irq.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. /*
  2. * Platform dependent support for SGI SN
  3. *
  4. * This file is subject to the terms and conditions of the GNU General Public
  5. * License. See the file "COPYING" in the main directory of this archive
  6. * for more details.
  7. *
  8. * Copyright (c) 2000-2004 Silicon Graphics, Inc. All Rights Reserved.
  9. */
  10. #include <linux/irq.h>
  11. #include <linux/spinlock.h>
  12. #include <asm/sn/intr.h>
  13. #include <asm/sn/addrs.h>
  14. #include <asm/sn/arch.h>
  15. #include "xtalk/xwidgetdev.h"
  16. #include <asm/sn/pcibus_provider_defs.h>
  17. #include <asm/sn/pcidev.h>
  18. #include "pci/pcibr_provider.h"
  19. #include <asm/sn/shub_mmr.h>
  20. #include <asm/sn/sn_sal.h>
  21. static void force_interrupt(int irq);
  22. static void register_intr_pda(struct sn_irq_info *sn_irq_info);
  23. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
  24. extern int sn_force_interrupt_flag;
  25. extern int sn_ioif_inited;
  26. static struct list_head **sn_irq_lh;
  27. static spinlock_t sn_irq_info_lock = SPIN_LOCK_UNLOCKED; /* non-IRQ lock */
  28. static inline uint64_t sn_intr_alloc(nasid_t local_nasid, int local_widget,
  29. u64 sn_irq_info,
  30. int req_irq, nasid_t req_nasid,
  31. int req_slice)
  32. {
  33. struct ia64_sal_retval ret_stuff;
  34. ret_stuff.status = 0;
  35. ret_stuff.v0 = 0;
  36. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  37. (u64) SAL_INTR_ALLOC, (u64) local_nasid,
  38. (u64) local_widget, (u64) sn_irq_info, (u64) req_irq,
  39. (u64) req_nasid, (u64) req_slice);
  40. return ret_stuff.status;
  41. }
  42. static inline void sn_intr_free(nasid_t local_nasid, int local_widget,
  43. struct sn_irq_info *sn_irq_info)
  44. {
  45. struct ia64_sal_retval ret_stuff;
  46. ret_stuff.status = 0;
  47. ret_stuff.v0 = 0;
  48. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  49. (u64) SAL_INTR_FREE, (u64) local_nasid,
  50. (u64) local_widget, (u64) sn_irq_info->irq_irq,
  51. (u64) sn_irq_info->irq_cookie, 0, 0);
  52. }
  53. static unsigned int sn_startup_irq(unsigned int irq)
  54. {
  55. return 0;
  56. }
  57. static void sn_shutdown_irq(unsigned int irq)
  58. {
  59. }
  60. static void sn_disable_irq(unsigned int irq)
  61. {
  62. }
  63. static void sn_enable_irq(unsigned int irq)
  64. {
  65. }
  66. static void sn_ack_irq(unsigned int irq)
  67. {
  68. uint64_t event_occurred, mask = 0;
  69. int nasid;
  70. irq = irq & 0xff;
  71. nasid = get_nasid();
  72. event_occurred =
  73. HUB_L((uint64_t *) GLOBAL_MMR_ADDR(nasid, SH_EVENT_OCCURRED));
  74. mask = event_occurred & SH_ALL_INT_MASK;
  75. HUB_S((uint64_t *) GLOBAL_MMR_ADDR(nasid, SH_EVENT_OCCURRED_ALIAS),
  76. mask);
  77. __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
  78. move_irq(irq);
  79. }
  80. static void sn_end_irq(unsigned int irq)
  81. {
  82. int nasid;
  83. int ivec;
  84. uint64_t event_occurred;
  85. ivec = irq & 0xff;
  86. if (ivec == SGI_UART_VECTOR) {
  87. nasid = get_nasid();
  88. event_occurred = HUB_L((uint64_t *) GLOBAL_MMR_ADDR
  89. (nasid, SH_EVENT_OCCURRED));
  90. /* If the UART bit is set here, we may have received an
  91. * interrupt from the UART that the driver missed. To
  92. * make sure, we IPI ourselves to force us to look again.
  93. */
  94. if (event_occurred & SH_EVENT_OCCURRED_UART_INT_MASK) {
  95. platform_send_ipi(smp_processor_id(), SGI_UART_VECTOR,
  96. IA64_IPI_DM_INT, 0);
  97. }
  98. }
  99. __clear_bit(ivec, (volatile void *)pda->sn_in_service_ivecs);
  100. if (sn_force_interrupt_flag)
  101. force_interrupt(irq);
  102. }
  103. static void sn_irq_info_free(struct rcu_head *head);
  104. static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask)
  105. {
  106. struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
  107. int cpuid, cpuphys;
  108. cpuid = first_cpu(mask);
  109. cpuphys = cpu_physical_id(cpuid);
  110. list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
  111. sn_irq_lh[irq], list) {
  112. uint64_t bridge;
  113. int local_widget, status;
  114. nasid_t local_nasid;
  115. struct sn_irq_info *new_irq_info;
  116. new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
  117. if (new_irq_info == NULL)
  118. break;
  119. memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
  120. bridge = (uint64_t) new_irq_info->irq_bridge;
  121. if (!bridge) {
  122. kfree(new_irq_info);
  123. break; /* irq is not a device interrupt */
  124. }
  125. local_nasid = NASID_GET(bridge);
  126. if (local_nasid & 1)
  127. local_widget = TIO_SWIN_WIDGETNUM(bridge);
  128. else
  129. local_widget = SWIN_WIDGETNUM(bridge);
  130. /* Free the old PROM new_irq_info structure */
  131. sn_intr_free(local_nasid, local_widget, new_irq_info);
  132. /* Update kernels new_irq_info with new target info */
  133. unregister_intr_pda(new_irq_info);
  134. /* allocate a new PROM new_irq_info struct */
  135. status = sn_intr_alloc(local_nasid, local_widget,
  136. __pa(new_irq_info), irq,
  137. cpuid_to_nasid(cpuid),
  138. cpuid_to_slice(cpuid));
  139. /* SAL call failed */
  140. if (status) {
  141. kfree(new_irq_info);
  142. break;
  143. }
  144. new_irq_info->irq_cpuid = cpuid;
  145. register_intr_pda(new_irq_info);
  146. if (IS_PCI_BRIDGE_ASIC(new_irq_info->irq_bridge_type))
  147. pcibr_change_devices_irq(new_irq_info);
  148. spin_lock(&sn_irq_info_lock);
  149. list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
  150. spin_unlock(&sn_irq_info_lock);
  151. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  152. #ifdef CONFIG_SMP
  153. set_irq_affinity_info((irq & 0xff), cpuphys, 0);
  154. #endif
  155. }
  156. }
  157. struct hw_interrupt_type irq_type_sn = {
  158. .typename = "SN hub",
  159. .startup = sn_startup_irq,
  160. .shutdown = sn_shutdown_irq,
  161. .enable = sn_enable_irq,
  162. .disable = sn_disable_irq,
  163. .ack = sn_ack_irq,
  164. .end = sn_end_irq,
  165. .set_affinity = sn_set_affinity_irq
  166. };
  167. unsigned int sn_local_vector_to_irq(u8 vector)
  168. {
  169. return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
  170. }
  171. void sn_irq_init(void)
  172. {
  173. int i;
  174. irq_desc_t *base_desc = irq_desc;
  175. for (i = 0; i < NR_IRQS; i++) {
  176. if (base_desc[i].handler == &no_irq_type) {
  177. base_desc[i].handler = &irq_type_sn;
  178. }
  179. }
  180. }
  181. static void register_intr_pda(struct sn_irq_info *sn_irq_info)
  182. {
  183. int irq = sn_irq_info->irq_irq;
  184. int cpu = sn_irq_info->irq_cpuid;
  185. if (pdacpu(cpu)->sn_last_irq < irq) {
  186. pdacpu(cpu)->sn_last_irq = irq;
  187. }
  188. if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq) {
  189. pdacpu(cpu)->sn_first_irq = irq;
  190. }
  191. }
  192. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
  193. {
  194. int irq = sn_irq_info->irq_irq;
  195. int cpu = sn_irq_info->irq_cpuid;
  196. struct sn_irq_info *tmp_irq_info;
  197. int i, foundmatch;
  198. rcu_read_lock();
  199. if (pdacpu(cpu)->sn_last_irq == irq) {
  200. foundmatch = 0;
  201. for (i = pdacpu(cpu)->sn_last_irq - 1;
  202. i && !foundmatch; i--) {
  203. list_for_each_entry_rcu(tmp_irq_info,
  204. sn_irq_lh[i],
  205. list) {
  206. if (tmp_irq_info->irq_cpuid == cpu) {
  207. foundmatch = 1;
  208. break;
  209. }
  210. }
  211. }
  212. pdacpu(cpu)->sn_last_irq = i;
  213. }
  214. if (pdacpu(cpu)->sn_first_irq == irq) {
  215. foundmatch = 0;
  216. for (i = pdacpu(cpu)->sn_first_irq + 1;
  217. i < NR_IRQS && !foundmatch; i++) {
  218. list_for_each_entry_rcu(tmp_irq_info,
  219. sn_irq_lh[i],
  220. list) {
  221. if (tmp_irq_info->irq_cpuid == cpu) {
  222. foundmatch = 1;
  223. break;
  224. }
  225. }
  226. }
  227. pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
  228. }
  229. rcu_read_unlock();
  230. }
  231. static void sn_irq_info_free(struct rcu_head *head)
  232. {
  233. struct sn_irq_info *sn_irq_info;
  234. sn_irq_info = container_of(head, struct sn_irq_info, rcu);
  235. kfree(sn_irq_info);
  236. }
  237. void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
  238. {
  239. nasid_t nasid = sn_irq_info->irq_nasid;
  240. int slice = sn_irq_info->irq_slice;
  241. int cpu = nasid_slice_to_cpuid(nasid, slice);
  242. pci_dev_get(pci_dev);
  243. sn_irq_info->irq_cpuid = cpu;
  244. sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
  245. /* link it into the sn_irq[irq] list */
  246. spin_lock(&sn_irq_info_lock);
  247. list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
  248. spin_unlock(&sn_irq_info_lock);
  249. (void)register_intr_pda(sn_irq_info);
  250. }
  251. void sn_irq_unfixup(struct pci_dev *pci_dev)
  252. {
  253. struct sn_irq_info *sn_irq_info;
  254. /* Only cleanup IRQ stuff if this device has a host bus context */
  255. if (!SN_PCIDEV_BUSSOFT(pci_dev))
  256. return;
  257. sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
  258. if (!sn_irq_info || !sn_irq_info->irq_irq)
  259. return;
  260. unregister_intr_pda(sn_irq_info);
  261. spin_lock(&sn_irq_info_lock);
  262. list_del_rcu(&sn_irq_info->list);
  263. spin_unlock(&sn_irq_info_lock);
  264. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  265. pci_dev_put(pci_dev);
  266. }
  267. static void force_interrupt(int irq)
  268. {
  269. struct sn_irq_info *sn_irq_info;
  270. if (!sn_ioif_inited)
  271. return;
  272. rcu_read_lock();
  273. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list) {
  274. if (IS_PCI_BRIDGE_ASIC(sn_irq_info->irq_bridge_type) &&
  275. (sn_irq_info->irq_bridge != NULL))
  276. pcibr_force_interrupt(sn_irq_info);
  277. }
  278. rcu_read_unlock();
  279. }
  280. /*
  281. * Check for lost interrupts. If the PIC int_status reg. says that
  282. * an interrupt has been sent, but not handled, and the interrupt
  283. * is not pending in either the cpu irr regs or in the soft irr regs,
  284. * and the interrupt is not in service, then the interrupt may have
  285. * been lost. Force an interrupt on that pin. It is possible that
  286. * the interrupt is in flight, so we may generate a spurious interrupt,
  287. * but we should never miss a real lost interrupt.
  288. */
  289. static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
  290. {
  291. uint64_t regval;
  292. int irr_reg_num;
  293. int irr_bit;
  294. uint64_t irr_reg;
  295. struct pcidev_info *pcidev_info;
  296. struct pcibus_info *pcibus_info;
  297. pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
  298. if (!pcidev_info)
  299. return;
  300. pcibus_info =
  301. (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
  302. pdi_pcibus_info;
  303. regval = pcireg_intr_status_get(pcibus_info);
  304. irr_reg_num = irq_to_vector(irq) / 64;
  305. irr_bit = irq_to_vector(irq) % 64;
  306. switch (irr_reg_num) {
  307. case 0:
  308. irr_reg = ia64_getreg(_IA64_REG_CR_IRR0);
  309. break;
  310. case 1:
  311. irr_reg = ia64_getreg(_IA64_REG_CR_IRR1);
  312. break;
  313. case 2:
  314. irr_reg = ia64_getreg(_IA64_REG_CR_IRR2);
  315. break;
  316. case 3:
  317. irr_reg = ia64_getreg(_IA64_REG_CR_IRR3);
  318. break;
  319. }
  320. if (!test_bit(irr_bit, &irr_reg)) {
  321. if (!test_bit(irq, pda->sn_soft_irr)) {
  322. if (!test_bit(irq, pda->sn_in_service_ivecs)) {
  323. regval &= 0xff;
  324. if (sn_irq_info->irq_int_bit & regval &
  325. sn_irq_info->irq_last_intr) {
  326. regval &=
  327. ~(sn_irq_info->
  328. irq_int_bit & regval);
  329. pcibr_force_interrupt(sn_irq_info);
  330. }
  331. }
  332. }
  333. }
  334. sn_irq_info->irq_last_intr = regval;
  335. }
  336. void sn_lb_int_war_check(void)
  337. {
  338. struct sn_irq_info *sn_irq_info;
  339. int i;
  340. if (!sn_ioif_inited || pda->sn_first_irq == 0)
  341. return;
  342. rcu_read_lock();
  343. for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
  344. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
  345. /*
  346. * Only call for PCI bridges that are fully
  347. * initialized.
  348. */
  349. if (IS_PCI_BRIDGE_ASIC(sn_irq_info->irq_bridge_type) &&
  350. (sn_irq_info->irq_bridge != NULL))
  351. sn_check_intr(i, sn_irq_info);
  352. }
  353. }
  354. rcu_read_unlock();
  355. }
  356. void sn_irq_lh_init(void)
  357. {
  358. int i;
  359. sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
  360. if (!sn_irq_lh)
  361. panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
  362. for (i = 0; i < NR_IRQS; i++) {
  363. sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
  364. if (!sn_irq_lh[i])
  365. panic("SN PCI INIT: Failed IRQ memory allocation\n");
  366. INIT_LIST_HEAD(sn_irq_lh[i]);
  367. }
  368. }