. again:
  549. /* start IO across the range first to instantiate any delalloc
  550. * extents
  551. */
  552. filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  553. /* The compression code will leave pages locked but return from
  554. * writepage without setting the page writeback. Starting again
  555. * with WB_SYNC_ALL will end up waiting for the IO to actually start.
  556. */
  557. filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  558. filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  559. end = orig_end;
  560. found = 0;
  561. while (1) {
  562. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  563. if (!ordered)
  564. break;
  565. if (ordered->file_offset > orig_end) {
  566. btrfs_put_ordered_extent(ordered);
  567. break;
  568. }
  569. if (ordered->file_offset + ordered->len < start) {
  570. btrfs_put_ordered_extent(ordered);
  571. break;
  572. }
  573. found++;
  574. btrfs_start_ordered_extent(inode, ordered, 1);
  575. end = ordered->file_offset;
  576. btrfs_put_ordered_extent(ordered);
  577. if (end == 0 || end == start)
  578. break;
  579. end--;
  580. }
  581. if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
  582. EXTENT_DELALLOC, 0, NULL)) {
  583. schedule_timeout(1);
  584. goto again;
  585. }
  586. return 0;
  587. }
  588. /*
  589. * find an ordered extent corresponding to file_offset. return NULL if
  590. * nothing is found, otherwise take a reference on the extent and return it
  591. */
  592. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  593. u64 file_offset)
  594. {
  595. struct btrfs_ordered_inode_tree *tree;
  596. struct rb_node *node;
  597. struct btrfs_ordered_extent *entry = NULL;
  598. tree = &BTRFS_I(inode)->ordered_tree;
  599. spin_lock(&tree->lock);
  600. node = tree_search(tree, file_offset);
  601. if (!node)
  602. goto out;
  603. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  604. if (!offset_in_entry(entry, file_offset))
  605. entry = NULL;
  606. if (entry)
  607. atomic_inc(&entry->refs);
  608. out:
  609. spin_unlock(&tree->lock);
  610. return entry;
  611. }
  612. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  613. * extents that exist in the range, rather than just the start of the range.
  614. */
  615. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
  616. u64 file_offset,
  617. u64 len)
  618. {
  619. struct btrfs_ordered_inode_tree *tree;
  620. struct rb_node *node;
  621. struct btrfs_ordered_extent *entry = NULL;
  622. tree = &BTRFS_I(inode)->ordered_tree;
  623. spin_lock(&tree->lock);
  624. node = tree_search(tree, file_offset);
  625. if (!node) {
  626. node = tree_search(tree, file_offset + len);
  627. if (!node)
  628. goto out;
  629. }
  630. while (1) {
  631. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  632. if (range_overlaps(entry, file_offset, len))
  633. break;
  634. if (entry->file_offset >= file_offset + len) {
  635. entry = NULL;
  636. break;
  637. }
  638. entry = NULL;
  639. node = rb_next(node);
  640. if (!node)
  641. break;
  642. }
  643. out:
  644. if (entry)
  645. atomic_inc(&entry->refs);
  646. spin_unlock(&tree->lock);
  647. return entry;
  648. }
  649. /*
  650. * lookup and return any extent before 'file_offset'. NULL is returned
  651. * if none is found
  652. */
  653. struct btrfs_ordered_extent *
  654. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  655. {
  656. struct btrfs_ordered_inode_tree *tree;
  657. struct rb_node *node;
  658. struct btrfs_ordered_extent *entry = NULL;
  659. tree = &BTRFS_I(inode)->ordered_tree;
  660. spin_lock(&tree->lock);
  661. node = tree_search(tree, file_offset);
  662. if (!node)
  663. goto out;
  664. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  665. atomic_inc(&entry->refs);
  666. out:
  667. spin_unlock(&tree->lock);
  668. return entry;
  669. }
  670. /*
  671. * After an extent is done, call this to conditionally update the on disk
  672. * i_size. i_size is updated to cover any fully written part of the file.
  673. */
  674. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  675. struct btrfs_ordered_extent *ordered)
  676. {
  677. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  678. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  679. u64 disk_i_size;
  680. u64 new_i_size;
  681. u64 i_size_test;
  682. u64 i_size = i_size_read(inode);
  683. struct rb_node *node;
  684. struct rb_node *prev = NULL;
  685. struct btrfs_ordered_extent *test;
  686. int ret = 1;
  687. if (ordered)
  688. offset = entry_end(ordered);
  689. else
  690. offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
  691. spin_lock(&tree->lock);
  692. disk_i_size = BTRFS_I(inode)->disk_i_size;
  693. /* truncate file */
  694. if (disk_i_size > i_size) {
  695. BTRFS_I(inode)->disk_i_size = i_size;
  696. ret = 0;
  697. goto out;
  698. }
  699. /*
  700. * if the disk i_size is already at the inode->i_size, or
  701. * this ordered extent is inside the disk i_size, we're done
  702. */
  703. if (disk_i_size == i_size || offset <= disk_i_size) {
  704. goto out;
  705. }
  706. /*
  707. * we can't update the disk_isize if there are delalloc bytes
  708. * between disk_i_size and this ordered extent
  709. */
  710. if (test_range_bit(io_tree, disk_i_size, offset - 1,
  711. EXTENT_DELALLOC, 0, NULL)) {
  712. goto out;
  713. }
  714. /*
  715. * walk backward from this ordered extent to disk_i_size.
  716. * if we find an ordered extent then we can't update disk i_size
  717. * yet
  718. */
  719. if (ordered) {
  720. node = rb_prev(&ordered->rb_node);
  721. } else {
  722. prev = tree_search(tree, offset);
  723. /*
  724. * we insert file extents without involving ordered struct,
  725. * so there should be no ordered struct cover this offset
  726. */
  727. if (prev) {
  728. test = rb_entry(prev, struct btrfs_ordered_extent,
  729. rb_node);
  730. BUG_ON(offset_in_entry(test, offset));
  731. }
  732. node = prev;
  733. }
  734. while (node) {
  735. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  736. if (test->file_offset + test->len <= disk_i_size)
  737. break;
  738. if (test->file_offset >= i_size)
  739. break;
  740. if (test->file_offset >= disk_i_size)
  741. goto out;
  742. node = rb_prev(node);
  743. }
  744. new_i_size = min_t(u64, offset, i_size);
  745. /*
  746. * at this point, we know we can safely update i_size to at least
  747. * the offset from this ordered extent. But, we need to
  748. * walk forward and see if ios from higher up in the file have
  749. * finished.
  750. */
  751. if (ordered) {
  752. node = rb_next(&ordered->rb_node);
  753. } else {
  754. if (prev)
  755. node = rb_next(prev);
  756. else
  757. node = rb_first(&tree->tree);
  758. }
  759. i_size_test = 0;
  760. if (node) {
  761. /*
  762. * do we have an area where IO might have finished
  763. * between our ordered extent and the next one.
  764. */
  765. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  766. if (test->file_offset > offset)
  767. i_size_test = test->file_offset;
  768. } else {
  769. i_size_test = i_size;
  770. }
  771. /*
  772. * i_size_test is the end of a region after this ordered
  773. * extent where there are no ordered extents. As long as there
  774. * are no delalloc bytes in this area, it is safe to update
  775. * disk_i_size to the end of the region.
  776. */
  777. if (i_size_test > offset &&
  778. !test_range_bit(io_tree, offset, i_size_test - 1,
  779. EXTENT_DELALLOC, 0, NULL)) {
  780. new_i_size = min_t(u64, i_size_test, i_size);
  781. }
  782. BTRFS_I(inode)->disk_i_size = new_i_size;
  783. ret = 0;
  784. out:
  785. /*
  786. * we need to remove the ordered extent with the tree lock held
  787. * so that other people calling this function don't find our fully
  788. * processed ordered entry and skip updating the i_size
  789. */
  790. if (ordered)
  791. __btrfs_remove_ordered_extent(inode, ordered);
  792. spin_unlock(&tree->lock);
  793. if (ordered)
  794. wake_up(&ordered->wait);
  795. return ret;
  796. }
  797. /*
  798. * search the ordered extents for one corresponding to 'offset' and
  799. * try to find a checksum. This is used because we allow pages to
  800. * be reclaimed before their checksum is actually put into the btree
  801. */
  802. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  803. u32 *sum)
  804. {
  805. struct btrfs_ordered_sum *ordered_sum;
  806. struct btrfs_sector_sum *sector_sums;
  807. struct btrfs_ordered_extent *ordered;
  808. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  809. unsigned long num_sectors;
  810. unsigned long i;
  811. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  812. int ret = 1;
  813. ordered = btrfs_lookup_ordered_extent(inode, offset);
  814. if (!ordered)
  815. return 1;
  816. spin_lock(&tree->lock);
  817. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  818. if (disk_bytenr >= ordered_sum->bytenr) {
  819. num_sectors = ordered_sum->len / sectorsize;
  820. sector_sums = ordered_sum->sums;
  821. for (i = 0; i < num_sectors; i++) {
  822. if (sector_sums[i].bytenr == disk_bytenr) {
  823. *sum = sector_sums[i].sum;
  824. ret = 0;
  825. goto out;
  826. }
  827. }
  828. }
  829. }
  830. out:
  831. spin_unlock(&tree->lock);
  832. btrfs_put_ordered_extent(ordered);
  833. return ret;
  834. }
  835. /*
  836. * add a given inode to the list of inodes that must be fully on
  837. * disk before a transaction commit finishes.
  838. *
  839. * This basically gives us the ext3 style data=ordered mode, and it is mostly
  840. * used to make sure renamed files are fully on disk.
  841. *
  842. * It is a noop if the inode is already fully on disk.
  843. *
  844. * If trans is not null, we'll do a friendly check for a transaction that
  845. * is already flushing things and force the IO down ourselves.
  846. */
  847. int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
  848. struct btrfs_root *root,
  849. struct inode *inode)
  850. {
  851. u64 last_mod;
  852. last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
  853. /*
  854. * if this file hasn't been changed since the last transaction
  855. * commit, we can safely return without doing anything
  856. */
  857. if (last_mod < root->fs_info->last_trans_committed)
  858. return 0;
  859. /*
  860. * the transaction is already committing. Just start the IO and
  861. * don't bother with all of this list nonsense
  862. */
  863. if (trans && root->fs_info->running_transaction->blocked) {
  864. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  865. return 0;
  866. }
  867. spin_lock(&root->fs_info->ordered_extent_lock);
  868. if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
  869. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  870. &root->fs_info->ordered_operations);
  871. }
  872. spin_unlock(&root->fs_info->ordered_extent_lock);
  873. return 0;
  874. }