clock.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076
  1. /*
  2. * linux/arch/arm/mach-omap2/clock.c
  3. *
  4. * Copyright (C) 2005 Texas Instruments Inc.
  5. * Richard Woodruff <r-woodruff2@ti.com>
  6. * Created for OMAP2.
  7. *
  8. * Cleaned up and modified to use omap shared clock framework by
  9. * Tony Lindgren <tony@atomide.com>
  10. *
  11. * Based on omap1 clock.c, Copyright (C) 2004 - 2005 Nokia corporation
  12. * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License version 2 as
  16. * published by the Free Software Foundation.
  17. */
  18. #include <linux/config.h>
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/device.h>
  22. #include <linux/list.h>
  23. #include <linux/errno.h>
  24. #include <linux/delay.h>
  25. #include <linux/clk.h>
  26. #include <asm/io.h>
  27. #include <asm/arch/clock.h>
  28. #include <asm/arch/sram.h>
  29. #include "prcm-regs.h"
  30. #include "memory.h"
  31. #include "clock.h"
  32. //#define DOWN_VARIABLE_DPLL 1 /* Experimental */
  33. static struct prcm_config *curr_prcm_set;
  34. static u32 curr_perf_level = PRCM_FULL_SPEED;
  35. /*-------------------------------------------------------------------------
  36. * Omap2 specific clock functions
  37. *-------------------------------------------------------------------------*/
  38. /* Recalculate SYST_CLK */
  39. static void omap2_sys_clk_recalc(struct clk * clk)
  40. {
  41. u32 div = PRCM_CLKSRC_CTRL;
  42. div &= (1 << 7) | (1 << 6); /* Test if ext clk divided by 1 or 2 */
  43. div >>= clk->rate_offset;
  44. clk->rate = (clk->parent->rate / div);
  45. propagate_rate(clk);
  46. }
  47. static u32 omap2_get_dpll_rate(struct clk * tclk)
  48. {
  49. long long dpll_clk;
  50. int dpll_mult, dpll_div, amult;
  51. dpll_mult = (CM_CLKSEL1_PLL >> 12) & 0x03ff; /* 10 bits */
  52. dpll_div = (CM_CLKSEL1_PLL >> 8) & 0x0f; /* 4 bits */
  53. dpll_clk = (long long)tclk->parent->rate * dpll_mult;
  54. do_div(dpll_clk, dpll_div + 1);
  55. amult = CM_CLKSEL2_PLL & 0x3;
  56. dpll_clk *= amult;
  57. return dpll_clk;
  58. }
  59. static void omap2_followparent_recalc(struct clk *clk)
  60. {
  61. followparent_recalc(clk);
  62. }
  63. static void omap2_propagate_rate(struct clk * clk)
  64. {
  65. if (!(clk->flags & RATE_FIXED))
  66. clk->rate = clk->parent->rate;
  67. propagate_rate(clk);
  68. }
  69. /* Enable an APLL if off */
  70. static void omap2_clk_fixed_enable(struct clk *clk)
  71. {
  72. u32 cval, i=0;
  73. if (clk->enable_bit == 0xff) /* Parent will do it */
  74. return;
  75. cval = CM_CLKEN_PLL;
  76. if ((cval & (0x3 << clk->enable_bit)) == (0x3 << clk->enable_bit))
  77. return;
  78. cval &= ~(0x3 << clk->enable_bit);
  79. cval |= (0x3 << clk->enable_bit);
  80. CM_CLKEN_PLL = cval;
  81. if (clk == &apll96_ck)
  82. cval = (1 << 8);
  83. else if (clk == &apll54_ck)
  84. cval = (1 << 6);
  85. while (!CM_IDLEST_CKGEN & cval) { /* Wait for lock */
  86. ++i;
  87. udelay(1);
  88. if (i == 100000)
  89. break;
  90. }
  91. }
  92. /* Enables clock without considering parent dependencies or use count
  93. * REVISIT: Maybe change this to use clk->enable like on omap1?
  94. */
  95. static int _omap2_clk_enable(struct clk * clk)
  96. {
  97. u32 regval32;
  98. if (clk->flags & ALWAYS_ENABLED)
  99. return 0;
  100. if (unlikely(clk->enable_reg == 0)) {
  101. printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
  102. clk->name);
  103. return 0;
  104. }
  105. if (clk->enable_reg == (void __iomem *)&CM_CLKEN_PLL) {
  106. omap2_clk_fixed_enable(clk);
  107. return 0;
  108. }
  109. regval32 = __raw_readl(clk->enable_reg);
  110. regval32 |= (1 << clk->enable_bit);
  111. __raw_writel(regval32, clk->enable_reg);
  112. return 0;
  113. }
  114. /* Stop APLL */
  115. static void omap2_clk_fixed_disable(struct clk *clk)
  116. {
  117. u32 cval;
  118. if(clk->enable_bit == 0xff) /* let parent off do it */
  119. return;
  120. cval = CM_CLKEN_PLL;
  121. cval &= ~(0x3 << clk->enable_bit);
  122. CM_CLKEN_PLL = cval;
  123. }
  124. /* Disables clock without considering parent dependencies or use count */
  125. static void _omap2_clk_disable(struct clk *clk)
  126. {
  127. u32 regval32;
  128. if (clk->enable_reg == 0)
  129. return;
  130. if (clk->enable_reg == (void __iomem *)&CM_CLKEN_PLL) {
  131. omap2_clk_fixed_disable(clk);
  132. return;
  133. }
  134. regval32 = __raw_readl(clk->enable_reg);
  135. regval32 &= ~(1 << clk->enable_bit);
  136. __raw_writel(regval32, clk->enable_reg);
  137. }
  138. static int omap2_clk_enable(struct clk *clk)
  139. {
  140. int ret = 0;
  141. if (clk->usecount++ == 0) {
  142. if (likely((u32)clk->parent))
  143. ret = omap2_clk_enable(clk->parent);
  144. if (unlikely(ret != 0)) {
  145. clk->usecount--;
  146. return ret;
  147. }
  148. ret = _omap2_clk_enable(clk);
  149. if (unlikely(ret != 0) && clk->parent) {
  150. omap2_clk_disable(clk->parent);
  151. clk->usecount--;
  152. }
  153. }
  154. return ret;
  155. }
  156. static void omap2_clk_disable(struct clk *clk)
  157. {
  158. if (clk->usecount > 0 && !(--clk->usecount)) {
  159. _omap2_clk_disable(clk);
  160. if (likely((u32)clk->parent))
  161. omap2_clk_disable(clk->parent);
  162. }
  163. }
  164. /*
  165. * Uses the current prcm set to tell if a rate is valid.
  166. * You can go slower, but not faster within a given rate set.
  167. */
  168. static u32 omap2_dpll_round_rate(unsigned long target_rate)
  169. {
  170. u32 high, low;
  171. if ((CM_CLKSEL2_PLL & 0x3) == 1) { /* DPLL clockout */
  172. high = curr_prcm_set->dpll_speed * 2;
  173. low = curr_prcm_set->dpll_speed;
  174. } else { /* DPLL clockout x 2 */
  175. high = curr_prcm_set->dpll_speed;
  176. low = curr_prcm_set->dpll_speed / 2;
  177. }
  178. #ifdef DOWN_VARIABLE_DPLL
  179. if (target_rate > high)
  180. return high;
  181. else
  182. return target_rate;
  183. #else
  184. if (target_rate > low)
  185. return high;
  186. else
  187. return low;
  188. #endif
  189. }
  190. /*
  191. * Used for clocks that are part of CLKSEL_xyz governed clocks.
  192. * REVISIT: Maybe change to use clk->enable() functions like on omap1?
  193. */
  194. static void omap2_clksel_recalc(struct clk * clk)
  195. {
  196. u32 fixed = 0, div = 0;
  197. if (clk == &dpll_ck) {
  198. clk->rate = omap2_get_dpll_rate(clk);
  199. fixed = 1;
  200. div = 0;
  201. }
  202. if (clk == &iva1_mpu_int_ifck) {
  203. div = 2;
  204. fixed = 1;
  205. }
  206. if ((clk == &dss1_fck) && ((CM_CLKSEL1_CORE & (0x1f << 8)) == 0)) {
  207. clk->rate = sys_ck.rate;
  208. return;
  209. }
  210. if (!fixed) {
  211. div = omap2_clksel_get_divisor(clk);
  212. if (div == 0)
  213. return;
  214. }
  215. if (div != 0) {
  216. if (unlikely(clk->rate == clk->parent->rate / div))
  217. return;
  218. clk->rate = clk->parent->rate / div;
  219. }
  220. if (unlikely(clk->flags & RATE_PROPAGATES))
  221. propagate_rate(clk);
  222. }
  223. /*
  224. * Finds best divider value in an array based on the source and target
  225. * rates. The divider array must be sorted with smallest divider first.
  226. */
  227. static inline u32 omap2_divider_from_table(u32 size, u32 *div_array,
  228. u32 src_rate, u32 tgt_rate)
  229. {
  230. int i, test_rate;
  231. if (div_array == NULL)
  232. return ~1;
  233. for (i=0; i < size; i++) {
  234. test_rate = src_rate / *div_array;
  235. if (test_rate <= tgt_rate)
  236. return *div_array;
  237. ++div_array;
  238. }
  239. return ~0; /* No acceptable divider */
  240. }
  241. /*
  242. * Find divisor for the given clock and target rate.
  243. *
  244. * Note that this will not work for clocks which are part of CONFIG_PARTICIPANT,
  245. * they are only settable as part of virtual_prcm set.
  246. */
  247. static u32 omap2_clksel_round_rate(struct clk *tclk, u32 target_rate,
  248. u32 *new_div)
  249. {
  250. u32 gfx_div[] = {2, 3, 4};
  251. u32 sysclkout_div[] = {1, 2, 4, 8, 16};
  252. u32 dss1_div[] = {1, 2, 3, 4, 5, 6, 8, 9, 12, 16};
  253. u32 vylnq_div[] = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18};
  254. u32 best_div = ~0, asize = 0;
  255. u32 *div_array = NULL;
  256. switch (tclk->flags & SRC_RATE_SEL_MASK) {
  257. case CM_GFX_SEL1:
  258. asize = 3;
  259. div_array = gfx_div;
  260. break;
  261. case CM_PLL_SEL1:
  262. return omap2_dpll_round_rate(target_rate);
  263. case CM_SYSCLKOUT_SEL1:
  264. asize = 5;
  265. div_array = sysclkout_div;
  266. break;
  267. case CM_CORE_SEL1:
  268. if(tclk == &dss1_fck){
  269. if(tclk->parent == &core_ck){
  270. asize = 10;
  271. div_array = dss1_div;
  272. } else {
  273. *new_div = 0; /* fixed clk */
  274. return(tclk->parent->rate);
  275. }
  276. } else if((tclk == &vlynq_fck) && cpu_is_omap2420()){
  277. if(tclk->parent == &core_ck){
  278. asize = 10;
  279. div_array = vylnq_div;
  280. } else {
  281. *new_div = 0; /* fixed clk */
  282. return(tclk->parent->rate);
  283. }
  284. }
  285. break;
  286. }
  287. best_div = omap2_divider_from_table(asize, div_array,
  288. tclk->parent->rate, target_rate);
  289. if (best_div == ~0){
  290. *new_div = 1;
  291. return best_div; /* signal error */
  292. }
  293. *new_div = best_div;
  294. return (tclk->parent->rate / best_div);
  295. }
  296. /* Given a clock and a rate apply a clock specific rounding function */
  297. static long omap2_clk_round_rate(struct clk *clk, unsigned long rate)
  298. {
  299. u32 new_div = 0;
  300. int valid_rate;
  301. if (clk->flags & RATE_FIXED)
  302. return clk->rate;
  303. if (clk->flags & RATE_CKCTL) {
  304. valid_rate = omap2_clksel_round_rate(clk, rate, &new_div);
  305. return valid_rate;
  306. }
  307. if (clk->round_rate != 0)
  308. return clk->round_rate(clk, rate);
  309. return clk->rate;
  310. }
  311. /*
  312. * Check the DLL lock state, and return tue if running in unlock mode.
  313. * This is needed to compenste for the shifted DLL value in unlock mode.
  314. */
  315. static u32 omap2_dll_force_needed(void)
  316. {
  317. u32 dll_state = SDRC_DLLA_CTRL; /* dlla and dllb are a set */
  318. if ((dll_state & (1 << 2)) == (1 << 2))
  319. return 1;
  320. else
  321. return 0;
  322. }
  323. static u32 omap2_reprogram_sdrc(u32 level, u32 force)
  324. {
  325. u32 slow_dll_ctrl, fast_dll_ctrl, m_type;
  326. u32 prev = curr_perf_level, flags;
  327. if ((curr_perf_level == level) && !force)
  328. return prev;
  329. m_type = omap2_memory_get_type();
  330. slow_dll_ctrl = omap2_memory_get_slow_dll_ctrl();
  331. fast_dll_ctrl = omap2_memory_get_fast_dll_ctrl();
  332. if (level == PRCM_HALF_SPEED) {
  333. local_irq_save(flags);
  334. PRCM_VOLTSETUP = 0xffff;
  335. omap2_sram_reprogram_sdrc(PRCM_HALF_SPEED,
  336. slow_dll_ctrl, m_type);
  337. curr_perf_level = PRCM_HALF_SPEED;
  338. local_irq_restore(flags);
  339. }
  340. if (level == PRCM_FULL_SPEED) {
  341. local_irq_save(flags);
  342. PRCM_VOLTSETUP = 0xffff;
  343. omap2_sram_reprogram_sdrc(PRCM_FULL_SPEED,
  344. fast_dll_ctrl, m_type);
  345. curr_perf_level = PRCM_FULL_SPEED;
  346. local_irq_restore(flags);
  347. }
  348. return prev;
  349. }
  350. static int omap2_reprogram_dpll(struct clk * clk, unsigned long rate)
  351. {
  352. u32 flags, cur_rate, low, mult, div, valid_rate, done_rate;
  353. u32 bypass = 0;
  354. struct prcm_config tmpset;
  355. int ret = -EINVAL;
  356. local_irq_save(flags);
  357. cur_rate = omap2_get_dpll_rate(&dpll_ck);
  358. mult = CM_CLKSEL2_PLL & 0x3;
  359. if ((rate == (cur_rate / 2)) && (mult == 2)) {
  360. omap2_reprogram_sdrc(PRCM_HALF_SPEED, 1);
  361. } else if ((rate == (cur_rate * 2)) && (mult == 1)) {
  362. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1);
  363. } else if (rate != cur_rate) {
  364. valid_rate = omap2_dpll_round_rate(rate);
  365. if (valid_rate != rate)
  366. goto dpll_exit;
  367. if ((CM_CLKSEL2_PLL & 0x3) == 1)
  368. low = curr_prcm_set->dpll_speed;
  369. else
  370. low = curr_prcm_set->dpll_speed / 2;
  371. tmpset.cm_clksel1_pll = CM_CLKSEL1_PLL;
  372. tmpset.cm_clksel1_pll &= ~(0x3FFF << 8);
  373. div = ((curr_prcm_set->xtal_speed / 1000000) - 1);
  374. tmpset.cm_clksel2_pll = CM_CLKSEL2_PLL;
  375. tmpset.cm_clksel2_pll &= ~0x3;
  376. if (rate > low) {
  377. tmpset.cm_clksel2_pll |= 0x2;
  378. mult = ((rate / 2) / 1000000);
  379. done_rate = PRCM_FULL_SPEED;
  380. } else {
  381. tmpset.cm_clksel2_pll |= 0x1;
  382. mult = (rate / 1000000);
  383. done_rate = PRCM_HALF_SPEED;
  384. }
  385. tmpset.cm_clksel1_pll |= ((div << 8) | (mult << 12));
  386. /* Worst case */
  387. tmpset.base_sdrc_rfr = V24XX_SDRC_RFR_CTRL_BYPASS;
  388. if (rate == curr_prcm_set->xtal_speed) /* If asking for 1-1 */
  389. bypass = 1;
  390. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1); /* For init_mem */
  391. /* Force dll lock mode */
  392. omap2_set_prcm(tmpset.cm_clksel1_pll, tmpset.base_sdrc_rfr,
  393. bypass);
  394. /* Errata: ret dll entry state */
  395. omap2_init_memory_params(omap2_dll_force_needed());
  396. omap2_reprogram_sdrc(done_rate, 0);
  397. }
  398. omap2_clksel_recalc(&dpll_ck);
  399. ret = 0;
  400. dpll_exit:
  401. local_irq_restore(flags);
  402. return(ret);
  403. }
  404. /* Just return the MPU speed */
  405. static void omap2_mpu_recalc(struct clk * clk)
  406. {
  407. clk->rate = curr_prcm_set->mpu_speed;
  408. }
  409. /*
  410. * Look for a rate equal or less than the target rate given a configuration set.
  411. *
  412. * What's not entirely clear is "which" field represents the key field.
  413. * Some might argue L3-DDR, others ARM, others IVA. This code is simple and
  414. * just uses the ARM rates.
  415. */
  416. static long omap2_round_to_table_rate(struct clk * clk, unsigned long rate)
  417. {
  418. struct prcm_config * ptr;
  419. long highest_rate;
  420. if (clk != &virt_prcm_set)
  421. return -EINVAL;
  422. highest_rate = -EINVAL;
  423. for (ptr = rate_table; ptr->mpu_speed; ptr++) {
  424. if (ptr->xtal_speed != sys_ck.rate)
  425. continue;
  426. highest_rate = ptr->mpu_speed;
  427. /* Can check only after xtal frequency check */
  428. if (ptr->mpu_speed <= rate)
  429. break;
  430. }
  431. return highest_rate;
  432. }
  433. /*
  434. * omap2_convert_field_to_div() - turn field value into integer divider
  435. */
  436. static u32 omap2_clksel_to_divisor(u32 div_sel, u32 field_val)
  437. {
  438. u32 i;
  439. u32 clkout_array[] = {1, 2, 4, 8, 16};
  440. if ((div_sel & SRC_RATE_SEL_MASK) == CM_SYSCLKOUT_SEL1) {
  441. for (i = 0; i < 5; i++) {
  442. if (field_val == i)
  443. return clkout_array[i];
  444. }
  445. return ~0;
  446. } else
  447. return field_val;
  448. }
  449. /*
  450. * Returns the CLKSEL divider register value
  451. * REVISIT: This should be cleaned up to work nicely with void __iomem *
  452. */
  453. static u32 omap2_get_clksel(u32 *div_sel, u32 *field_mask,
  454. struct clk *clk)
  455. {
  456. int ret = ~0;
  457. u32 reg_val, div_off;
  458. u32 div_addr = 0;
  459. u32 mask = ~0;
  460. div_off = clk->rate_offset;
  461. switch ((*div_sel & SRC_RATE_SEL_MASK)) {
  462. case CM_MPU_SEL1:
  463. div_addr = (u32)&CM_CLKSEL_MPU;
  464. mask = 0x1f;
  465. break;
  466. case CM_DSP_SEL1:
  467. div_addr = (u32)&CM_CLKSEL_DSP;
  468. if (cpu_is_omap2420()) {
  469. if ((div_off == 0) || (div_off == 8))
  470. mask = 0x1f;
  471. else if (div_off == 5)
  472. mask = 0x3;
  473. } else if (cpu_is_omap2430()) {
  474. if (div_off == 0)
  475. mask = 0x1f;
  476. else if (div_off == 5)
  477. mask = 0x3;
  478. }
  479. break;
  480. case CM_GFX_SEL1:
  481. div_addr = (u32)&CM_CLKSEL_GFX;
  482. if (div_off == 0)
  483. mask = 0x7;
  484. break;
  485. case CM_MODEM_SEL1:
  486. div_addr = (u32)&CM_CLKSEL_MDM;
  487. if (div_off == 0)
  488. mask = 0xf;
  489. break;
  490. case CM_SYSCLKOUT_SEL1:
  491. div_addr = (u32)&PRCM_CLKOUT_CTRL;
  492. if ((div_off == 3) || (div_off = 11))
  493. mask= 0x3;
  494. break;
  495. case CM_CORE_SEL1:
  496. div_addr = (u32)&CM_CLKSEL1_CORE;
  497. switch (div_off) {
  498. case 0: /* l3 */
  499. case 8: /* dss1 */
  500. case 15: /* vylnc-2420 */
  501. case 20: /* ssi */
  502. mask = 0x1f; break;
  503. case 5: /* l4 */
  504. mask = 0x3; break;
  505. case 13: /* dss2 */
  506. mask = 0x1; break;
  507. case 25: /* usb */
  508. mask = 0x7; break;
  509. }
  510. }
  511. *field_mask = mask;
  512. if (unlikely(mask == ~0))
  513. div_addr = 0;
  514. *div_sel = div_addr;
  515. if (unlikely(div_addr == 0))
  516. return ret;
  517. /* Isolate field */
  518. reg_val = __raw_readl((void __iomem *)div_addr) & (mask << div_off);
  519. /* Normalize back to divider value */
  520. reg_val >>= div_off;
  521. return reg_val;
  522. }
  523. /*
  524. * Return divider to be applied to parent clock.
  525. * Return 0 on error.
  526. */
  527. static u32 omap2_clksel_get_divisor(struct clk *clk)
  528. {
  529. int ret = 0;
  530. u32 div, div_sel, div_off, field_mask, field_val;
  531. /* isolate control register */
  532. div_sel = (SRC_RATE_SEL_MASK & clk->flags);
  533. div_off = clk->rate_offset;
  534. field_val = omap2_get_clksel(&div_sel, &field_mask, clk);
  535. if (div_sel == 0)
  536. return ret;
  537. div_sel = (SRC_RATE_SEL_MASK & clk->flags);
  538. div = omap2_clksel_to_divisor(div_sel, field_val);
  539. return div;
  540. }
  541. /* Set the clock rate for a clock source */
  542. static int omap2_clk_set_rate(struct clk *clk, unsigned long rate)
  543. {
  544. int ret = -EINVAL;
  545. void __iomem * reg;
  546. u32 div_sel, div_off, field_mask, field_val, reg_val, validrate;
  547. u32 new_div = 0;
  548. if (!(clk->flags & CONFIG_PARTICIPANT) && (clk->flags & RATE_CKCTL)) {
  549. if (clk == &dpll_ck)
  550. return omap2_reprogram_dpll(clk, rate);
  551. /* Isolate control register */
  552. div_sel = (SRC_RATE_SEL_MASK & clk->flags);
  553. div_off = clk->src_offset;
  554. validrate = omap2_clksel_round_rate(clk, rate, &new_div);
  555. if(validrate != rate)
  556. return(ret);
  557. field_val = omap2_get_clksel(&div_sel, &field_mask, clk);
  558. if (div_sel == 0)
  559. return ret;
  560. if(clk->flags & CM_SYSCLKOUT_SEL1){
  561. switch(new_div){
  562. case 16: field_val = 4; break;
  563. case 8: field_val = 3; break;
  564. case 4: field_val = 2; break;
  565. case 2: field_val = 1; break;
  566. case 1: field_val = 0; break;
  567. }
  568. }
  569. else
  570. field_val = new_div;
  571. reg = (void __iomem *)div_sel;
  572. reg_val = __raw_readl(reg);
  573. reg_val &= ~(field_mask << div_off);
  574. reg_val |= (field_val << div_off);
  575. __raw_writel(reg_val, reg);
  576. clk->rate = clk->parent->rate / field_val;
  577. if (clk->flags & DELAYED_APP)
  578. __raw_writel(0x1, (void __iomem *)&PRCM_CLKCFG_CTRL);
  579. ret = 0;
  580. } else if (clk->set_rate != 0)
  581. ret = clk->set_rate(clk, rate);
  582. if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
  583. propagate_rate(clk);
  584. return ret;
  585. }
  586. /* Converts encoded control register address into a full address */
  587. static u32 omap2_get_src_field(u32 *type_to_addr, u32 reg_offset,
  588. struct clk *src_clk, u32 *field_mask)
  589. {
  590. u32 val = ~0, src_reg_addr = 0, mask = 0;
  591. /* Find target control register.*/
  592. switch ((*type_to_addr & SRC_RATE_SEL_MASK)) {
  593. case CM_CORE_SEL1:
  594. src_reg_addr = (u32)&CM_CLKSEL1_CORE;
  595. if (reg_offset == 13) { /* DSS2_fclk */
  596. mask = 0x1;
  597. if (src_clk == &sys_ck)
  598. val = 0;
  599. if (src_clk == &func_48m_ck)
  600. val = 1;
  601. } else if (reg_offset == 8) { /* DSS1_fclk */
  602. mask = 0x1f;
  603. if (src_clk == &sys_ck)
  604. val = 0;
  605. else if (src_clk == &core_ck) /* divided clock */
  606. val = 0x10; /* rate needs fixing */
  607. } else if ((reg_offset == 15) && cpu_is_omap2420()){ /*vlnyq*/
  608. mask = 0x1F;
  609. if(src_clk == &func_96m_ck)
  610. val = 0;
  611. else if (src_clk == &core_ck)
  612. val = 0x10;
  613. }
  614. break;
  615. case CM_CORE_SEL2:
  616. src_reg_addr = (u32)&CM_CLKSEL2_CORE;
  617. mask = 0x3;
  618. if (src_clk == &func_32k_ck)
  619. val = 0x0;
  620. if (src_clk == &sys_ck)
  621. val = 0x1;
  622. if (src_clk == &alt_ck)
  623. val = 0x2;
  624. break;
  625. case CM_WKUP_SEL1:
  626. src_reg_addr = (u32)&CM_CLKSEL2_CORE;
  627. mask = 0x3;
  628. if (src_clk == &func_32k_ck)
  629. val = 0x0;
  630. if (src_clk == &sys_ck)
  631. val = 0x1;
  632. if (src_clk == &alt_ck)
  633. val = 0x2;
  634. break;
  635. case CM_PLL_SEL1:
  636. src_reg_addr = (u32)&CM_CLKSEL1_PLL;
  637. mask = 0x1;
  638. if (reg_offset == 0x3) {
  639. if (src_clk == &apll96_ck)
  640. val = 0;
  641. if (src_clk == &alt_ck)
  642. val = 1;
  643. }
  644. else if (reg_offset == 0x5) {
  645. if (src_clk == &apll54_ck)
  646. val = 0;
  647. if (src_clk == &alt_ck)
  648. val = 1;
  649. }
  650. break;
  651. case CM_PLL_SEL2:
  652. src_reg_addr = (u32)&CM_CLKSEL2_PLL;
  653. mask = 0x3;
  654. if (src_clk == &func_32k_ck)
  655. val = 0x0;
  656. if (src_clk == &dpll_ck)
  657. val = 0x2;
  658. break;
  659. case CM_SYSCLKOUT_SEL1:
  660. src_reg_addr = (u32)&PRCM_CLKOUT_CTRL;
  661. mask = 0x3;
  662. if (src_clk == &dpll_ck)
  663. val = 0;
  664. if (src_clk == &sys_ck)
  665. val = 1;
  666. if (src_clk == &func_54m_ck)
  667. val = 2;
  668. if (src_clk == &func_96m_ck)
  669. val = 3;
  670. break;
  671. }
  672. if (val == ~0) /* Catch errors in offset */
  673. *type_to_addr = 0;
  674. else
  675. *type_to_addr = src_reg_addr;
  676. *field_mask = mask;
  677. return val;
  678. }
  679. static int omap2_clk_set_parent(struct clk *clk, struct clk *new_parent)
  680. {
  681. void __iomem * reg;
  682. u32 src_sel, src_off, field_val, field_mask, reg_val, rate;
  683. int ret = -EINVAL;
  684. if (unlikely(clk->flags & CONFIG_PARTICIPANT))
  685. return ret;
  686. if (clk->flags & SRC_SEL_MASK) { /* On-chip SEL collection */
  687. src_sel = (SRC_RATE_SEL_MASK & clk->flags);
  688. src_off = clk->src_offset;
  689. if (src_sel == 0)
  690. goto set_parent_error;
  691. field_val = omap2_get_src_field(&src_sel, src_off, new_parent,
  692. &field_mask);
  693. reg = (void __iomem *)src_sel;
  694. if (clk->usecount > 0)
  695. _omap2_clk_disable(clk);
  696. /* Set new source value (previous dividers if any in effect) */
  697. reg_val = __raw_readl(reg) & ~(field_mask << src_off);
  698. reg_val |= (field_val << src_off);
  699. __raw_writel(reg_val, reg);
  700. if (clk->flags & DELAYED_APP)
  701. __raw_writel(0x1, (void __iomem *)&PRCM_CLKCFG_CTRL);
  702. if (clk->usecount > 0)
  703. _omap2_clk_enable(clk);
  704. clk->parent = new_parent;
  705. /* SRC_RATE_SEL_MASK clocks follow their parents rates.*/
  706. if ((new_parent == &core_ck) && (clk == &dss1_fck))
  707. clk->rate = new_parent->rate / 0x10;
  708. else
  709. clk->rate = new_parent->rate;
  710. if (unlikely(clk->flags & RATE_PROPAGATES))
  711. propagate_rate(clk);
  712. return 0;
  713. } else {
  714. clk->parent = new_parent;
  715. rate = new_parent->rate;
  716. omap2_clk_set_rate(clk, rate);
  717. ret = 0;
  718. }
  719. set_parent_error:
  720. return ret;
  721. }
  722. /* Sets basic clocks based on the specified rate */
  723. static int omap2_select_table_rate(struct clk * clk, unsigned long rate)
  724. {
  725. u32 flags, cur_rate, done_rate, bypass = 0;
  726. u8 cpu_mask = 0;
  727. struct prcm_config *prcm;
  728. unsigned long found_speed = 0;
  729. if (clk != &virt_prcm_set)
  730. return -EINVAL;
  731. /* FIXME: Change cpu_is_omap2420() to cpu_is_omap242x() */
  732. if (cpu_is_omap2420())
  733. cpu_mask = RATE_IN_242X;
  734. else if (cpu_is_omap2430())
  735. cpu_mask = RATE_IN_243X;
  736. for (prcm = rate_table; prcm->mpu_speed; prcm++) {
  737. if (!(prcm->flags & cpu_mask))
  738. continue;
  739. if (prcm->xtal_speed != sys_ck.rate)
  740. continue;
  741. if (prcm->mpu_speed <= rate) {
  742. found_speed = prcm->mpu_speed;
  743. break;
  744. }
  745. }
  746. if (!found_speed) {
  747. printk(KERN_INFO "Could not set MPU rate to %luMHz\n",
  748. rate / 1000000);
  749. return -EINVAL;
  750. }
  751. curr_prcm_set = prcm;
  752. cur_rate = omap2_get_dpll_rate(&dpll_ck);
  753. if (prcm->dpll_speed == cur_rate / 2) {
  754. omap2_reprogram_sdrc(PRCM_HALF_SPEED, 1);
  755. } else if (prcm->dpll_speed == cur_rate * 2) {
  756. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1);
  757. } else if (prcm->dpll_speed != cur_rate) {
  758. local_irq_save(flags);
  759. if (prcm->dpll_speed == prcm->xtal_speed)
  760. bypass = 1;
  761. if ((prcm->cm_clksel2_pll & 0x3) == 2)
  762. done_rate = PRCM_FULL_SPEED;
  763. else
  764. done_rate = PRCM_HALF_SPEED;
  765. /* MPU divider */
  766. CM_CLKSEL_MPU = prcm->cm_clksel_mpu;
  767. /* dsp + iva1 div(2420), iva2.1(2430) */
  768. CM_CLKSEL_DSP = prcm->cm_clksel_dsp;
  769. CM_CLKSEL_GFX = prcm->cm_clksel_gfx;
  770. /* Major subsystem dividers */
  771. CM_CLKSEL1_CORE = prcm->cm_clksel1_core;
  772. if (cpu_is_omap2430())
  773. CM_CLKSEL_MDM = prcm->cm_clksel_mdm;
  774. /* x2 to enter init_mem */
  775. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1);
  776. omap2_set_prcm(prcm->cm_clksel1_pll, prcm->base_sdrc_rfr,
  777. bypass);
  778. omap2_init_memory_params(omap2_dll_force_needed());
  779. omap2_reprogram_sdrc(done_rate, 0);
  780. local_irq_restore(flags);
  781. }
  782. omap2_clksel_recalc(&dpll_ck);
  783. return 0;
  784. }
  785. /*-------------------------------------------------------------------------
  786. * Omap2 clock reset and init functions
  787. *-------------------------------------------------------------------------*/
  788. static struct clk_functions omap2_clk_functions = {
  789. .clk_enable = omap2_clk_enable,
  790. .clk_disable = omap2_clk_disable,
  791. .clk_round_rate = omap2_clk_round_rate,
  792. .clk_set_rate = omap2_clk_set_rate,
  793. .clk_set_parent = omap2_clk_set_parent,
  794. };
  795. static void __init omap2_get_crystal_rate(struct clk *osc, struct clk *sys)
  796. {
  797. u32 div, aplls, sclk = 13000000;
  798. aplls = CM_CLKSEL1_PLL;
  799. aplls &= ((1 << 23) | (1 << 24) | (1 << 25));
  800. aplls >>= 23; /* Isolate field, 0,2,3 */
  801. if (aplls == 0)
  802. sclk = 19200000;
  803. else if (aplls == 2)
  804. sclk = 13000000;
  805. else if (aplls == 3)
  806. sclk = 12000000;
  807. div = PRCM_CLKSRC_CTRL;
  808. div &= ((1 << 7) | (1 << 6));
  809. div >>= sys->rate_offset;
  810. osc->rate = sclk * div;
  811. sys->rate = sclk;
  812. }
  813. #ifdef CONFIG_OMAP_RESET_CLOCKS
  814. static void __init omap2_disable_unused_clocks(void)
  815. {
  816. struct clk *ck;
  817. u32 regval32;
  818. list_for_each_entry(ck, &clocks, node) {
  819. if (ck->usecount > 0 || (ck->flags & ALWAYS_ENABLED) ||
  820. ck->enable_reg == 0)
  821. continue;
  822. regval32 = __raw_readl(ck->enable_reg);
  823. if ((regval32 & (1 << ck->enable_bit)) == 0)
  824. continue;
  825. printk(KERN_INFO "Disabling unused clock \"%s\"\n", ck->name);
  826. _omap2_clk_disable(ck);
  827. }
  828. }
  829. late_initcall(omap2_disable_unused_clocks);
  830. #endif
  831. /*
  832. * Switch the MPU rate if specified on cmdline.
  833. * We cannot do this early until cmdline is parsed.
  834. */
  835. static int __init omap2_clk_arch_init(void)
  836. {
  837. if (!mpurate)
  838. return -EINVAL;
  839. if (omap2_select_table_rate(&virt_prcm_set, mpurate))
  840. printk(KERN_ERR "Could not find matching MPU rate\n");
  841. propagate_rate(&osc_ck); /* update main root fast */
  842. propagate_rate(&func_32k_ck); /* update main root slow */
  843. printk(KERN_INFO "Switched to new clocking rate (Crystal/DPLL/MPU): "
  844. "%ld.%01ld/%ld/%ld MHz\n",
  845. (sys_ck.rate / 1000000), (sys_ck.rate / 100000) % 10,
  846. (dpll_ck.rate / 1000000), (mpu_ck.rate / 1000000)) ;
  847. return 0;
  848. }
  849. arch_initcall(omap2_clk_arch_init);
  850. int __init omap2_clk_init(void)
  851. {
  852. struct prcm_config *prcm;
  853. struct clk ** clkp;
  854. u32 clkrate;
  855. clk_init(&omap2_clk_functions);
  856. omap2_get_crystal_rate(&osc_ck, &sys_ck);
  857. for (clkp = onchip_clks; clkp < onchip_clks + ARRAY_SIZE(onchip_clks);
  858. clkp++) {
  859. if ((*clkp)->flags & CLOCK_IN_OMAP242X && cpu_is_omap2420()) {
  860. clk_register(*clkp);
  861. continue;
  862. }
  863. if ((*clkp)->flags & CLOCK_IN_OMAP243X && cpu_is_omap2430()) {
  864. clk_register(*clkp);
  865. continue;
  866. }
  867. }
  868. /* Check the MPU rate set by bootloader */
  869. clkrate = omap2_get_dpll_rate(&dpll_ck);
  870. for (prcm = rate_table; prcm->mpu_speed; prcm++) {
  871. if (prcm->xtal_speed != sys_ck.rate)
  872. continue;
  873. if (prcm->dpll_speed <= clkrate)
  874. break;
  875. }
  876. curr_prcm_set = prcm;
  877. propagate_rate(&osc_ck); /* update main root fast */
  878. propagate_rate(&func_32k_ck); /* update main root slow */
  879. printk(KERN_INFO "Clocking rate (Crystal/DPLL/MPU): "
  880. "%ld.%01ld/%ld/%ld MHz\n",
  881. (sys_ck.rate / 1000000), (sys_ck.rate / 100000) % 10,
  882. (dpll_ck.rate / 1000000), (mpu_ck.rate / 1000000)) ;
  883. /*
  884. * Only enable those clocks we will need, let the drivers
  885. * enable other clocks as necessary
  886. */
  887. clk_enable(&sync_32k_ick);
  888. clk_enable(&omapctrl_ick);
  889. if (cpu_is_omap2430())
  890. clk_enable(&sdrc_ick);
  891. return 0;
  892. }