tlbex.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004,2005 by Thiemo Seufer
  9. * Copyright (C) 2005 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. *
  12. * ... and the days got worse and worse and now you see
  13. * I've gone completly out of my mind.
  14. *
  15. * They're coming to take me a away haha
  16. * they're coming to take me a away hoho hihi haha
  17. * to the funny farm where code is beautiful all the time ...
  18. *
  19. * (Condolences to Napoleon XIV)
  20. */
  21. #include <stdarg.h>
  22. #include <linux/config.h>
  23. #include <linux/mm.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/init.h>
  28. #include <asm/pgtable.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/mmu_context.h>
  31. #include <asm/inst.h>
  32. #include <asm/elf.h>
  33. #include <asm/smp.h>
  34. #include <asm/war.h>
  35. /* #define DEBUG_TLB */
  36. static __init int __attribute__((unused)) r45k_bvahwbug(void)
  37. {
  38. /* XXX: We should probe for the presence of this bug, but we don't. */
  39. return 0;
  40. }
  41. static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
  42. {
  43. /* XXX: We should probe for the presence of this bug, but we don't. */
  44. return 0;
  45. }
  46. static __init int __attribute__((unused)) bcm1250_m3_war(void)
  47. {
  48. return BCM1250_M3_WAR;
  49. }
  50. static __init int __attribute__((unused)) r10000_llsc_war(void)
  51. {
  52. return R10000_LLSC_WAR;
  53. }
  54. /*
  55. * A little micro-assembler, intended for TLB refill handler
  56. * synthesizing. It is intentionally kept simple, does only support
  57. * a subset of instructions, and does not try to hide pipeline effects
  58. * like branch delay slots.
  59. */
  60. enum fields
  61. {
  62. RS = 0x001,
  63. RT = 0x002,
  64. RD = 0x004,
  65. RE = 0x008,
  66. SIMM = 0x010,
  67. UIMM = 0x020,
  68. BIMM = 0x040,
  69. JIMM = 0x080,
  70. FUNC = 0x100,
  71. SET = 0x200
  72. };
  73. #define OP_MASK 0x2f
  74. #define OP_SH 26
  75. #define RS_MASK 0x1f
  76. #define RS_SH 21
  77. #define RT_MASK 0x1f
  78. #define RT_SH 16
  79. #define RD_MASK 0x1f
  80. #define RD_SH 11
  81. #define RE_MASK 0x1f
  82. #define RE_SH 6
  83. #define IMM_MASK 0xffff
  84. #define IMM_SH 0
  85. #define JIMM_MASK 0x3ffffff
  86. #define JIMM_SH 0
  87. #define FUNC_MASK 0x2f
  88. #define FUNC_SH 0
  89. #define SET_MASK 0x7
  90. #define SET_SH 0
  91. enum opcode {
  92. insn_invalid,
  93. insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
  94. insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
  95. insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
  96. insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
  97. insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
  98. insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
  99. insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
  100. insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
  101. insn_tlbwr, insn_xor, insn_xori
  102. };
  103. struct insn {
  104. enum opcode opcode;
  105. u32 match;
  106. enum fields fields;
  107. };
  108. /* This macro sets the non-variable bits of an instruction. */
  109. #define M(a, b, c, d, e, f) \
  110. ((a) << OP_SH \
  111. | (b) << RS_SH \
  112. | (c) << RT_SH \
  113. | (d) << RD_SH \
  114. | (e) << RE_SH \
  115. | (f) << FUNC_SH)
  116. static __initdata struct insn insn_table[] = {
  117. { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
  118. { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
  119. { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
  120. { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
  121. { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
  122. { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
  123. { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
  124. { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
  125. { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
  126. { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
  127. { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
  128. { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
  129. { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
  130. { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
  131. { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
  132. { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
  133. { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
  134. { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
  135. { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
  136. { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
  137. { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
  138. { insn_j, M(j_op,0,0,0,0,0), JIMM },
  139. { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
  140. { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
  141. { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
  142. { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
  143. { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
  144. { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
  145. { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
  146. { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
  147. { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
  148. { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
  149. { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
  150. { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
  151. { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
  152. { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
  153. { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
  154. { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
  155. { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
  156. { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
  157. { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
  158. { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
  159. { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
  160. { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
  161. { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
  162. { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
  163. { insn_invalid, 0, 0 }
  164. };
  165. #undef M
  166. static __init u32 build_rs(u32 arg)
  167. {
  168. if (arg & ~RS_MASK)
  169. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  170. return (arg & RS_MASK) << RS_SH;
  171. }
  172. static __init u32 build_rt(u32 arg)
  173. {
  174. if (arg & ~RT_MASK)
  175. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  176. return (arg & RT_MASK) << RT_SH;
  177. }
  178. static __init u32 build_rd(u32 arg)
  179. {
  180. if (arg & ~RD_MASK)
  181. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  182. return (arg & RD_MASK) << RD_SH;
  183. }
  184. static __init u32 build_re(u32 arg)
  185. {
  186. if (arg & ~RE_MASK)
  187. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  188. return (arg & RE_MASK) << RE_SH;
  189. }
  190. static __init u32 build_simm(s32 arg)
  191. {
  192. if (arg > 0x7fff || arg < -0x8000)
  193. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  194. return arg & 0xffff;
  195. }
  196. static __init u32 build_uimm(u32 arg)
  197. {
  198. if (arg & ~IMM_MASK)
  199. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  200. return arg & IMM_MASK;
  201. }
  202. static __init u32 build_bimm(s32 arg)
  203. {
  204. if (arg > 0x1ffff || arg < -0x20000)
  205. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  206. if (arg & 0x3)
  207. printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
  208. return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
  209. }
  210. static __init u32 build_jimm(u32 arg)
  211. {
  212. if (arg & ~((JIMM_MASK) << 2))
  213. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  214. return (arg >> 2) & JIMM_MASK;
  215. }
  216. static __init u32 build_func(u32 arg)
  217. {
  218. if (arg & ~FUNC_MASK)
  219. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  220. return arg & FUNC_MASK;
  221. }
  222. static __init u32 build_set(u32 arg)
  223. {
  224. if (arg & ~SET_MASK)
  225. printk(KERN_WARNING "TLB synthesizer field overflow\n");
  226. return arg & SET_MASK;
  227. }
  228. /*
  229. * The order of opcode arguments is implicitly left to right,
  230. * starting with RS and ending with FUNC or IMM.
  231. */
  232. static void __init build_insn(u32 **buf, enum opcode opc, ...)
  233. {
  234. struct insn *ip = NULL;
  235. unsigned int i;
  236. va_list ap;
  237. u32 op;
  238. for (i = 0; insn_table[i].opcode != insn_invalid; i++)
  239. if (insn_table[i].opcode == opc) {
  240. ip = &insn_table[i];
  241. break;
  242. }
  243. if (!ip)
  244. panic("Unsupported TLB synthesizer instruction %d", opc);
  245. op = ip->match;
  246. va_start(ap, opc);
  247. if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
  248. if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
  249. if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
  250. if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
  251. if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
  252. if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
  253. if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
  254. if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
  255. if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
  256. if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
  257. va_end(ap);
  258. **buf = op;
  259. (*buf)++;
  260. }
  261. #define I_u1u2u3(op) \
  262. static inline void __init i##op(u32 **buf, unsigned int a, \
  263. unsigned int b, unsigned int c) \
  264. { \
  265. build_insn(buf, insn##op, a, b, c); \
  266. }
  267. #define I_u2u1u3(op) \
  268. static inline void __init i##op(u32 **buf, unsigned int a, \
  269. unsigned int b, unsigned int c) \
  270. { \
  271. build_insn(buf, insn##op, b, a, c); \
  272. }
  273. #define I_u3u1u2(op) \
  274. static inline void __init i##op(u32 **buf, unsigned int a, \
  275. unsigned int b, unsigned int c) \
  276. { \
  277. build_insn(buf, insn##op, b, c, a); \
  278. }
  279. #define I_u1u2s3(op) \
  280. static inline void __init i##op(u32 **buf, unsigned int a, \
  281. unsigned int b, signed int c) \
  282. { \
  283. build_insn(buf, insn##op, a, b, c); \
  284. }
  285. #define I_u2s3u1(op) \
  286. static inline void __init i##op(u32 **buf, unsigned int a, \
  287. signed int b, unsigned int c) \
  288. { \
  289. build_insn(buf, insn##op, c, a, b); \
  290. }
  291. #define I_u2u1s3(op) \
  292. static inline void __init i##op(u32 **buf, unsigned int a, \
  293. unsigned int b, signed int c) \
  294. { \
  295. build_insn(buf, insn##op, b, a, c); \
  296. }
  297. #define I_u1u2(op) \
  298. static inline void __init i##op(u32 **buf, unsigned int a, \
  299. unsigned int b) \
  300. { \
  301. build_insn(buf, insn##op, a, b); \
  302. }
  303. #define I_u1s2(op) \
  304. static inline void __init i##op(u32 **buf, unsigned int a, \
  305. signed int b) \
  306. { \
  307. build_insn(buf, insn##op, a, b); \
  308. }
  309. #define I_u1(op) \
  310. static inline void __init i##op(u32 **buf, unsigned int a) \
  311. { \
  312. build_insn(buf, insn##op, a); \
  313. }
  314. #define I_0(op) \
  315. static inline void __init i##op(u32 **buf) \
  316. { \
  317. build_insn(buf, insn##op); \
  318. }
  319. I_u2u1s3(_addiu);
  320. I_u3u1u2(_addu);
  321. I_u2u1u3(_andi);
  322. I_u3u1u2(_and);
  323. I_u1u2s3(_beq);
  324. I_u1u2s3(_beql);
  325. I_u1s2(_bgez);
  326. I_u1s2(_bgezl);
  327. I_u1s2(_bltz);
  328. I_u1s2(_bltzl);
  329. I_u1u2s3(_bne);
  330. I_u1u2u3(_dmfc0);
  331. I_u1u2u3(_dmtc0);
  332. I_u2u1s3(_daddiu);
  333. I_u3u1u2(_daddu);
  334. I_u2u1u3(_dsll);
  335. I_u2u1u3(_dsll32);
  336. I_u2u1u3(_dsra);
  337. I_u2u1u3(_dsrl);
  338. I_u3u1u2(_dsubu);
  339. I_0(_eret);
  340. I_u1(_j);
  341. I_u1(_jal);
  342. I_u1(_jr);
  343. I_u2s3u1(_ld);
  344. I_u2s3u1(_ll);
  345. I_u2s3u1(_lld);
  346. I_u1s2(_lui);
  347. I_u2s3u1(_lw);
  348. I_u1u2u3(_mfc0);
  349. I_u1u2u3(_mtc0);
  350. I_u2u1u3(_ori);
  351. I_0(_rfe);
  352. I_u2s3u1(_sc);
  353. I_u2s3u1(_scd);
  354. I_u2s3u1(_sd);
  355. I_u2u1u3(_sll);
  356. I_u2u1u3(_sra);
  357. I_u2u1u3(_srl);
  358. I_u3u1u2(_subu);
  359. I_u2s3u1(_sw);
  360. I_0(_tlbp);
  361. I_0(_tlbwi);
  362. I_0(_tlbwr);
  363. I_u3u1u2(_xor)
  364. I_u2u1u3(_xori);
  365. /*
  366. * handling labels
  367. */
  368. enum label_id {
  369. label_invalid,
  370. label_second_part,
  371. label_leave,
  372. label_vmalloc,
  373. label_vmalloc_done,
  374. label_tlbw_hazard,
  375. label_split,
  376. label_nopage_tlbl,
  377. label_nopage_tlbs,
  378. label_nopage_tlbm,
  379. label_smp_pgtable_change,
  380. label_r3000_write_probe_fail,
  381. };
  382. struct label {
  383. u32 *addr;
  384. enum label_id lab;
  385. };
  386. static __init void build_label(struct label **lab, u32 *addr,
  387. enum label_id l)
  388. {
  389. (*lab)->addr = addr;
  390. (*lab)->lab = l;
  391. (*lab)++;
  392. }
  393. #define L_LA(lb) \
  394. static inline void l##lb(struct label **lab, u32 *addr) \
  395. { \
  396. build_label(lab, addr, label##lb); \
  397. }
  398. L_LA(_second_part)
  399. L_LA(_leave)
  400. L_LA(_vmalloc)
  401. L_LA(_vmalloc_done)
  402. L_LA(_tlbw_hazard)
  403. L_LA(_split)
  404. L_LA(_nopage_tlbl)
  405. L_LA(_nopage_tlbs)
  406. L_LA(_nopage_tlbm)
  407. L_LA(_smp_pgtable_change)
  408. L_LA(_r3000_write_probe_fail)
  409. /* convenience macros for instructions */
  410. #ifdef CONFIG_64BIT
  411. # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
  412. # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
  413. # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
  414. # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
  415. # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
  416. # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
  417. # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
  418. # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
  419. # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
  420. # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
  421. # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
  422. # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
  423. #else
  424. # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
  425. # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
  426. # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
  427. # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
  428. # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
  429. # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
  430. # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
  431. # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
  432. # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
  433. # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
  434. # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
  435. # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
  436. #endif
  437. #define i_b(buf, off) i_beq(buf, 0, 0, off)
  438. #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
  439. #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
  440. #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
  441. #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
  442. #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
  443. #define i_nop(buf) i_sll(buf, 0, 0, 0)
  444. #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
  445. #define i_ehb(buf) i_sll(buf, 0, 0, 3)
  446. #ifdef CONFIG_64BIT
  447. static __init int __attribute__((unused)) in_compat_space_p(long addr)
  448. {
  449. /* Is this address in 32bit compat space? */
  450. return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
  451. }
  452. static __init int __attribute__((unused)) rel_highest(long val)
  453. {
  454. return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
  455. }
  456. static __init int __attribute__((unused)) rel_higher(long val)
  457. {
  458. return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
  459. }
  460. #endif
  461. static __init int rel_hi(long val)
  462. {
  463. return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
  464. }
  465. static __init int rel_lo(long val)
  466. {
  467. return ((val & 0xffff) ^ 0x8000) - 0x8000;
  468. }
  469. static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
  470. {
  471. #ifdef CONFIG_64BIT
  472. if (!in_compat_space_p(addr)) {
  473. i_lui(buf, rs, rel_highest(addr));
  474. if (rel_higher(addr))
  475. i_daddiu(buf, rs, rs, rel_higher(addr));
  476. if (rel_hi(addr)) {
  477. i_dsll(buf, rs, rs, 16);
  478. i_daddiu(buf, rs, rs, rel_hi(addr));
  479. i_dsll(buf, rs, rs, 16);
  480. } else
  481. i_dsll32(buf, rs, rs, 0);
  482. } else
  483. #endif
  484. i_lui(buf, rs, rel_hi(addr));
  485. }
  486. static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
  487. long addr)
  488. {
  489. i_LA_mostly(buf, rs, addr);
  490. if (rel_lo(addr))
  491. i_ADDIU(buf, rs, rs, rel_lo(addr));
  492. }
  493. /*
  494. * handle relocations
  495. */
  496. struct reloc {
  497. u32 *addr;
  498. unsigned int type;
  499. enum label_id lab;
  500. };
  501. static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
  502. enum label_id l)
  503. {
  504. (*rel)->addr = addr;
  505. (*rel)->type = R_MIPS_PC16;
  506. (*rel)->lab = l;
  507. (*rel)++;
  508. }
  509. static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
  510. {
  511. long laddr = (long)lab->addr;
  512. long raddr = (long)rel->addr;
  513. switch (rel->type) {
  514. case R_MIPS_PC16:
  515. *rel->addr |= build_bimm(laddr - (raddr + 4));
  516. break;
  517. default:
  518. panic("Unsupported TLB synthesizer relocation %d",
  519. rel->type);
  520. }
  521. }
  522. static __init void resolve_relocs(struct reloc *rel, struct label *lab)
  523. {
  524. struct label *l;
  525. for (; rel->lab != label_invalid; rel++)
  526. for (l = lab; l->lab != label_invalid; l++)
  527. if (rel->lab == l->lab)
  528. __resolve_relocs(rel, l);
  529. }
  530. static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
  531. long off)
  532. {
  533. for (; rel->lab != label_invalid; rel++)
  534. if (rel->addr >= first && rel->addr < end)
  535. rel->addr += off;
  536. }
  537. static __init void move_labels(struct label *lab, u32 *first, u32 *end,
  538. long off)
  539. {
  540. for (; lab->lab != label_invalid; lab++)
  541. if (lab->addr >= first && lab->addr < end)
  542. lab->addr += off;
  543. }
  544. static __init void copy_handler(struct reloc *rel, struct label *lab,
  545. u32 *first, u32 *end, u32 *target)
  546. {
  547. long off = (long)(target - first);
  548. memcpy(target, first, (end - first) * sizeof(u32));
  549. move_relocs(rel, first, end, off);
  550. move_labels(lab, first, end, off);
  551. }
  552. static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
  553. u32 *addr)
  554. {
  555. for (; rel->lab != label_invalid; rel++) {
  556. if (rel->addr == addr
  557. && (rel->type == R_MIPS_PC16
  558. || rel->type == R_MIPS_26))
  559. return 1;
  560. }
  561. return 0;
  562. }
  563. /* convenience functions for labeled branches */
  564. static void __init __attribute__((unused))
  565. il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
  566. {
  567. r_mips_pc16(r, *p, l);
  568. i_bltz(p, reg, 0);
  569. }
  570. static void __init __attribute__((unused)) il_b(u32 **p, struct reloc **r,
  571. enum label_id l)
  572. {
  573. r_mips_pc16(r, *p, l);
  574. i_b(p, 0);
  575. }
  576. static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
  577. enum label_id l)
  578. {
  579. r_mips_pc16(r, *p, l);
  580. i_beqz(p, reg, 0);
  581. }
  582. static void __init __attribute__((unused))
  583. il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
  584. {
  585. r_mips_pc16(r, *p, l);
  586. i_beqzl(p, reg, 0);
  587. }
  588. static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
  589. enum label_id l)
  590. {
  591. r_mips_pc16(r, *p, l);
  592. i_bnez(p, reg, 0);
  593. }
  594. static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
  595. enum label_id l)
  596. {
  597. r_mips_pc16(r, *p, l);
  598. i_bgezl(p, reg, 0);
  599. }
  600. /* The only general purpose registers allowed in TLB handlers. */
  601. #define K0 26
  602. #define K1 27
  603. /* Some CP0 registers */
  604. #define C0_INDEX 0, 0
  605. #define C0_ENTRYLO0 2, 0
  606. #define C0_TCBIND 2, 2
  607. #define C0_ENTRYLO1 3, 0
  608. #define C0_CONTEXT 4, 0
  609. #define C0_BADVADDR 8, 0
  610. #define C0_ENTRYHI 10, 0
  611. #define C0_EPC 14, 0
  612. #define C0_XCONTEXT 20, 0
  613. #ifdef CONFIG_64BIT
  614. # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
  615. #else
  616. # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
  617. #endif
  618. /* The worst case length of the handler is around 18 instructions for
  619. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  620. * Maximum space available is 32 instructions for R3000 and 64
  621. * instructions for R4000.
  622. *
  623. * We deliberately chose a buffer size of 128, so we won't scribble
  624. * over anything important on overflow before we panic.
  625. */
  626. static __initdata u32 tlb_handler[128];
  627. /* simply assume worst case size for labels and relocs */
  628. static __initdata struct label labels[128];
  629. static __initdata struct reloc relocs[128];
  630. /*
  631. * The R3000 TLB handler is simple.
  632. */
  633. static void __init build_r3000_tlb_refill_handler(void)
  634. {
  635. long pgdc = (long)pgd_current;
  636. u32 *p;
  637. memset(tlb_handler, 0, sizeof(tlb_handler));
  638. p = tlb_handler;
  639. i_mfc0(&p, K0, C0_BADVADDR);
  640. i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
  641. i_lw(&p, K1, rel_lo(pgdc), K1);
  642. i_srl(&p, K0, K0, 22); /* load delay */
  643. i_sll(&p, K0, K0, 2);
  644. i_addu(&p, K1, K1, K0);
  645. i_mfc0(&p, K0, C0_CONTEXT);
  646. i_lw(&p, K1, 0, K1); /* cp0 delay */
  647. i_andi(&p, K0, K0, 0xffc); /* load delay */
  648. i_addu(&p, K1, K1, K0);
  649. i_lw(&p, K0, 0, K1);
  650. i_nop(&p); /* load delay */
  651. i_mtc0(&p, K0, C0_ENTRYLO0);
  652. i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  653. i_tlbwr(&p); /* cp0 delay */
  654. i_jr(&p, K1);
  655. i_rfe(&p); /* branch delay */
  656. if (p > tlb_handler + 32)
  657. panic("TLB refill handler space exceeded");
  658. printk("Synthesized TLB refill handler (%u instructions).\n",
  659. (unsigned int)(p - tlb_handler));
  660. #ifdef DEBUG_TLB
  661. {
  662. int i;
  663. for (i = 0; i < (p - tlb_handler); i++)
  664. printk("%08x\n", tlb_handler[i]);
  665. }
  666. #endif
  667. memcpy((void *)ebase, tlb_handler, 0x80);
  668. }
  669. /*
  670. * The R4000 TLB handler is much more complicated. We have two
  671. * consecutive handler areas with 32 instructions space each.
  672. * Since they aren't used at the same time, we can overflow in the
  673. * other one.To keep things simple, we first assume linear space,
  674. * then we relocate it to the final handler layout as needed.
  675. */
  676. static __initdata u32 final_handler[64];
  677. /*
  678. * Hazards
  679. *
  680. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  681. * 2. A timing hazard exists for the TLBP instruction.
  682. *
  683. * stalling_instruction
  684. * TLBP
  685. *
  686. * The JTLB is being read for the TLBP throughout the stall generated by the
  687. * previous instruction. This is not really correct as the stalling instruction
  688. * can modify the address used to access the JTLB. The failure symptom is that
  689. * the TLBP instruction will use an address created for the stalling instruction
  690. * and not the address held in C0_ENHI and thus report the wrong results.
  691. *
  692. * The software work-around is to not allow the instruction preceding the TLBP
  693. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  694. *
  695. * Errata 2 will not be fixed. This errata is also on the R5000.
  696. *
  697. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  698. */
  699. static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
  700. {
  701. switch (current_cpu_data.cputype) {
  702. /* Found by experiment: R4600 v2.0 needs this, too. */
  703. case CPU_R4600:
  704. case CPU_R5000:
  705. case CPU_R5000A:
  706. case CPU_NEVADA:
  707. i_nop(p);
  708. i_tlbp(p);
  709. break;
  710. default:
  711. i_tlbp(p);
  712. break;
  713. }
  714. }
  715. /*
  716. * Write random or indexed TLB entry, and care about the hazards from
  717. * the preceeding mtc0 and for the following eret.
  718. */
  719. enum tlb_write_entry { tlb_random, tlb_indexed };
  720. static __init void build_tlb_write_entry(u32 **p, struct label **l,
  721. struct reloc **r,
  722. enum tlb_write_entry wmode)
  723. {
  724. void(*tlbw)(u32 **) = NULL;
  725. switch (wmode) {
  726. case tlb_random: tlbw = i_tlbwr; break;
  727. case tlb_indexed: tlbw = i_tlbwi; break;
  728. }
  729. switch (current_cpu_data.cputype) {
  730. case CPU_R4000PC:
  731. case CPU_R4000SC:
  732. case CPU_R4000MC:
  733. case CPU_R4400PC:
  734. case CPU_R4400SC:
  735. case CPU_R4400MC:
  736. /*
  737. * This branch uses up a mtc0 hazard nop slot and saves
  738. * two nops after the tlbw instruction.
  739. */
  740. il_bgezl(p, r, 0, label_tlbw_hazard);
  741. tlbw(p);
  742. l_tlbw_hazard(l, *p);
  743. i_nop(p);
  744. break;
  745. case CPU_R4600:
  746. case CPU_R4700:
  747. case CPU_R5000:
  748. case CPU_R5000A:
  749. i_nop(p);
  750. tlbw(p);
  751. i_nop(p);
  752. break;
  753. case CPU_R4300:
  754. case CPU_5KC:
  755. case CPU_TX49XX:
  756. case CPU_AU1000:
  757. case CPU_AU1100:
  758. case CPU_AU1500:
  759. case CPU_AU1550:
  760. case CPU_AU1200:
  761. case CPU_PR4450:
  762. i_nop(p);
  763. tlbw(p);
  764. break;
  765. case CPU_R10000:
  766. case CPU_R12000:
  767. case CPU_R14000:
  768. case CPU_4KC:
  769. case CPU_SB1:
  770. case CPU_SB1A:
  771. case CPU_4KSC:
  772. case CPU_20KC:
  773. case CPU_25KF:
  774. tlbw(p);
  775. break;
  776. case CPU_NEVADA:
  777. i_nop(p); /* QED specifies 2 nops hazard */
  778. /*
  779. * This branch uses up a mtc0 hazard nop slot and saves
  780. * a nop after the tlbw instruction.
  781. */
  782. il_bgezl(p, r, 0, label_tlbw_hazard);
  783. tlbw(p);
  784. l_tlbw_hazard(l, *p);
  785. break;
  786. case CPU_RM7000:
  787. i_nop(p);
  788. i_nop(p);
  789. i_nop(p);
  790. i_nop(p);
  791. tlbw(p);
  792. break;
  793. case CPU_4KEC:
  794. case CPU_24K:
  795. case CPU_34K:
  796. case CPU_74K:
  797. i_ehb(p);
  798. tlbw(p);
  799. break;
  800. case CPU_RM9000:
  801. /*
  802. * When the JTLB is updated by tlbwi or tlbwr, a subsequent
  803. * use of the JTLB for instructions should not occur for 4
  804. * cpu cycles and use for data translations should not occur
  805. * for 3 cpu cycles.
  806. */
  807. i_ssnop(p);
  808. i_ssnop(p);
  809. i_ssnop(p);
  810. i_ssnop(p);
  811. tlbw(p);
  812. i_ssnop(p);
  813. i_ssnop(p);
  814. i_ssnop(p);
  815. i_ssnop(p);
  816. break;
  817. case CPU_VR4111:
  818. case CPU_VR4121:
  819. case CPU_VR4122:
  820. case CPU_VR4181:
  821. case CPU_VR4181A:
  822. i_nop(p);
  823. i_nop(p);
  824. tlbw(p);
  825. i_nop(p);
  826. i_nop(p);
  827. break;
  828. case CPU_VR4131:
  829. case CPU_VR4133:
  830. case CPU_R5432:
  831. i_nop(p);
  832. i_nop(p);
  833. tlbw(p);
  834. break;
  835. default:
  836. panic("No TLB refill handler yet (CPU type: %d)",
  837. current_cpu_data.cputype);
  838. break;
  839. }
  840. }
  841. #ifdef CONFIG_64BIT
  842. /*
  843. * TMP and PTR are scratch.
  844. * TMP will be clobbered, PTR will hold the pmd entry.
  845. */
  846. static __init void
  847. build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
  848. unsigned int tmp, unsigned int ptr)
  849. {
  850. long pgdc = (long)pgd_current;
  851. /*
  852. * The vmalloc handling is not in the hotpath.
  853. */
  854. i_dmfc0(p, tmp, C0_BADVADDR);
  855. il_bltz(p, r, tmp, label_vmalloc);
  856. /* No i_nop needed here, since the next insn doesn't touch TMP. */
  857. #ifdef CONFIG_SMP
  858. # ifdef CONFIG_MIPS_MT_SMTC
  859. /*
  860. * SMTC uses TCBind value as "CPU" index
  861. */
  862. i_mfc0(p, ptr, C0_TCBIND);
  863. i_dsrl(p, ptr, ptr, 19);
  864. # else
  865. /*
  866. * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
  867. * stored in CONTEXT.
  868. */
  869. i_dmfc0(p, ptr, C0_CONTEXT);
  870. i_dsrl(p, ptr, ptr, 23);
  871. #endif
  872. i_LA_mostly(p, tmp, pgdc);
  873. i_daddu(p, ptr, ptr, tmp);
  874. i_dmfc0(p, tmp, C0_BADVADDR);
  875. i_ld(p, ptr, rel_lo(pgdc), ptr);
  876. #else
  877. i_LA_mostly(p, ptr, pgdc);
  878. i_ld(p, ptr, rel_lo(pgdc), ptr);
  879. #endif
  880. l_vmalloc_done(l, *p);
  881. i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
  882. i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  883. i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  884. i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  885. i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  886. i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  887. i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  888. i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  889. }
  890. /*
  891. * BVADDR is the faulting address, PTR is scratch.
  892. * PTR will hold the pgd for vmalloc.
  893. */
  894. static __init void
  895. build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
  896. unsigned int bvaddr, unsigned int ptr)
  897. {
  898. long swpd = (long)swapper_pg_dir;
  899. l_vmalloc(l, *p);
  900. i_LA(p, ptr, VMALLOC_START);
  901. i_dsubu(p, bvaddr, bvaddr, ptr);
  902. if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
  903. il_b(p, r, label_vmalloc_done);
  904. i_lui(p, ptr, rel_hi(swpd));
  905. } else {
  906. i_LA_mostly(p, ptr, swpd);
  907. il_b(p, r, label_vmalloc_done);
  908. i_daddiu(p, ptr, ptr, rel_lo(swpd));
  909. }
  910. }
  911. #else /* !CONFIG_64BIT */
  912. /*
  913. * TMP and PTR are scratch.
  914. * TMP will be clobbered, PTR will hold the pgd entry.
  915. */
  916. static __init void __attribute__((unused))
  917. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  918. {
  919. long pgdc = (long)pgd_current;
  920. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  921. #ifdef CONFIG_SMP
  922. #ifdef CONFIG_MIPS_MT_SMTC
  923. /*
  924. * SMTC uses TCBind value as "CPU" index
  925. */
  926. i_mfc0(p, ptr, C0_TCBIND);
  927. i_LA_mostly(p, tmp, pgdc);
  928. i_srl(p, ptr, ptr, 19);
  929. #else
  930. /*
  931. * smp_processor_id() << 3 is stored in CONTEXT.
  932. */
  933. i_mfc0(p, ptr, C0_CONTEXT);
  934. i_LA_mostly(p, tmp, pgdc);
  935. i_srl(p, ptr, ptr, 23);
  936. #endif
  937. i_addu(p, ptr, tmp, ptr);
  938. #else
  939. i_LA_mostly(p, ptr, pgdc);
  940. #endif
  941. i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  942. i_lw(p, ptr, rel_lo(pgdc), ptr);
  943. i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  944. i_sll(p, tmp, tmp, PGD_T_LOG2);
  945. i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  946. }
  947. #endif /* !CONFIG_64BIT */
  948. static __init void build_adjust_context(u32 **p, unsigned int ctx)
  949. {
  950. unsigned int shift = 4 - (PTE_T_LOG2 + 1);
  951. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  952. switch (current_cpu_data.cputype) {
  953. case CPU_VR41XX:
  954. case CPU_VR4111:
  955. case CPU_VR4121:
  956. case CPU_VR4122:
  957. case CPU_VR4131:
  958. case CPU_VR4181:
  959. case CPU_VR4181A:
  960. case CPU_VR4133:
  961. shift += 2;
  962. break;
  963. default:
  964. break;
  965. }
  966. if (shift)
  967. i_SRL(p, ctx, ctx, shift);
  968. i_andi(p, ctx, ctx, mask);
  969. }
  970. static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  971. {
  972. /*
  973. * Bug workaround for the Nevada. It seems as if under certain
  974. * circumstances the move from cp0_context might produce a
  975. * bogus result when the mfc0 instruction and its consumer are
  976. * in a different cacheline or a load instruction, probably any
  977. * memory reference, is between them.
  978. */
  979. switch (current_cpu_data.cputype) {
  980. case CPU_NEVADA:
  981. i_LW(p, ptr, 0, ptr);
  982. GET_CONTEXT(p, tmp); /* get context reg */
  983. break;
  984. default:
  985. GET_CONTEXT(p, tmp); /* get context reg */
  986. i_LW(p, ptr, 0, ptr);
  987. break;
  988. }
  989. build_adjust_context(p, tmp);
  990. i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  991. }
  992. static __init void build_update_entries(u32 **p, unsigned int tmp,
  993. unsigned int ptep)
  994. {
  995. /*
  996. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  997. * Kernel is a special case. Only a few CPUs use it.
  998. */
  999. #ifdef CONFIG_64BIT_PHYS_ADDR
  1000. if (cpu_has_64bits) {
  1001. i_ld(p, tmp, 0, ptep); /* get even pte */
  1002. i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  1003. i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
  1004. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  1005. i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
  1006. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  1007. } else {
  1008. int pte_off_even = sizeof(pte_t) / 2;
  1009. int pte_off_odd = pte_off_even + sizeof(pte_t);
  1010. /* The pte entries are pre-shifted */
  1011. i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  1012. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  1013. i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  1014. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  1015. }
  1016. #else
  1017. i_LW(p, tmp, 0, ptep); /* get even pte */
  1018. i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  1019. if (r45k_bvahwbug())
  1020. build_tlb_probe_entry(p);
  1021. i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
  1022. if (r4k_250MHZhwbug())
  1023. i_mtc0(p, 0, C0_ENTRYLO0);
  1024. i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
  1025. i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
  1026. if (r45k_bvahwbug())
  1027. i_mfc0(p, tmp, C0_INDEX);
  1028. if (r4k_250MHZhwbug())
  1029. i_mtc0(p, 0, C0_ENTRYLO1);
  1030. i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
  1031. #endif
  1032. }
  1033. static void __init build_r4000_tlb_refill_handler(void)
  1034. {
  1035. u32 *p = tlb_handler;
  1036. struct label *l = labels;
  1037. struct reloc *r = relocs;
  1038. u32 *f;
  1039. unsigned int final_len;
  1040. memset(tlb_handler, 0, sizeof(tlb_handler));
  1041. memset(labels, 0, sizeof(labels));
  1042. memset(relocs, 0, sizeof(relocs));
  1043. memset(final_handler, 0, sizeof(final_handler));
  1044. /*
  1045. * create the plain linear handler
  1046. */
  1047. if (bcm1250_m3_war()) {
  1048. i_MFC0(&p, K0, C0_BADVADDR);
  1049. i_MFC0(&p, K1, C0_ENTRYHI);
  1050. i_xor(&p, K0, K0, K1);
  1051. i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
  1052. il_bnez(&p, &r, K0, label_leave);
  1053. /* No need for i_nop */
  1054. }
  1055. #ifdef CONFIG_64BIT
  1056. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1057. #else
  1058. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1059. #endif
  1060. build_get_ptep(&p, K0, K1);
  1061. build_update_entries(&p, K0, K1);
  1062. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1063. l_leave(&l, p);
  1064. i_eret(&p); /* return from trap */
  1065. #ifdef CONFIG_64BIT
  1066. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
  1067. #endif
  1068. /*
  1069. * Overflow check: For the 64bit handler, we need at least one
  1070. * free instruction slot for the wrap-around branch. In worst
  1071. * case, if the intended insertion point is a delay slot, we
  1072. * need three, with the the second nop'ed and the third being
  1073. * unused.
  1074. */
  1075. #ifdef CONFIG_32BIT
  1076. if ((p - tlb_handler) > 64)
  1077. panic("TLB refill handler space exceeded");
  1078. #else
  1079. if (((p - tlb_handler) > 63)
  1080. || (((p - tlb_handler) > 61)
  1081. && insn_has_bdelay(relocs, tlb_handler + 29)))
  1082. panic("TLB refill handler space exceeded");
  1083. #endif
  1084. /*
  1085. * Now fold the handler in the TLB refill handler space.
  1086. */
  1087. #ifdef CONFIG_32BIT
  1088. f = final_handler;
  1089. /* Simplest case, just copy the handler. */
  1090. copy_handler(relocs, labels, tlb_handler, p, f);
  1091. final_len = p - tlb_handler;
  1092. #else /* CONFIG_64BIT */
  1093. f = final_handler + 32;
  1094. if ((p - tlb_handler) <= 32) {
  1095. /* Just copy the handler. */
  1096. copy_handler(relocs, labels, tlb_handler, p, f);
  1097. final_len = p - tlb_handler;
  1098. } else {
  1099. u32 *split = tlb_handler + 30;
  1100. /*
  1101. * Find the split point.
  1102. */
  1103. if (insn_has_bdelay(relocs, split - 1))
  1104. split--;
  1105. /* Copy first part of the handler. */
  1106. copy_handler(relocs, labels, tlb_handler, split, f);
  1107. f += split - tlb_handler;
  1108. /* Insert branch. */
  1109. l_split(&l, final_handler);
  1110. il_b(&f, &r, label_split);
  1111. if (insn_has_bdelay(relocs, split))
  1112. i_nop(&f);
  1113. else {
  1114. copy_handler(relocs, labels, split, split + 1, f);
  1115. move_labels(labels, f, f + 1, -1);
  1116. f++;
  1117. split++;
  1118. }
  1119. /* Copy the rest of the handler. */
  1120. copy_handler(relocs, labels, split, p, final_handler);
  1121. final_len = (f - (final_handler + 32)) + (p - split);
  1122. }
  1123. #endif /* CONFIG_64BIT */
  1124. resolve_relocs(relocs, labels);
  1125. printk("Synthesized TLB refill handler (%u instructions).\n",
  1126. final_len);
  1127. #ifdef DEBUG_TLB
  1128. {
  1129. int i;
  1130. f = final_handler;
  1131. #ifdef CONFIG_64BIT
  1132. if (final_len > 32)
  1133. final_len = 64;
  1134. else
  1135. f = final_handler + 32;
  1136. #endif /* CONFIG_64BIT */
  1137. for (i = 0; i < final_len; i++)
  1138. printk("%08x\n", f[i]);
  1139. }
  1140. #endif
  1141. memcpy((void *)ebase, final_handler, 0x100);
  1142. }
  1143. /*
  1144. * TLB load/store/modify handlers.
  1145. *
  1146. * Only the fastpath gets synthesized at runtime, the slowpath for
  1147. * do_page_fault remains normal asm.
  1148. */
  1149. extern void tlb_do_page_fault_0(void);
  1150. extern void tlb_do_page_fault_1(void);
  1151. #define __tlb_handler_align \
  1152. __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
  1153. /*
  1154. * 128 instructions for the fastpath handler is generous and should
  1155. * never be exceeded.
  1156. */
  1157. #define FASTPATH_SIZE 128
  1158. u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
  1159. u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
  1160. u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
  1161. static void __init
  1162. iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
  1163. {
  1164. #ifdef CONFIG_SMP
  1165. # ifdef CONFIG_64BIT_PHYS_ADDR
  1166. if (cpu_has_64bits)
  1167. i_lld(p, pte, 0, ptr);
  1168. else
  1169. # endif
  1170. i_LL(p, pte, 0, ptr);
  1171. #else
  1172. # ifdef CONFIG_64BIT_PHYS_ADDR
  1173. if (cpu_has_64bits)
  1174. i_ld(p, pte, 0, ptr);
  1175. else
  1176. # endif
  1177. i_LW(p, pte, 0, ptr);
  1178. #endif
  1179. }
  1180. static void __init
  1181. iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
  1182. unsigned int mode)
  1183. {
  1184. #ifdef CONFIG_64BIT_PHYS_ADDR
  1185. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1186. #endif
  1187. i_ori(p, pte, pte, mode);
  1188. #ifdef CONFIG_SMP
  1189. # ifdef CONFIG_64BIT_PHYS_ADDR
  1190. if (cpu_has_64bits)
  1191. i_scd(p, pte, 0, ptr);
  1192. else
  1193. # endif
  1194. i_SC(p, pte, 0, ptr);
  1195. if (r10000_llsc_war())
  1196. il_beqzl(p, r, pte, label_smp_pgtable_change);
  1197. else
  1198. il_beqz(p, r, pte, label_smp_pgtable_change);
  1199. # ifdef CONFIG_64BIT_PHYS_ADDR
  1200. if (!cpu_has_64bits) {
  1201. /* no i_nop needed */
  1202. i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1203. i_ori(p, pte, pte, hwmode);
  1204. i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1205. il_beqz(p, r, pte, label_smp_pgtable_change);
  1206. /* no i_nop needed */
  1207. i_lw(p, pte, 0, ptr);
  1208. } else
  1209. i_nop(p);
  1210. # else
  1211. i_nop(p);
  1212. # endif
  1213. #else
  1214. # ifdef CONFIG_64BIT_PHYS_ADDR
  1215. if (cpu_has_64bits)
  1216. i_sd(p, pte, 0, ptr);
  1217. else
  1218. # endif
  1219. i_SW(p, pte, 0, ptr);
  1220. # ifdef CONFIG_64BIT_PHYS_ADDR
  1221. if (!cpu_has_64bits) {
  1222. i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1223. i_ori(p, pte, pte, hwmode);
  1224. i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1225. i_lw(p, pte, 0, ptr);
  1226. }
  1227. # endif
  1228. #endif
  1229. }
  1230. /*
  1231. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1232. * the page table where this PTE is located, PTE will be re-loaded
  1233. * with it's original value.
  1234. */
  1235. static void __init
  1236. build_pte_present(u32 **p, struct label **l, struct reloc **r,
  1237. unsigned int pte, unsigned int ptr, enum label_id lid)
  1238. {
  1239. i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
  1240. i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
  1241. il_bnez(p, r, pte, lid);
  1242. iPTE_LW(p, l, pte, ptr);
  1243. }
  1244. /* Make PTE valid, store result in PTR. */
  1245. static void __init
  1246. build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
  1247. unsigned int ptr)
  1248. {
  1249. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1250. iPTE_SW(p, r, pte, ptr, mode);
  1251. }
  1252. /*
  1253. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1254. * restore PTE with value from PTR when done.
  1255. */
  1256. static void __init
  1257. build_pte_writable(u32 **p, struct label **l, struct reloc **r,
  1258. unsigned int pte, unsigned int ptr, enum label_id lid)
  1259. {
  1260. i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1261. i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1262. il_bnez(p, r, pte, lid);
  1263. iPTE_LW(p, l, pte, ptr);
  1264. }
  1265. /* Make PTE writable, update software status bits as well, then store
  1266. * at PTR.
  1267. */
  1268. static void __init
  1269. build_make_write(u32 **p, struct reloc **r, unsigned int pte,
  1270. unsigned int ptr)
  1271. {
  1272. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1273. | _PAGE_DIRTY);
  1274. iPTE_SW(p, r, pte, ptr, mode);
  1275. }
  1276. /*
  1277. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1278. * restore PTE with value from PTR when done.
  1279. */
  1280. static void __init
  1281. build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
  1282. unsigned int pte, unsigned int ptr, enum label_id lid)
  1283. {
  1284. i_andi(p, pte, pte, _PAGE_WRITE);
  1285. il_beqz(p, r, pte, lid);
  1286. iPTE_LW(p, l, pte, ptr);
  1287. }
  1288. /*
  1289. * R3000 style TLB load/store/modify handlers.
  1290. */
  1291. /*
  1292. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1293. * Then it returns.
  1294. */
  1295. static void __init
  1296. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1297. {
  1298. i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1299. i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1300. i_tlbwi(p);
  1301. i_jr(p, tmp);
  1302. i_rfe(p); /* branch delay */
  1303. }
  1304. /*
  1305. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1306. * or tlbwr as appropriate. This is because the index register
  1307. * may have the probe fail bit set as a result of a trap on a
  1308. * kseg2 access, i.e. without refill. Then it returns.
  1309. */
  1310. static void __init
  1311. build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
  1312. unsigned int pte, unsigned int tmp)
  1313. {
  1314. i_mfc0(p, tmp, C0_INDEX);
  1315. i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1316. il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1317. i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1318. i_tlbwi(p); /* cp0 delay */
  1319. i_jr(p, tmp);
  1320. i_rfe(p); /* branch delay */
  1321. l_r3000_write_probe_fail(l, *p);
  1322. i_tlbwr(p); /* cp0 delay */
  1323. i_jr(p, tmp);
  1324. i_rfe(p); /* branch delay */
  1325. }
  1326. static void __init
  1327. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1328. unsigned int ptr)
  1329. {
  1330. long pgdc = (long)pgd_current;
  1331. i_mfc0(p, pte, C0_BADVADDR);
  1332. i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
  1333. i_lw(p, ptr, rel_lo(pgdc), ptr);
  1334. i_srl(p, pte, pte, 22); /* load delay */
  1335. i_sll(p, pte, pte, 2);
  1336. i_addu(p, ptr, ptr, pte);
  1337. i_mfc0(p, pte, C0_CONTEXT);
  1338. i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1339. i_andi(p, pte, pte, 0xffc); /* load delay */
  1340. i_addu(p, ptr, ptr, pte);
  1341. i_lw(p, pte, 0, ptr);
  1342. i_tlbp(p); /* load delay */
  1343. }
  1344. static void __init build_r3000_tlb_load_handler(void)
  1345. {
  1346. u32 *p = handle_tlbl;
  1347. struct label *l = labels;
  1348. struct reloc *r = relocs;
  1349. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1350. memset(labels, 0, sizeof(labels));
  1351. memset(relocs, 0, sizeof(relocs));
  1352. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1353. build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
  1354. i_nop(&p); /* load delay */
  1355. build_make_valid(&p, &r, K0, K1);
  1356. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1357. l_nopage_tlbl(&l, p);
  1358. i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1359. i_nop(&p);
  1360. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1361. panic("TLB load handler fastpath space exceeded");
  1362. resolve_relocs(relocs, labels);
  1363. printk("Synthesized TLB load handler fastpath (%u instructions).\n",
  1364. (unsigned int)(p - handle_tlbl));
  1365. #ifdef DEBUG_TLB
  1366. {
  1367. int i;
  1368. for (i = 0; i < (p - handle_tlbl); i++)
  1369. printk("%08x\n", handle_tlbl[i]);
  1370. }
  1371. #endif
  1372. }
  1373. static void __init build_r3000_tlb_store_handler(void)
  1374. {
  1375. u32 *p = handle_tlbs;
  1376. struct label *l = labels;
  1377. struct reloc *r = relocs;
  1378. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1379. memset(labels, 0, sizeof(labels));
  1380. memset(relocs, 0, sizeof(relocs));
  1381. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1382. build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
  1383. i_nop(&p); /* load delay */
  1384. build_make_write(&p, &r, K0, K1);
  1385. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1386. l_nopage_tlbs(&l, p);
  1387. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1388. i_nop(&p);
  1389. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1390. panic("TLB store handler fastpath space exceeded");
  1391. resolve_relocs(relocs, labels);
  1392. printk("Synthesized TLB store handler fastpath (%u instructions).\n",
  1393. (unsigned int)(p - handle_tlbs));
  1394. #ifdef DEBUG_TLB
  1395. {
  1396. int i;
  1397. for (i = 0; i < (p - handle_tlbs); i++)
  1398. printk("%08x\n", handle_tlbs[i]);
  1399. }
  1400. #endif
  1401. }
  1402. static void __init build_r3000_tlb_modify_handler(void)
  1403. {
  1404. u32 *p = handle_tlbm;
  1405. struct label *l = labels;
  1406. struct reloc *r = relocs;
  1407. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1408. memset(labels, 0, sizeof(labels));
  1409. memset(relocs, 0, sizeof(relocs));
  1410. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1411. build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
  1412. i_nop(&p); /* load delay */
  1413. build_make_write(&p, &r, K0, K1);
  1414. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1415. l_nopage_tlbm(&l, p);
  1416. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1417. i_nop(&p);
  1418. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1419. panic("TLB modify handler fastpath space exceeded");
  1420. resolve_relocs(relocs, labels);
  1421. printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
  1422. (unsigned int)(p - handle_tlbm));
  1423. #ifdef DEBUG_TLB
  1424. {
  1425. int i;
  1426. for (i = 0; i < (p - handle_tlbm); i++)
  1427. printk("%08x\n", handle_tlbm[i]);
  1428. }
  1429. #endif
  1430. }
  1431. /*
  1432. * R4000 style TLB load/store/modify handlers.
  1433. */
  1434. static void __init
  1435. build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
  1436. struct reloc **r, unsigned int pte,
  1437. unsigned int ptr)
  1438. {
  1439. #ifdef CONFIG_64BIT
  1440. build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
  1441. #else
  1442. build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
  1443. #endif
  1444. i_MFC0(p, pte, C0_BADVADDR);
  1445. i_LW(p, ptr, 0, ptr);
  1446. i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1447. i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1448. i_ADDU(p, ptr, ptr, pte);
  1449. #ifdef CONFIG_SMP
  1450. l_smp_pgtable_change(l, *p);
  1451. # endif
  1452. iPTE_LW(p, l, pte, ptr); /* get even pte */
  1453. build_tlb_probe_entry(p);
  1454. }
  1455. static void __init
  1456. build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
  1457. struct reloc **r, unsigned int tmp,
  1458. unsigned int ptr)
  1459. {
  1460. i_ori(p, ptr, ptr, sizeof(pte_t));
  1461. i_xori(p, ptr, ptr, sizeof(pte_t));
  1462. build_update_entries(p, tmp, ptr);
  1463. build_tlb_write_entry(p, l, r, tlb_indexed);
  1464. l_leave(l, *p);
  1465. i_eret(p); /* return from trap */
  1466. #ifdef CONFIG_64BIT
  1467. build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
  1468. #endif
  1469. }
  1470. static void __init build_r4000_tlb_load_handler(void)
  1471. {
  1472. u32 *p = handle_tlbl;
  1473. struct label *l = labels;
  1474. struct reloc *r = relocs;
  1475. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1476. memset(labels, 0, sizeof(labels));
  1477. memset(relocs, 0, sizeof(relocs));
  1478. if (bcm1250_m3_war()) {
  1479. i_MFC0(&p, K0, C0_BADVADDR);
  1480. i_MFC0(&p, K1, C0_ENTRYHI);
  1481. i_xor(&p, K0, K0, K1);
  1482. i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
  1483. il_bnez(&p, &r, K0, label_leave);
  1484. /* No need for i_nop */
  1485. }
  1486. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1487. build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
  1488. build_make_valid(&p, &r, K0, K1);
  1489. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1490. l_nopage_tlbl(&l, p);
  1491. i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1492. i_nop(&p);
  1493. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1494. panic("TLB load handler fastpath space exceeded");
  1495. resolve_relocs(relocs, labels);
  1496. printk("Synthesized TLB load handler fastpath (%u instructions).\n",
  1497. (unsigned int)(p - handle_tlbl));
  1498. #ifdef DEBUG_TLB
  1499. {
  1500. int i;
  1501. for (i = 0; i < (p - handle_tlbl); i++)
  1502. printk("%08x\n", handle_tlbl[i]);
  1503. }
  1504. #endif
  1505. }
  1506. static void __init build_r4000_tlb_store_handler(void)
  1507. {
  1508. u32 *p = handle_tlbs;
  1509. struct label *l = labels;
  1510. struct reloc *r = relocs;
  1511. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1512. memset(labels, 0, sizeof(labels));
  1513. memset(relocs, 0, sizeof(relocs));
  1514. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1515. build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
  1516. build_make_write(&p, &r, K0, K1);
  1517. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1518. l_nopage_tlbs(&l, p);
  1519. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1520. i_nop(&p);
  1521. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1522. panic("TLB store handler fastpath space exceeded");
  1523. resolve_relocs(relocs, labels);
  1524. printk("Synthesized TLB store handler fastpath (%u instructions).\n",
  1525. (unsigned int)(p - handle_tlbs));
  1526. #ifdef DEBUG_TLB
  1527. {
  1528. int i;
  1529. for (i = 0; i < (p - handle_tlbs); i++)
  1530. printk("%08x\n", handle_tlbs[i]);
  1531. }
  1532. #endif
  1533. }
  1534. static void __init build_r4000_tlb_modify_handler(void)
  1535. {
  1536. u32 *p = handle_tlbm;
  1537. struct label *l = labels;
  1538. struct reloc *r = relocs;
  1539. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1540. memset(labels, 0, sizeof(labels));
  1541. memset(relocs, 0, sizeof(relocs));
  1542. build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
  1543. build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
  1544. /* Present and writable bits set, set accessed and dirty bits. */
  1545. build_make_write(&p, &r, K0, K1);
  1546. build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
  1547. l_nopage_tlbm(&l, p);
  1548. i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1549. i_nop(&p);
  1550. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1551. panic("TLB modify handler fastpath space exceeded");
  1552. resolve_relocs(relocs, labels);
  1553. printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
  1554. (unsigned int)(p - handle_tlbm));
  1555. #ifdef DEBUG_TLB
  1556. {
  1557. int i;
  1558. for (i = 0; i < (p - handle_tlbm); i++)
  1559. printk("%08x\n", handle_tlbm[i]);
  1560. }
  1561. #endif
  1562. }
  1563. void __init build_tlb_refill_handler(void)
  1564. {
  1565. /*
  1566. * The refill handler is generated per-CPU, multi-node systems
  1567. * may have local storage for it. The other handlers are only
  1568. * needed once.
  1569. */
  1570. static int run_once = 0;
  1571. switch (current_cpu_data.cputype) {
  1572. case CPU_R2000:
  1573. case CPU_R3000:
  1574. case CPU_R3000A:
  1575. case CPU_R3081E:
  1576. case CPU_TX3912:
  1577. case CPU_TX3922:
  1578. case CPU_TX3927:
  1579. build_r3000_tlb_refill_handler();
  1580. if (!run_once) {
  1581. build_r3000_tlb_load_handler();
  1582. build_r3000_tlb_store_handler();
  1583. build_r3000_tlb_modify_handler();
  1584. run_once++;
  1585. }
  1586. break;
  1587. case CPU_R6000:
  1588. case CPU_R6000A:
  1589. panic("No R6000 TLB refill handler yet");
  1590. break;
  1591. case CPU_R8000:
  1592. panic("No R8000 TLB refill handler yet");
  1593. break;
  1594. default:
  1595. build_r4000_tlb_refill_handler();
  1596. if (!run_once) {
  1597. build_r4000_tlb_load_handler();
  1598. build_r4000_tlb_store_handler();
  1599. build_r4000_tlb_modify_handler();
  1600. run_once++;
  1601. }
  1602. }
  1603. }
  1604. void __init flush_tlb_handlers(void)
  1605. {
  1606. flush_icache_range((unsigned long)handle_tlbl,
  1607. (unsigned long)handle_tlbl + sizeof(handle_tlbl));
  1608. flush_icache_range((unsigned long)handle_tlbs,
  1609. (unsigned long)handle_tlbs + sizeof(handle_tlbs));
  1610. flush_icache_range((unsigned long)handle_tlbm,
  1611. (unsigned long)handle_tlbm + sizeof(handle_tlbm));
  1612. }