slab.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/nodemask.h>
  106. #include <linux/mempolicy.h>
  107. #include <linux/mutex.h>
  108. #include <asm/uaccess.h>
  109. #include <asm/cacheflush.h>
  110. #include <asm/tlbflush.h>
  111. #include <asm/page.h>
  112. /*
  113. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  114. * SLAB_RED_ZONE & SLAB_POISON.
  115. * 0 for faster, smaller code (especially in the critical paths).
  116. *
  117. * STATS - 1 to collect stats for /proc/slabinfo.
  118. * 0 for faster, smaller code (especially in the critical paths).
  119. *
  120. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  121. */
  122. #ifdef CONFIG_DEBUG_SLAB
  123. #define DEBUG 1
  124. #define STATS 1
  125. #define FORCED_DEBUG 1
  126. #else
  127. #define DEBUG 0
  128. #define STATS 0
  129. #define FORCED_DEBUG 0
  130. #endif
  131. /* Shouldn't this be in a header file somewhere? */
  132. #define BYTES_PER_WORD sizeof(void *)
  133. #ifndef cache_line_size
  134. #define cache_line_size() L1_CACHE_BYTES
  135. #endif
  136. #ifndef ARCH_KMALLOC_MINALIGN
  137. /*
  138. * Enforce a minimum alignment for the kmalloc caches.
  139. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  140. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  141. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  142. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  143. * Note that this flag disables some debug features.
  144. */
  145. #define ARCH_KMALLOC_MINALIGN 0
  146. #endif
  147. #ifndef ARCH_SLAB_MINALIGN
  148. /*
  149. * Enforce a minimum alignment for all caches.
  150. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  151. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  152. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  153. * some debug features.
  154. */
  155. #define ARCH_SLAB_MINALIGN 0
  156. #endif
  157. #ifndef ARCH_KMALLOC_FLAGS
  158. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  159. #endif
  160. /* Legal flag mask for kmem_cache_create(). */
  161. #if DEBUG
  162. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  163. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  164. SLAB_CACHE_DMA | \
  165. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  166. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  167. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  168. #else
  169. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  171. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  172. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  173. #endif
  174. /*
  175. * kmem_bufctl_t:
  176. *
  177. * Bufctl's are used for linking objs within a slab
  178. * linked offsets.
  179. *
  180. * This implementation relies on "struct page" for locating the cache &
  181. * slab an object belongs to.
  182. * This allows the bufctl structure to be small (one int), but limits
  183. * the number of objects a slab (not a cache) can contain when off-slab
  184. * bufctls are used. The limit is the size of the largest general cache
  185. * that does not use off-slab slabs.
  186. * For 32bit archs with 4 kB pages, is this 56.
  187. * This is not serious, as it is only for large objects, when it is unwise
  188. * to have too many per slab.
  189. * Note: This limit can be raised by introducing a general cache whose size
  190. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  191. */
  192. typedef unsigned int kmem_bufctl_t;
  193. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  194. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  195. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  196. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  197. /*
  198. * struct slab
  199. *
  200. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  201. * for a slab, or allocated from an general cache.
  202. * Slabs are chained into three list: fully used, partial, fully free slabs.
  203. */
  204. struct slab {
  205. struct list_head list;
  206. unsigned long colouroff;
  207. void *s_mem; /* including colour offset */
  208. unsigned int inuse; /* num of objs active in slab */
  209. kmem_bufctl_t free;
  210. unsigned short nodeid;
  211. };
  212. /*
  213. * struct slab_rcu
  214. *
  215. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  216. * arrange for kmem_freepages to be called via RCU. This is useful if
  217. * we need to approach a kernel structure obliquely, from its address
  218. * obtained without the usual locking. We can lock the structure to
  219. * stabilize it and check it's still at the given address, only if we
  220. * can be sure that the memory has not been meanwhile reused for some
  221. * other kind of object (which our subsystem's lock might corrupt).
  222. *
  223. * rcu_read_lock before reading the address, then rcu_read_unlock after
  224. * taking the spinlock within the structure expected at that address.
  225. *
  226. * We assume struct slab_rcu can overlay struct slab when destroying.
  227. */
  228. struct slab_rcu {
  229. struct rcu_head head;
  230. struct kmem_cache *cachep;
  231. void *addr;
  232. };
  233. /*
  234. * struct array_cache
  235. *
  236. * Purpose:
  237. * - LIFO ordering, to hand out cache-warm objects from _alloc
  238. * - reduce the number of linked list operations
  239. * - reduce spinlock operations
  240. *
  241. * The limit is stored in the per-cpu structure to reduce the data cache
  242. * footprint.
  243. *
  244. */
  245. struct array_cache {
  246. unsigned int avail;
  247. unsigned int limit;
  248. unsigned int batchcount;
  249. unsigned int touched;
  250. spinlock_t lock;
  251. void *entry[0]; /*
  252. * Must have this definition in here for the proper
  253. * alignment of array_cache. Also simplifies accessing
  254. * the entries.
  255. * [0] is for gcc 2.95. It should really be [].
  256. */
  257. };
  258. /*
  259. * bootstrap: The caches do not work without cpuarrays anymore, but the
  260. * cpuarrays are allocated from the generic caches...
  261. */
  262. #define BOOT_CPUCACHE_ENTRIES 1
  263. struct arraycache_init {
  264. struct array_cache cache;
  265. void *entries[BOOT_CPUCACHE_ENTRIES];
  266. };
  267. /*
  268. * The slab lists for all objects.
  269. */
  270. struct kmem_list3 {
  271. struct list_head slabs_partial; /* partial list first, better asm code */
  272. struct list_head slabs_full;
  273. struct list_head slabs_free;
  274. unsigned long free_objects;
  275. unsigned int free_limit;
  276. unsigned int colour_next; /* Per-node cache coloring */
  277. spinlock_t list_lock;
  278. struct array_cache *shared; /* shared per node */
  279. struct array_cache **alien; /* on other nodes */
  280. unsigned long next_reap; /* updated without locking */
  281. int free_touched; /* updated without locking */
  282. };
  283. /*
  284. * Need this for bootstrapping a per node allocator.
  285. */
  286. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  287. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  288. #define CACHE_CACHE 0
  289. #define SIZE_AC 1
  290. #define SIZE_L3 (1 + MAX_NUMNODES)
  291. /*
  292. * This function must be completely optimized away if a constant is passed to
  293. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  294. */
  295. static __always_inline int index_of(const size_t size)
  296. {
  297. extern void __bad_size(void);
  298. if (__builtin_constant_p(size)) {
  299. int i = 0;
  300. #define CACHE(x) \
  301. if (size <=x) \
  302. return i; \
  303. else \
  304. i++;
  305. #include "linux/kmalloc_sizes.h"
  306. #undef CACHE
  307. __bad_size();
  308. } else
  309. __bad_size();
  310. return 0;
  311. }
  312. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  313. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  314. static void kmem_list3_init(struct kmem_list3 *parent)
  315. {
  316. INIT_LIST_HEAD(&parent->slabs_full);
  317. INIT_LIST_HEAD(&parent->slabs_partial);
  318. INIT_LIST_HEAD(&parent->slabs_free);
  319. parent->shared = NULL;
  320. parent->alien = NULL;
  321. parent->colour_next = 0;
  322. spin_lock_init(&parent->list_lock);
  323. parent->free_objects = 0;
  324. parent->free_touched = 0;
  325. }
  326. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  327. do { \
  328. INIT_LIST_HEAD(listp); \
  329. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  330. } while (0)
  331. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  332. do { \
  333. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  334. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  335. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  336. } while (0)
  337. /*
  338. * struct kmem_cache
  339. *
  340. * manages a cache.
  341. */
  342. struct kmem_cache {
  343. /* 1) per-cpu data, touched during every alloc/free */
  344. struct array_cache *array[NR_CPUS];
  345. /* 2) Cache tunables. Protected by cache_chain_mutex */
  346. unsigned int batchcount;
  347. unsigned int limit;
  348. unsigned int shared;
  349. unsigned int buffer_size;
  350. /* 3) touched by every alloc & free from the backend */
  351. struct kmem_list3 *nodelists[MAX_NUMNODES];
  352. unsigned int flags; /* constant flags */
  353. unsigned int num; /* # of objs per slab */
  354. /* 4) cache_grow/shrink */
  355. /* order of pgs per slab (2^n) */
  356. unsigned int gfporder;
  357. /* force GFP flags, e.g. GFP_DMA */
  358. gfp_t gfpflags;
  359. size_t colour; /* cache colouring range */
  360. unsigned int colour_off; /* colour offset */
  361. struct kmem_cache *slabp_cache;
  362. unsigned int slab_size;
  363. unsigned int dflags; /* dynamic flags */
  364. /* constructor func */
  365. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  366. /* de-constructor func */
  367. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  368. /* 5) cache creation/removal */
  369. const char *name;
  370. struct list_head next;
  371. /* 6) statistics */
  372. #if STATS
  373. unsigned long num_active;
  374. unsigned long num_allocations;
  375. unsigned long high_mark;
  376. unsigned long grown;
  377. unsigned long reaped;
  378. unsigned long errors;
  379. unsigned long max_freeable;
  380. unsigned long node_allocs;
  381. unsigned long node_frees;
  382. unsigned long node_overflow;
  383. atomic_t allochit;
  384. atomic_t allocmiss;
  385. atomic_t freehit;
  386. atomic_t freemiss;
  387. #endif
  388. #if DEBUG
  389. /*
  390. * If debugging is enabled, then the allocator can add additional
  391. * fields and/or padding to every object. buffer_size contains the total
  392. * object size including these internal fields, the following two
  393. * variables contain the offset to the user object and its size.
  394. */
  395. int obj_offset;
  396. int obj_size;
  397. #endif
  398. };
  399. #define CFLGS_OFF_SLAB (0x80000000UL)
  400. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  401. #define BATCHREFILL_LIMIT 16
  402. /*
  403. * Optimization question: fewer reaps means less probability for unnessary
  404. * cpucache drain/refill cycles.
  405. *
  406. * OTOH the cpuarrays can contain lots of objects,
  407. * which could lock up otherwise freeable slabs.
  408. */
  409. #define REAPTIMEOUT_CPUC (2*HZ)
  410. #define REAPTIMEOUT_LIST3 (4*HZ)
  411. #if STATS
  412. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  413. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  414. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  415. #define STATS_INC_GROWN(x) ((x)->grown++)
  416. #define STATS_INC_REAPED(x) ((x)->reaped++)
  417. #define STATS_SET_HIGH(x) \
  418. do { \
  419. if ((x)->num_active > (x)->high_mark) \
  420. (x)->high_mark = (x)->num_active; \
  421. } while (0)
  422. #define STATS_INC_ERR(x) ((x)->errors++)
  423. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  424. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  425. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  426. #define STATS_SET_FREEABLE(x, i) \
  427. do { \
  428. if ((x)->max_freeable < i) \
  429. (x)->max_freeable = i; \
  430. } while (0)
  431. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  432. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  433. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  434. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  435. #else
  436. #define STATS_INC_ACTIVE(x) do { } while (0)
  437. #define STATS_DEC_ACTIVE(x) do { } while (0)
  438. #define STATS_INC_ALLOCED(x) do { } while (0)
  439. #define STATS_INC_GROWN(x) do { } while (0)
  440. #define STATS_INC_REAPED(x) do { } while (0)
  441. #define STATS_SET_HIGH(x) do { } while (0)
  442. #define STATS_INC_ERR(x) do { } while (0)
  443. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  444. #define STATS_INC_NODEFREES(x) do { } while (0)
  445. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  446. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  447. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  448. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  449. #define STATS_INC_FREEHIT(x) do { } while (0)
  450. #define STATS_INC_FREEMISS(x) do { } while (0)
  451. #endif
  452. #if DEBUG
  453. /*
  454. * Magic nums for obj red zoning.
  455. * Placed in the first word before and the first word after an obj.
  456. */
  457. #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
  458. #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
  459. /* ...and for poisoning */
  460. #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
  461. #define POISON_FREE 0x6b /* for use-after-free poisoning */
  462. #define POISON_END 0xa5 /* end-byte of poisoning */
  463. /*
  464. * memory layout of objects:
  465. * 0 : objp
  466. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  467. * the end of an object is aligned with the end of the real
  468. * allocation. Catches writes behind the end of the allocation.
  469. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  470. * redzone word.
  471. * cachep->obj_offset: The real object.
  472. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  473. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  474. * [BYTES_PER_WORD long]
  475. */
  476. static int obj_offset(struct kmem_cache *cachep)
  477. {
  478. return cachep->obj_offset;
  479. }
  480. static int obj_size(struct kmem_cache *cachep)
  481. {
  482. return cachep->obj_size;
  483. }
  484. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  485. {
  486. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  487. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  488. }
  489. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  490. {
  491. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  492. if (cachep->flags & SLAB_STORE_USER)
  493. return (unsigned long *)(objp + cachep->buffer_size -
  494. 2 * BYTES_PER_WORD);
  495. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  496. }
  497. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  498. {
  499. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  500. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  501. }
  502. #else
  503. #define obj_offset(x) 0
  504. #define obj_size(cachep) (cachep->buffer_size)
  505. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  506. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  507. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  508. #endif
  509. /*
  510. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  511. * order.
  512. */
  513. #if defined(CONFIG_LARGE_ALLOCS)
  514. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  515. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  516. #elif defined(CONFIG_MMU)
  517. #define MAX_OBJ_ORDER 5 /* 32 pages */
  518. #define MAX_GFP_ORDER 5 /* 32 pages */
  519. #else
  520. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  521. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  522. #endif
  523. /*
  524. * Do not go above this order unless 0 objects fit into the slab.
  525. */
  526. #define BREAK_GFP_ORDER_HI 1
  527. #define BREAK_GFP_ORDER_LO 0
  528. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  529. /*
  530. * Functions for storing/retrieving the cachep and or slab from the page
  531. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  532. * these are used to find the cache which an obj belongs to.
  533. */
  534. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  535. {
  536. page->lru.next = (struct list_head *)cache;
  537. }
  538. static inline struct kmem_cache *page_get_cache(struct page *page)
  539. {
  540. if (unlikely(PageCompound(page)))
  541. page = (struct page *)page_private(page);
  542. return (struct kmem_cache *)page->lru.next;
  543. }
  544. static inline void page_set_slab(struct page *page, struct slab *slab)
  545. {
  546. page->lru.prev = (struct list_head *)slab;
  547. }
  548. static inline struct slab *page_get_slab(struct page *page)
  549. {
  550. if (unlikely(PageCompound(page)))
  551. page = (struct page *)page_private(page);
  552. return (struct slab *)page->lru.prev;
  553. }
  554. static inline struct kmem_cache *virt_to_cache(const void *obj)
  555. {
  556. struct page *page = virt_to_page(obj);
  557. return page_get_cache(page);
  558. }
  559. static inline struct slab *virt_to_slab(const void *obj)
  560. {
  561. struct page *page = virt_to_page(obj);
  562. return page_get_slab(page);
  563. }
  564. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  565. unsigned int idx)
  566. {
  567. return slab->s_mem + cache->buffer_size * idx;
  568. }
  569. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  570. struct slab *slab, void *obj)
  571. {
  572. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  573. }
  574. /*
  575. * These are the default caches for kmalloc. Custom caches can have other sizes.
  576. */
  577. struct cache_sizes malloc_sizes[] = {
  578. #define CACHE(x) { .cs_size = (x) },
  579. #include <linux/kmalloc_sizes.h>
  580. CACHE(ULONG_MAX)
  581. #undef CACHE
  582. };
  583. EXPORT_SYMBOL(malloc_sizes);
  584. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  585. struct cache_names {
  586. char *name;
  587. char *name_dma;
  588. };
  589. static struct cache_names __initdata cache_names[] = {
  590. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  591. #include <linux/kmalloc_sizes.h>
  592. {NULL,}
  593. #undef CACHE
  594. };
  595. static struct arraycache_init initarray_cache __initdata =
  596. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  597. static struct arraycache_init initarray_generic =
  598. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  599. /* internal cache of cache description objs */
  600. static struct kmem_cache cache_cache = {
  601. .batchcount = 1,
  602. .limit = BOOT_CPUCACHE_ENTRIES,
  603. .shared = 1,
  604. .buffer_size = sizeof(struct kmem_cache),
  605. .name = "kmem_cache",
  606. #if DEBUG
  607. .obj_size = sizeof(struct kmem_cache),
  608. #endif
  609. };
  610. /* Guard access to the cache-chain. */
  611. static DEFINE_MUTEX(cache_chain_mutex);
  612. static struct list_head cache_chain;
  613. /*
  614. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  615. * are possibly freeable under pressure
  616. *
  617. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  618. */
  619. atomic_t slab_reclaim_pages;
  620. /*
  621. * chicken and egg problem: delay the per-cpu array allocation
  622. * until the general caches are up.
  623. */
  624. static enum {
  625. NONE,
  626. PARTIAL_AC,
  627. PARTIAL_L3,
  628. FULL
  629. } g_cpucache_up;
  630. /*
  631. * used by boot code to determine if it can use slab based allocator
  632. */
  633. int slab_is_available(void)
  634. {
  635. return g_cpucache_up == FULL;
  636. }
  637. static DEFINE_PER_CPU(struct work_struct, reap_work);
  638. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  639. int node);
  640. static void enable_cpucache(struct kmem_cache *cachep);
  641. static void cache_reap(void *unused);
  642. static int __node_shrink(struct kmem_cache *cachep, int node);
  643. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  644. {
  645. return cachep->array[smp_processor_id()];
  646. }
  647. static inline struct kmem_cache *__find_general_cachep(size_t size,
  648. gfp_t gfpflags)
  649. {
  650. struct cache_sizes *csizep = malloc_sizes;
  651. #if DEBUG
  652. /* This happens if someone tries to call
  653. * kmem_cache_create(), or __kmalloc(), before
  654. * the generic caches are initialized.
  655. */
  656. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  657. #endif
  658. while (size > csizep->cs_size)
  659. csizep++;
  660. /*
  661. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  662. * has cs_{dma,}cachep==NULL. Thus no special case
  663. * for large kmalloc calls required.
  664. */
  665. if (unlikely(gfpflags & GFP_DMA))
  666. return csizep->cs_dmacachep;
  667. return csizep->cs_cachep;
  668. }
  669. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  670. {
  671. return __find_general_cachep(size, gfpflags);
  672. }
  673. EXPORT_SYMBOL(kmem_find_general_cachep);
  674. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  675. {
  676. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  677. }
  678. /*
  679. * Calculate the number of objects and left-over bytes for a given buffer size.
  680. */
  681. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  682. size_t align, int flags, size_t *left_over,
  683. unsigned int *num)
  684. {
  685. int nr_objs;
  686. size_t mgmt_size;
  687. size_t slab_size = PAGE_SIZE << gfporder;
  688. /*
  689. * The slab management structure can be either off the slab or
  690. * on it. For the latter case, the memory allocated for a
  691. * slab is used for:
  692. *
  693. * - The struct slab
  694. * - One kmem_bufctl_t for each object
  695. * - Padding to respect alignment of @align
  696. * - @buffer_size bytes for each object
  697. *
  698. * If the slab management structure is off the slab, then the
  699. * alignment will already be calculated into the size. Because
  700. * the slabs are all pages aligned, the objects will be at the
  701. * correct alignment when allocated.
  702. */
  703. if (flags & CFLGS_OFF_SLAB) {
  704. mgmt_size = 0;
  705. nr_objs = slab_size / buffer_size;
  706. if (nr_objs > SLAB_LIMIT)
  707. nr_objs = SLAB_LIMIT;
  708. } else {
  709. /*
  710. * Ignore padding for the initial guess. The padding
  711. * is at most @align-1 bytes, and @buffer_size is at
  712. * least @align. In the worst case, this result will
  713. * be one greater than the number of objects that fit
  714. * into the memory allocation when taking the padding
  715. * into account.
  716. */
  717. nr_objs = (slab_size - sizeof(struct slab)) /
  718. (buffer_size + sizeof(kmem_bufctl_t));
  719. /*
  720. * This calculated number will be either the right
  721. * amount, or one greater than what we want.
  722. */
  723. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  724. > slab_size)
  725. nr_objs--;
  726. if (nr_objs > SLAB_LIMIT)
  727. nr_objs = SLAB_LIMIT;
  728. mgmt_size = slab_mgmt_size(nr_objs, align);
  729. }
  730. *num = nr_objs;
  731. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  732. }
  733. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  734. static void __slab_error(const char *function, struct kmem_cache *cachep,
  735. char *msg)
  736. {
  737. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  738. function, cachep->name, msg);
  739. dump_stack();
  740. }
  741. #ifdef CONFIG_NUMA
  742. /*
  743. * Special reaping functions for NUMA systems called from cache_reap().
  744. * These take care of doing round robin flushing of alien caches (containing
  745. * objects freed on different nodes from which they were allocated) and the
  746. * flushing of remote pcps by calling drain_node_pages.
  747. */
  748. static DEFINE_PER_CPU(unsigned long, reap_node);
  749. static void init_reap_node(int cpu)
  750. {
  751. int node;
  752. node = next_node(cpu_to_node(cpu), node_online_map);
  753. if (node == MAX_NUMNODES)
  754. node = first_node(node_online_map);
  755. __get_cpu_var(reap_node) = node;
  756. }
  757. static void next_reap_node(void)
  758. {
  759. int node = __get_cpu_var(reap_node);
  760. /*
  761. * Also drain per cpu pages on remote zones
  762. */
  763. if (node != numa_node_id())
  764. drain_node_pages(node);
  765. node = next_node(node, node_online_map);
  766. if (unlikely(node >= MAX_NUMNODES))
  767. node = first_node(node_online_map);
  768. __get_cpu_var(reap_node) = node;
  769. }
  770. #else
  771. #define init_reap_node(cpu) do { } while (0)
  772. #define next_reap_node(void) do { } while (0)
  773. #endif
  774. /*
  775. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  776. * via the workqueue/eventd.
  777. * Add the CPU number into the expiration time to minimize the possibility of
  778. * the CPUs getting into lockstep and contending for the global cache chain
  779. * lock.
  780. */
  781. static void __devinit start_cpu_timer(int cpu)
  782. {
  783. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  784. /*
  785. * When this gets called from do_initcalls via cpucache_init(),
  786. * init_workqueues() has already run, so keventd will be setup
  787. * at that time.
  788. */
  789. if (keventd_up() && reap_work->func == NULL) {
  790. init_reap_node(cpu);
  791. INIT_WORK(reap_work, cache_reap, NULL);
  792. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  793. }
  794. }
  795. static struct array_cache *alloc_arraycache(int node, int entries,
  796. int batchcount)
  797. {
  798. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  799. struct array_cache *nc = NULL;
  800. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  801. if (nc) {
  802. nc->avail = 0;
  803. nc->limit = entries;
  804. nc->batchcount = batchcount;
  805. nc->touched = 0;
  806. spin_lock_init(&nc->lock);
  807. }
  808. return nc;
  809. }
  810. /*
  811. * Transfer objects in one arraycache to another.
  812. * Locking must be handled by the caller.
  813. *
  814. * Return the number of entries transferred.
  815. */
  816. static int transfer_objects(struct array_cache *to,
  817. struct array_cache *from, unsigned int max)
  818. {
  819. /* Figure out how many entries to transfer */
  820. int nr = min(min(from->avail, max), to->limit - to->avail);
  821. if (!nr)
  822. return 0;
  823. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  824. sizeof(void *) *nr);
  825. from->avail -= nr;
  826. to->avail += nr;
  827. to->touched = 1;
  828. return nr;
  829. }
  830. #ifdef CONFIG_NUMA
  831. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  832. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  833. static struct array_cache **alloc_alien_cache(int node, int limit)
  834. {
  835. struct array_cache **ac_ptr;
  836. int memsize = sizeof(void *) * MAX_NUMNODES;
  837. int i;
  838. if (limit > 1)
  839. limit = 12;
  840. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  841. if (ac_ptr) {
  842. for_each_node(i) {
  843. if (i == node || !node_online(i)) {
  844. ac_ptr[i] = NULL;
  845. continue;
  846. }
  847. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  848. if (!ac_ptr[i]) {
  849. for (i--; i <= 0; i--)
  850. kfree(ac_ptr[i]);
  851. kfree(ac_ptr);
  852. return NULL;
  853. }
  854. }
  855. }
  856. return ac_ptr;
  857. }
  858. static void free_alien_cache(struct array_cache **ac_ptr)
  859. {
  860. int i;
  861. if (!ac_ptr)
  862. return;
  863. for_each_node(i)
  864. kfree(ac_ptr[i]);
  865. kfree(ac_ptr);
  866. }
  867. static void __drain_alien_cache(struct kmem_cache *cachep,
  868. struct array_cache *ac, int node)
  869. {
  870. struct kmem_list3 *rl3 = cachep->nodelists[node];
  871. if (ac->avail) {
  872. spin_lock(&rl3->list_lock);
  873. /*
  874. * Stuff objects into the remote nodes shared array first.
  875. * That way we could avoid the overhead of putting the objects
  876. * into the free lists and getting them back later.
  877. */
  878. if (rl3->shared)
  879. transfer_objects(rl3->shared, ac, ac->limit);
  880. free_block(cachep, ac->entry, ac->avail, node);
  881. ac->avail = 0;
  882. spin_unlock(&rl3->list_lock);
  883. }
  884. }
  885. /*
  886. * Called from cache_reap() to regularly drain alien caches round robin.
  887. */
  888. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  889. {
  890. int node = __get_cpu_var(reap_node);
  891. if (l3->alien) {
  892. struct array_cache *ac = l3->alien[node];
  893. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  894. __drain_alien_cache(cachep, ac, node);
  895. spin_unlock_irq(&ac->lock);
  896. }
  897. }
  898. }
  899. static void drain_alien_cache(struct kmem_cache *cachep,
  900. struct array_cache **alien)
  901. {
  902. int i = 0;
  903. struct array_cache *ac;
  904. unsigned long flags;
  905. for_each_online_node(i) {
  906. ac = alien[i];
  907. if (ac) {
  908. spin_lock_irqsave(&ac->lock, flags);
  909. __drain_alien_cache(cachep, ac, i);
  910. spin_unlock_irqrestore(&ac->lock, flags);
  911. }
  912. }
  913. }
  914. #else
  915. #define drain_alien_cache(cachep, alien) do { } while (0)
  916. #define reap_alien(cachep, l3) do { } while (0)
  917. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  918. {
  919. return (struct array_cache **) 0x01020304ul;
  920. }
  921. static inline void free_alien_cache(struct array_cache **ac_ptr)
  922. {
  923. }
  924. #endif
  925. static int cpuup_callback(struct notifier_block *nfb,
  926. unsigned long action, void *hcpu)
  927. {
  928. long cpu = (long)hcpu;
  929. struct kmem_cache *cachep;
  930. struct kmem_list3 *l3 = NULL;
  931. int node = cpu_to_node(cpu);
  932. int memsize = sizeof(struct kmem_list3);
  933. switch (action) {
  934. case CPU_UP_PREPARE:
  935. mutex_lock(&cache_chain_mutex);
  936. /*
  937. * We need to do this right in the beginning since
  938. * alloc_arraycache's are going to use this list.
  939. * kmalloc_node allows us to add the slab to the right
  940. * kmem_list3 and not this cpu's kmem_list3
  941. */
  942. list_for_each_entry(cachep, &cache_chain, next) {
  943. /*
  944. * Set up the size64 kmemlist for cpu before we can
  945. * begin anything. Make sure some other cpu on this
  946. * node has not already allocated this
  947. */
  948. if (!cachep->nodelists[node]) {
  949. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  950. if (!l3)
  951. goto bad;
  952. kmem_list3_init(l3);
  953. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  954. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  955. /*
  956. * The l3s don't come and go as CPUs come and
  957. * go. cache_chain_mutex is sufficient
  958. * protection here.
  959. */
  960. cachep->nodelists[node] = l3;
  961. }
  962. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  963. cachep->nodelists[node]->free_limit =
  964. (1 + nr_cpus_node(node)) *
  965. cachep->batchcount + cachep->num;
  966. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  967. }
  968. /*
  969. * Now we can go ahead with allocating the shared arrays and
  970. * array caches
  971. */
  972. list_for_each_entry(cachep, &cache_chain, next) {
  973. struct array_cache *nc;
  974. struct array_cache *shared;
  975. struct array_cache **alien;
  976. nc = alloc_arraycache(node, cachep->limit,
  977. cachep->batchcount);
  978. if (!nc)
  979. goto bad;
  980. shared = alloc_arraycache(node,
  981. cachep->shared * cachep->batchcount,
  982. 0xbaadf00d);
  983. if (!shared)
  984. goto bad;
  985. alien = alloc_alien_cache(node, cachep->limit);
  986. if (!alien)
  987. goto bad;
  988. cachep->array[cpu] = nc;
  989. l3 = cachep->nodelists[node];
  990. BUG_ON(!l3);
  991. spin_lock_irq(&l3->list_lock);
  992. if (!l3->shared) {
  993. /*
  994. * We are serialised from CPU_DEAD or
  995. * CPU_UP_CANCELLED by the cpucontrol lock
  996. */
  997. l3->shared = shared;
  998. shared = NULL;
  999. }
  1000. #ifdef CONFIG_NUMA
  1001. if (!l3->alien) {
  1002. l3->alien = alien;
  1003. alien = NULL;
  1004. }
  1005. #endif
  1006. spin_unlock_irq(&l3->list_lock);
  1007. kfree(shared);
  1008. free_alien_cache(alien);
  1009. }
  1010. mutex_unlock(&cache_chain_mutex);
  1011. break;
  1012. case CPU_ONLINE:
  1013. start_cpu_timer(cpu);
  1014. break;
  1015. #ifdef CONFIG_HOTPLUG_CPU
  1016. case CPU_DEAD:
  1017. /*
  1018. * Even if all the cpus of a node are down, we don't free the
  1019. * kmem_list3 of any cache. This to avoid a race between
  1020. * cpu_down, and a kmalloc allocation from another cpu for
  1021. * memory from the node of the cpu going down. The list3
  1022. * structure is usually allocated from kmem_cache_create() and
  1023. * gets destroyed at kmem_cache_destroy().
  1024. */
  1025. /* fall thru */
  1026. case CPU_UP_CANCELED:
  1027. mutex_lock(&cache_chain_mutex);
  1028. list_for_each_entry(cachep, &cache_chain, next) {
  1029. struct array_cache *nc;
  1030. struct array_cache *shared;
  1031. struct array_cache **alien;
  1032. cpumask_t mask;
  1033. mask = node_to_cpumask(node);
  1034. /* cpu is dead; no one can alloc from it. */
  1035. nc = cachep->array[cpu];
  1036. cachep->array[cpu] = NULL;
  1037. l3 = cachep->nodelists[node];
  1038. if (!l3)
  1039. goto free_array_cache;
  1040. spin_lock_irq(&l3->list_lock);
  1041. /* Free limit for this kmem_list3 */
  1042. l3->free_limit -= cachep->batchcount;
  1043. if (nc)
  1044. free_block(cachep, nc->entry, nc->avail, node);
  1045. if (!cpus_empty(mask)) {
  1046. spin_unlock_irq(&l3->list_lock);
  1047. goto free_array_cache;
  1048. }
  1049. shared = l3->shared;
  1050. if (shared) {
  1051. free_block(cachep, l3->shared->entry,
  1052. l3->shared->avail, node);
  1053. l3->shared = NULL;
  1054. }
  1055. alien = l3->alien;
  1056. l3->alien = NULL;
  1057. spin_unlock_irq(&l3->list_lock);
  1058. kfree(shared);
  1059. if (alien) {
  1060. drain_alien_cache(cachep, alien);
  1061. free_alien_cache(alien);
  1062. }
  1063. free_array_cache:
  1064. kfree(nc);
  1065. }
  1066. /*
  1067. * In the previous loop, all the objects were freed to
  1068. * the respective cache's slabs, now we can go ahead and
  1069. * shrink each nodelist to its limit.
  1070. */
  1071. list_for_each_entry(cachep, &cache_chain, next) {
  1072. l3 = cachep->nodelists[node];
  1073. if (!l3)
  1074. continue;
  1075. spin_lock_irq(&l3->list_lock);
  1076. /* free slabs belonging to this node */
  1077. __node_shrink(cachep, node);
  1078. spin_unlock_irq(&l3->list_lock);
  1079. }
  1080. mutex_unlock(&cache_chain_mutex);
  1081. break;
  1082. #endif
  1083. }
  1084. return NOTIFY_OK;
  1085. bad:
  1086. mutex_unlock(&cache_chain_mutex);
  1087. return NOTIFY_BAD;
  1088. }
  1089. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1090. /*
  1091. * swap the static kmem_list3 with kmalloced memory
  1092. */
  1093. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1094. int nodeid)
  1095. {
  1096. struct kmem_list3 *ptr;
  1097. BUG_ON(cachep->nodelists[nodeid] != list);
  1098. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1099. BUG_ON(!ptr);
  1100. local_irq_disable();
  1101. memcpy(ptr, list, sizeof(struct kmem_list3));
  1102. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1103. cachep->nodelists[nodeid] = ptr;
  1104. local_irq_enable();
  1105. }
  1106. /*
  1107. * Initialisation. Called after the page allocator have been initialised and
  1108. * before smp_init().
  1109. */
  1110. void __init kmem_cache_init(void)
  1111. {
  1112. size_t left_over;
  1113. struct cache_sizes *sizes;
  1114. struct cache_names *names;
  1115. int i;
  1116. int order;
  1117. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1118. kmem_list3_init(&initkmem_list3[i]);
  1119. if (i < MAX_NUMNODES)
  1120. cache_cache.nodelists[i] = NULL;
  1121. }
  1122. /*
  1123. * Fragmentation resistance on low memory - only use bigger
  1124. * page orders on machines with more than 32MB of memory.
  1125. */
  1126. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1127. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1128. /* Bootstrap is tricky, because several objects are allocated
  1129. * from caches that do not exist yet:
  1130. * 1) initialize the cache_cache cache: it contains the struct
  1131. * kmem_cache structures of all caches, except cache_cache itself:
  1132. * cache_cache is statically allocated.
  1133. * Initially an __init data area is used for the head array and the
  1134. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1135. * array at the end of the bootstrap.
  1136. * 2) Create the first kmalloc cache.
  1137. * The struct kmem_cache for the new cache is allocated normally.
  1138. * An __init data area is used for the head array.
  1139. * 3) Create the remaining kmalloc caches, with minimally sized
  1140. * head arrays.
  1141. * 4) Replace the __init data head arrays for cache_cache and the first
  1142. * kmalloc cache with kmalloc allocated arrays.
  1143. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1144. * the other cache's with kmalloc allocated memory.
  1145. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1146. */
  1147. /* 1) create the cache_cache */
  1148. INIT_LIST_HEAD(&cache_chain);
  1149. list_add(&cache_cache.next, &cache_chain);
  1150. cache_cache.colour_off = cache_line_size();
  1151. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1152. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1153. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1154. cache_line_size());
  1155. for (order = 0; order < MAX_ORDER; order++) {
  1156. cache_estimate(order, cache_cache.buffer_size,
  1157. cache_line_size(), 0, &left_over, &cache_cache.num);
  1158. if (cache_cache.num)
  1159. break;
  1160. }
  1161. BUG_ON(!cache_cache.num);
  1162. cache_cache.gfporder = order;
  1163. cache_cache.colour = left_over / cache_cache.colour_off;
  1164. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1165. sizeof(struct slab), cache_line_size());
  1166. /* 2+3) create the kmalloc caches */
  1167. sizes = malloc_sizes;
  1168. names = cache_names;
  1169. /*
  1170. * Initialize the caches that provide memory for the array cache and the
  1171. * kmem_list3 structures first. Without this, further allocations will
  1172. * bug.
  1173. */
  1174. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1175. sizes[INDEX_AC].cs_size,
  1176. ARCH_KMALLOC_MINALIGN,
  1177. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1178. NULL, NULL);
  1179. if (INDEX_AC != INDEX_L3) {
  1180. sizes[INDEX_L3].cs_cachep =
  1181. kmem_cache_create(names[INDEX_L3].name,
  1182. sizes[INDEX_L3].cs_size,
  1183. ARCH_KMALLOC_MINALIGN,
  1184. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1185. NULL, NULL);
  1186. }
  1187. while (sizes->cs_size != ULONG_MAX) {
  1188. /*
  1189. * For performance, all the general caches are L1 aligned.
  1190. * This should be particularly beneficial on SMP boxes, as it
  1191. * eliminates "false sharing".
  1192. * Note for systems short on memory removing the alignment will
  1193. * allow tighter packing of the smaller caches.
  1194. */
  1195. if (!sizes->cs_cachep) {
  1196. sizes->cs_cachep = kmem_cache_create(names->name,
  1197. sizes->cs_size,
  1198. ARCH_KMALLOC_MINALIGN,
  1199. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1200. NULL, NULL);
  1201. }
  1202. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1203. sizes->cs_size,
  1204. ARCH_KMALLOC_MINALIGN,
  1205. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1206. SLAB_PANIC,
  1207. NULL, NULL);
  1208. sizes++;
  1209. names++;
  1210. }
  1211. /* 4) Replace the bootstrap head arrays */
  1212. {
  1213. void *ptr;
  1214. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1215. local_irq_disable();
  1216. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1217. memcpy(ptr, cpu_cache_get(&cache_cache),
  1218. sizeof(struct arraycache_init));
  1219. cache_cache.array[smp_processor_id()] = ptr;
  1220. local_irq_enable();
  1221. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1222. local_irq_disable();
  1223. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1224. != &initarray_generic.cache);
  1225. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1226. sizeof(struct arraycache_init));
  1227. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1228. ptr;
  1229. local_irq_enable();
  1230. }
  1231. /* 5) Replace the bootstrap kmem_list3's */
  1232. {
  1233. int node;
  1234. /* Replace the static kmem_list3 structures for the boot cpu */
  1235. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1236. numa_node_id());
  1237. for_each_online_node(node) {
  1238. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1239. &initkmem_list3[SIZE_AC + node], node);
  1240. if (INDEX_AC != INDEX_L3) {
  1241. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1242. &initkmem_list3[SIZE_L3 + node],
  1243. node);
  1244. }
  1245. }
  1246. }
  1247. /* 6) resize the head arrays to their final sizes */
  1248. {
  1249. struct kmem_cache *cachep;
  1250. mutex_lock(&cache_chain_mutex);
  1251. list_for_each_entry(cachep, &cache_chain, next)
  1252. enable_cpucache(cachep);
  1253. mutex_unlock(&cache_chain_mutex);
  1254. }
  1255. /* Done! */
  1256. g_cpucache_up = FULL;
  1257. /*
  1258. * Register a cpu startup notifier callback that initializes
  1259. * cpu_cache_get for all new cpus
  1260. */
  1261. register_cpu_notifier(&cpucache_notifier);
  1262. /*
  1263. * The reap timers are started later, with a module init call: That part
  1264. * of the kernel is not yet operational.
  1265. */
  1266. }
  1267. static int __init cpucache_init(void)
  1268. {
  1269. int cpu;
  1270. /*
  1271. * Register the timers that return unneeded pages to the page allocator
  1272. */
  1273. for_each_online_cpu(cpu)
  1274. start_cpu_timer(cpu);
  1275. return 0;
  1276. }
  1277. __initcall(cpucache_init);
  1278. /*
  1279. * Interface to system's page allocator. No need to hold the cache-lock.
  1280. *
  1281. * If we requested dmaable memory, we will get it. Even if we
  1282. * did not request dmaable memory, we might get it, but that
  1283. * would be relatively rare and ignorable.
  1284. */
  1285. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1286. {
  1287. struct page *page;
  1288. void *addr;
  1289. int i;
  1290. flags |= cachep->gfpflags;
  1291. #ifndef CONFIG_MMU
  1292. /* nommu uses slab's for process anonymous memory allocations, so
  1293. * requires __GFP_COMP to properly refcount higher order allocations"
  1294. */
  1295. page = alloc_pages_node(nodeid, (flags | __GFP_COMP), cachep->gfporder);
  1296. #else
  1297. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1298. #endif
  1299. if (!page)
  1300. return NULL;
  1301. addr = page_address(page);
  1302. i = (1 << cachep->gfporder);
  1303. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1304. atomic_add(i, &slab_reclaim_pages);
  1305. add_page_state(nr_slab, i);
  1306. while (i--) {
  1307. __SetPageSlab(page);
  1308. page++;
  1309. }
  1310. return addr;
  1311. }
  1312. /*
  1313. * Interface to system's page release.
  1314. */
  1315. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1316. {
  1317. unsigned long i = (1 << cachep->gfporder);
  1318. struct page *page = virt_to_page(addr);
  1319. const unsigned long nr_freed = i;
  1320. while (i--) {
  1321. BUG_ON(!PageSlab(page));
  1322. __ClearPageSlab(page);
  1323. page++;
  1324. }
  1325. sub_page_state(nr_slab, nr_freed);
  1326. if (current->reclaim_state)
  1327. current->reclaim_state->reclaimed_slab += nr_freed;
  1328. free_pages((unsigned long)addr, cachep->gfporder);
  1329. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1330. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1331. }
  1332. static void kmem_rcu_free(struct rcu_head *head)
  1333. {
  1334. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1335. struct kmem_cache *cachep = slab_rcu->cachep;
  1336. kmem_freepages(cachep, slab_rcu->addr);
  1337. if (OFF_SLAB(cachep))
  1338. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1339. }
  1340. #if DEBUG
  1341. #ifdef CONFIG_DEBUG_PAGEALLOC
  1342. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1343. unsigned long caller)
  1344. {
  1345. int size = obj_size(cachep);
  1346. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1347. if (size < 5 * sizeof(unsigned long))
  1348. return;
  1349. *addr++ = 0x12345678;
  1350. *addr++ = caller;
  1351. *addr++ = smp_processor_id();
  1352. size -= 3 * sizeof(unsigned long);
  1353. {
  1354. unsigned long *sptr = &caller;
  1355. unsigned long svalue;
  1356. while (!kstack_end(sptr)) {
  1357. svalue = *sptr++;
  1358. if (kernel_text_address(svalue)) {
  1359. *addr++ = svalue;
  1360. size -= sizeof(unsigned long);
  1361. if (size <= sizeof(unsigned long))
  1362. break;
  1363. }
  1364. }
  1365. }
  1366. *addr++ = 0x87654321;
  1367. }
  1368. #endif
  1369. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1370. {
  1371. int size = obj_size(cachep);
  1372. addr = &((char *)addr)[obj_offset(cachep)];
  1373. memset(addr, val, size);
  1374. *(unsigned char *)(addr + size - 1) = POISON_END;
  1375. }
  1376. static void dump_line(char *data, int offset, int limit)
  1377. {
  1378. int i;
  1379. printk(KERN_ERR "%03x:", offset);
  1380. for (i = 0; i < limit; i++)
  1381. printk(" %02x", (unsigned char)data[offset + i]);
  1382. printk("\n");
  1383. }
  1384. #endif
  1385. #if DEBUG
  1386. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1387. {
  1388. int i, size;
  1389. char *realobj;
  1390. if (cachep->flags & SLAB_RED_ZONE) {
  1391. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1392. *dbg_redzone1(cachep, objp),
  1393. *dbg_redzone2(cachep, objp));
  1394. }
  1395. if (cachep->flags & SLAB_STORE_USER) {
  1396. printk(KERN_ERR "Last user: [<%p>]",
  1397. *dbg_userword(cachep, objp));
  1398. print_symbol("(%s)",
  1399. (unsigned long)*dbg_userword(cachep, objp));
  1400. printk("\n");
  1401. }
  1402. realobj = (char *)objp + obj_offset(cachep);
  1403. size = obj_size(cachep);
  1404. for (i = 0; i < size && lines; i += 16, lines--) {
  1405. int limit;
  1406. limit = 16;
  1407. if (i + limit > size)
  1408. limit = size - i;
  1409. dump_line(realobj, i, limit);
  1410. }
  1411. }
  1412. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1413. {
  1414. char *realobj;
  1415. int size, i;
  1416. int lines = 0;
  1417. realobj = (char *)objp + obj_offset(cachep);
  1418. size = obj_size(cachep);
  1419. for (i = 0; i < size; i++) {
  1420. char exp = POISON_FREE;
  1421. if (i == size - 1)
  1422. exp = POISON_END;
  1423. if (realobj[i] != exp) {
  1424. int limit;
  1425. /* Mismatch ! */
  1426. /* Print header */
  1427. if (lines == 0) {
  1428. printk(KERN_ERR
  1429. "Slab corruption: start=%p, len=%d\n",
  1430. realobj, size);
  1431. print_objinfo(cachep, objp, 0);
  1432. }
  1433. /* Hexdump the affected line */
  1434. i = (i / 16) * 16;
  1435. limit = 16;
  1436. if (i + limit > size)
  1437. limit = size - i;
  1438. dump_line(realobj, i, limit);
  1439. i += 16;
  1440. lines++;
  1441. /* Limit to 5 lines */
  1442. if (lines > 5)
  1443. break;
  1444. }
  1445. }
  1446. if (lines != 0) {
  1447. /* Print some data about the neighboring objects, if they
  1448. * exist:
  1449. */
  1450. struct slab *slabp = virt_to_slab(objp);
  1451. unsigned int objnr;
  1452. objnr = obj_to_index(cachep, slabp, objp);
  1453. if (objnr) {
  1454. objp = index_to_obj(cachep, slabp, objnr - 1);
  1455. realobj = (char *)objp + obj_offset(cachep);
  1456. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1457. realobj, size);
  1458. print_objinfo(cachep, objp, 2);
  1459. }
  1460. if (objnr + 1 < cachep->num) {
  1461. objp = index_to_obj(cachep, slabp, objnr + 1);
  1462. realobj = (char *)objp + obj_offset(cachep);
  1463. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1464. realobj, size);
  1465. print_objinfo(cachep, objp, 2);
  1466. }
  1467. }
  1468. }
  1469. #endif
  1470. #if DEBUG
  1471. /**
  1472. * slab_destroy_objs - destroy a slab and its objects
  1473. * @cachep: cache pointer being destroyed
  1474. * @slabp: slab pointer being destroyed
  1475. *
  1476. * Call the registered destructor for each object in a slab that is being
  1477. * destroyed.
  1478. */
  1479. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1480. {
  1481. int i;
  1482. for (i = 0; i < cachep->num; i++) {
  1483. void *objp = index_to_obj(cachep, slabp, i);
  1484. if (cachep->flags & SLAB_POISON) {
  1485. #ifdef CONFIG_DEBUG_PAGEALLOC
  1486. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1487. OFF_SLAB(cachep))
  1488. kernel_map_pages(virt_to_page(objp),
  1489. cachep->buffer_size / PAGE_SIZE, 1);
  1490. else
  1491. check_poison_obj(cachep, objp);
  1492. #else
  1493. check_poison_obj(cachep, objp);
  1494. #endif
  1495. }
  1496. if (cachep->flags & SLAB_RED_ZONE) {
  1497. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1498. slab_error(cachep, "start of a freed object "
  1499. "was overwritten");
  1500. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1501. slab_error(cachep, "end of a freed object "
  1502. "was overwritten");
  1503. }
  1504. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1505. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1506. }
  1507. }
  1508. #else
  1509. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1510. {
  1511. if (cachep->dtor) {
  1512. int i;
  1513. for (i = 0; i < cachep->num; i++) {
  1514. void *objp = index_to_obj(cachep, slabp, i);
  1515. (cachep->dtor) (objp, cachep, 0);
  1516. }
  1517. }
  1518. }
  1519. #endif
  1520. /**
  1521. * slab_destroy - destroy and release all objects in a slab
  1522. * @cachep: cache pointer being destroyed
  1523. * @slabp: slab pointer being destroyed
  1524. *
  1525. * Destroy all the objs in a slab, and release the mem back to the system.
  1526. * Before calling the slab must have been unlinked from the cache. The
  1527. * cache-lock is not held/needed.
  1528. */
  1529. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1530. {
  1531. void *addr = slabp->s_mem - slabp->colouroff;
  1532. slab_destroy_objs(cachep, slabp);
  1533. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1534. struct slab_rcu *slab_rcu;
  1535. slab_rcu = (struct slab_rcu *)slabp;
  1536. slab_rcu->cachep = cachep;
  1537. slab_rcu->addr = addr;
  1538. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1539. } else {
  1540. kmem_freepages(cachep, addr);
  1541. if (OFF_SLAB(cachep))
  1542. kmem_cache_free(cachep->slabp_cache, slabp);
  1543. }
  1544. }
  1545. /*
  1546. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1547. * size of kmem_list3.
  1548. */
  1549. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1550. {
  1551. int node;
  1552. for_each_online_node(node) {
  1553. cachep->nodelists[node] = &initkmem_list3[index + node];
  1554. cachep->nodelists[node]->next_reap = jiffies +
  1555. REAPTIMEOUT_LIST3 +
  1556. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1557. }
  1558. }
  1559. /**
  1560. * calculate_slab_order - calculate size (page order) of slabs
  1561. * @cachep: pointer to the cache that is being created
  1562. * @size: size of objects to be created in this cache.
  1563. * @align: required alignment for the objects.
  1564. * @flags: slab allocation flags
  1565. *
  1566. * Also calculates the number of objects per slab.
  1567. *
  1568. * This could be made much more intelligent. For now, try to avoid using
  1569. * high order pages for slabs. When the gfp() functions are more friendly
  1570. * towards high-order requests, this should be changed.
  1571. */
  1572. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1573. size_t size, size_t align, unsigned long flags)
  1574. {
  1575. unsigned long offslab_limit;
  1576. size_t left_over = 0;
  1577. int gfporder;
  1578. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1579. unsigned int num;
  1580. size_t remainder;
  1581. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1582. if (!num)
  1583. continue;
  1584. if (flags & CFLGS_OFF_SLAB) {
  1585. /*
  1586. * Max number of objs-per-slab for caches which
  1587. * use off-slab slabs. Needed to avoid a possible
  1588. * looping condition in cache_grow().
  1589. */
  1590. offslab_limit = size - sizeof(struct slab);
  1591. offslab_limit /= sizeof(kmem_bufctl_t);
  1592. if (num > offslab_limit)
  1593. break;
  1594. }
  1595. /* Found something acceptable - save it away */
  1596. cachep->num = num;
  1597. cachep->gfporder = gfporder;
  1598. left_over = remainder;
  1599. /*
  1600. * A VFS-reclaimable slab tends to have most allocations
  1601. * as GFP_NOFS and we really don't want to have to be allocating
  1602. * higher-order pages when we are unable to shrink dcache.
  1603. */
  1604. if (flags & SLAB_RECLAIM_ACCOUNT)
  1605. break;
  1606. /*
  1607. * Large number of objects is good, but very large slabs are
  1608. * currently bad for the gfp()s.
  1609. */
  1610. if (gfporder >= slab_break_gfp_order)
  1611. break;
  1612. /*
  1613. * Acceptable internal fragmentation?
  1614. */
  1615. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1616. break;
  1617. }
  1618. return left_over;
  1619. }
  1620. static void setup_cpu_cache(struct kmem_cache *cachep)
  1621. {
  1622. if (g_cpucache_up == FULL) {
  1623. enable_cpucache(cachep);
  1624. return;
  1625. }
  1626. if (g_cpucache_up == NONE) {
  1627. /*
  1628. * Note: the first kmem_cache_create must create the cache
  1629. * that's used by kmalloc(24), otherwise the creation of
  1630. * further caches will BUG().
  1631. */
  1632. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1633. /*
  1634. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1635. * the first cache, then we need to set up all its list3s,
  1636. * otherwise the creation of further caches will BUG().
  1637. */
  1638. set_up_list3s(cachep, SIZE_AC);
  1639. if (INDEX_AC == INDEX_L3)
  1640. g_cpucache_up = PARTIAL_L3;
  1641. else
  1642. g_cpucache_up = PARTIAL_AC;
  1643. } else {
  1644. cachep->array[smp_processor_id()] =
  1645. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1646. if (g_cpucache_up == PARTIAL_AC) {
  1647. set_up_list3s(cachep, SIZE_L3);
  1648. g_cpucache_up = PARTIAL_L3;
  1649. } else {
  1650. int node;
  1651. for_each_online_node(node) {
  1652. cachep->nodelists[node] =
  1653. kmalloc_node(sizeof(struct kmem_list3),
  1654. GFP_KERNEL, node);
  1655. BUG_ON(!cachep->nodelists[node]);
  1656. kmem_list3_init(cachep->nodelists[node]);
  1657. }
  1658. }
  1659. }
  1660. cachep->nodelists[numa_node_id()]->next_reap =
  1661. jiffies + REAPTIMEOUT_LIST3 +
  1662. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1663. cpu_cache_get(cachep)->avail = 0;
  1664. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1665. cpu_cache_get(cachep)->batchcount = 1;
  1666. cpu_cache_get(cachep)->touched = 0;
  1667. cachep->batchcount = 1;
  1668. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1669. }
  1670. /**
  1671. * kmem_cache_create - Create a cache.
  1672. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1673. * @size: The size of objects to be created in this cache.
  1674. * @align: The required alignment for the objects.
  1675. * @flags: SLAB flags
  1676. * @ctor: A constructor for the objects.
  1677. * @dtor: A destructor for the objects.
  1678. *
  1679. * Returns a ptr to the cache on success, NULL on failure.
  1680. * Cannot be called within a int, but can be interrupted.
  1681. * The @ctor is run when new pages are allocated by the cache
  1682. * and the @dtor is run before the pages are handed back.
  1683. *
  1684. * @name must be valid until the cache is destroyed. This implies that
  1685. * the module calling this has to destroy the cache before getting unloaded.
  1686. *
  1687. * The flags are
  1688. *
  1689. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1690. * to catch references to uninitialised memory.
  1691. *
  1692. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1693. * for buffer overruns.
  1694. *
  1695. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1696. * cacheline. This can be beneficial if you're counting cycles as closely
  1697. * as davem.
  1698. */
  1699. struct kmem_cache *
  1700. kmem_cache_create (const char *name, size_t size, size_t align,
  1701. unsigned long flags,
  1702. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1703. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1704. {
  1705. size_t left_over, slab_size, ralign;
  1706. struct kmem_cache *cachep = NULL;
  1707. struct list_head *p;
  1708. /*
  1709. * Sanity checks... these are all serious usage bugs.
  1710. */
  1711. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1712. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1713. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1714. name);
  1715. BUG();
  1716. }
  1717. /*
  1718. * Prevent CPUs from coming and going.
  1719. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1720. */
  1721. lock_cpu_hotplug();
  1722. mutex_lock(&cache_chain_mutex);
  1723. list_for_each(p, &cache_chain) {
  1724. struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
  1725. mm_segment_t old_fs = get_fs();
  1726. char tmp;
  1727. int res;
  1728. /*
  1729. * This happens when the module gets unloaded and doesn't
  1730. * destroy its slab cache and no-one else reuses the vmalloc
  1731. * area of the module. Print a warning.
  1732. */
  1733. set_fs(KERNEL_DS);
  1734. res = __get_user(tmp, pc->name);
  1735. set_fs(old_fs);
  1736. if (res) {
  1737. printk("SLAB: cache with size %d has lost its name\n",
  1738. pc->buffer_size);
  1739. continue;
  1740. }
  1741. if (!strcmp(pc->name, name)) {
  1742. printk("kmem_cache_create: duplicate cache %s\n", name);
  1743. dump_stack();
  1744. goto oops;
  1745. }
  1746. }
  1747. #if DEBUG
  1748. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1749. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1750. /* No constructor, but inital state check requested */
  1751. printk(KERN_ERR "%s: No con, but init state check "
  1752. "requested - %s\n", __FUNCTION__, name);
  1753. flags &= ~SLAB_DEBUG_INITIAL;
  1754. }
  1755. #if FORCED_DEBUG
  1756. /*
  1757. * Enable redzoning and last user accounting, except for caches with
  1758. * large objects, if the increased size would increase the object size
  1759. * above the next power of two: caches with object sizes just above a
  1760. * power of two have a significant amount of internal fragmentation.
  1761. */
  1762. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1763. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1764. if (!(flags & SLAB_DESTROY_BY_RCU))
  1765. flags |= SLAB_POISON;
  1766. #endif
  1767. if (flags & SLAB_DESTROY_BY_RCU)
  1768. BUG_ON(flags & SLAB_POISON);
  1769. #endif
  1770. if (flags & SLAB_DESTROY_BY_RCU)
  1771. BUG_ON(dtor);
  1772. /*
  1773. * Always checks flags, a caller might be expecting debug support which
  1774. * isn't available.
  1775. */
  1776. BUG_ON(flags & ~CREATE_MASK);
  1777. /*
  1778. * Check that size is in terms of words. This is needed to avoid
  1779. * unaligned accesses for some archs when redzoning is used, and makes
  1780. * sure any on-slab bufctl's are also correctly aligned.
  1781. */
  1782. if (size & (BYTES_PER_WORD - 1)) {
  1783. size += (BYTES_PER_WORD - 1);
  1784. size &= ~(BYTES_PER_WORD - 1);
  1785. }
  1786. /* calculate the final buffer alignment: */
  1787. /* 1) arch recommendation: can be overridden for debug */
  1788. if (flags & SLAB_HWCACHE_ALIGN) {
  1789. /*
  1790. * Default alignment: as specified by the arch code. Except if
  1791. * an object is really small, then squeeze multiple objects into
  1792. * one cacheline.
  1793. */
  1794. ralign = cache_line_size();
  1795. while (size <= ralign / 2)
  1796. ralign /= 2;
  1797. } else {
  1798. ralign = BYTES_PER_WORD;
  1799. }
  1800. /* 2) arch mandated alignment: disables debug if necessary */
  1801. if (ralign < ARCH_SLAB_MINALIGN) {
  1802. ralign = ARCH_SLAB_MINALIGN;
  1803. if (ralign > BYTES_PER_WORD)
  1804. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1805. }
  1806. /* 3) caller mandated alignment: disables debug if necessary */
  1807. if (ralign < align) {
  1808. ralign = align;
  1809. if (ralign > BYTES_PER_WORD)
  1810. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1811. }
  1812. /*
  1813. * 4) Store it. Note that the debug code below can reduce
  1814. * the alignment to BYTES_PER_WORD.
  1815. */
  1816. align = ralign;
  1817. /* Get cache's description obj. */
  1818. cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
  1819. if (!cachep)
  1820. goto oops;
  1821. #if DEBUG
  1822. cachep->obj_size = size;
  1823. if (flags & SLAB_RED_ZONE) {
  1824. /* redzoning only works with word aligned caches */
  1825. align = BYTES_PER_WORD;
  1826. /* add space for red zone words */
  1827. cachep->obj_offset += BYTES_PER_WORD;
  1828. size += 2 * BYTES_PER_WORD;
  1829. }
  1830. if (flags & SLAB_STORE_USER) {
  1831. /* user store requires word alignment and
  1832. * one word storage behind the end of the real
  1833. * object.
  1834. */
  1835. align = BYTES_PER_WORD;
  1836. size += BYTES_PER_WORD;
  1837. }
  1838. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1839. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1840. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1841. cachep->obj_offset += PAGE_SIZE - size;
  1842. size = PAGE_SIZE;
  1843. }
  1844. #endif
  1845. #endif
  1846. /* Determine if the slab management is 'on' or 'off' slab. */
  1847. if (size >= (PAGE_SIZE >> 3))
  1848. /*
  1849. * Size is large, assume best to place the slab management obj
  1850. * off-slab (should allow better packing of objs).
  1851. */
  1852. flags |= CFLGS_OFF_SLAB;
  1853. size = ALIGN(size, align);
  1854. left_over = calculate_slab_order(cachep, size, align, flags);
  1855. if (!cachep->num) {
  1856. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1857. kmem_cache_free(&cache_cache, cachep);
  1858. cachep = NULL;
  1859. goto oops;
  1860. }
  1861. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1862. + sizeof(struct slab), align);
  1863. /*
  1864. * If the slab has been placed off-slab, and we have enough space then
  1865. * move it on-slab. This is at the expense of any extra colouring.
  1866. */
  1867. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1868. flags &= ~CFLGS_OFF_SLAB;
  1869. left_over -= slab_size;
  1870. }
  1871. if (flags & CFLGS_OFF_SLAB) {
  1872. /* really off slab. No need for manual alignment */
  1873. slab_size =
  1874. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1875. }
  1876. cachep->colour_off = cache_line_size();
  1877. /* Offset must be a multiple of the alignment. */
  1878. if (cachep->colour_off < align)
  1879. cachep->colour_off = align;
  1880. cachep->colour = left_over / cachep->colour_off;
  1881. cachep->slab_size = slab_size;
  1882. cachep->flags = flags;
  1883. cachep->gfpflags = 0;
  1884. if (flags & SLAB_CACHE_DMA)
  1885. cachep->gfpflags |= GFP_DMA;
  1886. cachep->buffer_size = size;
  1887. if (flags & CFLGS_OFF_SLAB)
  1888. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1889. cachep->ctor = ctor;
  1890. cachep->dtor = dtor;
  1891. cachep->name = name;
  1892. setup_cpu_cache(cachep);
  1893. /* cache setup completed, link it into the list */
  1894. list_add(&cachep->next, &cache_chain);
  1895. oops:
  1896. if (!cachep && (flags & SLAB_PANIC))
  1897. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1898. name);
  1899. mutex_unlock(&cache_chain_mutex);
  1900. unlock_cpu_hotplug();
  1901. return cachep;
  1902. }
  1903. EXPORT_SYMBOL(kmem_cache_create);
  1904. #if DEBUG
  1905. static void check_irq_off(void)
  1906. {
  1907. BUG_ON(!irqs_disabled());
  1908. }
  1909. static void check_irq_on(void)
  1910. {
  1911. BUG_ON(irqs_disabled());
  1912. }
  1913. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1914. {
  1915. #ifdef CONFIG_SMP
  1916. check_irq_off();
  1917. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1918. #endif
  1919. }
  1920. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1921. {
  1922. #ifdef CONFIG_SMP
  1923. check_irq_off();
  1924. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1925. #endif
  1926. }
  1927. #else
  1928. #define check_irq_off() do { } while(0)
  1929. #define check_irq_on() do { } while(0)
  1930. #define check_spinlock_acquired(x) do { } while(0)
  1931. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1932. #endif
  1933. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  1934. struct array_cache *ac,
  1935. int force, int node);
  1936. static void do_drain(void *arg)
  1937. {
  1938. struct kmem_cache *cachep = arg;
  1939. struct array_cache *ac;
  1940. int node = numa_node_id();
  1941. check_irq_off();
  1942. ac = cpu_cache_get(cachep);
  1943. spin_lock(&cachep->nodelists[node]->list_lock);
  1944. free_block(cachep, ac->entry, ac->avail, node);
  1945. spin_unlock(&cachep->nodelists[node]->list_lock);
  1946. ac->avail = 0;
  1947. }
  1948. static void drain_cpu_caches(struct kmem_cache *cachep)
  1949. {
  1950. struct kmem_list3 *l3;
  1951. int node;
  1952. on_each_cpu(do_drain, cachep, 1, 1);
  1953. check_irq_on();
  1954. for_each_online_node(node) {
  1955. l3 = cachep->nodelists[node];
  1956. if (l3 && l3->alien)
  1957. drain_alien_cache(cachep, l3->alien);
  1958. }
  1959. for_each_online_node(node) {
  1960. l3 = cachep->nodelists[node];
  1961. if (l3)
  1962. drain_array(cachep, l3, l3->shared, 1, node);
  1963. }
  1964. }
  1965. static int __node_shrink(struct kmem_cache *cachep, int node)
  1966. {
  1967. struct slab *slabp;
  1968. struct kmem_list3 *l3 = cachep->nodelists[node];
  1969. int ret;
  1970. for (;;) {
  1971. struct list_head *p;
  1972. p = l3->slabs_free.prev;
  1973. if (p == &l3->slabs_free)
  1974. break;
  1975. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  1976. #if DEBUG
  1977. BUG_ON(slabp->inuse);
  1978. #endif
  1979. list_del(&slabp->list);
  1980. l3->free_objects -= cachep->num;
  1981. spin_unlock_irq(&l3->list_lock);
  1982. slab_destroy(cachep, slabp);
  1983. spin_lock_irq(&l3->list_lock);
  1984. }
  1985. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  1986. return ret;
  1987. }
  1988. static int __cache_shrink(struct kmem_cache *cachep)
  1989. {
  1990. int ret = 0, i = 0;
  1991. struct kmem_list3 *l3;
  1992. drain_cpu_caches(cachep);
  1993. check_irq_on();
  1994. for_each_online_node(i) {
  1995. l3 = cachep->nodelists[i];
  1996. if (l3) {
  1997. spin_lock_irq(&l3->list_lock);
  1998. ret += __node_shrink(cachep, i);
  1999. spin_unlock_irq(&l3->list_lock);
  2000. }
  2001. }
  2002. return (ret ? 1 : 0);
  2003. }
  2004. /**
  2005. * kmem_cache_shrink - Shrink a cache.
  2006. * @cachep: The cache to shrink.
  2007. *
  2008. * Releases as many slabs as possible for a cache.
  2009. * To help debugging, a zero exit status indicates all slabs were released.
  2010. */
  2011. int kmem_cache_shrink(struct kmem_cache *cachep)
  2012. {
  2013. BUG_ON(!cachep || in_interrupt());
  2014. return __cache_shrink(cachep);
  2015. }
  2016. EXPORT_SYMBOL(kmem_cache_shrink);
  2017. /**
  2018. * kmem_cache_destroy - delete a cache
  2019. * @cachep: the cache to destroy
  2020. *
  2021. * Remove a struct kmem_cache object from the slab cache.
  2022. * Returns 0 on success.
  2023. *
  2024. * It is expected this function will be called by a module when it is
  2025. * unloaded. This will remove the cache completely, and avoid a duplicate
  2026. * cache being allocated each time a module is loaded and unloaded, if the
  2027. * module doesn't have persistent in-kernel storage across loads and unloads.
  2028. *
  2029. * The cache must be empty before calling this function.
  2030. *
  2031. * The caller must guarantee that noone will allocate memory from the cache
  2032. * during the kmem_cache_destroy().
  2033. */
  2034. int kmem_cache_destroy(struct kmem_cache *cachep)
  2035. {
  2036. int i;
  2037. struct kmem_list3 *l3;
  2038. BUG_ON(!cachep || in_interrupt());
  2039. /* Don't let CPUs to come and go */
  2040. lock_cpu_hotplug();
  2041. /* Find the cache in the chain of caches. */
  2042. mutex_lock(&cache_chain_mutex);
  2043. /*
  2044. * the chain is never empty, cache_cache is never destroyed
  2045. */
  2046. list_del(&cachep->next);
  2047. mutex_unlock(&cache_chain_mutex);
  2048. if (__cache_shrink(cachep)) {
  2049. slab_error(cachep, "Can't free all objects");
  2050. mutex_lock(&cache_chain_mutex);
  2051. list_add(&cachep->next, &cache_chain);
  2052. mutex_unlock(&cache_chain_mutex);
  2053. unlock_cpu_hotplug();
  2054. return 1;
  2055. }
  2056. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2057. synchronize_rcu();
  2058. for_each_online_cpu(i)
  2059. kfree(cachep->array[i]);
  2060. /* NUMA: free the list3 structures */
  2061. for_each_online_node(i) {
  2062. l3 = cachep->nodelists[i];
  2063. if (l3) {
  2064. kfree(l3->shared);
  2065. free_alien_cache(l3->alien);
  2066. kfree(l3);
  2067. }
  2068. }
  2069. kmem_cache_free(&cache_cache, cachep);
  2070. unlock_cpu_hotplug();
  2071. return 0;
  2072. }
  2073. EXPORT_SYMBOL(kmem_cache_destroy);
  2074. /* Get the memory for a slab management obj. */
  2075. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2076. int colour_off, gfp_t local_flags,
  2077. int nodeid)
  2078. {
  2079. struct slab *slabp;
  2080. if (OFF_SLAB(cachep)) {
  2081. /* Slab management obj is off-slab. */
  2082. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2083. local_flags, nodeid);
  2084. if (!slabp)
  2085. return NULL;
  2086. } else {
  2087. slabp = objp + colour_off;
  2088. colour_off += cachep->slab_size;
  2089. }
  2090. slabp->inuse = 0;
  2091. slabp->colouroff = colour_off;
  2092. slabp->s_mem = objp + colour_off;
  2093. slabp->nodeid = nodeid;
  2094. return slabp;
  2095. }
  2096. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2097. {
  2098. return (kmem_bufctl_t *) (slabp + 1);
  2099. }
  2100. static void cache_init_objs(struct kmem_cache *cachep,
  2101. struct slab *slabp, unsigned long ctor_flags)
  2102. {
  2103. int i;
  2104. for (i = 0; i < cachep->num; i++) {
  2105. void *objp = index_to_obj(cachep, slabp, i);
  2106. #if DEBUG
  2107. /* need to poison the objs? */
  2108. if (cachep->flags & SLAB_POISON)
  2109. poison_obj(cachep, objp, POISON_FREE);
  2110. if (cachep->flags & SLAB_STORE_USER)
  2111. *dbg_userword(cachep, objp) = NULL;
  2112. if (cachep->flags & SLAB_RED_ZONE) {
  2113. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2114. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2115. }
  2116. /*
  2117. * Constructors are not allowed to allocate memory from the same
  2118. * cache which they are a constructor for. Otherwise, deadlock.
  2119. * They must also be threaded.
  2120. */
  2121. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2122. cachep->ctor(objp + obj_offset(cachep), cachep,
  2123. ctor_flags);
  2124. if (cachep->flags & SLAB_RED_ZONE) {
  2125. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2126. slab_error(cachep, "constructor overwrote the"
  2127. " end of an object");
  2128. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2129. slab_error(cachep, "constructor overwrote the"
  2130. " start of an object");
  2131. }
  2132. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2133. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2134. kernel_map_pages(virt_to_page(objp),
  2135. cachep->buffer_size / PAGE_SIZE, 0);
  2136. #else
  2137. if (cachep->ctor)
  2138. cachep->ctor(objp, cachep, ctor_flags);
  2139. #endif
  2140. slab_bufctl(slabp)[i] = i + 1;
  2141. }
  2142. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2143. slabp->free = 0;
  2144. }
  2145. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2146. {
  2147. if (flags & SLAB_DMA)
  2148. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2149. else
  2150. BUG_ON(cachep->gfpflags & GFP_DMA);
  2151. }
  2152. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2153. int nodeid)
  2154. {
  2155. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2156. kmem_bufctl_t next;
  2157. slabp->inuse++;
  2158. next = slab_bufctl(slabp)[slabp->free];
  2159. #if DEBUG
  2160. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2161. WARN_ON(slabp->nodeid != nodeid);
  2162. #endif
  2163. slabp->free = next;
  2164. return objp;
  2165. }
  2166. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2167. void *objp, int nodeid)
  2168. {
  2169. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2170. #if DEBUG
  2171. /* Verify that the slab belongs to the intended node */
  2172. WARN_ON(slabp->nodeid != nodeid);
  2173. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2174. printk(KERN_ERR "slab: double free detected in cache "
  2175. "'%s', objp %p\n", cachep->name, objp);
  2176. BUG();
  2177. }
  2178. #endif
  2179. slab_bufctl(slabp)[objnr] = slabp->free;
  2180. slabp->free = objnr;
  2181. slabp->inuse--;
  2182. }
  2183. static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
  2184. void *objp)
  2185. {
  2186. int i;
  2187. struct page *page;
  2188. /* Nasty!!!!!! I hope this is OK. */
  2189. page = virt_to_page(objp);
  2190. i = 1;
  2191. if (likely(!PageCompound(page)))
  2192. i <<= cachep->gfporder;
  2193. do {
  2194. page_set_cache(page, cachep);
  2195. page_set_slab(page, slabp);
  2196. page++;
  2197. } while (--i);
  2198. }
  2199. /*
  2200. * Grow (by 1) the number of slabs within a cache. This is called by
  2201. * kmem_cache_alloc() when there are no active objs left in a cache.
  2202. */
  2203. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2204. {
  2205. struct slab *slabp;
  2206. void *objp;
  2207. size_t offset;
  2208. gfp_t local_flags;
  2209. unsigned long ctor_flags;
  2210. struct kmem_list3 *l3;
  2211. /*
  2212. * Be lazy and only check for valid flags here, keeping it out of the
  2213. * critical path in kmem_cache_alloc().
  2214. */
  2215. BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
  2216. if (flags & SLAB_NO_GROW)
  2217. return 0;
  2218. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2219. local_flags = (flags & SLAB_LEVEL_MASK);
  2220. if (!(local_flags & __GFP_WAIT))
  2221. /*
  2222. * Not allowed to sleep. Need to tell a constructor about
  2223. * this - it might need to know...
  2224. */
  2225. ctor_flags |= SLAB_CTOR_ATOMIC;
  2226. /* Take the l3 list lock to change the colour_next on this node */
  2227. check_irq_off();
  2228. l3 = cachep->nodelists[nodeid];
  2229. spin_lock(&l3->list_lock);
  2230. /* Get colour for the slab, and cal the next value. */
  2231. offset = l3->colour_next;
  2232. l3->colour_next++;
  2233. if (l3->colour_next >= cachep->colour)
  2234. l3->colour_next = 0;
  2235. spin_unlock(&l3->list_lock);
  2236. offset *= cachep->colour_off;
  2237. if (local_flags & __GFP_WAIT)
  2238. local_irq_enable();
  2239. /*
  2240. * The test for missing atomic flag is performed here, rather than
  2241. * the more obvious place, simply to reduce the critical path length
  2242. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2243. * will eventually be caught here (where it matters).
  2244. */
  2245. kmem_flagcheck(cachep, flags);
  2246. /*
  2247. * Get mem for the objs. Attempt to allocate a physical page from
  2248. * 'nodeid'.
  2249. */
  2250. objp = kmem_getpages(cachep, flags, nodeid);
  2251. if (!objp)
  2252. goto failed;
  2253. /* Get slab management. */
  2254. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
  2255. if (!slabp)
  2256. goto opps1;
  2257. slabp->nodeid = nodeid;
  2258. set_slab_attr(cachep, slabp, objp);
  2259. cache_init_objs(cachep, slabp, ctor_flags);
  2260. if (local_flags & __GFP_WAIT)
  2261. local_irq_disable();
  2262. check_irq_off();
  2263. spin_lock(&l3->list_lock);
  2264. /* Make slab active. */
  2265. list_add_tail(&slabp->list, &(l3->slabs_free));
  2266. STATS_INC_GROWN(cachep);
  2267. l3->free_objects += cachep->num;
  2268. spin_unlock(&l3->list_lock);
  2269. return 1;
  2270. opps1:
  2271. kmem_freepages(cachep, objp);
  2272. failed:
  2273. if (local_flags & __GFP_WAIT)
  2274. local_irq_disable();
  2275. return 0;
  2276. }
  2277. #if DEBUG
  2278. /*
  2279. * Perform extra freeing checks:
  2280. * - detect bad pointers.
  2281. * - POISON/RED_ZONE checking
  2282. * - destructor calls, for caches with POISON+dtor
  2283. */
  2284. static void kfree_debugcheck(const void *objp)
  2285. {
  2286. struct page *page;
  2287. if (!virt_addr_valid(objp)) {
  2288. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2289. (unsigned long)objp);
  2290. BUG();
  2291. }
  2292. page = virt_to_page(objp);
  2293. if (!PageSlab(page)) {
  2294. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2295. (unsigned long)objp);
  2296. BUG();
  2297. }
  2298. }
  2299. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2300. void *caller)
  2301. {
  2302. struct page *page;
  2303. unsigned int objnr;
  2304. struct slab *slabp;
  2305. objp -= obj_offset(cachep);
  2306. kfree_debugcheck(objp);
  2307. page = virt_to_page(objp);
  2308. if (page_get_cache(page) != cachep) {
  2309. printk(KERN_ERR "mismatch in kmem_cache_free: expected "
  2310. "cache %p, got %p\n",
  2311. page_get_cache(page), cachep);
  2312. printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
  2313. printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
  2314. page_get_cache(page)->name);
  2315. WARN_ON(1);
  2316. }
  2317. slabp = page_get_slab(page);
  2318. if (cachep->flags & SLAB_RED_ZONE) {
  2319. if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
  2320. *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
  2321. slab_error(cachep, "double free, or memory outside"
  2322. " object was overwritten");
  2323. printk(KERN_ERR "%p: redzone 1:0x%lx, "
  2324. "redzone 2:0x%lx.\n",
  2325. objp, *dbg_redzone1(cachep, objp),
  2326. *dbg_redzone2(cachep, objp));
  2327. }
  2328. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2329. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2330. }
  2331. if (cachep->flags & SLAB_STORE_USER)
  2332. *dbg_userword(cachep, objp) = caller;
  2333. objnr = obj_to_index(cachep, slabp, objp);
  2334. BUG_ON(objnr >= cachep->num);
  2335. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2336. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2337. /*
  2338. * Need to call the slab's constructor so the caller can
  2339. * perform a verify of its state (debugging). Called without
  2340. * the cache-lock held.
  2341. */
  2342. cachep->ctor(objp + obj_offset(cachep),
  2343. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2344. }
  2345. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2346. /* we want to cache poison the object,
  2347. * call the destruction callback
  2348. */
  2349. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2350. }
  2351. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2352. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2353. #endif
  2354. if (cachep->flags & SLAB_POISON) {
  2355. #ifdef CONFIG_DEBUG_PAGEALLOC
  2356. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2357. store_stackinfo(cachep, objp, (unsigned long)caller);
  2358. kernel_map_pages(virt_to_page(objp),
  2359. cachep->buffer_size / PAGE_SIZE, 0);
  2360. } else {
  2361. poison_obj(cachep, objp, POISON_FREE);
  2362. }
  2363. #else
  2364. poison_obj(cachep, objp, POISON_FREE);
  2365. #endif
  2366. }
  2367. return objp;
  2368. }
  2369. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2370. {
  2371. kmem_bufctl_t i;
  2372. int entries = 0;
  2373. /* Check slab's freelist to see if this obj is there. */
  2374. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2375. entries++;
  2376. if (entries > cachep->num || i >= cachep->num)
  2377. goto bad;
  2378. }
  2379. if (entries != cachep->num - slabp->inuse) {
  2380. bad:
  2381. printk(KERN_ERR "slab: Internal list corruption detected in "
  2382. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2383. cachep->name, cachep->num, slabp, slabp->inuse);
  2384. for (i = 0;
  2385. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2386. i++) {
  2387. if (i % 16 == 0)
  2388. printk("\n%03x:", i);
  2389. printk(" %02x", ((unsigned char *)slabp)[i]);
  2390. }
  2391. printk("\n");
  2392. BUG();
  2393. }
  2394. }
  2395. #else
  2396. #define kfree_debugcheck(x) do { } while(0)
  2397. #define cache_free_debugcheck(x,objp,z) (objp)
  2398. #define check_slabp(x,y) do { } while(0)
  2399. #endif
  2400. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2401. {
  2402. int batchcount;
  2403. struct kmem_list3 *l3;
  2404. struct array_cache *ac;
  2405. check_irq_off();
  2406. ac = cpu_cache_get(cachep);
  2407. retry:
  2408. batchcount = ac->batchcount;
  2409. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2410. /*
  2411. * If there was little recent activity on this cache, then
  2412. * perform only a partial refill. Otherwise we could generate
  2413. * refill bouncing.
  2414. */
  2415. batchcount = BATCHREFILL_LIMIT;
  2416. }
  2417. l3 = cachep->nodelists[numa_node_id()];
  2418. BUG_ON(ac->avail > 0 || !l3);
  2419. spin_lock(&l3->list_lock);
  2420. /* See if we can refill from the shared array */
  2421. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2422. goto alloc_done;
  2423. while (batchcount > 0) {
  2424. struct list_head *entry;
  2425. struct slab *slabp;
  2426. /* Get slab alloc is to come from. */
  2427. entry = l3->slabs_partial.next;
  2428. if (entry == &l3->slabs_partial) {
  2429. l3->free_touched = 1;
  2430. entry = l3->slabs_free.next;
  2431. if (entry == &l3->slabs_free)
  2432. goto must_grow;
  2433. }
  2434. slabp = list_entry(entry, struct slab, list);
  2435. check_slabp(cachep, slabp);
  2436. check_spinlock_acquired(cachep);
  2437. while (slabp->inuse < cachep->num && batchcount--) {
  2438. STATS_INC_ALLOCED(cachep);
  2439. STATS_INC_ACTIVE(cachep);
  2440. STATS_SET_HIGH(cachep);
  2441. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2442. numa_node_id());
  2443. }
  2444. check_slabp(cachep, slabp);
  2445. /* move slabp to correct slabp list: */
  2446. list_del(&slabp->list);
  2447. if (slabp->free == BUFCTL_END)
  2448. list_add(&slabp->list, &l3->slabs_full);
  2449. else
  2450. list_add(&slabp->list, &l3->slabs_partial);
  2451. }
  2452. must_grow:
  2453. l3->free_objects -= ac->avail;
  2454. alloc_done:
  2455. spin_unlock(&l3->list_lock);
  2456. if (unlikely(!ac->avail)) {
  2457. int x;
  2458. x = cache_grow(cachep, flags, numa_node_id());
  2459. /* cache_grow can reenable interrupts, then ac could change. */
  2460. ac = cpu_cache_get(cachep);
  2461. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2462. return NULL;
  2463. if (!ac->avail) /* objects refilled by interrupt? */
  2464. goto retry;
  2465. }
  2466. ac->touched = 1;
  2467. return ac->entry[--ac->avail];
  2468. }
  2469. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2470. gfp_t flags)
  2471. {
  2472. might_sleep_if(flags & __GFP_WAIT);
  2473. #if DEBUG
  2474. kmem_flagcheck(cachep, flags);
  2475. #endif
  2476. }
  2477. #if DEBUG
  2478. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2479. gfp_t flags, void *objp, void *caller)
  2480. {
  2481. if (!objp)
  2482. return objp;
  2483. if (cachep->flags & SLAB_POISON) {
  2484. #ifdef CONFIG_DEBUG_PAGEALLOC
  2485. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2486. kernel_map_pages(virt_to_page(objp),
  2487. cachep->buffer_size / PAGE_SIZE, 1);
  2488. else
  2489. check_poison_obj(cachep, objp);
  2490. #else
  2491. check_poison_obj(cachep, objp);
  2492. #endif
  2493. poison_obj(cachep, objp, POISON_INUSE);
  2494. }
  2495. if (cachep->flags & SLAB_STORE_USER)
  2496. *dbg_userword(cachep, objp) = caller;
  2497. if (cachep->flags & SLAB_RED_ZONE) {
  2498. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2499. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2500. slab_error(cachep, "double free, or memory outside"
  2501. " object was overwritten");
  2502. printk(KERN_ERR
  2503. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2504. objp, *dbg_redzone1(cachep, objp),
  2505. *dbg_redzone2(cachep, objp));
  2506. }
  2507. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2508. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2509. }
  2510. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2511. {
  2512. struct slab *slabp;
  2513. unsigned objnr;
  2514. slabp = page_get_slab(virt_to_page(objp));
  2515. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2516. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2517. }
  2518. #endif
  2519. objp += obj_offset(cachep);
  2520. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2521. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2522. if (!(flags & __GFP_WAIT))
  2523. ctor_flags |= SLAB_CTOR_ATOMIC;
  2524. cachep->ctor(objp, cachep, ctor_flags);
  2525. }
  2526. return objp;
  2527. }
  2528. #else
  2529. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2530. #endif
  2531. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2532. {
  2533. void *objp;
  2534. struct array_cache *ac;
  2535. #ifdef CONFIG_NUMA
  2536. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2537. objp = alternate_node_alloc(cachep, flags);
  2538. if (objp != NULL)
  2539. return objp;
  2540. }
  2541. #endif
  2542. check_irq_off();
  2543. ac = cpu_cache_get(cachep);
  2544. if (likely(ac->avail)) {
  2545. STATS_INC_ALLOCHIT(cachep);
  2546. ac->touched = 1;
  2547. objp = ac->entry[--ac->avail];
  2548. } else {
  2549. STATS_INC_ALLOCMISS(cachep);
  2550. objp = cache_alloc_refill(cachep, flags);
  2551. }
  2552. return objp;
  2553. }
  2554. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2555. gfp_t flags, void *caller)
  2556. {
  2557. unsigned long save_flags;
  2558. void *objp;
  2559. cache_alloc_debugcheck_before(cachep, flags);
  2560. local_irq_save(save_flags);
  2561. objp = ____cache_alloc(cachep, flags);
  2562. local_irq_restore(save_flags);
  2563. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2564. caller);
  2565. prefetchw(objp);
  2566. return objp;
  2567. }
  2568. #ifdef CONFIG_NUMA
  2569. /*
  2570. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2571. *
  2572. * If we are in_interrupt, then process context, including cpusets and
  2573. * mempolicy, may not apply and should not be used for allocation policy.
  2574. */
  2575. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2576. {
  2577. int nid_alloc, nid_here;
  2578. if (in_interrupt())
  2579. return NULL;
  2580. nid_alloc = nid_here = numa_node_id();
  2581. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2582. nid_alloc = cpuset_mem_spread_node();
  2583. else if (current->mempolicy)
  2584. nid_alloc = slab_node(current->mempolicy);
  2585. if (nid_alloc != nid_here)
  2586. return __cache_alloc_node(cachep, flags, nid_alloc);
  2587. return NULL;
  2588. }
  2589. /*
  2590. * A interface to enable slab creation on nodeid
  2591. */
  2592. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2593. int nodeid)
  2594. {
  2595. struct list_head *entry;
  2596. struct slab *slabp;
  2597. struct kmem_list3 *l3;
  2598. void *obj;
  2599. int x;
  2600. l3 = cachep->nodelists[nodeid];
  2601. BUG_ON(!l3);
  2602. retry:
  2603. check_irq_off();
  2604. spin_lock(&l3->list_lock);
  2605. entry = l3->slabs_partial.next;
  2606. if (entry == &l3->slabs_partial) {
  2607. l3->free_touched = 1;
  2608. entry = l3->slabs_free.next;
  2609. if (entry == &l3->slabs_free)
  2610. goto must_grow;
  2611. }
  2612. slabp = list_entry(entry, struct slab, list);
  2613. check_spinlock_acquired_node(cachep, nodeid);
  2614. check_slabp(cachep, slabp);
  2615. STATS_INC_NODEALLOCS(cachep);
  2616. STATS_INC_ACTIVE(cachep);
  2617. STATS_SET_HIGH(cachep);
  2618. BUG_ON(slabp->inuse == cachep->num);
  2619. obj = slab_get_obj(cachep, slabp, nodeid);
  2620. check_slabp(cachep, slabp);
  2621. l3->free_objects--;
  2622. /* move slabp to correct slabp list: */
  2623. list_del(&slabp->list);
  2624. if (slabp->free == BUFCTL_END)
  2625. list_add(&slabp->list, &l3->slabs_full);
  2626. else
  2627. list_add(&slabp->list, &l3->slabs_partial);
  2628. spin_unlock(&l3->list_lock);
  2629. goto done;
  2630. must_grow:
  2631. spin_unlock(&l3->list_lock);
  2632. x = cache_grow(cachep, flags, nodeid);
  2633. if (!x)
  2634. return NULL;
  2635. goto retry;
  2636. done:
  2637. return obj;
  2638. }
  2639. #endif
  2640. /*
  2641. * Caller needs to acquire correct kmem_list's list_lock
  2642. */
  2643. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2644. int node)
  2645. {
  2646. int i;
  2647. struct kmem_list3 *l3;
  2648. for (i = 0; i < nr_objects; i++) {
  2649. void *objp = objpp[i];
  2650. struct slab *slabp;
  2651. slabp = virt_to_slab(objp);
  2652. l3 = cachep->nodelists[node];
  2653. list_del(&slabp->list);
  2654. check_spinlock_acquired_node(cachep, node);
  2655. check_slabp(cachep, slabp);
  2656. slab_put_obj(cachep, slabp, objp, node);
  2657. STATS_DEC_ACTIVE(cachep);
  2658. l3->free_objects++;
  2659. check_slabp(cachep, slabp);
  2660. /* fixup slab chains */
  2661. if (slabp->inuse == 0) {
  2662. if (l3->free_objects > l3->free_limit) {
  2663. l3->free_objects -= cachep->num;
  2664. slab_destroy(cachep, slabp);
  2665. } else {
  2666. list_add(&slabp->list, &l3->slabs_free);
  2667. }
  2668. } else {
  2669. /* Unconditionally move a slab to the end of the
  2670. * partial list on free - maximum time for the
  2671. * other objects to be freed, too.
  2672. */
  2673. list_add_tail(&slabp->list, &l3->slabs_partial);
  2674. }
  2675. }
  2676. }
  2677. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2678. {
  2679. int batchcount;
  2680. struct kmem_list3 *l3;
  2681. int node = numa_node_id();
  2682. batchcount = ac->batchcount;
  2683. #if DEBUG
  2684. BUG_ON(!batchcount || batchcount > ac->avail);
  2685. #endif
  2686. check_irq_off();
  2687. l3 = cachep->nodelists[node];
  2688. spin_lock(&l3->list_lock);
  2689. if (l3->shared) {
  2690. struct array_cache *shared_array = l3->shared;
  2691. int max = shared_array->limit - shared_array->avail;
  2692. if (max) {
  2693. if (batchcount > max)
  2694. batchcount = max;
  2695. memcpy(&(shared_array->entry[shared_array->avail]),
  2696. ac->entry, sizeof(void *) * batchcount);
  2697. shared_array->avail += batchcount;
  2698. goto free_done;
  2699. }
  2700. }
  2701. free_block(cachep, ac->entry, batchcount, node);
  2702. free_done:
  2703. #if STATS
  2704. {
  2705. int i = 0;
  2706. struct list_head *p;
  2707. p = l3->slabs_free.next;
  2708. while (p != &(l3->slabs_free)) {
  2709. struct slab *slabp;
  2710. slabp = list_entry(p, struct slab, list);
  2711. BUG_ON(slabp->inuse);
  2712. i++;
  2713. p = p->next;
  2714. }
  2715. STATS_SET_FREEABLE(cachep, i);
  2716. }
  2717. #endif
  2718. spin_unlock(&l3->list_lock);
  2719. ac->avail -= batchcount;
  2720. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2721. }
  2722. /*
  2723. * Release an obj back to its cache. If the obj has a constructed state, it must
  2724. * be in this state _before_ it is released. Called with disabled ints.
  2725. */
  2726. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2727. {
  2728. struct array_cache *ac = cpu_cache_get(cachep);
  2729. check_irq_off();
  2730. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2731. /* Make sure we are not freeing a object from another
  2732. * node to the array cache on this cpu.
  2733. */
  2734. #ifdef CONFIG_NUMA
  2735. {
  2736. struct slab *slabp;
  2737. slabp = virt_to_slab(objp);
  2738. if (unlikely(slabp->nodeid != numa_node_id())) {
  2739. struct array_cache *alien = NULL;
  2740. int nodeid = slabp->nodeid;
  2741. struct kmem_list3 *l3;
  2742. l3 = cachep->nodelists[numa_node_id()];
  2743. STATS_INC_NODEFREES(cachep);
  2744. if (l3->alien && l3->alien[nodeid]) {
  2745. alien = l3->alien[nodeid];
  2746. spin_lock(&alien->lock);
  2747. if (unlikely(alien->avail == alien->limit)) {
  2748. STATS_INC_ACOVERFLOW(cachep);
  2749. __drain_alien_cache(cachep,
  2750. alien, nodeid);
  2751. }
  2752. alien->entry[alien->avail++] = objp;
  2753. spin_unlock(&alien->lock);
  2754. } else {
  2755. spin_lock(&(cachep->nodelists[nodeid])->
  2756. list_lock);
  2757. free_block(cachep, &objp, 1, nodeid);
  2758. spin_unlock(&(cachep->nodelists[nodeid])->
  2759. list_lock);
  2760. }
  2761. return;
  2762. }
  2763. }
  2764. #endif
  2765. if (likely(ac->avail < ac->limit)) {
  2766. STATS_INC_FREEHIT(cachep);
  2767. ac->entry[ac->avail++] = objp;
  2768. return;
  2769. } else {
  2770. STATS_INC_FREEMISS(cachep);
  2771. cache_flusharray(cachep, ac);
  2772. ac->entry[ac->avail++] = objp;
  2773. }
  2774. }
  2775. /**
  2776. * kmem_cache_alloc - Allocate an object
  2777. * @cachep: The cache to allocate from.
  2778. * @flags: See kmalloc().
  2779. *
  2780. * Allocate an object from this cache. The flags are only relevant
  2781. * if the cache has no available objects.
  2782. */
  2783. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2784. {
  2785. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2786. }
  2787. EXPORT_SYMBOL(kmem_cache_alloc);
  2788. /**
  2789. * kmem_cache_alloc - Allocate an object. The memory is set to zero.
  2790. * @cache: The cache to allocate from.
  2791. * @flags: See kmalloc().
  2792. *
  2793. * Allocate an object from this cache and set the allocated memory to zero.
  2794. * The flags are only relevant if the cache has no available objects.
  2795. */
  2796. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  2797. {
  2798. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  2799. if (ret)
  2800. memset(ret, 0, obj_size(cache));
  2801. return ret;
  2802. }
  2803. EXPORT_SYMBOL(kmem_cache_zalloc);
  2804. /**
  2805. * kmem_ptr_validate - check if an untrusted pointer might
  2806. * be a slab entry.
  2807. * @cachep: the cache we're checking against
  2808. * @ptr: pointer to validate
  2809. *
  2810. * This verifies that the untrusted pointer looks sane:
  2811. * it is _not_ a guarantee that the pointer is actually
  2812. * part of the slab cache in question, but it at least
  2813. * validates that the pointer can be dereferenced and
  2814. * looks half-way sane.
  2815. *
  2816. * Currently only used for dentry validation.
  2817. */
  2818. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2819. {
  2820. unsigned long addr = (unsigned long)ptr;
  2821. unsigned long min_addr = PAGE_OFFSET;
  2822. unsigned long align_mask = BYTES_PER_WORD - 1;
  2823. unsigned long size = cachep->buffer_size;
  2824. struct page *page;
  2825. if (unlikely(addr < min_addr))
  2826. goto out;
  2827. if (unlikely(addr > (unsigned long)high_memory - size))
  2828. goto out;
  2829. if (unlikely(addr & align_mask))
  2830. goto out;
  2831. if (unlikely(!kern_addr_valid(addr)))
  2832. goto out;
  2833. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2834. goto out;
  2835. page = virt_to_page(ptr);
  2836. if (unlikely(!PageSlab(page)))
  2837. goto out;
  2838. if (unlikely(page_get_cache(page) != cachep))
  2839. goto out;
  2840. return 1;
  2841. out:
  2842. return 0;
  2843. }
  2844. #ifdef CONFIG_NUMA
  2845. /**
  2846. * kmem_cache_alloc_node - Allocate an object on the specified node
  2847. * @cachep: The cache to allocate from.
  2848. * @flags: See kmalloc().
  2849. * @nodeid: node number of the target node.
  2850. *
  2851. * Identical to kmem_cache_alloc, except that this function is slow
  2852. * and can sleep. And it will allocate memory on the given node, which
  2853. * can improve the performance for cpu bound structures.
  2854. * New and improved: it will now make sure that the object gets
  2855. * put on the correct node list so that there is no false sharing.
  2856. */
  2857. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2858. {
  2859. unsigned long save_flags;
  2860. void *ptr;
  2861. cache_alloc_debugcheck_before(cachep, flags);
  2862. local_irq_save(save_flags);
  2863. if (nodeid == -1 || nodeid == numa_node_id() ||
  2864. !cachep->nodelists[nodeid])
  2865. ptr = ____cache_alloc(cachep, flags);
  2866. else
  2867. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2868. local_irq_restore(save_flags);
  2869. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2870. __builtin_return_address(0));
  2871. return ptr;
  2872. }
  2873. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2874. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2875. {
  2876. struct kmem_cache *cachep;
  2877. cachep = kmem_find_general_cachep(size, flags);
  2878. if (unlikely(cachep == NULL))
  2879. return NULL;
  2880. return kmem_cache_alloc_node(cachep, flags, node);
  2881. }
  2882. EXPORT_SYMBOL(kmalloc_node);
  2883. #endif
  2884. /**
  2885. * kmalloc - allocate memory
  2886. * @size: how many bytes of memory are required.
  2887. * @flags: the type of memory to allocate.
  2888. * @caller: function caller for debug tracking of the caller
  2889. *
  2890. * kmalloc is the normal method of allocating memory
  2891. * in the kernel.
  2892. *
  2893. * The @flags argument may be one of:
  2894. *
  2895. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  2896. *
  2897. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  2898. *
  2899. * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
  2900. *
  2901. * Additionally, the %GFP_DMA flag may be set to indicate the memory
  2902. * must be suitable for DMA. This can mean different things on different
  2903. * platforms. For example, on i386, it means that the memory must come
  2904. * from the first 16MB.
  2905. */
  2906. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2907. void *caller)
  2908. {
  2909. struct kmem_cache *cachep;
  2910. /* If you want to save a few bytes .text space: replace
  2911. * __ with kmem_.
  2912. * Then kmalloc uses the uninlined functions instead of the inline
  2913. * functions.
  2914. */
  2915. cachep = __find_general_cachep(size, flags);
  2916. if (unlikely(cachep == NULL))
  2917. return NULL;
  2918. return __cache_alloc(cachep, flags, caller);
  2919. }
  2920. void *__kmalloc(size_t size, gfp_t flags)
  2921. {
  2922. #ifndef CONFIG_DEBUG_SLAB
  2923. return __do_kmalloc(size, flags, NULL);
  2924. #else
  2925. return __do_kmalloc(size, flags, __builtin_return_address(0));
  2926. #endif
  2927. }
  2928. EXPORT_SYMBOL(__kmalloc);
  2929. #ifdef CONFIG_DEBUG_SLAB
  2930. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2931. {
  2932. return __do_kmalloc(size, flags, caller);
  2933. }
  2934. EXPORT_SYMBOL(__kmalloc_track_caller);
  2935. #endif
  2936. #ifdef CONFIG_SMP
  2937. /**
  2938. * __alloc_percpu - allocate one copy of the object for every present
  2939. * cpu in the system, zeroing them.
  2940. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2941. *
  2942. * @size: how many bytes of memory are required.
  2943. */
  2944. void *__alloc_percpu(size_t size)
  2945. {
  2946. int i;
  2947. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2948. if (!pdata)
  2949. return NULL;
  2950. /*
  2951. * Cannot use for_each_online_cpu since a cpu may come online
  2952. * and we have no way of figuring out how to fix the array
  2953. * that we have allocated then....
  2954. */
  2955. for_each_possible_cpu(i) {
  2956. int node = cpu_to_node(i);
  2957. if (node_online(node))
  2958. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2959. else
  2960. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2961. if (!pdata->ptrs[i])
  2962. goto unwind_oom;
  2963. memset(pdata->ptrs[i], 0, size);
  2964. }
  2965. /* Catch derefs w/o wrappers */
  2966. return (void *)(~(unsigned long)pdata);
  2967. unwind_oom:
  2968. while (--i >= 0) {
  2969. if (!cpu_possible(i))
  2970. continue;
  2971. kfree(pdata->ptrs[i]);
  2972. }
  2973. kfree(pdata);
  2974. return NULL;
  2975. }
  2976. EXPORT_SYMBOL(__alloc_percpu);
  2977. #endif
  2978. /**
  2979. * kmem_cache_free - Deallocate an object
  2980. * @cachep: The cache the allocation was from.
  2981. * @objp: The previously allocated object.
  2982. *
  2983. * Free an object which was previously allocated from this
  2984. * cache.
  2985. */
  2986. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2987. {
  2988. unsigned long flags;
  2989. local_irq_save(flags);
  2990. __cache_free(cachep, objp);
  2991. local_irq_restore(flags);
  2992. }
  2993. EXPORT_SYMBOL(kmem_cache_free);
  2994. /**
  2995. * kfree - free previously allocated memory
  2996. * @objp: pointer returned by kmalloc.
  2997. *
  2998. * If @objp is NULL, no operation is performed.
  2999. *
  3000. * Don't free memory not originally allocated by kmalloc()
  3001. * or you will run into trouble.
  3002. */
  3003. void kfree(const void *objp)
  3004. {
  3005. struct kmem_cache *c;
  3006. unsigned long flags;
  3007. if (unlikely(!objp))
  3008. return;
  3009. local_irq_save(flags);
  3010. kfree_debugcheck(objp);
  3011. c = virt_to_cache(objp);
  3012. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  3013. __cache_free(c, (void *)objp);
  3014. local_irq_restore(flags);
  3015. }
  3016. EXPORT_SYMBOL(kfree);
  3017. #ifdef CONFIG_SMP
  3018. /**
  3019. * free_percpu - free previously allocated percpu memory
  3020. * @objp: pointer returned by alloc_percpu.
  3021. *
  3022. * Don't free memory not originally allocated by alloc_percpu()
  3023. * The complemented objp is to check for that.
  3024. */
  3025. void free_percpu(const void *objp)
  3026. {
  3027. int i;
  3028. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  3029. /*
  3030. * We allocate for all cpus so we cannot use for online cpu here.
  3031. */
  3032. for_each_possible_cpu(i)
  3033. kfree(p->ptrs[i]);
  3034. kfree(p);
  3035. }
  3036. EXPORT_SYMBOL(free_percpu);
  3037. #endif
  3038. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3039. {
  3040. return obj_size(cachep);
  3041. }
  3042. EXPORT_SYMBOL(kmem_cache_size);
  3043. const char *kmem_cache_name(struct kmem_cache *cachep)
  3044. {
  3045. return cachep->name;
  3046. }
  3047. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3048. /*
  3049. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3050. */
  3051. static int alloc_kmemlist(struct kmem_cache *cachep)
  3052. {
  3053. int node;
  3054. struct kmem_list3 *l3;
  3055. struct array_cache *new_shared;
  3056. struct array_cache **new_alien;
  3057. for_each_online_node(node) {
  3058. new_alien = alloc_alien_cache(node, cachep->limit);
  3059. if (!new_alien)
  3060. goto fail;
  3061. new_shared = alloc_arraycache(node,
  3062. cachep->shared*cachep->batchcount,
  3063. 0xbaadf00d);
  3064. if (!new_shared) {
  3065. free_alien_cache(new_alien);
  3066. goto fail;
  3067. }
  3068. l3 = cachep->nodelists[node];
  3069. if (l3) {
  3070. struct array_cache *shared = l3->shared;
  3071. spin_lock_irq(&l3->list_lock);
  3072. if (shared)
  3073. free_block(cachep, shared->entry,
  3074. shared->avail, node);
  3075. l3->shared = new_shared;
  3076. if (!l3->alien) {
  3077. l3->alien = new_alien;
  3078. new_alien = NULL;
  3079. }
  3080. l3->free_limit = (1 + nr_cpus_node(node)) *
  3081. cachep->batchcount + cachep->num;
  3082. spin_unlock_irq(&l3->list_lock);
  3083. kfree(shared);
  3084. free_alien_cache(new_alien);
  3085. continue;
  3086. }
  3087. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3088. if (!l3) {
  3089. free_alien_cache(new_alien);
  3090. kfree(new_shared);
  3091. goto fail;
  3092. }
  3093. kmem_list3_init(l3);
  3094. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3095. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3096. l3->shared = new_shared;
  3097. l3->alien = new_alien;
  3098. l3->free_limit = (1 + nr_cpus_node(node)) *
  3099. cachep->batchcount + cachep->num;
  3100. cachep->nodelists[node] = l3;
  3101. }
  3102. return 0;
  3103. fail:
  3104. if (!cachep->next.next) {
  3105. /* Cache is not active yet. Roll back what we did */
  3106. node--;
  3107. while (node >= 0) {
  3108. if (cachep->nodelists[node]) {
  3109. l3 = cachep->nodelists[node];
  3110. kfree(l3->shared);
  3111. free_alien_cache(l3->alien);
  3112. kfree(l3);
  3113. cachep->nodelists[node] = NULL;
  3114. }
  3115. node--;
  3116. }
  3117. }
  3118. return -ENOMEM;
  3119. }
  3120. struct ccupdate_struct {
  3121. struct kmem_cache *cachep;
  3122. struct array_cache *new[NR_CPUS];
  3123. };
  3124. static void do_ccupdate_local(void *info)
  3125. {
  3126. struct ccupdate_struct *new = info;
  3127. struct array_cache *old;
  3128. check_irq_off();
  3129. old = cpu_cache_get(new->cachep);
  3130. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3131. new->new[smp_processor_id()] = old;
  3132. }
  3133. /* Always called with the cache_chain_mutex held */
  3134. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3135. int batchcount, int shared)
  3136. {
  3137. struct ccupdate_struct new;
  3138. int i, err;
  3139. memset(&new.new, 0, sizeof(new.new));
  3140. for_each_online_cpu(i) {
  3141. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3142. batchcount);
  3143. if (!new.new[i]) {
  3144. for (i--; i >= 0; i--)
  3145. kfree(new.new[i]);
  3146. return -ENOMEM;
  3147. }
  3148. }
  3149. new.cachep = cachep;
  3150. on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
  3151. check_irq_on();
  3152. cachep->batchcount = batchcount;
  3153. cachep->limit = limit;
  3154. cachep->shared = shared;
  3155. for_each_online_cpu(i) {
  3156. struct array_cache *ccold = new.new[i];
  3157. if (!ccold)
  3158. continue;
  3159. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3160. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3161. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3162. kfree(ccold);
  3163. }
  3164. err = alloc_kmemlist(cachep);
  3165. if (err) {
  3166. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3167. cachep->name, -err);
  3168. BUG();
  3169. }
  3170. return 0;
  3171. }
  3172. /* Called with cache_chain_mutex held always */
  3173. static void enable_cpucache(struct kmem_cache *cachep)
  3174. {
  3175. int err;
  3176. int limit, shared;
  3177. /*
  3178. * The head array serves three purposes:
  3179. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3180. * - reduce the number of spinlock operations.
  3181. * - reduce the number of linked list operations on the slab and
  3182. * bufctl chains: array operations are cheaper.
  3183. * The numbers are guessed, we should auto-tune as described by
  3184. * Bonwick.
  3185. */
  3186. if (cachep->buffer_size > 131072)
  3187. limit = 1;
  3188. else if (cachep->buffer_size > PAGE_SIZE)
  3189. limit = 8;
  3190. else if (cachep->buffer_size > 1024)
  3191. limit = 24;
  3192. else if (cachep->buffer_size > 256)
  3193. limit = 54;
  3194. else
  3195. limit = 120;
  3196. /*
  3197. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3198. * allocation behaviour: Most allocs on one cpu, most free operations
  3199. * on another cpu. For these cases, an efficient object passing between
  3200. * cpus is necessary. This is provided by a shared array. The array
  3201. * replaces Bonwick's magazine layer.
  3202. * On uniprocessor, it's functionally equivalent (but less efficient)
  3203. * to a larger limit. Thus disabled by default.
  3204. */
  3205. shared = 0;
  3206. #ifdef CONFIG_SMP
  3207. if (cachep->buffer_size <= PAGE_SIZE)
  3208. shared = 8;
  3209. #endif
  3210. #if DEBUG
  3211. /*
  3212. * With debugging enabled, large batchcount lead to excessively long
  3213. * periods with disabled local interrupts. Limit the batchcount
  3214. */
  3215. if (limit > 32)
  3216. limit = 32;
  3217. #endif
  3218. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3219. if (err)
  3220. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3221. cachep->name, -err);
  3222. }
  3223. /*
  3224. * Drain an array if it contains any elements taking the l3 lock only if
  3225. * necessary. Note that the l3 listlock also protects the array_cache
  3226. * if drain_array() is used on the shared array.
  3227. */
  3228. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3229. struct array_cache *ac, int force, int node)
  3230. {
  3231. int tofree;
  3232. if (!ac || !ac->avail)
  3233. return;
  3234. if (ac->touched && !force) {
  3235. ac->touched = 0;
  3236. } else {
  3237. spin_lock_irq(&l3->list_lock);
  3238. if (ac->avail) {
  3239. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3240. if (tofree > ac->avail)
  3241. tofree = (ac->avail + 1) / 2;
  3242. free_block(cachep, ac->entry, tofree, node);
  3243. ac->avail -= tofree;
  3244. memmove(ac->entry, &(ac->entry[tofree]),
  3245. sizeof(void *) * ac->avail);
  3246. }
  3247. spin_unlock_irq(&l3->list_lock);
  3248. }
  3249. }
  3250. /**
  3251. * cache_reap - Reclaim memory from caches.
  3252. * @unused: unused parameter
  3253. *
  3254. * Called from workqueue/eventd every few seconds.
  3255. * Purpose:
  3256. * - clear the per-cpu caches for this CPU.
  3257. * - return freeable pages to the main free memory pool.
  3258. *
  3259. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3260. * again on the next iteration.
  3261. */
  3262. static void cache_reap(void *unused)
  3263. {
  3264. struct list_head *walk;
  3265. struct kmem_list3 *l3;
  3266. int node = numa_node_id();
  3267. if (!mutex_trylock(&cache_chain_mutex)) {
  3268. /* Give up. Setup the next iteration. */
  3269. schedule_delayed_work(&__get_cpu_var(reap_work),
  3270. REAPTIMEOUT_CPUC);
  3271. return;
  3272. }
  3273. list_for_each(walk, &cache_chain) {
  3274. struct kmem_cache *searchp;
  3275. struct list_head *p;
  3276. int tofree;
  3277. struct slab *slabp;
  3278. searchp = list_entry(walk, struct kmem_cache, next);
  3279. check_irq_on();
  3280. /*
  3281. * We only take the l3 lock if absolutely necessary and we
  3282. * have established with reasonable certainty that
  3283. * we can do some work if the lock was obtained.
  3284. */
  3285. l3 = searchp->nodelists[node];
  3286. reap_alien(searchp, l3);
  3287. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3288. /*
  3289. * These are racy checks but it does not matter
  3290. * if we skip one check or scan twice.
  3291. */
  3292. if (time_after(l3->next_reap, jiffies))
  3293. goto next;
  3294. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3295. drain_array(searchp, l3, l3->shared, 0, node);
  3296. if (l3->free_touched) {
  3297. l3->free_touched = 0;
  3298. goto next;
  3299. }
  3300. tofree = (l3->free_limit + 5 * searchp->num - 1) /
  3301. (5 * searchp->num);
  3302. do {
  3303. /*
  3304. * Do not lock if there are no free blocks.
  3305. */
  3306. if (list_empty(&l3->slabs_free))
  3307. break;
  3308. spin_lock_irq(&l3->list_lock);
  3309. p = l3->slabs_free.next;
  3310. if (p == &(l3->slabs_free)) {
  3311. spin_unlock_irq(&l3->list_lock);
  3312. break;
  3313. }
  3314. slabp = list_entry(p, struct slab, list);
  3315. BUG_ON(slabp->inuse);
  3316. list_del(&slabp->list);
  3317. STATS_INC_REAPED(searchp);
  3318. /*
  3319. * Safe to drop the lock. The slab is no longer linked
  3320. * to the cache. searchp cannot disappear, we hold
  3321. * cache_chain_lock
  3322. */
  3323. l3->free_objects -= searchp->num;
  3324. spin_unlock_irq(&l3->list_lock);
  3325. slab_destroy(searchp, slabp);
  3326. } while (--tofree > 0);
  3327. next:
  3328. cond_resched();
  3329. }
  3330. check_irq_on();
  3331. mutex_unlock(&cache_chain_mutex);
  3332. next_reap_node();
  3333. /* Set up the next iteration */
  3334. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3335. }
  3336. #ifdef CONFIG_PROC_FS
  3337. static void print_slabinfo_header(struct seq_file *m)
  3338. {
  3339. /*
  3340. * Output format version, so at least we can change it
  3341. * without _too_ many complaints.
  3342. */
  3343. #if STATS
  3344. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3345. #else
  3346. seq_puts(m, "slabinfo - version: 2.1\n");
  3347. #endif
  3348. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3349. "<objperslab> <pagesperslab>");
  3350. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3351. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3352. #if STATS
  3353. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3354. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3355. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3356. #endif
  3357. seq_putc(m, '\n');
  3358. }
  3359. static void *s_start(struct seq_file *m, loff_t *pos)
  3360. {
  3361. loff_t n = *pos;
  3362. struct list_head *p;
  3363. mutex_lock(&cache_chain_mutex);
  3364. if (!n)
  3365. print_slabinfo_header(m);
  3366. p = cache_chain.next;
  3367. while (n--) {
  3368. p = p->next;
  3369. if (p == &cache_chain)
  3370. return NULL;
  3371. }
  3372. return list_entry(p, struct kmem_cache, next);
  3373. }
  3374. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3375. {
  3376. struct kmem_cache *cachep = p;
  3377. ++*pos;
  3378. return cachep->next.next == &cache_chain ?
  3379. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3380. }
  3381. static void s_stop(struct seq_file *m, void *p)
  3382. {
  3383. mutex_unlock(&cache_chain_mutex);
  3384. }
  3385. static int s_show(struct seq_file *m, void *p)
  3386. {
  3387. struct kmem_cache *cachep = p;
  3388. struct list_head *q;
  3389. struct slab *slabp;
  3390. unsigned long active_objs;
  3391. unsigned long num_objs;
  3392. unsigned long active_slabs = 0;
  3393. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3394. const char *name;
  3395. char *error = NULL;
  3396. int node;
  3397. struct kmem_list3 *l3;
  3398. active_objs = 0;
  3399. num_slabs = 0;
  3400. for_each_online_node(node) {
  3401. l3 = cachep->nodelists[node];
  3402. if (!l3)
  3403. continue;
  3404. check_irq_on();
  3405. spin_lock_irq(&l3->list_lock);
  3406. list_for_each(q, &l3->slabs_full) {
  3407. slabp = list_entry(q, struct slab, list);
  3408. if (slabp->inuse != cachep->num && !error)
  3409. error = "slabs_full accounting error";
  3410. active_objs += cachep->num;
  3411. active_slabs++;
  3412. }
  3413. list_for_each(q, &l3->slabs_partial) {
  3414. slabp = list_entry(q, struct slab, list);
  3415. if (slabp->inuse == cachep->num && !error)
  3416. error = "slabs_partial inuse accounting error";
  3417. if (!slabp->inuse && !error)
  3418. error = "slabs_partial/inuse accounting error";
  3419. active_objs += slabp->inuse;
  3420. active_slabs++;
  3421. }
  3422. list_for_each(q, &l3->slabs_free) {
  3423. slabp = list_entry(q, struct slab, list);
  3424. if (slabp->inuse && !error)
  3425. error = "slabs_free/inuse accounting error";
  3426. num_slabs++;
  3427. }
  3428. free_objects += l3->free_objects;
  3429. if (l3->shared)
  3430. shared_avail += l3->shared->avail;
  3431. spin_unlock_irq(&l3->list_lock);
  3432. }
  3433. num_slabs += active_slabs;
  3434. num_objs = num_slabs * cachep->num;
  3435. if (num_objs - active_objs != free_objects && !error)
  3436. error = "free_objects accounting error";
  3437. name = cachep->name;
  3438. if (error)
  3439. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3440. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3441. name, active_objs, num_objs, cachep->buffer_size,
  3442. cachep->num, (1 << cachep->gfporder));
  3443. seq_printf(m, " : tunables %4u %4u %4u",
  3444. cachep->limit, cachep->batchcount, cachep->shared);
  3445. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3446. active_slabs, num_slabs, shared_avail);
  3447. #if STATS
  3448. { /* list3 stats */
  3449. unsigned long high = cachep->high_mark;
  3450. unsigned long allocs = cachep->num_allocations;
  3451. unsigned long grown = cachep->grown;
  3452. unsigned long reaped = cachep->reaped;
  3453. unsigned long errors = cachep->errors;
  3454. unsigned long max_freeable = cachep->max_freeable;
  3455. unsigned long node_allocs = cachep->node_allocs;
  3456. unsigned long node_frees = cachep->node_frees;
  3457. unsigned long overflows = cachep->node_overflow;
  3458. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3459. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3460. reaped, errors, max_freeable, node_allocs,
  3461. node_frees, overflows);
  3462. }
  3463. /* cpu stats */
  3464. {
  3465. unsigned long allochit = atomic_read(&cachep->allochit);
  3466. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3467. unsigned long freehit = atomic_read(&cachep->freehit);
  3468. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3469. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3470. allochit, allocmiss, freehit, freemiss);
  3471. }
  3472. #endif
  3473. seq_putc(m, '\n');
  3474. return 0;
  3475. }
  3476. /*
  3477. * slabinfo_op - iterator that generates /proc/slabinfo
  3478. *
  3479. * Output layout:
  3480. * cache-name
  3481. * num-active-objs
  3482. * total-objs
  3483. * object size
  3484. * num-active-slabs
  3485. * total-slabs
  3486. * num-pages-per-slab
  3487. * + further values on SMP and with statistics enabled
  3488. */
  3489. struct seq_operations slabinfo_op = {
  3490. .start = s_start,
  3491. .next = s_next,
  3492. .stop = s_stop,
  3493. .show = s_show,
  3494. };
  3495. #define MAX_SLABINFO_WRITE 128
  3496. /**
  3497. * slabinfo_write - Tuning for the slab allocator
  3498. * @file: unused
  3499. * @buffer: user buffer
  3500. * @count: data length
  3501. * @ppos: unused
  3502. */
  3503. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3504. size_t count, loff_t *ppos)
  3505. {
  3506. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3507. int limit, batchcount, shared, res;
  3508. struct list_head *p;
  3509. if (count > MAX_SLABINFO_WRITE)
  3510. return -EINVAL;
  3511. if (copy_from_user(&kbuf, buffer, count))
  3512. return -EFAULT;
  3513. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3514. tmp = strchr(kbuf, ' ');
  3515. if (!tmp)
  3516. return -EINVAL;
  3517. *tmp = '\0';
  3518. tmp++;
  3519. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3520. return -EINVAL;
  3521. /* Find the cache in the chain of caches. */
  3522. mutex_lock(&cache_chain_mutex);
  3523. res = -EINVAL;
  3524. list_for_each(p, &cache_chain) {
  3525. struct kmem_cache *cachep;
  3526. cachep = list_entry(p, struct kmem_cache, next);
  3527. if (!strcmp(cachep->name, kbuf)) {
  3528. if (limit < 1 || batchcount < 1 ||
  3529. batchcount > limit || shared < 0) {
  3530. res = 0;
  3531. } else {
  3532. res = do_tune_cpucache(cachep, limit,
  3533. batchcount, shared);
  3534. }
  3535. break;
  3536. }
  3537. }
  3538. mutex_unlock(&cache_chain_mutex);
  3539. if (res >= 0)
  3540. res = count;
  3541. return res;
  3542. }
  3543. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3544. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3545. {
  3546. loff_t n = *pos;
  3547. struct list_head *p;
  3548. mutex_lock(&cache_chain_mutex);
  3549. p = cache_chain.next;
  3550. while (n--) {
  3551. p = p->next;
  3552. if (p == &cache_chain)
  3553. return NULL;
  3554. }
  3555. return list_entry(p, struct kmem_cache, next);
  3556. }
  3557. static inline int add_caller(unsigned long *n, unsigned long v)
  3558. {
  3559. unsigned long *p;
  3560. int l;
  3561. if (!v)
  3562. return 1;
  3563. l = n[1];
  3564. p = n + 2;
  3565. while (l) {
  3566. int i = l/2;
  3567. unsigned long *q = p + 2 * i;
  3568. if (*q == v) {
  3569. q[1]++;
  3570. return 1;
  3571. }
  3572. if (*q > v) {
  3573. l = i;
  3574. } else {
  3575. p = q + 2;
  3576. l -= i + 1;
  3577. }
  3578. }
  3579. if (++n[1] == n[0])
  3580. return 0;
  3581. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3582. p[0] = v;
  3583. p[1] = 1;
  3584. return 1;
  3585. }
  3586. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3587. {
  3588. void *p;
  3589. int i;
  3590. if (n[0] == n[1])
  3591. return;
  3592. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3593. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3594. continue;
  3595. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3596. return;
  3597. }
  3598. }
  3599. static void show_symbol(struct seq_file *m, unsigned long address)
  3600. {
  3601. #ifdef CONFIG_KALLSYMS
  3602. char *modname;
  3603. const char *name;
  3604. unsigned long offset, size;
  3605. char namebuf[KSYM_NAME_LEN+1];
  3606. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3607. if (name) {
  3608. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3609. if (modname)
  3610. seq_printf(m, " [%s]", modname);
  3611. return;
  3612. }
  3613. #endif
  3614. seq_printf(m, "%p", (void *)address);
  3615. }
  3616. static int leaks_show(struct seq_file *m, void *p)
  3617. {
  3618. struct kmem_cache *cachep = p;
  3619. struct list_head *q;
  3620. struct slab *slabp;
  3621. struct kmem_list3 *l3;
  3622. const char *name;
  3623. unsigned long *n = m->private;
  3624. int node;
  3625. int i;
  3626. if (!(cachep->flags & SLAB_STORE_USER))
  3627. return 0;
  3628. if (!(cachep->flags & SLAB_RED_ZONE))
  3629. return 0;
  3630. /* OK, we can do it */
  3631. n[1] = 0;
  3632. for_each_online_node(node) {
  3633. l3 = cachep->nodelists[node];
  3634. if (!l3)
  3635. continue;
  3636. check_irq_on();
  3637. spin_lock_irq(&l3->list_lock);
  3638. list_for_each(q, &l3->slabs_full) {
  3639. slabp = list_entry(q, struct slab, list);
  3640. handle_slab(n, cachep, slabp);
  3641. }
  3642. list_for_each(q, &l3->slabs_partial) {
  3643. slabp = list_entry(q, struct slab, list);
  3644. handle_slab(n, cachep, slabp);
  3645. }
  3646. spin_unlock_irq(&l3->list_lock);
  3647. }
  3648. name = cachep->name;
  3649. if (n[0] == n[1]) {
  3650. /* Increase the buffer size */
  3651. mutex_unlock(&cache_chain_mutex);
  3652. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3653. if (!m->private) {
  3654. /* Too bad, we are really out */
  3655. m->private = n;
  3656. mutex_lock(&cache_chain_mutex);
  3657. return -ENOMEM;
  3658. }
  3659. *(unsigned long *)m->private = n[0] * 2;
  3660. kfree(n);
  3661. mutex_lock(&cache_chain_mutex);
  3662. /* Now make sure this entry will be retried */
  3663. m->count = m->size;
  3664. return 0;
  3665. }
  3666. for (i = 0; i < n[1]; i++) {
  3667. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3668. show_symbol(m, n[2*i+2]);
  3669. seq_putc(m, '\n');
  3670. }
  3671. return 0;
  3672. }
  3673. struct seq_operations slabstats_op = {
  3674. .start = leaks_start,
  3675. .next = s_next,
  3676. .stop = s_stop,
  3677. .show = leaks_show,
  3678. };
  3679. #endif
  3680. #endif
  3681. /**
  3682. * ksize - get the actual amount of memory allocated for a given object
  3683. * @objp: Pointer to the object
  3684. *
  3685. * kmalloc may internally round up allocations and return more memory
  3686. * than requested. ksize() can be used to determine the actual amount of
  3687. * memory allocated. The caller may use this additional memory, even though
  3688. * a smaller amount of memory was initially specified with the kmalloc call.
  3689. * The caller must guarantee that objp points to a valid object previously
  3690. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3691. * must not be freed during the duration of the call.
  3692. */
  3693. unsigned int ksize(const void *objp)
  3694. {
  3695. if (unlikely(objp == NULL))
  3696. return 0;
  3697. return obj_size(virt_to_cache(objp));
  3698. }