forcedeth.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  108. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  109. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  110. *
  111. * Known bugs:
  112. * We suspect that on some hardware no TX done interrupts are generated.
  113. * This means recovery from netif_stop_queue only happens if the hw timer
  114. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  115. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  116. * If your hardware reliably generates tx done interrupts, then you can remove
  117. * DEV_NEED_TIMERIRQ from the driver_data flags.
  118. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  119. * superfluous timer interrupts from the nic.
  120. */
  121. #define FORCEDETH_VERSION "0.54"
  122. #define DRV_NAME "forcedeth"
  123. #include <linux/module.h>
  124. #include <linux/types.h>
  125. #include <linux/pci.h>
  126. #include <linux/interrupt.h>
  127. #include <linux/netdevice.h>
  128. #include <linux/etherdevice.h>
  129. #include <linux/delay.h>
  130. #include <linux/spinlock.h>
  131. #include <linux/ethtool.h>
  132. #include <linux/timer.h>
  133. #include <linux/skbuff.h>
  134. #include <linux/mii.h>
  135. #include <linux/random.h>
  136. #include <linux/init.h>
  137. #include <linux/if_vlan.h>
  138. #include <linux/dma-mapping.h>
  139. #include <asm/irq.h>
  140. #include <asm/io.h>
  141. #include <asm/uaccess.h>
  142. #include <asm/system.h>
  143. #if 0
  144. #define dprintk printk
  145. #else
  146. #define dprintk(x...) do { } while (0)
  147. #endif
  148. /*
  149. * Hardware access:
  150. */
  151. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  152. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  153. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  154. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  155. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  156. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  157. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  158. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  159. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  160. enum {
  161. NvRegIrqStatus = 0x000,
  162. #define NVREG_IRQSTAT_MIIEVENT 0x040
  163. #define NVREG_IRQSTAT_MASK 0x1ff
  164. NvRegIrqMask = 0x004,
  165. #define NVREG_IRQ_RX_ERROR 0x0001
  166. #define NVREG_IRQ_RX 0x0002
  167. #define NVREG_IRQ_RX_NOBUF 0x0004
  168. #define NVREG_IRQ_TX_ERR 0x0008
  169. #define NVREG_IRQ_TX_OK 0x0010
  170. #define NVREG_IRQ_TIMER 0x0020
  171. #define NVREG_IRQ_LINK 0x0040
  172. #define NVREG_IRQ_RX_FORCED 0x0080
  173. #define NVREG_IRQ_TX_FORCED 0x0100
  174. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  175. #define NVREG_IRQMASK_CPU 0x0040
  176. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  177. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  178. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
  179. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  180. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  181. NVREG_IRQ_TX_FORCED))
  182. NvRegUnknownSetupReg6 = 0x008,
  183. #define NVREG_UNKSETUP6_VAL 3
  184. /*
  185. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  186. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  187. */
  188. NvRegPollingInterval = 0x00c,
  189. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  190. #define NVREG_POLL_DEFAULT_CPU 13
  191. NvRegMSIMap0 = 0x020,
  192. NvRegMSIMap1 = 0x024,
  193. NvRegMSIIrqMask = 0x030,
  194. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  195. NvRegMisc1 = 0x080,
  196. #define NVREG_MISC1_HD 0x02
  197. #define NVREG_MISC1_FORCE 0x3b0f3c
  198. NvRegMacReset = 0x3c,
  199. #define NVREG_MAC_RESET_ASSERT 0x0F3
  200. NvRegTransmitterControl = 0x084,
  201. #define NVREG_XMITCTL_START 0x01
  202. NvRegTransmitterStatus = 0x088,
  203. #define NVREG_XMITSTAT_BUSY 0x01
  204. NvRegPacketFilterFlags = 0x8c,
  205. #define NVREG_PFF_ALWAYS 0x7F0008
  206. #define NVREG_PFF_PROMISC 0x80
  207. #define NVREG_PFF_MYADDR 0x20
  208. NvRegOffloadConfig = 0x90,
  209. #define NVREG_OFFLOAD_HOMEPHY 0x601
  210. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  211. NvRegReceiverControl = 0x094,
  212. #define NVREG_RCVCTL_START 0x01
  213. NvRegReceiverStatus = 0x98,
  214. #define NVREG_RCVSTAT_BUSY 0x01
  215. NvRegRandomSeed = 0x9c,
  216. #define NVREG_RNDSEED_MASK 0x00ff
  217. #define NVREG_RNDSEED_FORCE 0x7f00
  218. #define NVREG_RNDSEED_FORCE2 0x2d00
  219. #define NVREG_RNDSEED_FORCE3 0x7400
  220. NvRegUnknownSetupReg1 = 0xA0,
  221. #define NVREG_UNKSETUP1_VAL 0x16070f
  222. NvRegUnknownSetupReg2 = 0xA4,
  223. #define NVREG_UNKSETUP2_VAL 0x16
  224. NvRegMacAddrA = 0xA8,
  225. NvRegMacAddrB = 0xAC,
  226. NvRegMulticastAddrA = 0xB0,
  227. #define NVREG_MCASTADDRA_FORCE 0x01
  228. NvRegMulticastAddrB = 0xB4,
  229. NvRegMulticastMaskA = 0xB8,
  230. NvRegMulticastMaskB = 0xBC,
  231. NvRegPhyInterface = 0xC0,
  232. #define PHY_RGMII 0x10000000
  233. NvRegTxRingPhysAddr = 0x100,
  234. NvRegRxRingPhysAddr = 0x104,
  235. NvRegRingSizes = 0x108,
  236. #define NVREG_RINGSZ_TXSHIFT 0
  237. #define NVREG_RINGSZ_RXSHIFT 16
  238. NvRegUnknownTransmitterReg = 0x10c,
  239. NvRegLinkSpeed = 0x110,
  240. #define NVREG_LINKSPEED_FORCE 0x10000
  241. #define NVREG_LINKSPEED_10 1000
  242. #define NVREG_LINKSPEED_100 100
  243. #define NVREG_LINKSPEED_1000 50
  244. #define NVREG_LINKSPEED_MASK (0xFFF)
  245. NvRegUnknownSetupReg5 = 0x130,
  246. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  247. NvRegUnknownSetupReg3 = 0x13c,
  248. #define NVREG_UNKSETUP3_VAL1 0x200010
  249. NvRegTxRxControl = 0x144,
  250. #define NVREG_TXRXCTL_KICK 0x0001
  251. #define NVREG_TXRXCTL_BIT1 0x0002
  252. #define NVREG_TXRXCTL_BIT2 0x0004
  253. #define NVREG_TXRXCTL_IDLE 0x0008
  254. #define NVREG_TXRXCTL_RESET 0x0010
  255. #define NVREG_TXRXCTL_RXCHECK 0x0400
  256. #define NVREG_TXRXCTL_DESC_1 0
  257. #define NVREG_TXRXCTL_DESC_2 0x02100
  258. #define NVREG_TXRXCTL_DESC_3 0x02200
  259. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  260. #define NVREG_TXRXCTL_VLANINS 0x00080
  261. NvRegTxRingPhysAddrHigh = 0x148,
  262. NvRegRxRingPhysAddrHigh = 0x14C,
  263. NvRegMIIStatus = 0x180,
  264. #define NVREG_MIISTAT_ERROR 0x0001
  265. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  266. #define NVREG_MIISTAT_MASK 0x000f
  267. #define NVREG_MIISTAT_MASK2 0x000f
  268. NvRegUnknownSetupReg4 = 0x184,
  269. #define NVREG_UNKSETUP4_VAL 8
  270. NvRegAdapterControl = 0x188,
  271. #define NVREG_ADAPTCTL_START 0x02
  272. #define NVREG_ADAPTCTL_LINKUP 0x04
  273. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  274. #define NVREG_ADAPTCTL_RUNNING 0x100000
  275. #define NVREG_ADAPTCTL_PHYSHIFT 24
  276. NvRegMIISpeed = 0x18c,
  277. #define NVREG_MIISPEED_BIT8 (1<<8)
  278. #define NVREG_MIIDELAY 5
  279. NvRegMIIControl = 0x190,
  280. #define NVREG_MIICTL_INUSE 0x08000
  281. #define NVREG_MIICTL_WRITE 0x00400
  282. #define NVREG_MIICTL_ADDRSHIFT 5
  283. NvRegMIIData = 0x194,
  284. NvRegWakeUpFlags = 0x200,
  285. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  286. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  287. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  288. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  289. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  290. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  291. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  292. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  293. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  294. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  295. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  296. NvRegPatternCRC = 0x204,
  297. NvRegPatternMask = 0x208,
  298. NvRegPowerCap = 0x268,
  299. #define NVREG_POWERCAP_D3SUPP (1<<30)
  300. #define NVREG_POWERCAP_D2SUPP (1<<26)
  301. #define NVREG_POWERCAP_D1SUPP (1<<25)
  302. NvRegPowerState = 0x26c,
  303. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  304. #define NVREG_POWERSTATE_VALID 0x0100
  305. #define NVREG_POWERSTATE_MASK 0x0003
  306. #define NVREG_POWERSTATE_D0 0x0000
  307. #define NVREG_POWERSTATE_D1 0x0001
  308. #define NVREG_POWERSTATE_D2 0x0002
  309. #define NVREG_POWERSTATE_D3 0x0003
  310. NvRegVlanControl = 0x300,
  311. #define NVREG_VLANCONTROL_ENABLE 0x2000
  312. NvRegMSIXMap0 = 0x3e0,
  313. NvRegMSIXMap1 = 0x3e4,
  314. NvRegMSIXIrqStatus = 0x3f0,
  315. NvRegPowerState2 = 0x600,
  316. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  317. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  318. };
  319. /* Big endian: should work, but is untested */
  320. struct ring_desc {
  321. u32 PacketBuffer;
  322. u32 FlagLen;
  323. };
  324. struct ring_desc_ex {
  325. u32 PacketBufferHigh;
  326. u32 PacketBufferLow;
  327. u32 TxVlan;
  328. u32 FlagLen;
  329. };
  330. typedef union _ring_type {
  331. struct ring_desc* orig;
  332. struct ring_desc_ex* ex;
  333. } ring_type;
  334. #define FLAG_MASK_V1 0xffff0000
  335. #define FLAG_MASK_V2 0xffffc000
  336. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  337. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  338. #define NV_TX_LASTPACKET (1<<16)
  339. #define NV_TX_RETRYERROR (1<<19)
  340. #define NV_TX_FORCED_INTERRUPT (1<<24)
  341. #define NV_TX_DEFERRED (1<<26)
  342. #define NV_TX_CARRIERLOST (1<<27)
  343. #define NV_TX_LATECOLLISION (1<<28)
  344. #define NV_TX_UNDERFLOW (1<<29)
  345. #define NV_TX_ERROR (1<<30)
  346. #define NV_TX_VALID (1<<31)
  347. #define NV_TX2_LASTPACKET (1<<29)
  348. #define NV_TX2_RETRYERROR (1<<18)
  349. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  350. #define NV_TX2_DEFERRED (1<<25)
  351. #define NV_TX2_CARRIERLOST (1<<26)
  352. #define NV_TX2_LATECOLLISION (1<<27)
  353. #define NV_TX2_UNDERFLOW (1<<28)
  354. /* error and valid are the same for both */
  355. #define NV_TX2_ERROR (1<<30)
  356. #define NV_TX2_VALID (1<<31)
  357. #define NV_TX2_TSO (1<<28)
  358. #define NV_TX2_TSO_SHIFT 14
  359. #define NV_TX2_TSO_MAX_SHIFT 14
  360. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  361. #define NV_TX2_CHECKSUM_L3 (1<<27)
  362. #define NV_TX2_CHECKSUM_L4 (1<<26)
  363. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  364. #define NV_RX_DESCRIPTORVALID (1<<16)
  365. #define NV_RX_MISSEDFRAME (1<<17)
  366. #define NV_RX_SUBSTRACT1 (1<<18)
  367. #define NV_RX_ERROR1 (1<<23)
  368. #define NV_RX_ERROR2 (1<<24)
  369. #define NV_RX_ERROR3 (1<<25)
  370. #define NV_RX_ERROR4 (1<<26)
  371. #define NV_RX_CRCERR (1<<27)
  372. #define NV_RX_OVERFLOW (1<<28)
  373. #define NV_RX_FRAMINGERR (1<<29)
  374. #define NV_RX_ERROR (1<<30)
  375. #define NV_RX_AVAIL (1<<31)
  376. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  377. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  378. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  379. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  380. #define NV_RX2_DESCRIPTORVALID (1<<29)
  381. #define NV_RX2_SUBSTRACT1 (1<<25)
  382. #define NV_RX2_ERROR1 (1<<18)
  383. #define NV_RX2_ERROR2 (1<<19)
  384. #define NV_RX2_ERROR3 (1<<20)
  385. #define NV_RX2_ERROR4 (1<<21)
  386. #define NV_RX2_CRCERR (1<<22)
  387. #define NV_RX2_OVERFLOW (1<<23)
  388. #define NV_RX2_FRAMINGERR (1<<24)
  389. /* error and avail are the same for both */
  390. #define NV_RX2_ERROR (1<<30)
  391. #define NV_RX2_AVAIL (1<<31)
  392. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  393. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  394. /* Miscelaneous hardware related defines: */
  395. #define NV_PCI_REGSZ_VER1 0x270
  396. #define NV_PCI_REGSZ_VER2 0x604
  397. /* various timeout delays: all in usec */
  398. #define NV_TXRX_RESET_DELAY 4
  399. #define NV_TXSTOP_DELAY1 10
  400. #define NV_TXSTOP_DELAY1MAX 500000
  401. #define NV_TXSTOP_DELAY2 100
  402. #define NV_RXSTOP_DELAY1 10
  403. #define NV_RXSTOP_DELAY1MAX 500000
  404. #define NV_RXSTOP_DELAY2 100
  405. #define NV_SETUP5_DELAY 5
  406. #define NV_SETUP5_DELAYMAX 50000
  407. #define NV_POWERUP_DELAY 5
  408. #define NV_POWERUP_DELAYMAX 5000
  409. #define NV_MIIBUSY_DELAY 50
  410. #define NV_MIIPHY_DELAY 10
  411. #define NV_MIIPHY_DELAYMAX 10000
  412. #define NV_MAC_RESET_DELAY 64
  413. #define NV_WAKEUPPATTERNS 5
  414. #define NV_WAKEUPMASKENTRIES 4
  415. /* General driver defaults */
  416. #define NV_WATCHDOG_TIMEO (5*HZ)
  417. #define RX_RING 128
  418. #define TX_RING 256
  419. /*
  420. * If your nic mysteriously hangs then try to reduce the limits
  421. * to 1/0: It might be required to set NV_TX_LASTPACKET in the
  422. * last valid ring entry. But this would be impossible to
  423. * implement - probably a disassembly error.
  424. */
  425. #define TX_LIMIT_STOP 255
  426. #define TX_LIMIT_START 254
  427. /* rx/tx mac addr + type + vlan + align + slack*/
  428. #define NV_RX_HEADERS (64)
  429. /* even more slack. */
  430. #define NV_RX_ALLOC_PAD (64)
  431. /* maximum mtu size */
  432. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  433. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  434. #define OOM_REFILL (1+HZ/20)
  435. #define POLL_WAIT (1+HZ/100)
  436. #define LINK_TIMEOUT (3*HZ)
  437. /*
  438. * desc_ver values:
  439. * The nic supports three different descriptor types:
  440. * - DESC_VER_1: Original
  441. * - DESC_VER_2: support for jumbo frames.
  442. * - DESC_VER_3: 64-bit format.
  443. */
  444. #define DESC_VER_1 1
  445. #define DESC_VER_2 2
  446. #define DESC_VER_3 3
  447. /* PHY defines */
  448. #define PHY_OUI_MARVELL 0x5043
  449. #define PHY_OUI_CICADA 0x03f1
  450. #define PHYID1_OUI_MASK 0x03ff
  451. #define PHYID1_OUI_SHFT 6
  452. #define PHYID2_OUI_MASK 0xfc00
  453. #define PHYID2_OUI_SHFT 10
  454. #define PHY_INIT1 0x0f000
  455. #define PHY_INIT2 0x0e00
  456. #define PHY_INIT3 0x01000
  457. #define PHY_INIT4 0x0200
  458. #define PHY_INIT5 0x0004
  459. #define PHY_INIT6 0x02000
  460. #define PHY_GIGABIT 0x0100
  461. #define PHY_TIMEOUT 0x1
  462. #define PHY_ERROR 0x2
  463. #define PHY_100 0x1
  464. #define PHY_1000 0x2
  465. #define PHY_HALF 0x100
  466. /* FIXME: MII defines that should be added to <linux/mii.h> */
  467. #define MII_1000BT_CR 0x09
  468. #define MII_1000BT_SR 0x0a
  469. #define ADVERTISE_1000FULL 0x0200
  470. #define ADVERTISE_1000HALF 0x0100
  471. #define LPA_1000FULL 0x0800
  472. #define LPA_1000HALF 0x0400
  473. /* MSI/MSI-X defines */
  474. #define NV_MSI_X_MAX_VECTORS 8
  475. #define NV_MSI_X_VECTORS_MASK 0x000f
  476. #define NV_MSI_CAPABLE 0x0010
  477. #define NV_MSI_X_CAPABLE 0x0020
  478. #define NV_MSI_ENABLED 0x0040
  479. #define NV_MSI_X_ENABLED 0x0080
  480. #define NV_MSI_X_VECTOR_ALL 0x0
  481. #define NV_MSI_X_VECTOR_RX 0x0
  482. #define NV_MSI_X_VECTOR_TX 0x1
  483. #define NV_MSI_X_VECTOR_OTHER 0x2
  484. /*
  485. * SMP locking:
  486. * All hardware access under dev->priv->lock, except the performance
  487. * critical parts:
  488. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  489. * by the arch code for interrupts.
  490. * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
  491. * needs dev->priv->lock :-(
  492. * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
  493. */
  494. /* in dev: base, irq */
  495. struct fe_priv {
  496. spinlock_t lock;
  497. /* General data:
  498. * Locking: spin_lock(&np->lock); */
  499. struct net_device_stats stats;
  500. int in_shutdown;
  501. u32 linkspeed;
  502. int duplex;
  503. int autoneg;
  504. int fixed_mode;
  505. int phyaddr;
  506. int wolenabled;
  507. unsigned int phy_oui;
  508. u16 gigabit;
  509. /* General data: RO fields */
  510. dma_addr_t ring_addr;
  511. struct pci_dev *pci_dev;
  512. u32 orig_mac[2];
  513. u32 irqmask;
  514. u32 desc_ver;
  515. u32 txrxctl_bits;
  516. u32 vlanctl_bits;
  517. u32 driver_data;
  518. u32 register_size;
  519. void __iomem *base;
  520. /* rx specific fields.
  521. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  522. */
  523. ring_type rx_ring;
  524. unsigned int cur_rx, refill_rx;
  525. struct sk_buff *rx_skbuff[RX_RING];
  526. dma_addr_t rx_dma[RX_RING];
  527. unsigned int rx_buf_sz;
  528. unsigned int pkt_limit;
  529. struct timer_list oom_kick;
  530. struct timer_list nic_poll;
  531. u32 nic_poll_irq;
  532. /* media detection workaround.
  533. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  534. */
  535. int need_linktimer;
  536. unsigned long link_timeout;
  537. /*
  538. * tx specific fields.
  539. */
  540. ring_type tx_ring;
  541. unsigned int next_tx, nic_tx;
  542. struct sk_buff *tx_skbuff[TX_RING];
  543. dma_addr_t tx_dma[TX_RING];
  544. unsigned int tx_dma_len[TX_RING];
  545. u32 tx_flags;
  546. /* vlan fields */
  547. struct vlan_group *vlangrp;
  548. /* msi/msi-x fields */
  549. u32 msi_flags;
  550. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  551. };
  552. /*
  553. * Maximum number of loops until we assume that a bit in the irq mask
  554. * is stuck. Overridable with module param.
  555. */
  556. static int max_interrupt_work = 5;
  557. /*
  558. * Optimization can be either throuput mode or cpu mode
  559. *
  560. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  561. * CPU Mode: Interrupts are controlled by a timer.
  562. */
  563. #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
  564. #define NV_OPTIMIZATION_MODE_CPU 1
  565. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  566. /*
  567. * Poll interval for timer irq
  568. *
  569. * This interval determines how frequent an interrupt is generated.
  570. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  571. * Min = 0, and Max = 65535
  572. */
  573. static int poll_interval = -1;
  574. /*
  575. * Disable MSI interrupts
  576. */
  577. static int disable_msi = 0;
  578. /*
  579. * Disable MSIX interrupts
  580. */
  581. static int disable_msix = 0;
  582. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  583. {
  584. return netdev_priv(dev);
  585. }
  586. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  587. {
  588. return ((struct fe_priv *)netdev_priv(dev))->base;
  589. }
  590. static inline void pci_push(u8 __iomem *base)
  591. {
  592. /* force out pending posted writes */
  593. readl(base);
  594. }
  595. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  596. {
  597. return le32_to_cpu(prd->FlagLen)
  598. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  599. }
  600. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  601. {
  602. return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
  603. }
  604. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  605. int delay, int delaymax, const char *msg)
  606. {
  607. u8 __iomem *base = get_hwbase(dev);
  608. pci_push(base);
  609. do {
  610. udelay(delay);
  611. delaymax -= delay;
  612. if (delaymax < 0) {
  613. if (msg)
  614. printk(msg);
  615. return 1;
  616. }
  617. } while ((readl(base + offset) & mask) != target);
  618. return 0;
  619. }
  620. #define NV_SETUP_RX_RING 0x01
  621. #define NV_SETUP_TX_RING 0x02
  622. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  623. {
  624. struct fe_priv *np = get_nvpriv(dev);
  625. u8 __iomem *base = get_hwbase(dev);
  626. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  627. if (rxtx_flags & NV_SETUP_RX_RING) {
  628. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  629. }
  630. if (rxtx_flags & NV_SETUP_TX_RING) {
  631. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  632. }
  633. } else {
  634. if (rxtx_flags & NV_SETUP_RX_RING) {
  635. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  636. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  637. }
  638. if (rxtx_flags & NV_SETUP_TX_RING) {
  639. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  640. writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  641. }
  642. }
  643. }
  644. static int using_multi_irqs(struct net_device *dev)
  645. {
  646. struct fe_priv *np = get_nvpriv(dev);
  647. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  648. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  649. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  650. return 0;
  651. else
  652. return 1;
  653. }
  654. static void nv_enable_irq(struct net_device *dev)
  655. {
  656. struct fe_priv *np = get_nvpriv(dev);
  657. if (!using_multi_irqs(dev)) {
  658. if (np->msi_flags & NV_MSI_X_ENABLED)
  659. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  660. else
  661. enable_irq(dev->irq);
  662. } else {
  663. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  664. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  665. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  666. }
  667. }
  668. static void nv_disable_irq(struct net_device *dev)
  669. {
  670. struct fe_priv *np = get_nvpriv(dev);
  671. if (!using_multi_irqs(dev)) {
  672. if (np->msi_flags & NV_MSI_X_ENABLED)
  673. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  674. else
  675. disable_irq(dev->irq);
  676. } else {
  677. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  678. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  679. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  680. }
  681. }
  682. /* In MSIX mode, a write to irqmask behaves as XOR */
  683. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  684. {
  685. u8 __iomem *base = get_hwbase(dev);
  686. writel(mask, base + NvRegIrqMask);
  687. }
  688. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  689. {
  690. struct fe_priv *np = get_nvpriv(dev);
  691. u8 __iomem *base = get_hwbase(dev);
  692. if (np->msi_flags & NV_MSI_X_ENABLED) {
  693. writel(mask, base + NvRegIrqMask);
  694. } else {
  695. if (np->msi_flags & NV_MSI_ENABLED)
  696. writel(0, base + NvRegMSIIrqMask);
  697. writel(0, base + NvRegIrqMask);
  698. }
  699. }
  700. #define MII_READ (-1)
  701. /* mii_rw: read/write a register on the PHY.
  702. *
  703. * Caller must guarantee serialization
  704. */
  705. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  706. {
  707. u8 __iomem *base = get_hwbase(dev);
  708. u32 reg;
  709. int retval;
  710. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  711. reg = readl(base + NvRegMIIControl);
  712. if (reg & NVREG_MIICTL_INUSE) {
  713. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  714. udelay(NV_MIIBUSY_DELAY);
  715. }
  716. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  717. if (value != MII_READ) {
  718. writel(value, base + NvRegMIIData);
  719. reg |= NVREG_MIICTL_WRITE;
  720. }
  721. writel(reg, base + NvRegMIIControl);
  722. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  723. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  724. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  725. dev->name, miireg, addr);
  726. retval = -1;
  727. } else if (value != MII_READ) {
  728. /* it was a write operation - fewer failures are detectable */
  729. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  730. dev->name, value, miireg, addr);
  731. retval = 0;
  732. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  733. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  734. dev->name, miireg, addr);
  735. retval = -1;
  736. } else {
  737. retval = readl(base + NvRegMIIData);
  738. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  739. dev->name, miireg, addr, retval);
  740. }
  741. return retval;
  742. }
  743. static int phy_reset(struct net_device *dev)
  744. {
  745. struct fe_priv *np = netdev_priv(dev);
  746. u32 miicontrol;
  747. unsigned int tries = 0;
  748. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  749. miicontrol |= BMCR_RESET;
  750. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  751. return -1;
  752. }
  753. /* wait for 500ms */
  754. msleep(500);
  755. /* must wait till reset is deasserted */
  756. while (miicontrol & BMCR_RESET) {
  757. msleep(10);
  758. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  759. /* FIXME: 100 tries seem excessive */
  760. if (tries++ > 100)
  761. return -1;
  762. }
  763. return 0;
  764. }
  765. static int phy_init(struct net_device *dev)
  766. {
  767. struct fe_priv *np = get_nvpriv(dev);
  768. u8 __iomem *base = get_hwbase(dev);
  769. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  770. /* set advertise register */
  771. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  772. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
  773. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  774. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  775. return PHY_ERROR;
  776. }
  777. /* get phy interface type */
  778. phyinterface = readl(base + NvRegPhyInterface);
  779. /* see if gigabit phy */
  780. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  781. if (mii_status & PHY_GIGABIT) {
  782. np->gigabit = PHY_GIGABIT;
  783. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  784. mii_control_1000 &= ~ADVERTISE_1000HALF;
  785. if (phyinterface & PHY_RGMII)
  786. mii_control_1000 |= ADVERTISE_1000FULL;
  787. else
  788. mii_control_1000 &= ~ADVERTISE_1000FULL;
  789. if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
  790. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  791. return PHY_ERROR;
  792. }
  793. }
  794. else
  795. np->gigabit = 0;
  796. /* reset the phy */
  797. if (phy_reset(dev)) {
  798. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  799. return PHY_ERROR;
  800. }
  801. /* phy vendor specific configuration */
  802. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  803. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  804. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  805. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  806. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  807. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  808. return PHY_ERROR;
  809. }
  810. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  811. phy_reserved |= PHY_INIT5;
  812. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  813. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  814. return PHY_ERROR;
  815. }
  816. }
  817. if (np->phy_oui == PHY_OUI_CICADA) {
  818. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  819. phy_reserved |= PHY_INIT6;
  820. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  821. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  822. return PHY_ERROR;
  823. }
  824. }
  825. /* restart auto negotiation */
  826. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  827. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  828. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  829. return PHY_ERROR;
  830. }
  831. return 0;
  832. }
  833. static void nv_start_rx(struct net_device *dev)
  834. {
  835. struct fe_priv *np = netdev_priv(dev);
  836. u8 __iomem *base = get_hwbase(dev);
  837. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  838. /* Already running? Stop it. */
  839. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  840. writel(0, base + NvRegReceiverControl);
  841. pci_push(base);
  842. }
  843. writel(np->linkspeed, base + NvRegLinkSpeed);
  844. pci_push(base);
  845. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  846. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  847. dev->name, np->duplex, np->linkspeed);
  848. pci_push(base);
  849. }
  850. static void nv_stop_rx(struct net_device *dev)
  851. {
  852. u8 __iomem *base = get_hwbase(dev);
  853. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  854. writel(0, base + NvRegReceiverControl);
  855. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  856. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  857. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  858. udelay(NV_RXSTOP_DELAY2);
  859. writel(0, base + NvRegLinkSpeed);
  860. }
  861. static void nv_start_tx(struct net_device *dev)
  862. {
  863. u8 __iomem *base = get_hwbase(dev);
  864. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  865. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  866. pci_push(base);
  867. }
  868. static void nv_stop_tx(struct net_device *dev)
  869. {
  870. u8 __iomem *base = get_hwbase(dev);
  871. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  872. writel(0, base + NvRegTransmitterControl);
  873. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  874. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  875. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  876. udelay(NV_TXSTOP_DELAY2);
  877. writel(0, base + NvRegUnknownTransmitterReg);
  878. }
  879. static void nv_txrx_reset(struct net_device *dev)
  880. {
  881. struct fe_priv *np = netdev_priv(dev);
  882. u8 __iomem *base = get_hwbase(dev);
  883. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  884. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  885. pci_push(base);
  886. udelay(NV_TXRX_RESET_DELAY);
  887. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  888. pci_push(base);
  889. }
  890. static void nv_mac_reset(struct net_device *dev)
  891. {
  892. struct fe_priv *np = netdev_priv(dev);
  893. u8 __iomem *base = get_hwbase(dev);
  894. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  895. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  896. pci_push(base);
  897. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  898. pci_push(base);
  899. udelay(NV_MAC_RESET_DELAY);
  900. writel(0, base + NvRegMacReset);
  901. pci_push(base);
  902. udelay(NV_MAC_RESET_DELAY);
  903. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  904. pci_push(base);
  905. }
  906. /*
  907. * nv_get_stats: dev->get_stats function
  908. * Get latest stats value from the nic.
  909. * Called with read_lock(&dev_base_lock) held for read -
  910. * only synchronized against unregister_netdevice.
  911. */
  912. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  913. {
  914. struct fe_priv *np = netdev_priv(dev);
  915. /* It seems that the nic always generates interrupts and doesn't
  916. * accumulate errors internally. Thus the current values in np->stats
  917. * are already up to date.
  918. */
  919. return &np->stats;
  920. }
  921. /*
  922. * nv_alloc_rx: fill rx ring entries.
  923. * Return 1 if the allocations for the skbs failed and the
  924. * rx engine is without Available descriptors
  925. */
  926. static int nv_alloc_rx(struct net_device *dev)
  927. {
  928. struct fe_priv *np = netdev_priv(dev);
  929. unsigned int refill_rx = np->refill_rx;
  930. int nr;
  931. while (np->cur_rx != refill_rx) {
  932. struct sk_buff *skb;
  933. nr = refill_rx % RX_RING;
  934. if (np->rx_skbuff[nr] == NULL) {
  935. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  936. if (!skb)
  937. break;
  938. skb->dev = dev;
  939. np->rx_skbuff[nr] = skb;
  940. } else {
  941. skb = np->rx_skbuff[nr];
  942. }
  943. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  944. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  945. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  946. np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
  947. wmb();
  948. np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  949. } else {
  950. np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  951. np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  952. wmb();
  953. np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  954. }
  955. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  956. dev->name, refill_rx);
  957. refill_rx++;
  958. }
  959. np->refill_rx = refill_rx;
  960. if (np->cur_rx - refill_rx == RX_RING)
  961. return 1;
  962. return 0;
  963. }
  964. static void nv_do_rx_refill(unsigned long data)
  965. {
  966. struct net_device *dev = (struct net_device *) data;
  967. struct fe_priv *np = netdev_priv(dev);
  968. if (!using_multi_irqs(dev)) {
  969. if (np->msi_flags & NV_MSI_X_ENABLED)
  970. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  971. else
  972. disable_irq(dev->irq);
  973. } else {
  974. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  975. }
  976. if (nv_alloc_rx(dev)) {
  977. spin_lock_irq(&np->lock);
  978. if (!np->in_shutdown)
  979. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  980. spin_unlock_irq(&np->lock);
  981. }
  982. if (!using_multi_irqs(dev)) {
  983. if (np->msi_flags & NV_MSI_X_ENABLED)
  984. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  985. else
  986. enable_irq(dev->irq);
  987. } else {
  988. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  989. }
  990. }
  991. static void nv_init_rx(struct net_device *dev)
  992. {
  993. struct fe_priv *np = netdev_priv(dev);
  994. int i;
  995. np->cur_rx = RX_RING;
  996. np->refill_rx = 0;
  997. for (i = 0; i < RX_RING; i++)
  998. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  999. np->rx_ring.orig[i].FlagLen = 0;
  1000. else
  1001. np->rx_ring.ex[i].FlagLen = 0;
  1002. }
  1003. static void nv_init_tx(struct net_device *dev)
  1004. {
  1005. struct fe_priv *np = netdev_priv(dev);
  1006. int i;
  1007. np->next_tx = np->nic_tx = 0;
  1008. for (i = 0; i < TX_RING; i++) {
  1009. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1010. np->tx_ring.orig[i].FlagLen = 0;
  1011. else
  1012. np->tx_ring.ex[i].FlagLen = 0;
  1013. np->tx_skbuff[i] = NULL;
  1014. np->tx_dma[i] = 0;
  1015. }
  1016. }
  1017. static int nv_init_ring(struct net_device *dev)
  1018. {
  1019. nv_init_tx(dev);
  1020. nv_init_rx(dev);
  1021. return nv_alloc_rx(dev);
  1022. }
  1023. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  1024. {
  1025. struct fe_priv *np = netdev_priv(dev);
  1026. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  1027. dev->name, skbnr);
  1028. if (np->tx_dma[skbnr]) {
  1029. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  1030. np->tx_dma_len[skbnr],
  1031. PCI_DMA_TODEVICE);
  1032. np->tx_dma[skbnr] = 0;
  1033. }
  1034. if (np->tx_skbuff[skbnr]) {
  1035. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  1036. np->tx_skbuff[skbnr] = NULL;
  1037. return 1;
  1038. } else {
  1039. return 0;
  1040. }
  1041. }
  1042. static void nv_drain_tx(struct net_device *dev)
  1043. {
  1044. struct fe_priv *np = netdev_priv(dev);
  1045. unsigned int i;
  1046. for (i = 0; i < TX_RING; i++) {
  1047. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1048. np->tx_ring.orig[i].FlagLen = 0;
  1049. else
  1050. np->tx_ring.ex[i].FlagLen = 0;
  1051. if (nv_release_txskb(dev, i))
  1052. np->stats.tx_dropped++;
  1053. }
  1054. }
  1055. static void nv_drain_rx(struct net_device *dev)
  1056. {
  1057. struct fe_priv *np = netdev_priv(dev);
  1058. int i;
  1059. for (i = 0; i < RX_RING; i++) {
  1060. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1061. np->rx_ring.orig[i].FlagLen = 0;
  1062. else
  1063. np->rx_ring.ex[i].FlagLen = 0;
  1064. wmb();
  1065. if (np->rx_skbuff[i]) {
  1066. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1067. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1068. PCI_DMA_FROMDEVICE);
  1069. dev_kfree_skb(np->rx_skbuff[i]);
  1070. np->rx_skbuff[i] = NULL;
  1071. }
  1072. }
  1073. }
  1074. static void drain_ring(struct net_device *dev)
  1075. {
  1076. nv_drain_tx(dev);
  1077. nv_drain_rx(dev);
  1078. }
  1079. /*
  1080. * nv_start_xmit: dev->hard_start_xmit function
  1081. * Called with dev->xmit_lock held.
  1082. */
  1083. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1084. {
  1085. struct fe_priv *np = netdev_priv(dev);
  1086. u32 tx_flags = 0;
  1087. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1088. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1089. unsigned int nr = (np->next_tx - 1) % TX_RING;
  1090. unsigned int start_nr = np->next_tx % TX_RING;
  1091. unsigned int i;
  1092. u32 offset = 0;
  1093. u32 bcnt;
  1094. u32 size = skb->len-skb->data_len;
  1095. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1096. u32 tx_flags_vlan = 0;
  1097. /* add fragments to entries count */
  1098. for (i = 0; i < fragments; i++) {
  1099. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1100. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1101. }
  1102. spin_lock_irq(&np->lock);
  1103. if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
  1104. spin_unlock_irq(&np->lock);
  1105. netif_stop_queue(dev);
  1106. return NETDEV_TX_BUSY;
  1107. }
  1108. /* setup the header buffer */
  1109. do {
  1110. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1111. nr = (nr + 1) % TX_RING;
  1112. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1113. PCI_DMA_TODEVICE);
  1114. np->tx_dma_len[nr] = bcnt;
  1115. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1116. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1117. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1118. } else {
  1119. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1120. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1121. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1122. }
  1123. tx_flags = np->tx_flags;
  1124. offset += bcnt;
  1125. size -= bcnt;
  1126. } while(size);
  1127. /* setup the fragments */
  1128. for (i = 0; i < fragments; i++) {
  1129. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1130. u32 size = frag->size;
  1131. offset = 0;
  1132. do {
  1133. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1134. nr = (nr + 1) % TX_RING;
  1135. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1136. PCI_DMA_TODEVICE);
  1137. np->tx_dma_len[nr] = bcnt;
  1138. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1139. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1140. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1141. } else {
  1142. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1143. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1144. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1145. }
  1146. offset += bcnt;
  1147. size -= bcnt;
  1148. } while (size);
  1149. }
  1150. /* set last fragment flag */
  1151. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1152. np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1153. } else {
  1154. np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1155. }
  1156. np->tx_skbuff[nr] = skb;
  1157. #ifdef NETIF_F_TSO
  1158. if (skb_shinfo(skb)->tso_size)
  1159. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
  1160. else
  1161. #endif
  1162. tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
  1163. /* vlan tag */
  1164. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1165. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1166. }
  1167. /* set tx flags */
  1168. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1169. np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1170. } else {
  1171. np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
  1172. np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1173. }
  1174. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1175. dev->name, np->next_tx, entries, tx_flags_extra);
  1176. {
  1177. int j;
  1178. for (j=0; j<64; j++) {
  1179. if ((j%16) == 0)
  1180. dprintk("\n%03x:", j);
  1181. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1182. }
  1183. dprintk("\n");
  1184. }
  1185. np->next_tx += entries;
  1186. dev->trans_start = jiffies;
  1187. spin_unlock_irq(&np->lock);
  1188. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1189. pci_push(get_hwbase(dev));
  1190. return NETDEV_TX_OK;
  1191. }
  1192. /*
  1193. * nv_tx_done: check for completed packets, release the skbs.
  1194. *
  1195. * Caller must own np->lock.
  1196. */
  1197. static void nv_tx_done(struct net_device *dev)
  1198. {
  1199. struct fe_priv *np = netdev_priv(dev);
  1200. u32 Flags;
  1201. unsigned int i;
  1202. struct sk_buff *skb;
  1203. while (np->nic_tx != np->next_tx) {
  1204. i = np->nic_tx % TX_RING;
  1205. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1206. Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
  1207. else
  1208. Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
  1209. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
  1210. dev->name, np->nic_tx, Flags);
  1211. if (Flags & NV_TX_VALID)
  1212. break;
  1213. if (np->desc_ver == DESC_VER_1) {
  1214. if (Flags & NV_TX_LASTPACKET) {
  1215. skb = np->tx_skbuff[i];
  1216. if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1217. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1218. if (Flags & NV_TX_UNDERFLOW)
  1219. np->stats.tx_fifo_errors++;
  1220. if (Flags & NV_TX_CARRIERLOST)
  1221. np->stats.tx_carrier_errors++;
  1222. np->stats.tx_errors++;
  1223. } else {
  1224. np->stats.tx_packets++;
  1225. np->stats.tx_bytes += skb->len;
  1226. }
  1227. }
  1228. } else {
  1229. if (Flags & NV_TX2_LASTPACKET) {
  1230. skb = np->tx_skbuff[i];
  1231. if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1232. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1233. if (Flags & NV_TX2_UNDERFLOW)
  1234. np->stats.tx_fifo_errors++;
  1235. if (Flags & NV_TX2_CARRIERLOST)
  1236. np->stats.tx_carrier_errors++;
  1237. np->stats.tx_errors++;
  1238. } else {
  1239. np->stats.tx_packets++;
  1240. np->stats.tx_bytes += skb->len;
  1241. }
  1242. }
  1243. }
  1244. nv_release_txskb(dev, i);
  1245. np->nic_tx++;
  1246. }
  1247. if (np->next_tx - np->nic_tx < TX_LIMIT_START)
  1248. netif_wake_queue(dev);
  1249. }
  1250. /*
  1251. * nv_tx_timeout: dev->tx_timeout function
  1252. * Called with dev->xmit_lock held.
  1253. */
  1254. static void nv_tx_timeout(struct net_device *dev)
  1255. {
  1256. struct fe_priv *np = netdev_priv(dev);
  1257. u8 __iomem *base = get_hwbase(dev);
  1258. u32 status;
  1259. if (np->msi_flags & NV_MSI_X_ENABLED)
  1260. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1261. else
  1262. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1263. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1264. {
  1265. int i;
  1266. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1267. dev->name, (unsigned long)np->ring_addr,
  1268. np->next_tx, np->nic_tx);
  1269. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1270. for (i=0;i<=np->register_size;i+= 32) {
  1271. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1272. i,
  1273. readl(base + i + 0), readl(base + i + 4),
  1274. readl(base + i + 8), readl(base + i + 12),
  1275. readl(base + i + 16), readl(base + i + 20),
  1276. readl(base + i + 24), readl(base + i + 28));
  1277. }
  1278. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1279. for (i=0;i<TX_RING;i+= 4) {
  1280. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1281. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1282. i,
  1283. le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
  1284. le32_to_cpu(np->tx_ring.orig[i].FlagLen),
  1285. le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
  1286. le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
  1287. le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
  1288. le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
  1289. le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
  1290. le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
  1291. } else {
  1292. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1293. i,
  1294. le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
  1295. le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
  1296. le32_to_cpu(np->tx_ring.ex[i].FlagLen),
  1297. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
  1298. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
  1299. le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
  1300. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
  1301. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
  1302. le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
  1303. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
  1304. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
  1305. le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
  1306. }
  1307. }
  1308. }
  1309. spin_lock_irq(&np->lock);
  1310. /* 1) stop tx engine */
  1311. nv_stop_tx(dev);
  1312. /* 2) check that the packets were not sent already: */
  1313. nv_tx_done(dev);
  1314. /* 3) if there are dead entries: clear everything */
  1315. if (np->next_tx != np->nic_tx) {
  1316. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1317. nv_drain_tx(dev);
  1318. np->next_tx = np->nic_tx = 0;
  1319. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1320. netif_wake_queue(dev);
  1321. }
  1322. /* 4) restart tx engine */
  1323. nv_start_tx(dev);
  1324. spin_unlock_irq(&np->lock);
  1325. }
  1326. /*
  1327. * Called when the nic notices a mismatch between the actual data len on the
  1328. * wire and the len indicated in the 802 header
  1329. */
  1330. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1331. {
  1332. int hdrlen; /* length of the 802 header */
  1333. int protolen; /* length as stored in the proto field */
  1334. /* 1) calculate len according to header */
  1335. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
  1336. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1337. hdrlen = VLAN_HLEN;
  1338. } else {
  1339. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1340. hdrlen = ETH_HLEN;
  1341. }
  1342. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1343. dev->name, datalen, protolen, hdrlen);
  1344. if (protolen > ETH_DATA_LEN)
  1345. return datalen; /* Value in proto field not a len, no checks possible */
  1346. protolen += hdrlen;
  1347. /* consistency checks: */
  1348. if (datalen > ETH_ZLEN) {
  1349. if (datalen >= protolen) {
  1350. /* more data on wire than in 802 header, trim of
  1351. * additional data.
  1352. */
  1353. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1354. dev->name, protolen);
  1355. return protolen;
  1356. } else {
  1357. /* less data on wire than mentioned in header.
  1358. * Discard the packet.
  1359. */
  1360. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1361. dev->name);
  1362. return -1;
  1363. }
  1364. } else {
  1365. /* short packet. Accept only if 802 values are also short */
  1366. if (protolen > ETH_ZLEN) {
  1367. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1368. dev->name);
  1369. return -1;
  1370. }
  1371. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1372. dev->name, datalen);
  1373. return datalen;
  1374. }
  1375. }
  1376. static void nv_rx_process(struct net_device *dev)
  1377. {
  1378. struct fe_priv *np = netdev_priv(dev);
  1379. u32 Flags;
  1380. u32 vlanflags = 0;
  1381. for (;;) {
  1382. struct sk_buff *skb;
  1383. int len;
  1384. int i;
  1385. if (np->cur_rx - np->refill_rx >= RX_RING)
  1386. break; /* we scanned the whole ring - do not continue */
  1387. i = np->cur_rx % RX_RING;
  1388. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1389. Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
  1390. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1391. } else {
  1392. Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
  1393. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1394. vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
  1395. }
  1396. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
  1397. dev->name, np->cur_rx, Flags);
  1398. if (Flags & NV_RX_AVAIL)
  1399. break; /* still owned by hardware, */
  1400. /*
  1401. * the packet is for us - immediately tear down the pci mapping.
  1402. * TODO: check if a prefetch of the first cacheline improves
  1403. * the performance.
  1404. */
  1405. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1406. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1407. PCI_DMA_FROMDEVICE);
  1408. {
  1409. int j;
  1410. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
  1411. for (j=0; j<64; j++) {
  1412. if ((j%16) == 0)
  1413. dprintk("\n%03x:", j);
  1414. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1415. }
  1416. dprintk("\n");
  1417. }
  1418. /* look at what we actually got: */
  1419. if (np->desc_ver == DESC_VER_1) {
  1420. if (!(Flags & NV_RX_DESCRIPTORVALID))
  1421. goto next_pkt;
  1422. if (Flags & NV_RX_ERROR) {
  1423. if (Flags & NV_RX_MISSEDFRAME) {
  1424. np->stats.rx_missed_errors++;
  1425. np->stats.rx_errors++;
  1426. goto next_pkt;
  1427. }
  1428. if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1429. np->stats.rx_errors++;
  1430. goto next_pkt;
  1431. }
  1432. if (Flags & NV_RX_CRCERR) {
  1433. np->stats.rx_crc_errors++;
  1434. np->stats.rx_errors++;
  1435. goto next_pkt;
  1436. }
  1437. if (Flags & NV_RX_OVERFLOW) {
  1438. np->stats.rx_over_errors++;
  1439. np->stats.rx_errors++;
  1440. goto next_pkt;
  1441. }
  1442. if (Flags & NV_RX_ERROR4) {
  1443. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1444. if (len < 0) {
  1445. np->stats.rx_errors++;
  1446. goto next_pkt;
  1447. }
  1448. }
  1449. /* framing errors are soft errors. */
  1450. if (Flags & NV_RX_FRAMINGERR) {
  1451. if (Flags & NV_RX_SUBSTRACT1) {
  1452. len--;
  1453. }
  1454. }
  1455. }
  1456. } else {
  1457. if (!(Flags & NV_RX2_DESCRIPTORVALID))
  1458. goto next_pkt;
  1459. if (Flags & NV_RX2_ERROR) {
  1460. if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1461. np->stats.rx_errors++;
  1462. goto next_pkt;
  1463. }
  1464. if (Flags & NV_RX2_CRCERR) {
  1465. np->stats.rx_crc_errors++;
  1466. np->stats.rx_errors++;
  1467. goto next_pkt;
  1468. }
  1469. if (Flags & NV_RX2_OVERFLOW) {
  1470. np->stats.rx_over_errors++;
  1471. np->stats.rx_errors++;
  1472. goto next_pkt;
  1473. }
  1474. if (Flags & NV_RX2_ERROR4) {
  1475. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1476. if (len < 0) {
  1477. np->stats.rx_errors++;
  1478. goto next_pkt;
  1479. }
  1480. }
  1481. /* framing errors are soft errors */
  1482. if (Flags & NV_RX2_FRAMINGERR) {
  1483. if (Flags & NV_RX2_SUBSTRACT1) {
  1484. len--;
  1485. }
  1486. }
  1487. }
  1488. Flags &= NV_RX2_CHECKSUMMASK;
  1489. if (Flags == NV_RX2_CHECKSUMOK1 ||
  1490. Flags == NV_RX2_CHECKSUMOK2 ||
  1491. Flags == NV_RX2_CHECKSUMOK3) {
  1492. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1493. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1494. } else {
  1495. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1496. }
  1497. }
  1498. /* got a valid packet - forward it to the network core */
  1499. skb = np->rx_skbuff[i];
  1500. np->rx_skbuff[i] = NULL;
  1501. skb_put(skb, len);
  1502. skb->protocol = eth_type_trans(skb, dev);
  1503. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1504. dev->name, np->cur_rx, len, skb->protocol);
  1505. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
  1506. vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
  1507. } else {
  1508. netif_rx(skb);
  1509. }
  1510. dev->last_rx = jiffies;
  1511. np->stats.rx_packets++;
  1512. np->stats.rx_bytes += len;
  1513. next_pkt:
  1514. np->cur_rx++;
  1515. }
  1516. }
  1517. static void set_bufsize(struct net_device *dev)
  1518. {
  1519. struct fe_priv *np = netdev_priv(dev);
  1520. if (dev->mtu <= ETH_DATA_LEN)
  1521. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1522. else
  1523. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1524. }
  1525. /*
  1526. * nv_change_mtu: dev->change_mtu function
  1527. * Called with dev_base_lock held for read.
  1528. */
  1529. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1530. {
  1531. struct fe_priv *np = netdev_priv(dev);
  1532. int old_mtu;
  1533. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1534. return -EINVAL;
  1535. old_mtu = dev->mtu;
  1536. dev->mtu = new_mtu;
  1537. /* return early if the buffer sizes will not change */
  1538. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1539. return 0;
  1540. if (old_mtu == new_mtu)
  1541. return 0;
  1542. /* synchronized against open : rtnl_lock() held by caller */
  1543. if (netif_running(dev)) {
  1544. u8 __iomem *base = get_hwbase(dev);
  1545. /*
  1546. * It seems that the nic preloads valid ring entries into an
  1547. * internal buffer. The procedure for flushing everything is
  1548. * guessed, there is probably a simpler approach.
  1549. * Changing the MTU is a rare event, it shouldn't matter.
  1550. */
  1551. nv_disable_irq(dev);
  1552. spin_lock_bh(&dev->xmit_lock);
  1553. spin_lock(&np->lock);
  1554. /* stop engines */
  1555. nv_stop_rx(dev);
  1556. nv_stop_tx(dev);
  1557. nv_txrx_reset(dev);
  1558. /* drain rx queue */
  1559. nv_drain_rx(dev);
  1560. nv_drain_tx(dev);
  1561. /* reinit driver view of the rx queue */
  1562. nv_init_rx(dev);
  1563. nv_init_tx(dev);
  1564. /* alloc new rx buffers */
  1565. set_bufsize(dev);
  1566. if (nv_alloc_rx(dev)) {
  1567. if (!np->in_shutdown)
  1568. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1569. }
  1570. /* reinit nic view of the rx queue */
  1571. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1572. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1573. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  1574. base + NvRegRingSizes);
  1575. pci_push(base);
  1576. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1577. pci_push(base);
  1578. /* restart rx engine */
  1579. nv_start_rx(dev);
  1580. nv_start_tx(dev);
  1581. spin_unlock(&np->lock);
  1582. spin_unlock_bh(&dev->xmit_lock);
  1583. nv_enable_irq(dev);
  1584. }
  1585. return 0;
  1586. }
  1587. static void nv_copy_mac_to_hw(struct net_device *dev)
  1588. {
  1589. u8 __iomem *base = get_hwbase(dev);
  1590. u32 mac[2];
  1591. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1592. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1593. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1594. writel(mac[0], base + NvRegMacAddrA);
  1595. writel(mac[1], base + NvRegMacAddrB);
  1596. }
  1597. /*
  1598. * nv_set_mac_address: dev->set_mac_address function
  1599. * Called with rtnl_lock() held.
  1600. */
  1601. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1602. {
  1603. struct fe_priv *np = netdev_priv(dev);
  1604. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1605. if(!is_valid_ether_addr(macaddr->sa_data))
  1606. return -EADDRNOTAVAIL;
  1607. /* synchronized against open : rtnl_lock() held by caller */
  1608. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1609. if (netif_running(dev)) {
  1610. spin_lock_bh(&dev->xmit_lock);
  1611. spin_lock_irq(&np->lock);
  1612. /* stop rx engine */
  1613. nv_stop_rx(dev);
  1614. /* set mac address */
  1615. nv_copy_mac_to_hw(dev);
  1616. /* restart rx engine */
  1617. nv_start_rx(dev);
  1618. spin_unlock_irq(&np->lock);
  1619. spin_unlock_bh(&dev->xmit_lock);
  1620. } else {
  1621. nv_copy_mac_to_hw(dev);
  1622. }
  1623. return 0;
  1624. }
  1625. /*
  1626. * nv_set_multicast: dev->set_multicast function
  1627. * Called with dev->xmit_lock held.
  1628. */
  1629. static void nv_set_multicast(struct net_device *dev)
  1630. {
  1631. struct fe_priv *np = netdev_priv(dev);
  1632. u8 __iomem *base = get_hwbase(dev);
  1633. u32 addr[2];
  1634. u32 mask[2];
  1635. u32 pff;
  1636. memset(addr, 0, sizeof(addr));
  1637. memset(mask, 0, sizeof(mask));
  1638. if (dev->flags & IFF_PROMISC) {
  1639. printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
  1640. pff = NVREG_PFF_PROMISC;
  1641. } else {
  1642. pff = NVREG_PFF_MYADDR;
  1643. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1644. u32 alwaysOff[2];
  1645. u32 alwaysOn[2];
  1646. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1647. if (dev->flags & IFF_ALLMULTI) {
  1648. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1649. } else {
  1650. struct dev_mc_list *walk;
  1651. walk = dev->mc_list;
  1652. while (walk != NULL) {
  1653. u32 a, b;
  1654. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1655. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1656. alwaysOn[0] &= a;
  1657. alwaysOff[0] &= ~a;
  1658. alwaysOn[1] &= b;
  1659. alwaysOff[1] &= ~b;
  1660. walk = walk->next;
  1661. }
  1662. }
  1663. addr[0] = alwaysOn[0];
  1664. addr[1] = alwaysOn[1];
  1665. mask[0] = alwaysOn[0] | alwaysOff[0];
  1666. mask[1] = alwaysOn[1] | alwaysOff[1];
  1667. }
  1668. }
  1669. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1670. pff |= NVREG_PFF_ALWAYS;
  1671. spin_lock_irq(&np->lock);
  1672. nv_stop_rx(dev);
  1673. writel(addr[0], base + NvRegMulticastAddrA);
  1674. writel(addr[1], base + NvRegMulticastAddrB);
  1675. writel(mask[0], base + NvRegMulticastMaskA);
  1676. writel(mask[1], base + NvRegMulticastMaskB);
  1677. writel(pff, base + NvRegPacketFilterFlags);
  1678. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1679. dev->name);
  1680. nv_start_rx(dev);
  1681. spin_unlock_irq(&np->lock);
  1682. }
  1683. /**
  1684. * nv_update_linkspeed: Setup the MAC according to the link partner
  1685. * @dev: Network device to be configured
  1686. *
  1687. * The function queries the PHY and checks if there is a link partner.
  1688. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1689. * set to 10 MBit HD.
  1690. *
  1691. * The function returns 0 if there is no link partner and 1 if there is
  1692. * a good link partner.
  1693. */
  1694. static int nv_update_linkspeed(struct net_device *dev)
  1695. {
  1696. struct fe_priv *np = netdev_priv(dev);
  1697. u8 __iomem *base = get_hwbase(dev);
  1698. int adv, lpa;
  1699. int newls = np->linkspeed;
  1700. int newdup = np->duplex;
  1701. int mii_status;
  1702. int retval = 0;
  1703. u32 control_1000, status_1000, phyreg;
  1704. /* BMSR_LSTATUS is latched, read it twice:
  1705. * we want the current value.
  1706. */
  1707. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1708. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1709. if (!(mii_status & BMSR_LSTATUS)) {
  1710. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1711. dev->name);
  1712. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1713. newdup = 0;
  1714. retval = 0;
  1715. goto set_speed;
  1716. }
  1717. if (np->autoneg == 0) {
  1718. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1719. dev->name, np->fixed_mode);
  1720. if (np->fixed_mode & LPA_100FULL) {
  1721. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1722. newdup = 1;
  1723. } else if (np->fixed_mode & LPA_100HALF) {
  1724. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1725. newdup = 0;
  1726. } else if (np->fixed_mode & LPA_10FULL) {
  1727. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1728. newdup = 1;
  1729. } else {
  1730. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1731. newdup = 0;
  1732. }
  1733. retval = 1;
  1734. goto set_speed;
  1735. }
  1736. /* check auto negotiation is complete */
  1737. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1738. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1739. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1740. newdup = 0;
  1741. retval = 0;
  1742. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1743. goto set_speed;
  1744. }
  1745. retval = 1;
  1746. if (np->gigabit == PHY_GIGABIT) {
  1747. control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1748. status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
  1749. if ((control_1000 & ADVERTISE_1000FULL) &&
  1750. (status_1000 & LPA_1000FULL)) {
  1751. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  1752. dev->name);
  1753. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  1754. newdup = 1;
  1755. goto set_speed;
  1756. }
  1757. }
  1758. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1759. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  1760. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  1761. dev->name, adv, lpa);
  1762. /* FIXME: handle parallel detection properly */
  1763. lpa = lpa & adv;
  1764. if (lpa & LPA_100FULL) {
  1765. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1766. newdup = 1;
  1767. } else if (lpa & LPA_100HALF) {
  1768. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1769. newdup = 0;
  1770. } else if (lpa & LPA_10FULL) {
  1771. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1772. newdup = 1;
  1773. } else if (lpa & LPA_10HALF) {
  1774. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1775. newdup = 0;
  1776. } else {
  1777. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
  1778. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1779. newdup = 0;
  1780. }
  1781. set_speed:
  1782. if (np->duplex == newdup && np->linkspeed == newls)
  1783. return retval;
  1784. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  1785. dev->name, np->linkspeed, np->duplex, newls, newdup);
  1786. np->duplex = newdup;
  1787. np->linkspeed = newls;
  1788. if (np->gigabit == PHY_GIGABIT) {
  1789. phyreg = readl(base + NvRegRandomSeed);
  1790. phyreg &= ~(0x3FF00);
  1791. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  1792. phyreg |= NVREG_RNDSEED_FORCE3;
  1793. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  1794. phyreg |= NVREG_RNDSEED_FORCE2;
  1795. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  1796. phyreg |= NVREG_RNDSEED_FORCE;
  1797. writel(phyreg, base + NvRegRandomSeed);
  1798. }
  1799. phyreg = readl(base + NvRegPhyInterface);
  1800. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  1801. if (np->duplex == 0)
  1802. phyreg |= PHY_HALF;
  1803. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  1804. phyreg |= PHY_100;
  1805. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  1806. phyreg |= PHY_1000;
  1807. writel(phyreg, base + NvRegPhyInterface);
  1808. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  1809. base + NvRegMisc1);
  1810. pci_push(base);
  1811. writel(np->linkspeed, base + NvRegLinkSpeed);
  1812. pci_push(base);
  1813. return retval;
  1814. }
  1815. static void nv_linkchange(struct net_device *dev)
  1816. {
  1817. if (nv_update_linkspeed(dev)) {
  1818. if (!netif_carrier_ok(dev)) {
  1819. netif_carrier_on(dev);
  1820. printk(KERN_INFO "%s: link up.\n", dev->name);
  1821. nv_start_rx(dev);
  1822. }
  1823. } else {
  1824. if (netif_carrier_ok(dev)) {
  1825. netif_carrier_off(dev);
  1826. printk(KERN_INFO "%s: link down.\n", dev->name);
  1827. nv_stop_rx(dev);
  1828. }
  1829. }
  1830. }
  1831. static void nv_link_irq(struct net_device *dev)
  1832. {
  1833. u8 __iomem *base = get_hwbase(dev);
  1834. u32 miistat;
  1835. miistat = readl(base + NvRegMIIStatus);
  1836. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  1837. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  1838. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  1839. nv_linkchange(dev);
  1840. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  1841. }
  1842. static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
  1843. {
  1844. struct net_device *dev = (struct net_device *) data;
  1845. struct fe_priv *np = netdev_priv(dev);
  1846. u8 __iomem *base = get_hwbase(dev);
  1847. u32 events;
  1848. int i;
  1849. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  1850. for (i=0; ; i++) {
  1851. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  1852. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1853. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  1854. } else {
  1855. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1856. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  1857. }
  1858. pci_push(base);
  1859. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  1860. if (!(events & np->irqmask))
  1861. break;
  1862. spin_lock(&np->lock);
  1863. nv_tx_done(dev);
  1864. spin_unlock(&np->lock);
  1865. nv_rx_process(dev);
  1866. if (nv_alloc_rx(dev)) {
  1867. spin_lock(&np->lock);
  1868. if (!np->in_shutdown)
  1869. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1870. spin_unlock(&np->lock);
  1871. }
  1872. if (events & NVREG_IRQ_LINK) {
  1873. spin_lock(&np->lock);
  1874. nv_link_irq(dev);
  1875. spin_unlock(&np->lock);
  1876. }
  1877. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  1878. spin_lock(&np->lock);
  1879. nv_linkchange(dev);
  1880. spin_unlock(&np->lock);
  1881. np->link_timeout = jiffies + LINK_TIMEOUT;
  1882. }
  1883. if (events & (NVREG_IRQ_TX_ERR)) {
  1884. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1885. dev->name, events);
  1886. }
  1887. if (events & (NVREG_IRQ_UNKNOWN)) {
  1888. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  1889. dev->name, events);
  1890. }
  1891. if (i > max_interrupt_work) {
  1892. spin_lock(&np->lock);
  1893. /* disable interrupts on the nic */
  1894. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  1895. writel(0, base + NvRegIrqMask);
  1896. else
  1897. writel(np->irqmask, base + NvRegIrqMask);
  1898. pci_push(base);
  1899. if (!np->in_shutdown) {
  1900. np->nic_poll_irq = np->irqmask;
  1901. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1902. }
  1903. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  1904. spin_unlock(&np->lock);
  1905. break;
  1906. }
  1907. }
  1908. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  1909. return IRQ_RETVAL(i);
  1910. }
  1911. static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
  1912. {
  1913. struct net_device *dev = (struct net_device *) data;
  1914. struct fe_priv *np = netdev_priv(dev);
  1915. u8 __iomem *base = get_hwbase(dev);
  1916. u32 events;
  1917. int i;
  1918. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  1919. for (i=0; ; i++) {
  1920. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  1921. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  1922. pci_push(base);
  1923. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  1924. if (!(events & np->irqmask))
  1925. break;
  1926. spin_lock_irq(&np->lock);
  1927. nv_tx_done(dev);
  1928. spin_unlock_irq(&np->lock);
  1929. if (events & (NVREG_IRQ_TX_ERR)) {
  1930. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1931. dev->name, events);
  1932. }
  1933. if (i > max_interrupt_work) {
  1934. spin_lock_irq(&np->lock);
  1935. /* disable interrupts on the nic */
  1936. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  1937. pci_push(base);
  1938. if (!np->in_shutdown) {
  1939. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  1940. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1941. }
  1942. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  1943. spin_unlock_irq(&np->lock);
  1944. break;
  1945. }
  1946. }
  1947. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  1948. return IRQ_RETVAL(i);
  1949. }
  1950. static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
  1951. {
  1952. struct net_device *dev = (struct net_device *) data;
  1953. struct fe_priv *np = netdev_priv(dev);
  1954. u8 __iomem *base = get_hwbase(dev);
  1955. u32 events;
  1956. int i;
  1957. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  1958. for (i=0; ; i++) {
  1959. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  1960. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  1961. pci_push(base);
  1962. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  1963. if (!(events & np->irqmask))
  1964. break;
  1965. nv_rx_process(dev);
  1966. if (nv_alloc_rx(dev)) {
  1967. spin_lock_irq(&np->lock);
  1968. if (!np->in_shutdown)
  1969. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1970. spin_unlock_irq(&np->lock);
  1971. }
  1972. if (i > max_interrupt_work) {
  1973. spin_lock_irq(&np->lock);
  1974. /* disable interrupts on the nic */
  1975. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  1976. pci_push(base);
  1977. if (!np->in_shutdown) {
  1978. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  1979. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1980. }
  1981. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  1982. spin_unlock_irq(&np->lock);
  1983. break;
  1984. }
  1985. }
  1986. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  1987. return IRQ_RETVAL(i);
  1988. }
  1989. static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
  1990. {
  1991. struct net_device *dev = (struct net_device *) data;
  1992. struct fe_priv *np = netdev_priv(dev);
  1993. u8 __iomem *base = get_hwbase(dev);
  1994. u32 events;
  1995. int i;
  1996. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  1997. for (i=0; ; i++) {
  1998. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  1999. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  2000. pci_push(base);
  2001. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2002. if (!(events & np->irqmask))
  2003. break;
  2004. if (events & NVREG_IRQ_LINK) {
  2005. spin_lock_irq(&np->lock);
  2006. nv_link_irq(dev);
  2007. spin_unlock_irq(&np->lock);
  2008. }
  2009. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2010. spin_lock_irq(&np->lock);
  2011. nv_linkchange(dev);
  2012. spin_unlock_irq(&np->lock);
  2013. np->link_timeout = jiffies + LINK_TIMEOUT;
  2014. }
  2015. if (events & (NVREG_IRQ_UNKNOWN)) {
  2016. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2017. dev->name, events);
  2018. }
  2019. if (i > max_interrupt_work) {
  2020. spin_lock_irq(&np->lock);
  2021. /* disable interrupts on the nic */
  2022. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2023. pci_push(base);
  2024. if (!np->in_shutdown) {
  2025. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2026. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2027. }
  2028. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  2029. spin_unlock_irq(&np->lock);
  2030. break;
  2031. }
  2032. }
  2033. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  2034. return IRQ_RETVAL(i);
  2035. }
  2036. static void nv_do_nic_poll(unsigned long data)
  2037. {
  2038. struct net_device *dev = (struct net_device *) data;
  2039. struct fe_priv *np = netdev_priv(dev);
  2040. u8 __iomem *base = get_hwbase(dev);
  2041. u32 mask = 0;
  2042. /*
  2043. * First disable irq(s) and then
  2044. * reenable interrupts on the nic, we have to do this before calling
  2045. * nv_nic_irq because that may decide to do otherwise
  2046. */
  2047. if (!using_multi_irqs(dev)) {
  2048. if (np->msi_flags & NV_MSI_X_ENABLED)
  2049. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2050. else
  2051. disable_irq(dev->irq);
  2052. mask = np->irqmask;
  2053. } else {
  2054. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2055. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2056. mask |= NVREG_IRQ_RX_ALL;
  2057. }
  2058. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2059. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2060. mask |= NVREG_IRQ_TX_ALL;
  2061. }
  2062. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2063. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2064. mask |= NVREG_IRQ_OTHER;
  2065. }
  2066. }
  2067. np->nic_poll_irq = 0;
  2068. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  2069. writel(mask, base + NvRegIrqMask);
  2070. pci_push(base);
  2071. if (!using_multi_irqs(dev)) {
  2072. nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
  2073. if (np->msi_flags & NV_MSI_X_ENABLED)
  2074. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2075. else
  2076. enable_irq(dev->irq);
  2077. } else {
  2078. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2079. nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2080. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2081. }
  2082. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2083. nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2084. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2085. }
  2086. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2087. nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
  2088. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2089. }
  2090. }
  2091. }
  2092. #ifdef CONFIG_NET_POLL_CONTROLLER
  2093. static void nv_poll_controller(struct net_device *dev)
  2094. {
  2095. nv_do_nic_poll((unsigned long) dev);
  2096. }
  2097. #endif
  2098. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2099. {
  2100. struct fe_priv *np = netdev_priv(dev);
  2101. strcpy(info->driver, "forcedeth");
  2102. strcpy(info->version, FORCEDETH_VERSION);
  2103. strcpy(info->bus_info, pci_name(np->pci_dev));
  2104. }
  2105. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2106. {
  2107. struct fe_priv *np = netdev_priv(dev);
  2108. wolinfo->supported = WAKE_MAGIC;
  2109. spin_lock_irq(&np->lock);
  2110. if (np->wolenabled)
  2111. wolinfo->wolopts = WAKE_MAGIC;
  2112. spin_unlock_irq(&np->lock);
  2113. }
  2114. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2115. {
  2116. struct fe_priv *np = netdev_priv(dev);
  2117. u8 __iomem *base = get_hwbase(dev);
  2118. spin_lock_irq(&np->lock);
  2119. if (wolinfo->wolopts == 0) {
  2120. writel(0, base + NvRegWakeUpFlags);
  2121. np->wolenabled = 0;
  2122. }
  2123. if (wolinfo->wolopts & WAKE_MAGIC) {
  2124. writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
  2125. np->wolenabled = 1;
  2126. }
  2127. spin_unlock_irq(&np->lock);
  2128. return 0;
  2129. }
  2130. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2131. {
  2132. struct fe_priv *np = netdev_priv(dev);
  2133. int adv;
  2134. spin_lock_irq(&np->lock);
  2135. ecmd->port = PORT_MII;
  2136. if (!netif_running(dev)) {
  2137. /* We do not track link speed / duplex setting if the
  2138. * interface is disabled. Force a link check */
  2139. nv_update_linkspeed(dev);
  2140. }
  2141. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2142. case NVREG_LINKSPEED_10:
  2143. ecmd->speed = SPEED_10;
  2144. break;
  2145. case NVREG_LINKSPEED_100:
  2146. ecmd->speed = SPEED_100;
  2147. break;
  2148. case NVREG_LINKSPEED_1000:
  2149. ecmd->speed = SPEED_1000;
  2150. break;
  2151. }
  2152. ecmd->duplex = DUPLEX_HALF;
  2153. if (np->duplex)
  2154. ecmd->duplex = DUPLEX_FULL;
  2155. ecmd->autoneg = np->autoneg;
  2156. ecmd->advertising = ADVERTISED_MII;
  2157. if (np->autoneg) {
  2158. ecmd->advertising |= ADVERTISED_Autoneg;
  2159. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2160. } else {
  2161. adv = np->fixed_mode;
  2162. }
  2163. if (adv & ADVERTISE_10HALF)
  2164. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2165. if (adv & ADVERTISE_10FULL)
  2166. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2167. if (adv & ADVERTISE_100HALF)
  2168. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2169. if (adv & ADVERTISE_100FULL)
  2170. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2171. if (np->autoneg && np->gigabit == PHY_GIGABIT) {
  2172. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2173. if (adv & ADVERTISE_1000FULL)
  2174. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2175. }
  2176. ecmd->supported = (SUPPORTED_Autoneg |
  2177. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2178. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2179. SUPPORTED_MII);
  2180. if (np->gigabit == PHY_GIGABIT)
  2181. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2182. ecmd->phy_address = np->phyaddr;
  2183. ecmd->transceiver = XCVR_EXTERNAL;
  2184. /* ignore maxtxpkt, maxrxpkt for now */
  2185. spin_unlock_irq(&np->lock);
  2186. return 0;
  2187. }
  2188. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2189. {
  2190. struct fe_priv *np = netdev_priv(dev);
  2191. if (ecmd->port != PORT_MII)
  2192. return -EINVAL;
  2193. if (ecmd->transceiver != XCVR_EXTERNAL)
  2194. return -EINVAL;
  2195. if (ecmd->phy_address != np->phyaddr) {
  2196. /* TODO: support switching between multiple phys. Should be
  2197. * trivial, but not enabled due to lack of test hardware. */
  2198. return -EINVAL;
  2199. }
  2200. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2201. u32 mask;
  2202. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2203. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2204. if (np->gigabit == PHY_GIGABIT)
  2205. mask |= ADVERTISED_1000baseT_Full;
  2206. if ((ecmd->advertising & mask) == 0)
  2207. return -EINVAL;
  2208. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2209. /* Note: autonegotiation disable, speed 1000 intentionally
  2210. * forbidden - noone should need that. */
  2211. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2212. return -EINVAL;
  2213. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2214. return -EINVAL;
  2215. } else {
  2216. return -EINVAL;
  2217. }
  2218. spin_lock_irq(&np->lock);
  2219. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2220. int adv, bmcr;
  2221. np->autoneg = 1;
  2222. /* advertise only what has been requested */
  2223. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2224. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  2225. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2226. adv |= ADVERTISE_10HALF;
  2227. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2228. adv |= ADVERTISE_10FULL;
  2229. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2230. adv |= ADVERTISE_100HALF;
  2231. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2232. adv |= ADVERTISE_100FULL;
  2233. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2234. if (np->gigabit == PHY_GIGABIT) {
  2235. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2236. adv &= ~ADVERTISE_1000FULL;
  2237. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2238. adv |= ADVERTISE_1000FULL;
  2239. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  2240. }
  2241. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2242. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2243. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2244. } else {
  2245. int adv, bmcr;
  2246. np->autoneg = 0;
  2247. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2248. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  2249. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2250. adv |= ADVERTISE_10HALF;
  2251. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2252. adv |= ADVERTISE_10FULL;
  2253. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2254. adv |= ADVERTISE_100HALF;
  2255. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2256. adv |= ADVERTISE_100FULL;
  2257. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2258. np->fixed_mode = adv;
  2259. if (np->gigabit == PHY_GIGABIT) {
  2260. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2261. adv &= ~ADVERTISE_1000FULL;
  2262. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  2263. }
  2264. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2265. bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
  2266. if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2267. bmcr |= BMCR_FULLDPLX;
  2268. if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2269. bmcr |= BMCR_SPEED100;
  2270. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2271. if (netif_running(dev)) {
  2272. /* Wait a bit and then reconfigure the nic. */
  2273. udelay(10);
  2274. nv_linkchange(dev);
  2275. }
  2276. }
  2277. spin_unlock_irq(&np->lock);
  2278. return 0;
  2279. }
  2280. #define FORCEDETH_REGS_VER 1
  2281. static int nv_get_regs_len(struct net_device *dev)
  2282. {
  2283. struct fe_priv *np = netdev_priv(dev);
  2284. return np->register_size;
  2285. }
  2286. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  2287. {
  2288. struct fe_priv *np = netdev_priv(dev);
  2289. u8 __iomem *base = get_hwbase(dev);
  2290. u32 *rbuf = buf;
  2291. int i;
  2292. regs->version = FORCEDETH_REGS_VER;
  2293. spin_lock_irq(&np->lock);
  2294. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  2295. rbuf[i] = readl(base + i*sizeof(u32));
  2296. spin_unlock_irq(&np->lock);
  2297. }
  2298. static int nv_nway_reset(struct net_device *dev)
  2299. {
  2300. struct fe_priv *np = netdev_priv(dev);
  2301. int ret;
  2302. spin_lock_irq(&np->lock);
  2303. if (np->autoneg) {
  2304. int bmcr;
  2305. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2306. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2307. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2308. ret = 0;
  2309. } else {
  2310. ret = -EINVAL;
  2311. }
  2312. spin_unlock_irq(&np->lock);
  2313. return ret;
  2314. }
  2315. #ifdef NETIF_F_TSO
  2316. static int nv_set_tso(struct net_device *dev, u32 value)
  2317. {
  2318. struct fe_priv *np = netdev_priv(dev);
  2319. if ((np->driver_data & DEV_HAS_CHECKSUM))
  2320. return ethtool_op_set_tso(dev, value);
  2321. else
  2322. return value ? -EOPNOTSUPP : 0;
  2323. }
  2324. #endif
  2325. static struct ethtool_ops ops = {
  2326. .get_drvinfo = nv_get_drvinfo,
  2327. .get_link = ethtool_op_get_link,
  2328. .get_wol = nv_get_wol,
  2329. .set_wol = nv_set_wol,
  2330. .get_settings = nv_get_settings,
  2331. .set_settings = nv_set_settings,
  2332. .get_regs_len = nv_get_regs_len,
  2333. .get_regs = nv_get_regs,
  2334. .nway_reset = nv_nway_reset,
  2335. .get_perm_addr = ethtool_op_get_perm_addr,
  2336. #ifdef NETIF_F_TSO
  2337. .get_tso = ethtool_op_get_tso,
  2338. .set_tso = nv_set_tso
  2339. #endif
  2340. };
  2341. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  2342. {
  2343. struct fe_priv *np = get_nvpriv(dev);
  2344. spin_lock_irq(&np->lock);
  2345. /* save vlan group */
  2346. np->vlangrp = grp;
  2347. if (grp) {
  2348. /* enable vlan on MAC */
  2349. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  2350. } else {
  2351. /* disable vlan on MAC */
  2352. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  2353. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  2354. }
  2355. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2356. spin_unlock_irq(&np->lock);
  2357. };
  2358. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  2359. {
  2360. /* nothing to do */
  2361. };
  2362. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2363. {
  2364. u8 __iomem *base = get_hwbase(dev);
  2365. int i;
  2366. u32 msixmap = 0;
  2367. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2368. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2369. * the remaining 8 interrupts.
  2370. */
  2371. for (i = 0; i < 8; i++) {
  2372. if ((irqmask >> i) & 0x1) {
  2373. msixmap |= vector << (i << 2);
  2374. }
  2375. }
  2376. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2377. msixmap = 0;
  2378. for (i = 0; i < 8; i++) {
  2379. if ((irqmask >> (i + 8)) & 0x1) {
  2380. msixmap |= vector << (i << 2);
  2381. }
  2382. }
  2383. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2384. }
  2385. static int nv_request_irq(struct net_device *dev)
  2386. {
  2387. struct fe_priv *np = get_nvpriv(dev);
  2388. u8 __iomem *base = get_hwbase(dev);
  2389. int ret = 1;
  2390. int i;
  2391. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2392. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2393. np->msi_x_entry[i].entry = i;
  2394. }
  2395. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2396. np->msi_flags |= NV_MSI_X_ENABLED;
  2397. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2398. /* Request irq for rx handling */
  2399. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
  2400. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2401. pci_disable_msix(np->pci_dev);
  2402. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2403. goto out_err;
  2404. }
  2405. /* Request irq for tx handling */
  2406. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
  2407. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2408. pci_disable_msix(np->pci_dev);
  2409. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2410. goto out_free_rx;
  2411. }
  2412. /* Request irq for link and timer handling */
  2413. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
  2414. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2415. pci_disable_msix(np->pci_dev);
  2416. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2417. goto out_free_tx;
  2418. }
  2419. /* map interrupts to their respective vector */
  2420. writel(0, base + NvRegMSIXMap0);
  2421. writel(0, base + NvRegMSIXMap1);
  2422. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2423. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2424. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2425. } else {
  2426. /* Request irq for all interrupts */
  2427. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2428. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2429. pci_disable_msix(np->pci_dev);
  2430. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2431. goto out_err;
  2432. }
  2433. /* map interrupts to vector 0 */
  2434. writel(0, base + NvRegMSIXMap0);
  2435. writel(0, base + NvRegMSIXMap1);
  2436. }
  2437. }
  2438. }
  2439. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2440. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2441. np->msi_flags |= NV_MSI_ENABLED;
  2442. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2443. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2444. pci_disable_msi(np->pci_dev);
  2445. np->msi_flags &= ~NV_MSI_ENABLED;
  2446. goto out_err;
  2447. }
  2448. /* map interrupts to vector 0 */
  2449. writel(0, base + NvRegMSIMap0);
  2450. writel(0, base + NvRegMSIMap1);
  2451. /* enable msi vector 0 */
  2452. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2453. }
  2454. }
  2455. if (ret != 0) {
  2456. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
  2457. goto out_err;
  2458. }
  2459. return 0;
  2460. out_free_tx:
  2461. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  2462. out_free_rx:
  2463. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  2464. out_err:
  2465. return 1;
  2466. }
  2467. static void nv_free_irq(struct net_device *dev)
  2468. {
  2469. struct fe_priv *np = get_nvpriv(dev);
  2470. int i;
  2471. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2472. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2473. free_irq(np->msi_x_entry[i].vector, dev);
  2474. }
  2475. pci_disable_msix(np->pci_dev);
  2476. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2477. } else {
  2478. free_irq(np->pci_dev->irq, dev);
  2479. if (np->msi_flags & NV_MSI_ENABLED) {
  2480. pci_disable_msi(np->pci_dev);
  2481. np->msi_flags &= ~NV_MSI_ENABLED;
  2482. }
  2483. }
  2484. }
  2485. static int nv_open(struct net_device *dev)
  2486. {
  2487. struct fe_priv *np = netdev_priv(dev);
  2488. u8 __iomem *base = get_hwbase(dev);
  2489. int ret = 1;
  2490. int oom, i;
  2491. dprintk(KERN_DEBUG "nv_open: begin\n");
  2492. /* 1) erase previous misconfiguration */
  2493. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  2494. nv_mac_reset(dev);
  2495. /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
  2496. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2497. writel(0, base + NvRegMulticastAddrB);
  2498. writel(0, base + NvRegMulticastMaskA);
  2499. writel(0, base + NvRegMulticastMaskB);
  2500. writel(0, base + NvRegPacketFilterFlags);
  2501. writel(0, base + NvRegTransmitterControl);
  2502. writel(0, base + NvRegReceiverControl);
  2503. writel(0, base + NvRegAdapterControl);
  2504. /* 2) initialize descriptor rings */
  2505. set_bufsize(dev);
  2506. oom = nv_init_ring(dev);
  2507. writel(0, base + NvRegLinkSpeed);
  2508. writel(0, base + NvRegUnknownTransmitterReg);
  2509. nv_txrx_reset(dev);
  2510. writel(0, base + NvRegUnknownSetupReg6);
  2511. np->in_shutdown = 0;
  2512. /* 3) set mac address */
  2513. nv_copy_mac_to_hw(dev);
  2514. /* 4) give hw rings */
  2515. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2516. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  2517. base + NvRegRingSizes);
  2518. /* 5) continue setup */
  2519. writel(np->linkspeed, base + NvRegLinkSpeed);
  2520. writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
  2521. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  2522. writel(np->vlanctl_bits, base + NvRegVlanControl);
  2523. pci_push(base);
  2524. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  2525. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  2526. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  2527. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  2528. writel(0, base + NvRegUnknownSetupReg4);
  2529. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2530. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2531. /* 6) continue setup */
  2532. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  2533. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  2534. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  2535. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2536. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  2537. get_random_bytes(&i, sizeof(i));
  2538. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  2539. writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
  2540. writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
  2541. if (poll_interval == -1) {
  2542. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  2543. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  2544. else
  2545. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  2546. }
  2547. else
  2548. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  2549. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  2550. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  2551. base + NvRegAdapterControl);
  2552. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  2553. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  2554. writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
  2555. i = readl(base + NvRegPowerState);
  2556. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  2557. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  2558. pci_push(base);
  2559. udelay(10);
  2560. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  2561. nv_disable_hw_interrupts(dev, np->irqmask);
  2562. pci_push(base);
  2563. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2564. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2565. pci_push(base);
  2566. if (nv_request_irq(dev)) {
  2567. goto out_drain;
  2568. }
  2569. /* ask for interrupts */
  2570. nv_enable_hw_interrupts(dev, np->irqmask);
  2571. spin_lock_irq(&np->lock);
  2572. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2573. writel(0, base + NvRegMulticastAddrB);
  2574. writel(0, base + NvRegMulticastMaskA);
  2575. writel(0, base + NvRegMulticastMaskB);
  2576. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  2577. /* One manual link speed update: Interrupts are enabled, future link
  2578. * speed changes cause interrupts and are handled by nv_link_irq().
  2579. */
  2580. {
  2581. u32 miistat;
  2582. miistat = readl(base + NvRegMIIStatus);
  2583. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2584. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  2585. }
  2586. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  2587. * to init hw */
  2588. np->linkspeed = 0;
  2589. ret = nv_update_linkspeed(dev);
  2590. nv_start_rx(dev);
  2591. nv_start_tx(dev);
  2592. netif_start_queue(dev);
  2593. if (ret) {
  2594. netif_carrier_on(dev);
  2595. } else {
  2596. printk("%s: no link during initialization.\n", dev->name);
  2597. netif_carrier_off(dev);
  2598. }
  2599. if (oom)
  2600. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2601. spin_unlock_irq(&np->lock);
  2602. return 0;
  2603. out_drain:
  2604. drain_ring(dev);
  2605. return ret;
  2606. }
  2607. static int nv_close(struct net_device *dev)
  2608. {
  2609. struct fe_priv *np = netdev_priv(dev);
  2610. u8 __iomem *base;
  2611. spin_lock_irq(&np->lock);
  2612. np->in_shutdown = 1;
  2613. spin_unlock_irq(&np->lock);
  2614. synchronize_irq(dev->irq);
  2615. del_timer_sync(&np->oom_kick);
  2616. del_timer_sync(&np->nic_poll);
  2617. netif_stop_queue(dev);
  2618. spin_lock_irq(&np->lock);
  2619. nv_stop_tx(dev);
  2620. nv_stop_rx(dev);
  2621. nv_txrx_reset(dev);
  2622. /* disable interrupts on the nic or we will lock up */
  2623. base = get_hwbase(dev);
  2624. nv_disable_hw_interrupts(dev, np->irqmask);
  2625. pci_push(base);
  2626. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  2627. spin_unlock_irq(&np->lock);
  2628. nv_free_irq(dev);
  2629. drain_ring(dev);
  2630. if (np->wolenabled)
  2631. nv_start_rx(dev);
  2632. /* special op: write back the misordered MAC address - otherwise
  2633. * the next nv_probe would see a wrong address.
  2634. */
  2635. writel(np->orig_mac[0], base + NvRegMacAddrA);
  2636. writel(np->orig_mac[1], base + NvRegMacAddrB);
  2637. /* FIXME: power down nic */
  2638. return 0;
  2639. }
  2640. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  2641. {
  2642. struct net_device *dev;
  2643. struct fe_priv *np;
  2644. unsigned long addr;
  2645. u8 __iomem *base;
  2646. int err, i;
  2647. u32 powerstate;
  2648. dev = alloc_etherdev(sizeof(struct fe_priv));
  2649. err = -ENOMEM;
  2650. if (!dev)
  2651. goto out;
  2652. np = netdev_priv(dev);
  2653. np->pci_dev = pci_dev;
  2654. spin_lock_init(&np->lock);
  2655. SET_MODULE_OWNER(dev);
  2656. SET_NETDEV_DEV(dev, &pci_dev->dev);
  2657. init_timer(&np->oom_kick);
  2658. np->oom_kick.data = (unsigned long) dev;
  2659. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  2660. init_timer(&np->nic_poll);
  2661. np->nic_poll.data = (unsigned long) dev;
  2662. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  2663. err = pci_enable_device(pci_dev);
  2664. if (err) {
  2665. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  2666. err, pci_name(pci_dev));
  2667. goto out_free;
  2668. }
  2669. pci_set_master(pci_dev);
  2670. err = pci_request_regions(pci_dev, DRV_NAME);
  2671. if (err < 0)
  2672. goto out_disable;
  2673. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL))
  2674. np->register_size = NV_PCI_REGSZ_VER2;
  2675. else
  2676. np->register_size = NV_PCI_REGSZ_VER1;
  2677. err = -EINVAL;
  2678. addr = 0;
  2679. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  2680. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  2681. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  2682. pci_resource_len(pci_dev, i),
  2683. pci_resource_flags(pci_dev, i));
  2684. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  2685. pci_resource_len(pci_dev, i) >= np->register_size) {
  2686. addr = pci_resource_start(pci_dev, i);
  2687. break;
  2688. }
  2689. }
  2690. if (i == DEVICE_COUNT_RESOURCE) {
  2691. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  2692. pci_name(pci_dev));
  2693. goto out_relreg;
  2694. }
  2695. /* copy of driver data */
  2696. np->driver_data = id->driver_data;
  2697. /* handle different descriptor versions */
  2698. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  2699. /* packet format 3: supports 40-bit addressing */
  2700. np->desc_ver = DESC_VER_3;
  2701. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  2702. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  2703. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  2704. pci_name(pci_dev));
  2705. } else {
  2706. dev->features |= NETIF_F_HIGHDMA;
  2707. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  2708. }
  2709. if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
  2710. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
  2711. pci_name(pci_dev));
  2712. }
  2713. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  2714. /* packet format 2: supports jumbo frames */
  2715. np->desc_ver = DESC_VER_2;
  2716. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  2717. } else {
  2718. /* original packet format */
  2719. np->desc_ver = DESC_VER_1;
  2720. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  2721. }
  2722. np->pkt_limit = NV_PKTLIMIT_1;
  2723. if (id->driver_data & DEV_HAS_LARGEDESC)
  2724. np->pkt_limit = NV_PKTLIMIT_2;
  2725. if (id->driver_data & DEV_HAS_CHECKSUM) {
  2726. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  2727. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  2728. #ifdef NETIF_F_TSO
  2729. dev->features |= NETIF_F_TSO;
  2730. #endif
  2731. }
  2732. np->vlanctl_bits = 0;
  2733. if (id->driver_data & DEV_HAS_VLAN) {
  2734. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  2735. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  2736. dev->vlan_rx_register = nv_vlan_rx_register;
  2737. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  2738. }
  2739. np->msi_flags = 0;
  2740. if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
  2741. np->msi_flags |= NV_MSI_CAPABLE;
  2742. }
  2743. if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
  2744. np->msi_flags |= NV_MSI_X_CAPABLE;
  2745. }
  2746. err = -ENOMEM;
  2747. np->base = ioremap(addr, np->register_size);
  2748. if (!np->base)
  2749. goto out_relreg;
  2750. dev->base_addr = (unsigned long)np->base;
  2751. dev->irq = pci_dev->irq;
  2752. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2753. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  2754. sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2755. &np->ring_addr);
  2756. if (!np->rx_ring.orig)
  2757. goto out_unmap;
  2758. np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
  2759. } else {
  2760. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  2761. sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2762. &np->ring_addr);
  2763. if (!np->rx_ring.ex)
  2764. goto out_unmap;
  2765. np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
  2766. }
  2767. dev->open = nv_open;
  2768. dev->stop = nv_close;
  2769. dev->hard_start_xmit = nv_start_xmit;
  2770. dev->get_stats = nv_get_stats;
  2771. dev->change_mtu = nv_change_mtu;
  2772. dev->set_mac_address = nv_set_mac_address;
  2773. dev->set_multicast_list = nv_set_multicast;
  2774. #ifdef CONFIG_NET_POLL_CONTROLLER
  2775. dev->poll_controller = nv_poll_controller;
  2776. #endif
  2777. SET_ETHTOOL_OPS(dev, &ops);
  2778. dev->tx_timeout = nv_tx_timeout;
  2779. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  2780. pci_set_drvdata(pci_dev, dev);
  2781. /* read the mac address */
  2782. base = get_hwbase(dev);
  2783. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  2784. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  2785. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  2786. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  2787. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  2788. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  2789. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  2790. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  2791. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2792. if (!is_valid_ether_addr(dev->perm_addr)) {
  2793. /*
  2794. * Bad mac address. At least one bios sets the mac address
  2795. * to 01:23:45:67:89:ab
  2796. */
  2797. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  2798. pci_name(pci_dev),
  2799. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2800. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2801. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  2802. dev->dev_addr[0] = 0x00;
  2803. dev->dev_addr[1] = 0x00;
  2804. dev->dev_addr[2] = 0x6c;
  2805. get_random_bytes(&dev->dev_addr[3], 3);
  2806. }
  2807. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  2808. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2809. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2810. /* disable WOL */
  2811. writel(0, base + NvRegWakeUpFlags);
  2812. np->wolenabled = 0;
  2813. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  2814. u8 revision_id;
  2815. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  2816. /* take phy and nic out of low power mode */
  2817. powerstate = readl(base + NvRegPowerState2);
  2818. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  2819. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  2820. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  2821. revision_id >= 0xA3)
  2822. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  2823. writel(powerstate, base + NvRegPowerState2);
  2824. }
  2825. if (np->desc_ver == DESC_VER_1) {
  2826. np->tx_flags = NV_TX_VALID;
  2827. } else {
  2828. np->tx_flags = NV_TX2_VALID;
  2829. }
  2830. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2831. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  2832. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  2833. np->msi_flags |= 0x0003;
  2834. } else {
  2835. np->irqmask = NVREG_IRQMASK_CPU;
  2836. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  2837. np->msi_flags |= 0x0001;
  2838. }
  2839. if (id->driver_data & DEV_NEED_TIMERIRQ)
  2840. np->irqmask |= NVREG_IRQ_TIMER;
  2841. if (id->driver_data & DEV_NEED_LINKTIMER) {
  2842. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  2843. np->need_linktimer = 1;
  2844. np->link_timeout = jiffies + LINK_TIMEOUT;
  2845. } else {
  2846. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  2847. np->need_linktimer = 0;
  2848. }
  2849. /* find a suitable phy */
  2850. for (i = 1; i <= 32; i++) {
  2851. int id1, id2;
  2852. int phyaddr = i & 0x1F;
  2853. spin_lock_irq(&np->lock);
  2854. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  2855. spin_unlock_irq(&np->lock);
  2856. if (id1 < 0 || id1 == 0xffff)
  2857. continue;
  2858. spin_lock_irq(&np->lock);
  2859. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  2860. spin_unlock_irq(&np->lock);
  2861. if (id2 < 0 || id2 == 0xffff)
  2862. continue;
  2863. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  2864. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  2865. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  2866. pci_name(pci_dev), id1, id2, phyaddr);
  2867. np->phyaddr = phyaddr;
  2868. np->phy_oui = id1 | id2;
  2869. break;
  2870. }
  2871. if (i == 33) {
  2872. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  2873. pci_name(pci_dev));
  2874. goto out_freering;
  2875. }
  2876. /* reset it */
  2877. phy_init(dev);
  2878. /* set default link speed settings */
  2879. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2880. np->duplex = 0;
  2881. np->autoneg = 1;
  2882. err = register_netdev(dev);
  2883. if (err) {
  2884. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  2885. goto out_freering;
  2886. }
  2887. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  2888. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  2889. pci_name(pci_dev));
  2890. return 0;
  2891. out_freering:
  2892. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2893. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2894. np->rx_ring.orig, np->ring_addr);
  2895. else
  2896. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2897. np->rx_ring.ex, np->ring_addr);
  2898. pci_set_drvdata(pci_dev, NULL);
  2899. out_unmap:
  2900. iounmap(get_hwbase(dev));
  2901. out_relreg:
  2902. pci_release_regions(pci_dev);
  2903. out_disable:
  2904. pci_disable_device(pci_dev);
  2905. out_free:
  2906. free_netdev(dev);
  2907. out:
  2908. return err;
  2909. }
  2910. static void __devexit nv_remove(struct pci_dev *pci_dev)
  2911. {
  2912. struct net_device *dev = pci_get_drvdata(pci_dev);
  2913. struct fe_priv *np = netdev_priv(dev);
  2914. unregister_netdev(dev);
  2915. /* free all structures */
  2916. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2917. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
  2918. else
  2919. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
  2920. iounmap(get_hwbase(dev));
  2921. pci_release_regions(pci_dev);
  2922. pci_disable_device(pci_dev);
  2923. free_netdev(dev);
  2924. pci_set_drvdata(pci_dev, NULL);
  2925. }
  2926. static struct pci_device_id pci_tbl[] = {
  2927. { /* nForce Ethernet Controller */
  2928. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  2929. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2930. },
  2931. { /* nForce2 Ethernet Controller */
  2932. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  2933. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2934. },
  2935. { /* nForce3 Ethernet Controller */
  2936. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  2937. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2938. },
  2939. { /* nForce3 Ethernet Controller */
  2940. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  2941. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2942. },
  2943. { /* nForce3 Ethernet Controller */
  2944. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  2945. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2946. },
  2947. { /* nForce3 Ethernet Controller */
  2948. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  2949. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2950. },
  2951. { /* nForce3 Ethernet Controller */
  2952. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  2953. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2954. },
  2955. { /* CK804 Ethernet Controller */
  2956. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  2957. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2958. },
  2959. { /* CK804 Ethernet Controller */
  2960. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  2961. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2962. },
  2963. { /* MCP04 Ethernet Controller */
  2964. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  2965. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2966. },
  2967. { /* MCP04 Ethernet Controller */
  2968. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  2969. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2970. },
  2971. { /* MCP51 Ethernet Controller */
  2972. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  2973. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  2974. },
  2975. { /* MCP51 Ethernet Controller */
  2976. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  2977. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  2978. },
  2979. { /* MCP55 Ethernet Controller */
  2980. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  2981. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
  2982. },
  2983. { /* MCP55 Ethernet Controller */
  2984. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  2985. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
  2986. },
  2987. {0,},
  2988. };
  2989. static struct pci_driver driver = {
  2990. .name = "forcedeth",
  2991. .id_table = pci_tbl,
  2992. .probe = nv_probe,
  2993. .remove = __devexit_p(nv_remove),
  2994. };
  2995. static int __init init_nic(void)
  2996. {
  2997. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  2998. return pci_module_init(&driver);
  2999. }
  3000. static void __exit exit_nic(void)
  3001. {
  3002. pci_unregister_driver(&driver);
  3003. }
  3004. module_param(max_interrupt_work, int, 0);
  3005. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  3006. module_param(optimization_mode, int, 0);
  3007. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  3008. module_param(poll_interval, int, 0);
  3009. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  3010. module_param(disable_msi, int, 0);
  3011. MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
  3012. module_param(disable_msix, int, 0);
  3013. MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
  3014. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  3015. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  3016. MODULE_LICENSE("GPL");
  3017. MODULE_DEVICE_TABLE(pci, pci_tbl);
  3018. module_init(init_nic);
  3019. module_exit(exit_nic);