cpuset.c 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/module.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Tracks how many cpusets are currently defined in system.
  62. * When there is only one cpuset (the root cpuset) we can
  63. * short circuit some hooks.
  64. */
  65. int number_of_cpusets __read_mostly;
  66. /* Forward declare cgroup structures */
  67. struct cgroup_subsys cpuset_subsys;
  68. struct cpuset;
  69. /* See "Frequency meter" comments, below. */
  70. struct fmeter {
  71. int cnt; /* unprocessed events count */
  72. int val; /* most recent output value */
  73. time_t time; /* clock (secs) when val computed */
  74. spinlock_t lock; /* guards read or write of above */
  75. };
  76. struct cpuset {
  77. struct cgroup_subsys_state css;
  78. unsigned long flags; /* "unsigned long" so bitops work */
  79. cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  80. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  81. struct cpuset *parent; /* my parent */
  82. /*
  83. * Copy of global cpuset_mems_generation as of the most
  84. * recent time this cpuset changed its mems_allowed.
  85. */
  86. int mems_generation;
  87. struct fmeter fmeter; /* memory_pressure filter */
  88. /* partition number for rebuild_sched_domains() */
  89. int pn;
  90. /* for custom sched domain */
  91. int relax_domain_level;
  92. /* used for walking a cpuset heirarchy */
  93. struct list_head stack_list;
  94. };
  95. /* Retrieve the cpuset for a cgroup */
  96. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  97. {
  98. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  99. struct cpuset, css);
  100. }
  101. /* Retrieve the cpuset for a task */
  102. static inline struct cpuset *task_cs(struct task_struct *task)
  103. {
  104. return container_of(task_subsys_state(task, cpuset_subsys_id),
  105. struct cpuset, css);
  106. }
  107. struct cpuset_hotplug_scanner {
  108. struct cgroup_scanner scan;
  109. struct cgroup *to;
  110. };
  111. /* bits in struct cpuset flags field */
  112. typedef enum {
  113. CS_CPU_EXCLUSIVE,
  114. CS_MEM_EXCLUSIVE,
  115. CS_MEM_HARDWALL,
  116. CS_MEMORY_MIGRATE,
  117. CS_SCHED_LOAD_BALANCE,
  118. CS_SPREAD_PAGE,
  119. CS_SPREAD_SLAB,
  120. } cpuset_flagbits_t;
  121. /* convenient tests for these bits */
  122. static inline int is_cpu_exclusive(const struct cpuset *cs)
  123. {
  124. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  125. }
  126. static inline int is_mem_exclusive(const struct cpuset *cs)
  127. {
  128. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  129. }
  130. static inline int is_mem_hardwall(const struct cpuset *cs)
  131. {
  132. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  133. }
  134. static inline int is_sched_load_balance(const struct cpuset *cs)
  135. {
  136. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  137. }
  138. static inline int is_memory_migrate(const struct cpuset *cs)
  139. {
  140. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  141. }
  142. static inline int is_spread_page(const struct cpuset *cs)
  143. {
  144. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  145. }
  146. static inline int is_spread_slab(const struct cpuset *cs)
  147. {
  148. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  149. }
  150. /*
  151. * Increment this integer everytime any cpuset changes its
  152. * mems_allowed value. Users of cpusets can track this generation
  153. * number, and avoid having to lock and reload mems_allowed unless
  154. * the cpuset they're using changes generation.
  155. *
  156. * A single, global generation is needed because cpuset_attach_task() could
  157. * reattach a task to a different cpuset, which must not have its
  158. * generation numbers aliased with those of that tasks previous cpuset.
  159. *
  160. * Generations are needed for mems_allowed because one task cannot
  161. * modify another's memory placement. So we must enable every task,
  162. * on every visit to __alloc_pages(), to efficiently check whether
  163. * its current->cpuset->mems_allowed has changed, requiring an update
  164. * of its current->mems_allowed.
  165. *
  166. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  167. * there is no need to mark it atomic.
  168. */
  169. static int cpuset_mems_generation;
  170. static struct cpuset top_cpuset = {
  171. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  172. .cpus_allowed = CPU_MASK_ALL,
  173. .mems_allowed = NODE_MASK_ALL,
  174. };
  175. /*
  176. * There are two global mutexes guarding cpuset structures. The first
  177. * is the main control groups cgroup_mutex, accessed via
  178. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  179. * callback_mutex, below. They can nest. It is ok to first take
  180. * cgroup_mutex, then nest callback_mutex. We also require taking
  181. * task_lock() when dereferencing a task's cpuset pointer. See "The
  182. * task_lock() exception", at the end of this comment.
  183. *
  184. * A task must hold both mutexes to modify cpusets. If a task
  185. * holds cgroup_mutex, then it blocks others wanting that mutex,
  186. * ensuring that it is the only task able to also acquire callback_mutex
  187. * and be able to modify cpusets. It can perform various checks on
  188. * the cpuset structure first, knowing nothing will change. It can
  189. * also allocate memory while just holding cgroup_mutex. While it is
  190. * performing these checks, various callback routines can briefly
  191. * acquire callback_mutex to query cpusets. Once it is ready to make
  192. * the changes, it takes callback_mutex, blocking everyone else.
  193. *
  194. * Calls to the kernel memory allocator can not be made while holding
  195. * callback_mutex, as that would risk double tripping on callback_mutex
  196. * from one of the callbacks into the cpuset code from within
  197. * __alloc_pages().
  198. *
  199. * If a task is only holding callback_mutex, then it has read-only
  200. * access to cpusets.
  201. *
  202. * The task_struct fields mems_allowed and mems_generation may only
  203. * be accessed in the context of that task, so require no locks.
  204. *
  205. * The cpuset_common_file_read() handlers only hold callback_mutex across
  206. * small pieces of code, such as when reading out possibly multi-word
  207. * cpumasks and nodemasks.
  208. *
  209. * Accessing a task's cpuset should be done in accordance with the
  210. * guidelines for accessing subsystem state in kernel/cgroup.c
  211. */
  212. static DEFINE_MUTEX(callback_mutex);
  213. /*
  214. * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
  215. * buffers. They are statically allocated to prevent using excess stack
  216. * when calling cpuset_print_task_mems_allowed().
  217. */
  218. #define CPUSET_NAME_LEN (128)
  219. #define CPUSET_NODELIST_LEN (256)
  220. static char cpuset_name[CPUSET_NAME_LEN];
  221. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  222. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  223. /*
  224. * This is ugly, but preserves the userspace API for existing cpuset
  225. * users. If someone tries to mount the "cpuset" filesystem, we
  226. * silently switch it to mount "cgroup" instead
  227. */
  228. static int cpuset_get_sb(struct file_system_type *fs_type,
  229. int flags, const char *unused_dev_name,
  230. void *data, struct vfsmount *mnt)
  231. {
  232. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  233. int ret = -ENODEV;
  234. if (cgroup_fs) {
  235. char mountopts[] =
  236. "cpuset,noprefix,"
  237. "release_agent=/sbin/cpuset_release_agent";
  238. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  239. unused_dev_name, mountopts, mnt);
  240. put_filesystem(cgroup_fs);
  241. }
  242. return ret;
  243. }
  244. static struct file_system_type cpuset_fs_type = {
  245. .name = "cpuset",
  246. .get_sb = cpuset_get_sb,
  247. };
  248. /*
  249. * Return in *pmask the portion of a cpusets's cpus_allowed that
  250. * are online. If none are online, walk up the cpuset hierarchy
  251. * until we find one that does have some online cpus. If we get
  252. * all the way to the top and still haven't found any online cpus,
  253. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  254. * task, return cpu_online_map.
  255. *
  256. * One way or another, we guarantee to return some non-empty subset
  257. * of cpu_online_map.
  258. *
  259. * Call with callback_mutex held.
  260. */
  261. static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
  262. {
  263. while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
  264. cs = cs->parent;
  265. if (cs)
  266. cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
  267. else
  268. *pmask = cpu_online_map;
  269. BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
  270. }
  271. /*
  272. * Return in *pmask the portion of a cpusets's mems_allowed that
  273. * are online, with memory. If none are online with memory, walk
  274. * up the cpuset hierarchy until we find one that does have some
  275. * online mems. If we get all the way to the top and still haven't
  276. * found any online mems, return node_states[N_HIGH_MEMORY].
  277. *
  278. * One way or another, we guarantee to return some non-empty subset
  279. * of node_states[N_HIGH_MEMORY].
  280. *
  281. * Call with callback_mutex held.
  282. */
  283. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  284. {
  285. while (cs && !nodes_intersects(cs->mems_allowed,
  286. node_states[N_HIGH_MEMORY]))
  287. cs = cs->parent;
  288. if (cs)
  289. nodes_and(*pmask, cs->mems_allowed,
  290. node_states[N_HIGH_MEMORY]);
  291. else
  292. *pmask = node_states[N_HIGH_MEMORY];
  293. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  294. }
  295. /**
  296. * cpuset_update_task_memory_state - update task memory placement
  297. *
  298. * If the current tasks cpusets mems_allowed changed behind our
  299. * backs, update current->mems_allowed, mems_generation and task NUMA
  300. * mempolicy to the new value.
  301. *
  302. * Task mempolicy is updated by rebinding it relative to the
  303. * current->cpuset if a task has its memory placement changed.
  304. * Do not call this routine if in_interrupt().
  305. *
  306. * Call without callback_mutex or task_lock() held. May be
  307. * called with or without cgroup_mutex held. Thanks in part to
  308. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  309. * be NULL. This routine also might acquire callback_mutex during
  310. * call.
  311. *
  312. * Reading current->cpuset->mems_generation doesn't need task_lock
  313. * to guard the current->cpuset derefence, because it is guarded
  314. * from concurrent freeing of current->cpuset using RCU.
  315. *
  316. * The rcu_dereference() is technically probably not needed,
  317. * as I don't actually mind if I see a new cpuset pointer but
  318. * an old value of mems_generation. However this really only
  319. * matters on alpha systems using cpusets heavily. If I dropped
  320. * that rcu_dereference(), it would save them a memory barrier.
  321. * For all other arch's, rcu_dereference is a no-op anyway, and for
  322. * alpha systems not using cpusets, another planned optimization,
  323. * avoiding the rcu critical section for tasks in the root cpuset
  324. * which is statically allocated, so can't vanish, will make this
  325. * irrelevant. Better to use RCU as intended, than to engage in
  326. * some cute trick to save a memory barrier that is impossible to
  327. * test, for alpha systems using cpusets heavily, which might not
  328. * even exist.
  329. *
  330. * This routine is needed to update the per-task mems_allowed data,
  331. * within the tasks context, when it is trying to allocate memory
  332. * (in various mm/mempolicy.c routines) and notices that some other
  333. * task has been modifying its cpuset.
  334. */
  335. void cpuset_update_task_memory_state(void)
  336. {
  337. int my_cpusets_mem_gen;
  338. struct task_struct *tsk = current;
  339. struct cpuset *cs;
  340. if (task_cs(tsk) == &top_cpuset) {
  341. /* Don't need rcu for top_cpuset. It's never freed. */
  342. my_cpusets_mem_gen = top_cpuset.mems_generation;
  343. } else {
  344. rcu_read_lock();
  345. my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
  346. rcu_read_unlock();
  347. }
  348. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  349. mutex_lock(&callback_mutex);
  350. task_lock(tsk);
  351. cs = task_cs(tsk); /* Maybe changed when task not locked */
  352. guarantee_online_mems(cs, &tsk->mems_allowed);
  353. tsk->cpuset_mems_generation = cs->mems_generation;
  354. if (is_spread_page(cs))
  355. tsk->flags |= PF_SPREAD_PAGE;
  356. else
  357. tsk->flags &= ~PF_SPREAD_PAGE;
  358. if (is_spread_slab(cs))
  359. tsk->flags |= PF_SPREAD_SLAB;
  360. else
  361. tsk->flags &= ~PF_SPREAD_SLAB;
  362. task_unlock(tsk);
  363. mutex_unlock(&callback_mutex);
  364. mpol_rebind_task(tsk, &tsk->mems_allowed);
  365. }
  366. }
  367. /*
  368. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  369. *
  370. * One cpuset is a subset of another if all its allowed CPUs and
  371. * Memory Nodes are a subset of the other, and its exclusive flags
  372. * are only set if the other's are set. Call holding cgroup_mutex.
  373. */
  374. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  375. {
  376. return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
  377. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  378. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  379. is_mem_exclusive(p) <= is_mem_exclusive(q);
  380. }
  381. /*
  382. * validate_change() - Used to validate that any proposed cpuset change
  383. * follows the structural rules for cpusets.
  384. *
  385. * If we replaced the flag and mask values of the current cpuset
  386. * (cur) with those values in the trial cpuset (trial), would
  387. * our various subset and exclusive rules still be valid? Presumes
  388. * cgroup_mutex held.
  389. *
  390. * 'cur' is the address of an actual, in-use cpuset. Operations
  391. * such as list traversal that depend on the actual address of the
  392. * cpuset in the list must use cur below, not trial.
  393. *
  394. * 'trial' is the address of bulk structure copy of cur, with
  395. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  396. * or flags changed to new, trial values.
  397. *
  398. * Return 0 if valid, -errno if not.
  399. */
  400. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  401. {
  402. struct cgroup *cont;
  403. struct cpuset *c, *par;
  404. /* Each of our child cpusets must be a subset of us */
  405. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  406. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  407. return -EBUSY;
  408. }
  409. /* Remaining checks don't apply to root cpuset */
  410. if (cur == &top_cpuset)
  411. return 0;
  412. par = cur->parent;
  413. /* We must be a subset of our parent cpuset */
  414. if (!is_cpuset_subset(trial, par))
  415. return -EACCES;
  416. /*
  417. * If either I or some sibling (!= me) is exclusive, we can't
  418. * overlap
  419. */
  420. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  421. c = cgroup_cs(cont);
  422. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  423. c != cur &&
  424. cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
  425. return -EINVAL;
  426. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  427. c != cur &&
  428. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  429. return -EINVAL;
  430. }
  431. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  432. if (cgroup_task_count(cur->css.cgroup)) {
  433. if (cpus_empty(trial->cpus_allowed) ||
  434. nodes_empty(trial->mems_allowed)) {
  435. return -ENOSPC;
  436. }
  437. }
  438. return 0;
  439. }
  440. /*
  441. * Helper routine for generate_sched_domains().
  442. * Do cpusets a, b have overlapping cpus_allowed masks?
  443. */
  444. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  445. {
  446. return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
  447. }
  448. static void
  449. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  450. {
  451. if (dattr->relax_domain_level < c->relax_domain_level)
  452. dattr->relax_domain_level = c->relax_domain_level;
  453. return;
  454. }
  455. static void
  456. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  457. {
  458. LIST_HEAD(q);
  459. list_add(&c->stack_list, &q);
  460. while (!list_empty(&q)) {
  461. struct cpuset *cp;
  462. struct cgroup *cont;
  463. struct cpuset *child;
  464. cp = list_first_entry(&q, struct cpuset, stack_list);
  465. list_del(q.next);
  466. if (cpus_empty(cp->cpus_allowed))
  467. continue;
  468. if (is_sched_load_balance(cp))
  469. update_domain_attr(dattr, cp);
  470. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  471. child = cgroup_cs(cont);
  472. list_add_tail(&child->stack_list, &q);
  473. }
  474. }
  475. }
  476. /*
  477. * generate_sched_domains()
  478. *
  479. * This function builds a partial partition of the systems CPUs
  480. * A 'partial partition' is a set of non-overlapping subsets whose
  481. * union is a subset of that set.
  482. * The output of this function needs to be passed to kernel/sched.c
  483. * partition_sched_domains() routine, which will rebuild the scheduler's
  484. * load balancing domains (sched domains) as specified by that partial
  485. * partition.
  486. *
  487. * See "What is sched_load_balance" in Documentation/cpusets.txt
  488. * for a background explanation of this.
  489. *
  490. * Does not return errors, on the theory that the callers of this
  491. * routine would rather not worry about failures to rebuild sched
  492. * domains when operating in the severe memory shortage situations
  493. * that could cause allocation failures below.
  494. *
  495. * Must be called with cgroup_lock held.
  496. *
  497. * The three key local variables below are:
  498. * q - a linked-list queue of cpuset pointers, used to implement a
  499. * top-down scan of all cpusets. This scan loads a pointer
  500. * to each cpuset marked is_sched_load_balance into the
  501. * array 'csa'. For our purposes, rebuilding the schedulers
  502. * sched domains, we can ignore !is_sched_load_balance cpusets.
  503. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  504. * that need to be load balanced, for convenient iterative
  505. * access by the subsequent code that finds the best partition,
  506. * i.e the set of domains (subsets) of CPUs such that the
  507. * cpus_allowed of every cpuset marked is_sched_load_balance
  508. * is a subset of one of these domains, while there are as
  509. * many such domains as possible, each as small as possible.
  510. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  511. * the kernel/sched.c routine partition_sched_domains() in a
  512. * convenient format, that can be easily compared to the prior
  513. * value to determine what partition elements (sched domains)
  514. * were changed (added or removed.)
  515. *
  516. * Finding the best partition (set of domains):
  517. * The triple nested loops below over i, j, k scan over the
  518. * load balanced cpusets (using the array of cpuset pointers in
  519. * csa[]) looking for pairs of cpusets that have overlapping
  520. * cpus_allowed, but which don't have the same 'pn' partition
  521. * number and gives them in the same partition number. It keeps
  522. * looping on the 'restart' label until it can no longer find
  523. * any such pairs.
  524. *
  525. * The union of the cpus_allowed masks from the set of
  526. * all cpusets having the same 'pn' value then form the one
  527. * element of the partition (one sched domain) to be passed to
  528. * partition_sched_domains().
  529. */
  530. static int generate_sched_domains(cpumask_t **domains,
  531. struct sched_domain_attr **attributes)
  532. {
  533. LIST_HEAD(q); /* queue of cpusets to be scanned */
  534. struct cpuset *cp; /* scans q */
  535. struct cpuset **csa; /* array of all cpuset ptrs */
  536. int csn; /* how many cpuset ptrs in csa so far */
  537. int i, j, k; /* indices for partition finding loops */
  538. cpumask_t *doms; /* resulting partition; i.e. sched domains */
  539. struct sched_domain_attr *dattr; /* attributes for custom domains */
  540. int ndoms = 0; /* number of sched domains in result */
  541. int nslot; /* next empty doms[] cpumask_t slot */
  542. doms = NULL;
  543. dattr = NULL;
  544. csa = NULL;
  545. /* Special case for the 99% of systems with one, full, sched domain */
  546. if (is_sched_load_balance(&top_cpuset)) {
  547. doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  548. if (!doms)
  549. goto done;
  550. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  551. if (dattr) {
  552. *dattr = SD_ATTR_INIT;
  553. update_domain_attr_tree(dattr, &top_cpuset);
  554. }
  555. *doms = top_cpuset.cpus_allowed;
  556. ndoms = 1;
  557. goto done;
  558. }
  559. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  560. if (!csa)
  561. goto done;
  562. csn = 0;
  563. list_add(&top_cpuset.stack_list, &q);
  564. while (!list_empty(&q)) {
  565. struct cgroup *cont;
  566. struct cpuset *child; /* scans child cpusets of cp */
  567. cp = list_first_entry(&q, struct cpuset, stack_list);
  568. list_del(q.next);
  569. if (cpus_empty(cp->cpus_allowed))
  570. continue;
  571. /*
  572. * All child cpusets contain a subset of the parent's cpus, so
  573. * just skip them, and then we call update_domain_attr_tree()
  574. * to calc relax_domain_level of the corresponding sched
  575. * domain.
  576. */
  577. if (is_sched_load_balance(cp)) {
  578. csa[csn++] = cp;
  579. continue;
  580. }
  581. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  582. child = cgroup_cs(cont);
  583. list_add_tail(&child->stack_list, &q);
  584. }
  585. }
  586. for (i = 0; i < csn; i++)
  587. csa[i]->pn = i;
  588. ndoms = csn;
  589. restart:
  590. /* Find the best partition (set of sched domains) */
  591. for (i = 0; i < csn; i++) {
  592. struct cpuset *a = csa[i];
  593. int apn = a->pn;
  594. for (j = 0; j < csn; j++) {
  595. struct cpuset *b = csa[j];
  596. int bpn = b->pn;
  597. if (apn != bpn && cpusets_overlap(a, b)) {
  598. for (k = 0; k < csn; k++) {
  599. struct cpuset *c = csa[k];
  600. if (c->pn == bpn)
  601. c->pn = apn;
  602. }
  603. ndoms--; /* one less element */
  604. goto restart;
  605. }
  606. }
  607. }
  608. /*
  609. * Now we know how many domains to create.
  610. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  611. */
  612. doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
  613. if (!doms)
  614. goto done;
  615. /*
  616. * The rest of the code, including the scheduler, can deal with
  617. * dattr==NULL case. No need to abort if alloc fails.
  618. */
  619. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  620. for (nslot = 0, i = 0; i < csn; i++) {
  621. struct cpuset *a = csa[i];
  622. cpumask_t *dp;
  623. int apn = a->pn;
  624. if (apn < 0) {
  625. /* Skip completed partitions */
  626. continue;
  627. }
  628. dp = doms + nslot;
  629. if (nslot == ndoms) {
  630. static int warnings = 10;
  631. if (warnings) {
  632. printk(KERN_WARNING
  633. "rebuild_sched_domains confused:"
  634. " nslot %d, ndoms %d, csn %d, i %d,"
  635. " apn %d\n",
  636. nslot, ndoms, csn, i, apn);
  637. warnings--;
  638. }
  639. continue;
  640. }
  641. cpus_clear(*dp);
  642. if (dattr)
  643. *(dattr + nslot) = SD_ATTR_INIT;
  644. for (j = i; j < csn; j++) {
  645. struct cpuset *b = csa[j];
  646. if (apn == b->pn) {
  647. cpus_or(*dp, *dp, b->cpus_allowed);
  648. if (dattr)
  649. update_domain_attr_tree(dattr + nslot, b);
  650. /* Done with this partition */
  651. b->pn = -1;
  652. }
  653. }
  654. nslot++;
  655. }
  656. BUG_ON(nslot != ndoms);
  657. done:
  658. kfree(csa);
  659. /*
  660. * Fallback to the default domain if kmalloc() failed.
  661. * See comments in partition_sched_domains().
  662. */
  663. if (doms == NULL)
  664. ndoms = 1;
  665. *domains = doms;
  666. *attributes = dattr;
  667. return ndoms;
  668. }
  669. /*
  670. * Rebuild scheduler domains.
  671. *
  672. * Call with neither cgroup_mutex held nor within get_online_cpus().
  673. * Takes both cgroup_mutex and get_online_cpus().
  674. *
  675. * Cannot be directly called from cpuset code handling changes
  676. * to the cpuset pseudo-filesystem, because it cannot be called
  677. * from code that already holds cgroup_mutex.
  678. */
  679. static void do_rebuild_sched_domains(struct work_struct *unused)
  680. {
  681. struct sched_domain_attr *attr;
  682. cpumask_t *doms;
  683. int ndoms;
  684. get_online_cpus();
  685. /* Generate domain masks and attrs */
  686. cgroup_lock();
  687. ndoms = generate_sched_domains(&doms, &attr);
  688. cgroup_unlock();
  689. /* Have scheduler rebuild the domains */
  690. partition_sched_domains(ndoms, doms, attr);
  691. put_online_cpus();
  692. }
  693. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  694. /*
  695. * Rebuild scheduler domains, asynchronously via workqueue.
  696. *
  697. * If the flag 'sched_load_balance' of any cpuset with non-empty
  698. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  699. * which has that flag enabled, or if any cpuset with a non-empty
  700. * 'cpus' is removed, then call this routine to rebuild the
  701. * scheduler's dynamic sched domains.
  702. *
  703. * The rebuild_sched_domains() and partition_sched_domains()
  704. * routines must nest cgroup_lock() inside get_online_cpus(),
  705. * but such cpuset changes as these must nest that locking the
  706. * other way, holding cgroup_lock() for much of the code.
  707. *
  708. * So in order to avoid an ABBA deadlock, the cpuset code handling
  709. * these user changes delegates the actual sched domain rebuilding
  710. * to a separate workqueue thread, which ends up processing the
  711. * above do_rebuild_sched_domains() function.
  712. */
  713. static void async_rebuild_sched_domains(void)
  714. {
  715. schedule_work(&rebuild_sched_domains_work);
  716. }
  717. /*
  718. * Accomplishes the same scheduler domain rebuild as the above
  719. * async_rebuild_sched_domains(), however it directly calls the
  720. * rebuild routine synchronously rather than calling it via an
  721. * asynchronous work thread.
  722. *
  723. * This can only be called from code that is not holding
  724. * cgroup_mutex (not nested in a cgroup_lock() call.)
  725. */
  726. void rebuild_sched_domains(void)
  727. {
  728. do_rebuild_sched_domains(NULL);
  729. }
  730. /**
  731. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  732. * @tsk: task to test
  733. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  734. *
  735. * Call with cgroup_mutex held. May take callback_mutex during call.
  736. * Called for each task in a cgroup by cgroup_scan_tasks().
  737. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  738. * words, if its mask is not equal to its cpuset's mask).
  739. */
  740. static int cpuset_test_cpumask(struct task_struct *tsk,
  741. struct cgroup_scanner *scan)
  742. {
  743. return !cpus_equal(tsk->cpus_allowed,
  744. (cgroup_cs(scan->cg))->cpus_allowed);
  745. }
  746. /**
  747. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  748. * @tsk: task to test
  749. * @scan: struct cgroup_scanner containing the cgroup of the task
  750. *
  751. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  752. * cpus_allowed mask needs to be changed.
  753. *
  754. * We don't need to re-check for the cgroup/cpuset membership, since we're
  755. * holding cgroup_lock() at this point.
  756. */
  757. static void cpuset_change_cpumask(struct task_struct *tsk,
  758. struct cgroup_scanner *scan)
  759. {
  760. set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
  761. }
  762. /**
  763. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  764. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  765. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  766. *
  767. * Called with cgroup_mutex held
  768. *
  769. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  770. * calling callback functions for each.
  771. *
  772. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  773. * if @heap != NULL.
  774. */
  775. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  776. {
  777. struct cgroup_scanner scan;
  778. scan.cg = cs->css.cgroup;
  779. scan.test_task = cpuset_test_cpumask;
  780. scan.process_task = cpuset_change_cpumask;
  781. scan.heap = heap;
  782. cgroup_scan_tasks(&scan);
  783. }
  784. /**
  785. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  786. * @cs: the cpuset to consider
  787. * @buf: buffer of cpu numbers written to this cpuset
  788. */
  789. static int update_cpumask(struct cpuset *cs, const char *buf)
  790. {
  791. struct ptr_heap heap;
  792. struct cpuset trialcs;
  793. int retval;
  794. int is_load_balanced;
  795. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  796. if (cs == &top_cpuset)
  797. return -EACCES;
  798. trialcs = *cs;
  799. /*
  800. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  801. * Since cpulist_parse() fails on an empty mask, we special case
  802. * that parsing. The validate_change() call ensures that cpusets
  803. * with tasks have cpus.
  804. */
  805. if (!*buf) {
  806. cpus_clear(trialcs.cpus_allowed);
  807. } else {
  808. retval = cpulist_parse(buf, &trialcs.cpus_allowed);
  809. if (retval < 0)
  810. return retval;
  811. if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
  812. return -EINVAL;
  813. }
  814. retval = validate_change(cs, &trialcs);
  815. if (retval < 0)
  816. return retval;
  817. /* Nothing to do if the cpus didn't change */
  818. if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
  819. return 0;
  820. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  821. if (retval)
  822. return retval;
  823. is_load_balanced = is_sched_load_balance(&trialcs);
  824. mutex_lock(&callback_mutex);
  825. cs->cpus_allowed = trialcs.cpus_allowed;
  826. mutex_unlock(&callback_mutex);
  827. /*
  828. * Scan tasks in the cpuset, and update the cpumasks of any
  829. * that need an update.
  830. */
  831. update_tasks_cpumask(cs, &heap);
  832. heap_free(&heap);
  833. if (is_load_balanced)
  834. async_rebuild_sched_domains();
  835. return 0;
  836. }
  837. /*
  838. * cpuset_migrate_mm
  839. *
  840. * Migrate memory region from one set of nodes to another.
  841. *
  842. * Temporarilly set tasks mems_allowed to target nodes of migration,
  843. * so that the migration code can allocate pages on these nodes.
  844. *
  845. * Call holding cgroup_mutex, so current's cpuset won't change
  846. * during this call, as manage_mutex holds off any cpuset_attach()
  847. * calls. Therefore we don't need to take task_lock around the
  848. * call to guarantee_online_mems(), as we know no one is changing
  849. * our task's cpuset.
  850. *
  851. * Hold callback_mutex around the two modifications of our tasks
  852. * mems_allowed to synchronize with cpuset_mems_allowed().
  853. *
  854. * While the mm_struct we are migrating is typically from some
  855. * other task, the task_struct mems_allowed that we are hacking
  856. * is for our current task, which must allocate new pages for that
  857. * migrating memory region.
  858. *
  859. * We call cpuset_update_task_memory_state() before hacking
  860. * our tasks mems_allowed, so that we are assured of being in
  861. * sync with our tasks cpuset, and in particular, callbacks to
  862. * cpuset_update_task_memory_state() from nested page allocations
  863. * won't see any mismatch of our cpuset and task mems_generation
  864. * values, so won't overwrite our hacked tasks mems_allowed
  865. * nodemask.
  866. */
  867. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  868. const nodemask_t *to)
  869. {
  870. struct task_struct *tsk = current;
  871. cpuset_update_task_memory_state();
  872. mutex_lock(&callback_mutex);
  873. tsk->mems_allowed = *to;
  874. mutex_unlock(&callback_mutex);
  875. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  876. mutex_lock(&callback_mutex);
  877. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  878. mutex_unlock(&callback_mutex);
  879. }
  880. static void *cpuset_being_rebound;
  881. /**
  882. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  883. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  884. * @oldmem: old mems_allowed of cpuset cs
  885. *
  886. * Called with cgroup_mutex held
  887. * Return 0 if successful, -errno if not.
  888. */
  889. static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
  890. {
  891. struct task_struct *p;
  892. struct mm_struct **mmarray;
  893. int i, n, ntasks;
  894. int migrate;
  895. int fudge;
  896. struct cgroup_iter it;
  897. int retval;
  898. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  899. fudge = 10; /* spare mmarray[] slots */
  900. fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
  901. retval = -ENOMEM;
  902. /*
  903. * Allocate mmarray[] to hold mm reference for each task
  904. * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
  905. * tasklist_lock. We could use GFP_ATOMIC, but with a
  906. * few more lines of code, we can retry until we get a big
  907. * enough mmarray[] w/o using GFP_ATOMIC.
  908. */
  909. while (1) {
  910. ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
  911. ntasks += fudge;
  912. mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
  913. if (!mmarray)
  914. goto done;
  915. read_lock(&tasklist_lock); /* block fork */
  916. if (cgroup_task_count(cs->css.cgroup) <= ntasks)
  917. break; /* got enough */
  918. read_unlock(&tasklist_lock); /* try again */
  919. kfree(mmarray);
  920. }
  921. n = 0;
  922. /* Load up mmarray[] with mm reference for each task in cpuset. */
  923. cgroup_iter_start(cs->css.cgroup, &it);
  924. while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
  925. struct mm_struct *mm;
  926. if (n >= ntasks) {
  927. printk(KERN_WARNING
  928. "Cpuset mempolicy rebind incomplete.\n");
  929. break;
  930. }
  931. mm = get_task_mm(p);
  932. if (!mm)
  933. continue;
  934. mmarray[n++] = mm;
  935. }
  936. cgroup_iter_end(cs->css.cgroup, &it);
  937. read_unlock(&tasklist_lock);
  938. /*
  939. * Now that we've dropped the tasklist spinlock, we can
  940. * rebind the vma mempolicies of each mm in mmarray[] to their
  941. * new cpuset, and release that mm. The mpol_rebind_mm()
  942. * call takes mmap_sem, which we couldn't take while holding
  943. * tasklist_lock. Forks can happen again now - the mpol_dup()
  944. * cpuset_being_rebound check will catch such forks, and rebind
  945. * their vma mempolicies too. Because we still hold the global
  946. * cgroup_mutex, we know that no other rebind effort will
  947. * be contending for the global variable cpuset_being_rebound.
  948. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  949. * is idempotent. Also migrate pages in each mm to new nodes.
  950. */
  951. migrate = is_memory_migrate(cs);
  952. for (i = 0; i < n; i++) {
  953. struct mm_struct *mm = mmarray[i];
  954. mpol_rebind_mm(mm, &cs->mems_allowed);
  955. if (migrate)
  956. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  957. mmput(mm);
  958. }
  959. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  960. kfree(mmarray);
  961. cpuset_being_rebound = NULL;
  962. retval = 0;
  963. done:
  964. return retval;
  965. }
  966. /*
  967. * Handle user request to change the 'mems' memory placement
  968. * of a cpuset. Needs to validate the request, update the
  969. * cpusets mems_allowed and mems_generation, and for each
  970. * task in the cpuset, rebind any vma mempolicies and if
  971. * the cpuset is marked 'memory_migrate', migrate the tasks
  972. * pages to the new memory.
  973. *
  974. * Call with cgroup_mutex held. May take callback_mutex during call.
  975. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  976. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  977. * their mempolicies to the cpusets new mems_allowed.
  978. */
  979. static int update_nodemask(struct cpuset *cs, const char *buf)
  980. {
  981. struct cpuset trialcs;
  982. nodemask_t oldmem;
  983. int retval;
  984. /*
  985. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  986. * it's read-only
  987. */
  988. if (cs == &top_cpuset)
  989. return -EACCES;
  990. trialcs = *cs;
  991. /*
  992. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  993. * Since nodelist_parse() fails on an empty mask, we special case
  994. * that parsing. The validate_change() call ensures that cpusets
  995. * with tasks have memory.
  996. */
  997. if (!*buf) {
  998. nodes_clear(trialcs.mems_allowed);
  999. } else {
  1000. retval = nodelist_parse(buf, trialcs.mems_allowed);
  1001. if (retval < 0)
  1002. goto done;
  1003. if (!nodes_subset(trialcs.mems_allowed,
  1004. node_states[N_HIGH_MEMORY]))
  1005. return -EINVAL;
  1006. }
  1007. oldmem = cs->mems_allowed;
  1008. if (nodes_equal(oldmem, trialcs.mems_allowed)) {
  1009. retval = 0; /* Too easy - nothing to do */
  1010. goto done;
  1011. }
  1012. retval = validate_change(cs, &trialcs);
  1013. if (retval < 0)
  1014. goto done;
  1015. mutex_lock(&callback_mutex);
  1016. cs->mems_allowed = trialcs.mems_allowed;
  1017. cs->mems_generation = cpuset_mems_generation++;
  1018. mutex_unlock(&callback_mutex);
  1019. retval = update_tasks_nodemask(cs, &oldmem);
  1020. done:
  1021. return retval;
  1022. }
  1023. int current_cpuset_is_being_rebound(void)
  1024. {
  1025. return task_cs(current) == cpuset_being_rebound;
  1026. }
  1027. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1028. {
  1029. if (val < -1 || val >= SD_LV_MAX)
  1030. return -EINVAL;
  1031. if (val != cs->relax_domain_level) {
  1032. cs->relax_domain_level = val;
  1033. if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
  1034. async_rebuild_sched_domains();
  1035. }
  1036. return 0;
  1037. }
  1038. /*
  1039. * update_flag - read a 0 or a 1 in a file and update associated flag
  1040. * bit: the bit to update (see cpuset_flagbits_t)
  1041. * cs: the cpuset to update
  1042. * turning_on: whether the flag is being set or cleared
  1043. *
  1044. * Call with cgroup_mutex held.
  1045. */
  1046. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1047. int turning_on)
  1048. {
  1049. struct cpuset trialcs;
  1050. int err;
  1051. int balance_flag_changed;
  1052. trialcs = *cs;
  1053. if (turning_on)
  1054. set_bit(bit, &trialcs.flags);
  1055. else
  1056. clear_bit(bit, &trialcs.flags);
  1057. err = validate_change(cs, &trialcs);
  1058. if (err < 0)
  1059. return err;
  1060. balance_flag_changed = (is_sched_load_balance(cs) !=
  1061. is_sched_load_balance(&trialcs));
  1062. mutex_lock(&callback_mutex);
  1063. cs->flags = trialcs.flags;
  1064. mutex_unlock(&callback_mutex);
  1065. if (!cpus_empty(trialcs.cpus_allowed) && balance_flag_changed)
  1066. async_rebuild_sched_domains();
  1067. return 0;
  1068. }
  1069. /*
  1070. * Frequency meter - How fast is some event occurring?
  1071. *
  1072. * These routines manage a digitally filtered, constant time based,
  1073. * event frequency meter. There are four routines:
  1074. * fmeter_init() - initialize a frequency meter.
  1075. * fmeter_markevent() - called each time the event happens.
  1076. * fmeter_getrate() - returns the recent rate of such events.
  1077. * fmeter_update() - internal routine used to update fmeter.
  1078. *
  1079. * A common data structure is passed to each of these routines,
  1080. * which is used to keep track of the state required to manage the
  1081. * frequency meter and its digital filter.
  1082. *
  1083. * The filter works on the number of events marked per unit time.
  1084. * The filter is single-pole low-pass recursive (IIR). The time unit
  1085. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1086. * simulate 3 decimal digits of precision (multiplied by 1000).
  1087. *
  1088. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1089. * has a half-life of 10 seconds, meaning that if the events quit
  1090. * happening, then the rate returned from the fmeter_getrate()
  1091. * will be cut in half each 10 seconds, until it converges to zero.
  1092. *
  1093. * It is not worth doing a real infinitely recursive filter. If more
  1094. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1095. * just compute FM_MAXTICKS ticks worth, by which point the level
  1096. * will be stable.
  1097. *
  1098. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1099. * arithmetic overflow in the fmeter_update() routine.
  1100. *
  1101. * Given the simple 32 bit integer arithmetic used, this meter works
  1102. * best for reporting rates between one per millisecond (msec) and
  1103. * one per 32 (approx) seconds. At constant rates faster than one
  1104. * per msec it maxes out at values just under 1,000,000. At constant
  1105. * rates between one per msec, and one per second it will stabilize
  1106. * to a value N*1000, where N is the rate of events per second.
  1107. * At constant rates between one per second and one per 32 seconds,
  1108. * it will be choppy, moving up on the seconds that have an event,
  1109. * and then decaying until the next event. At rates slower than
  1110. * about one in 32 seconds, it decays all the way back to zero between
  1111. * each event.
  1112. */
  1113. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1114. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1115. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1116. #define FM_SCALE 1000 /* faux fixed point scale */
  1117. /* Initialize a frequency meter */
  1118. static void fmeter_init(struct fmeter *fmp)
  1119. {
  1120. fmp->cnt = 0;
  1121. fmp->val = 0;
  1122. fmp->time = 0;
  1123. spin_lock_init(&fmp->lock);
  1124. }
  1125. /* Internal meter update - process cnt events and update value */
  1126. static void fmeter_update(struct fmeter *fmp)
  1127. {
  1128. time_t now = get_seconds();
  1129. time_t ticks = now - fmp->time;
  1130. if (ticks == 0)
  1131. return;
  1132. ticks = min(FM_MAXTICKS, ticks);
  1133. while (ticks-- > 0)
  1134. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1135. fmp->time = now;
  1136. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1137. fmp->cnt = 0;
  1138. }
  1139. /* Process any previous ticks, then bump cnt by one (times scale). */
  1140. static void fmeter_markevent(struct fmeter *fmp)
  1141. {
  1142. spin_lock(&fmp->lock);
  1143. fmeter_update(fmp);
  1144. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1145. spin_unlock(&fmp->lock);
  1146. }
  1147. /* Process any previous ticks, then return current value. */
  1148. static int fmeter_getrate(struct fmeter *fmp)
  1149. {
  1150. int val;
  1151. spin_lock(&fmp->lock);
  1152. fmeter_update(fmp);
  1153. val = fmp->val;
  1154. spin_unlock(&fmp->lock);
  1155. return val;
  1156. }
  1157. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1158. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1159. struct cgroup *cont, struct task_struct *tsk)
  1160. {
  1161. struct cpuset *cs = cgroup_cs(cont);
  1162. if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1163. return -ENOSPC;
  1164. if (tsk->flags & PF_THREAD_BOUND) {
  1165. cpumask_t mask;
  1166. mutex_lock(&callback_mutex);
  1167. mask = cs->cpus_allowed;
  1168. mutex_unlock(&callback_mutex);
  1169. if (!cpus_equal(tsk->cpus_allowed, mask))
  1170. return -EINVAL;
  1171. }
  1172. return security_task_setscheduler(tsk, 0, NULL);
  1173. }
  1174. static void cpuset_attach(struct cgroup_subsys *ss,
  1175. struct cgroup *cont, struct cgroup *oldcont,
  1176. struct task_struct *tsk)
  1177. {
  1178. cpumask_t cpus;
  1179. nodemask_t from, to;
  1180. struct mm_struct *mm;
  1181. struct cpuset *cs = cgroup_cs(cont);
  1182. struct cpuset *oldcs = cgroup_cs(oldcont);
  1183. int err;
  1184. mutex_lock(&callback_mutex);
  1185. guarantee_online_cpus(cs, &cpus);
  1186. err = set_cpus_allowed_ptr(tsk, &cpus);
  1187. mutex_unlock(&callback_mutex);
  1188. if (err)
  1189. return;
  1190. from = oldcs->mems_allowed;
  1191. to = cs->mems_allowed;
  1192. mm = get_task_mm(tsk);
  1193. if (mm) {
  1194. mpol_rebind_mm(mm, &to);
  1195. if (is_memory_migrate(cs))
  1196. cpuset_migrate_mm(mm, &from, &to);
  1197. mmput(mm);
  1198. }
  1199. }
  1200. /* The various types of files and directories in a cpuset file system */
  1201. typedef enum {
  1202. FILE_MEMORY_MIGRATE,
  1203. FILE_CPULIST,
  1204. FILE_MEMLIST,
  1205. FILE_CPU_EXCLUSIVE,
  1206. FILE_MEM_EXCLUSIVE,
  1207. FILE_MEM_HARDWALL,
  1208. FILE_SCHED_LOAD_BALANCE,
  1209. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1210. FILE_MEMORY_PRESSURE_ENABLED,
  1211. FILE_MEMORY_PRESSURE,
  1212. FILE_SPREAD_PAGE,
  1213. FILE_SPREAD_SLAB,
  1214. } cpuset_filetype_t;
  1215. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1216. {
  1217. int retval = 0;
  1218. struct cpuset *cs = cgroup_cs(cgrp);
  1219. cpuset_filetype_t type = cft->private;
  1220. if (!cgroup_lock_live_group(cgrp))
  1221. return -ENODEV;
  1222. switch (type) {
  1223. case FILE_CPU_EXCLUSIVE:
  1224. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1225. break;
  1226. case FILE_MEM_EXCLUSIVE:
  1227. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1228. break;
  1229. case FILE_MEM_HARDWALL:
  1230. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1231. break;
  1232. case FILE_SCHED_LOAD_BALANCE:
  1233. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1234. break;
  1235. case FILE_MEMORY_MIGRATE:
  1236. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1237. break;
  1238. case FILE_MEMORY_PRESSURE_ENABLED:
  1239. cpuset_memory_pressure_enabled = !!val;
  1240. break;
  1241. case FILE_MEMORY_PRESSURE:
  1242. retval = -EACCES;
  1243. break;
  1244. case FILE_SPREAD_PAGE:
  1245. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1246. cs->mems_generation = cpuset_mems_generation++;
  1247. break;
  1248. case FILE_SPREAD_SLAB:
  1249. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1250. cs->mems_generation = cpuset_mems_generation++;
  1251. break;
  1252. default:
  1253. retval = -EINVAL;
  1254. break;
  1255. }
  1256. cgroup_unlock();
  1257. return retval;
  1258. }
  1259. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1260. {
  1261. int retval = 0;
  1262. struct cpuset *cs = cgroup_cs(cgrp);
  1263. cpuset_filetype_t type = cft->private;
  1264. if (!cgroup_lock_live_group(cgrp))
  1265. return -ENODEV;
  1266. switch (type) {
  1267. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1268. retval = update_relax_domain_level(cs, val);
  1269. break;
  1270. default:
  1271. retval = -EINVAL;
  1272. break;
  1273. }
  1274. cgroup_unlock();
  1275. return retval;
  1276. }
  1277. /*
  1278. * Common handling for a write to a "cpus" or "mems" file.
  1279. */
  1280. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1281. const char *buf)
  1282. {
  1283. int retval = 0;
  1284. if (!cgroup_lock_live_group(cgrp))
  1285. return -ENODEV;
  1286. switch (cft->private) {
  1287. case FILE_CPULIST:
  1288. retval = update_cpumask(cgroup_cs(cgrp), buf);
  1289. break;
  1290. case FILE_MEMLIST:
  1291. retval = update_nodemask(cgroup_cs(cgrp), buf);
  1292. break;
  1293. default:
  1294. retval = -EINVAL;
  1295. break;
  1296. }
  1297. cgroup_unlock();
  1298. return retval;
  1299. }
  1300. /*
  1301. * These ascii lists should be read in a single call, by using a user
  1302. * buffer large enough to hold the entire map. If read in smaller
  1303. * chunks, there is no guarantee of atomicity. Since the display format
  1304. * used, list of ranges of sequential numbers, is variable length,
  1305. * and since these maps can change value dynamically, one could read
  1306. * gibberish by doing partial reads while a list was changing.
  1307. * A single large read to a buffer that crosses a page boundary is
  1308. * ok, because the result being copied to user land is not recomputed
  1309. * across a page fault.
  1310. */
  1311. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1312. {
  1313. cpumask_t mask;
  1314. mutex_lock(&callback_mutex);
  1315. mask = cs->cpus_allowed;
  1316. mutex_unlock(&callback_mutex);
  1317. return cpulist_scnprintf(page, PAGE_SIZE, &mask);
  1318. }
  1319. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1320. {
  1321. nodemask_t mask;
  1322. mutex_lock(&callback_mutex);
  1323. mask = cs->mems_allowed;
  1324. mutex_unlock(&callback_mutex);
  1325. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1326. }
  1327. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1328. struct cftype *cft,
  1329. struct file *file,
  1330. char __user *buf,
  1331. size_t nbytes, loff_t *ppos)
  1332. {
  1333. struct cpuset *cs = cgroup_cs(cont);
  1334. cpuset_filetype_t type = cft->private;
  1335. char *page;
  1336. ssize_t retval = 0;
  1337. char *s;
  1338. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1339. return -ENOMEM;
  1340. s = page;
  1341. switch (type) {
  1342. case FILE_CPULIST:
  1343. s += cpuset_sprintf_cpulist(s, cs);
  1344. break;
  1345. case FILE_MEMLIST:
  1346. s += cpuset_sprintf_memlist(s, cs);
  1347. break;
  1348. default:
  1349. retval = -EINVAL;
  1350. goto out;
  1351. }
  1352. *s++ = '\n';
  1353. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1354. out:
  1355. free_page((unsigned long)page);
  1356. return retval;
  1357. }
  1358. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1359. {
  1360. struct cpuset *cs = cgroup_cs(cont);
  1361. cpuset_filetype_t type = cft->private;
  1362. switch (type) {
  1363. case FILE_CPU_EXCLUSIVE:
  1364. return is_cpu_exclusive(cs);
  1365. case FILE_MEM_EXCLUSIVE:
  1366. return is_mem_exclusive(cs);
  1367. case FILE_MEM_HARDWALL:
  1368. return is_mem_hardwall(cs);
  1369. case FILE_SCHED_LOAD_BALANCE:
  1370. return is_sched_load_balance(cs);
  1371. case FILE_MEMORY_MIGRATE:
  1372. return is_memory_migrate(cs);
  1373. case FILE_MEMORY_PRESSURE_ENABLED:
  1374. return cpuset_memory_pressure_enabled;
  1375. case FILE_MEMORY_PRESSURE:
  1376. return fmeter_getrate(&cs->fmeter);
  1377. case FILE_SPREAD_PAGE:
  1378. return is_spread_page(cs);
  1379. case FILE_SPREAD_SLAB:
  1380. return is_spread_slab(cs);
  1381. default:
  1382. BUG();
  1383. }
  1384. /* Unreachable but makes gcc happy */
  1385. return 0;
  1386. }
  1387. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1388. {
  1389. struct cpuset *cs = cgroup_cs(cont);
  1390. cpuset_filetype_t type = cft->private;
  1391. switch (type) {
  1392. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1393. return cs->relax_domain_level;
  1394. default:
  1395. BUG();
  1396. }
  1397. /* Unrechable but makes gcc happy */
  1398. return 0;
  1399. }
  1400. /*
  1401. * for the common functions, 'private' gives the type of file
  1402. */
  1403. static struct cftype files[] = {
  1404. {
  1405. .name = "cpus",
  1406. .read = cpuset_common_file_read,
  1407. .write_string = cpuset_write_resmask,
  1408. .max_write_len = (100U + 6 * NR_CPUS),
  1409. .private = FILE_CPULIST,
  1410. },
  1411. {
  1412. .name = "mems",
  1413. .read = cpuset_common_file_read,
  1414. .write_string = cpuset_write_resmask,
  1415. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1416. .private = FILE_MEMLIST,
  1417. },
  1418. {
  1419. .name = "cpu_exclusive",
  1420. .read_u64 = cpuset_read_u64,
  1421. .write_u64 = cpuset_write_u64,
  1422. .private = FILE_CPU_EXCLUSIVE,
  1423. },
  1424. {
  1425. .name = "mem_exclusive",
  1426. .read_u64 = cpuset_read_u64,
  1427. .write_u64 = cpuset_write_u64,
  1428. .private = FILE_MEM_EXCLUSIVE,
  1429. },
  1430. {
  1431. .name = "mem_hardwall",
  1432. .read_u64 = cpuset_read_u64,
  1433. .write_u64 = cpuset_write_u64,
  1434. .private = FILE_MEM_HARDWALL,
  1435. },
  1436. {
  1437. .name = "sched_load_balance",
  1438. .read_u64 = cpuset_read_u64,
  1439. .write_u64 = cpuset_write_u64,
  1440. .private = FILE_SCHED_LOAD_BALANCE,
  1441. },
  1442. {
  1443. .name = "sched_relax_domain_level",
  1444. .read_s64 = cpuset_read_s64,
  1445. .write_s64 = cpuset_write_s64,
  1446. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1447. },
  1448. {
  1449. .name = "memory_migrate",
  1450. .read_u64 = cpuset_read_u64,
  1451. .write_u64 = cpuset_write_u64,
  1452. .private = FILE_MEMORY_MIGRATE,
  1453. },
  1454. {
  1455. .name = "memory_pressure",
  1456. .read_u64 = cpuset_read_u64,
  1457. .write_u64 = cpuset_write_u64,
  1458. .private = FILE_MEMORY_PRESSURE,
  1459. },
  1460. {
  1461. .name = "memory_spread_page",
  1462. .read_u64 = cpuset_read_u64,
  1463. .write_u64 = cpuset_write_u64,
  1464. .private = FILE_SPREAD_PAGE,
  1465. },
  1466. {
  1467. .name = "memory_spread_slab",
  1468. .read_u64 = cpuset_read_u64,
  1469. .write_u64 = cpuset_write_u64,
  1470. .private = FILE_SPREAD_SLAB,
  1471. },
  1472. };
  1473. static struct cftype cft_memory_pressure_enabled = {
  1474. .name = "memory_pressure_enabled",
  1475. .read_u64 = cpuset_read_u64,
  1476. .write_u64 = cpuset_write_u64,
  1477. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1478. };
  1479. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1480. {
  1481. int err;
  1482. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1483. if (err)
  1484. return err;
  1485. /* memory_pressure_enabled is in root cpuset only */
  1486. if (!cont->parent)
  1487. err = cgroup_add_file(cont, ss,
  1488. &cft_memory_pressure_enabled);
  1489. return err;
  1490. }
  1491. /*
  1492. * post_clone() is called at the end of cgroup_clone().
  1493. * 'cgroup' was just created automatically as a result of
  1494. * a cgroup_clone(), and the current task is about to
  1495. * be moved into 'cgroup'.
  1496. *
  1497. * Currently we refuse to set up the cgroup - thereby
  1498. * refusing the task to be entered, and as a result refusing
  1499. * the sys_unshare() or clone() which initiated it - if any
  1500. * sibling cpusets have exclusive cpus or mem.
  1501. *
  1502. * If this becomes a problem for some users who wish to
  1503. * allow that scenario, then cpuset_post_clone() could be
  1504. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1505. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1506. * held.
  1507. */
  1508. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1509. struct cgroup *cgroup)
  1510. {
  1511. struct cgroup *parent, *child;
  1512. struct cpuset *cs, *parent_cs;
  1513. parent = cgroup->parent;
  1514. list_for_each_entry(child, &parent->children, sibling) {
  1515. cs = cgroup_cs(child);
  1516. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1517. return;
  1518. }
  1519. cs = cgroup_cs(cgroup);
  1520. parent_cs = cgroup_cs(parent);
  1521. cs->mems_allowed = parent_cs->mems_allowed;
  1522. cs->cpus_allowed = parent_cs->cpus_allowed;
  1523. return;
  1524. }
  1525. /*
  1526. * cpuset_create - create a cpuset
  1527. * ss: cpuset cgroup subsystem
  1528. * cont: control group that the new cpuset will be part of
  1529. */
  1530. static struct cgroup_subsys_state *cpuset_create(
  1531. struct cgroup_subsys *ss,
  1532. struct cgroup *cont)
  1533. {
  1534. struct cpuset *cs;
  1535. struct cpuset *parent;
  1536. if (!cont->parent) {
  1537. /* This is early initialization for the top cgroup */
  1538. top_cpuset.mems_generation = cpuset_mems_generation++;
  1539. return &top_cpuset.css;
  1540. }
  1541. parent = cgroup_cs(cont->parent);
  1542. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1543. if (!cs)
  1544. return ERR_PTR(-ENOMEM);
  1545. cpuset_update_task_memory_state();
  1546. cs->flags = 0;
  1547. if (is_spread_page(parent))
  1548. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1549. if (is_spread_slab(parent))
  1550. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1551. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1552. cpus_clear(cs->cpus_allowed);
  1553. nodes_clear(cs->mems_allowed);
  1554. cs->mems_generation = cpuset_mems_generation++;
  1555. fmeter_init(&cs->fmeter);
  1556. cs->relax_domain_level = -1;
  1557. cs->parent = parent;
  1558. number_of_cpusets++;
  1559. return &cs->css ;
  1560. }
  1561. /*
  1562. * If the cpuset being removed has its flag 'sched_load_balance'
  1563. * enabled, then simulate turning sched_load_balance off, which
  1564. * will call async_rebuild_sched_domains().
  1565. */
  1566. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1567. {
  1568. struct cpuset *cs = cgroup_cs(cont);
  1569. cpuset_update_task_memory_state();
  1570. if (is_sched_load_balance(cs))
  1571. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1572. number_of_cpusets--;
  1573. kfree(cs);
  1574. }
  1575. struct cgroup_subsys cpuset_subsys = {
  1576. .name = "cpuset",
  1577. .create = cpuset_create,
  1578. .destroy = cpuset_destroy,
  1579. .can_attach = cpuset_can_attach,
  1580. .attach = cpuset_attach,
  1581. .populate = cpuset_populate,
  1582. .post_clone = cpuset_post_clone,
  1583. .subsys_id = cpuset_subsys_id,
  1584. .early_init = 1,
  1585. };
  1586. /*
  1587. * cpuset_init_early - just enough so that the calls to
  1588. * cpuset_update_task_memory_state() in early init code
  1589. * are harmless.
  1590. */
  1591. int __init cpuset_init_early(void)
  1592. {
  1593. top_cpuset.mems_generation = cpuset_mems_generation++;
  1594. return 0;
  1595. }
  1596. /**
  1597. * cpuset_init - initialize cpusets at system boot
  1598. *
  1599. * Description: Initialize top_cpuset and the cpuset internal file system,
  1600. **/
  1601. int __init cpuset_init(void)
  1602. {
  1603. int err = 0;
  1604. cpus_setall(top_cpuset.cpus_allowed);
  1605. nodes_setall(top_cpuset.mems_allowed);
  1606. fmeter_init(&top_cpuset.fmeter);
  1607. top_cpuset.mems_generation = cpuset_mems_generation++;
  1608. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1609. top_cpuset.relax_domain_level = -1;
  1610. err = register_filesystem(&cpuset_fs_type);
  1611. if (err < 0)
  1612. return err;
  1613. number_of_cpusets = 1;
  1614. return 0;
  1615. }
  1616. /**
  1617. * cpuset_do_move_task - move a given task to another cpuset
  1618. * @tsk: pointer to task_struct the task to move
  1619. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1620. *
  1621. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1622. * Return nonzero to stop the walk through the tasks.
  1623. */
  1624. static void cpuset_do_move_task(struct task_struct *tsk,
  1625. struct cgroup_scanner *scan)
  1626. {
  1627. struct cpuset_hotplug_scanner *chsp;
  1628. chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
  1629. cgroup_attach_task(chsp->to, tsk);
  1630. }
  1631. /**
  1632. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1633. * @from: cpuset in which the tasks currently reside
  1634. * @to: cpuset to which the tasks will be moved
  1635. *
  1636. * Called with cgroup_mutex held
  1637. * callback_mutex must not be held, as cpuset_attach() will take it.
  1638. *
  1639. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1640. * calling callback functions for each.
  1641. */
  1642. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1643. {
  1644. struct cpuset_hotplug_scanner scan;
  1645. scan.scan.cg = from->css.cgroup;
  1646. scan.scan.test_task = NULL; /* select all tasks in cgroup */
  1647. scan.scan.process_task = cpuset_do_move_task;
  1648. scan.scan.heap = NULL;
  1649. scan.to = to->css.cgroup;
  1650. if (cgroup_scan_tasks(&scan.scan))
  1651. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1652. "cgroup_scan_tasks failed\n");
  1653. }
  1654. /*
  1655. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1656. * or memory nodes, we need to walk over the cpuset hierarchy,
  1657. * removing that CPU or node from all cpusets. If this removes the
  1658. * last CPU or node from a cpuset, then move the tasks in the empty
  1659. * cpuset to its next-highest non-empty parent.
  1660. *
  1661. * Called with cgroup_mutex held
  1662. * callback_mutex must not be held, as cpuset_attach() will take it.
  1663. */
  1664. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1665. {
  1666. struct cpuset *parent;
  1667. /*
  1668. * The cgroup's css_sets list is in use if there are tasks
  1669. * in the cpuset; the list is empty if there are none;
  1670. * the cs->css.refcnt seems always 0.
  1671. */
  1672. if (list_empty(&cs->css.cgroup->css_sets))
  1673. return;
  1674. /*
  1675. * Find its next-highest non-empty parent, (top cpuset
  1676. * has online cpus, so can't be empty).
  1677. */
  1678. parent = cs->parent;
  1679. while (cpus_empty(parent->cpus_allowed) ||
  1680. nodes_empty(parent->mems_allowed))
  1681. parent = parent->parent;
  1682. move_member_tasks_to_cpuset(cs, parent);
  1683. }
  1684. /*
  1685. * Walk the specified cpuset subtree and look for empty cpusets.
  1686. * The tasks of such cpuset must be moved to a parent cpuset.
  1687. *
  1688. * Called with cgroup_mutex held. We take callback_mutex to modify
  1689. * cpus_allowed and mems_allowed.
  1690. *
  1691. * This walk processes the tree from top to bottom, completing one layer
  1692. * before dropping down to the next. It always processes a node before
  1693. * any of its children.
  1694. *
  1695. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1696. * that has tasks along with an empty 'mems'. But if we did see such
  1697. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1698. */
  1699. static void scan_for_empty_cpusets(struct cpuset *root)
  1700. {
  1701. LIST_HEAD(queue);
  1702. struct cpuset *cp; /* scans cpusets being updated */
  1703. struct cpuset *child; /* scans child cpusets of cp */
  1704. struct cgroup *cont;
  1705. nodemask_t oldmems;
  1706. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1707. while (!list_empty(&queue)) {
  1708. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1709. list_del(queue.next);
  1710. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1711. child = cgroup_cs(cont);
  1712. list_add_tail(&child->stack_list, &queue);
  1713. }
  1714. /* Continue past cpusets with all cpus, mems online */
  1715. if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
  1716. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1717. continue;
  1718. oldmems = cp->mems_allowed;
  1719. /* Remove offline cpus and mems from this cpuset. */
  1720. mutex_lock(&callback_mutex);
  1721. cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
  1722. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1723. node_states[N_HIGH_MEMORY]);
  1724. mutex_unlock(&callback_mutex);
  1725. /* Move tasks from the empty cpuset to a parent */
  1726. if (cpus_empty(cp->cpus_allowed) ||
  1727. nodes_empty(cp->mems_allowed))
  1728. remove_tasks_in_empty_cpuset(cp);
  1729. else {
  1730. update_tasks_cpumask(cp, NULL);
  1731. update_tasks_nodemask(cp, &oldmems);
  1732. }
  1733. }
  1734. }
  1735. /*
  1736. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1737. * period. This is necessary in order to make cpusets transparent
  1738. * (of no affect) on systems that are actively using CPU hotplug
  1739. * but making no active use of cpusets.
  1740. *
  1741. * This routine ensures that top_cpuset.cpus_allowed tracks
  1742. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1743. *
  1744. * Called within get_online_cpus(). Needs to call cgroup_lock()
  1745. * before calling generate_sched_domains().
  1746. */
  1747. static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
  1748. unsigned long phase, void *unused_cpu)
  1749. {
  1750. struct sched_domain_attr *attr;
  1751. cpumask_t *doms;
  1752. int ndoms;
  1753. switch (phase) {
  1754. case CPU_ONLINE:
  1755. case CPU_ONLINE_FROZEN:
  1756. case CPU_DEAD:
  1757. case CPU_DEAD_FROZEN:
  1758. break;
  1759. default:
  1760. return NOTIFY_DONE;
  1761. }
  1762. cgroup_lock();
  1763. top_cpuset.cpus_allowed = cpu_online_map;
  1764. scan_for_empty_cpusets(&top_cpuset);
  1765. ndoms = generate_sched_domains(&doms, &attr);
  1766. cgroup_unlock();
  1767. /* Have scheduler rebuild the domains */
  1768. partition_sched_domains(ndoms, doms, attr);
  1769. return NOTIFY_OK;
  1770. }
  1771. #ifdef CONFIG_MEMORY_HOTPLUG
  1772. /*
  1773. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1774. * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
  1775. * See also the previous routine cpuset_track_online_cpus().
  1776. */
  1777. static int cpuset_track_online_nodes(struct notifier_block *self,
  1778. unsigned long action, void *arg)
  1779. {
  1780. cgroup_lock();
  1781. switch (action) {
  1782. case MEM_ONLINE:
  1783. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1784. break;
  1785. case MEM_OFFLINE:
  1786. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1787. scan_for_empty_cpusets(&top_cpuset);
  1788. break;
  1789. default:
  1790. break;
  1791. }
  1792. cgroup_unlock();
  1793. return NOTIFY_OK;
  1794. }
  1795. #endif
  1796. /**
  1797. * cpuset_init_smp - initialize cpus_allowed
  1798. *
  1799. * Description: Finish top cpuset after cpu, node maps are initialized
  1800. **/
  1801. void __init cpuset_init_smp(void)
  1802. {
  1803. top_cpuset.cpus_allowed = cpu_online_map;
  1804. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1805. hotcpu_notifier(cpuset_track_online_cpus, 0);
  1806. hotplug_memory_notifier(cpuset_track_online_nodes, 10);
  1807. }
  1808. /**
  1809. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1810. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1811. * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
  1812. *
  1813. * Description: Returns the cpumask_t cpus_allowed of the cpuset
  1814. * attached to the specified @tsk. Guaranteed to return some non-empty
  1815. * subset of cpu_online_map, even if this means going outside the
  1816. * tasks cpuset.
  1817. **/
  1818. void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
  1819. {
  1820. mutex_lock(&callback_mutex);
  1821. cpuset_cpus_allowed_locked(tsk, pmask);
  1822. mutex_unlock(&callback_mutex);
  1823. }
  1824. /**
  1825. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1826. * Must be called with callback_mutex held.
  1827. **/
  1828. void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
  1829. {
  1830. task_lock(tsk);
  1831. guarantee_online_cpus(task_cs(tsk), pmask);
  1832. task_unlock(tsk);
  1833. }
  1834. void cpuset_init_current_mems_allowed(void)
  1835. {
  1836. nodes_setall(current->mems_allowed);
  1837. }
  1838. /**
  1839. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1840. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1841. *
  1842. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1843. * attached to the specified @tsk. Guaranteed to return some non-empty
  1844. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1845. * tasks cpuset.
  1846. **/
  1847. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1848. {
  1849. nodemask_t mask;
  1850. mutex_lock(&callback_mutex);
  1851. task_lock(tsk);
  1852. guarantee_online_mems(task_cs(tsk), &mask);
  1853. task_unlock(tsk);
  1854. mutex_unlock(&callback_mutex);
  1855. return mask;
  1856. }
  1857. /**
  1858. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1859. * @nodemask: the nodemask to be checked
  1860. *
  1861. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1862. */
  1863. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1864. {
  1865. return nodes_intersects(*nodemask, current->mems_allowed);
  1866. }
  1867. /*
  1868. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1869. * mem_hardwall ancestor to the specified cpuset. Call holding
  1870. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1871. * (an unusual configuration), then returns the root cpuset.
  1872. */
  1873. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1874. {
  1875. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1876. cs = cs->parent;
  1877. return cs;
  1878. }
  1879. /**
  1880. * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
  1881. * @z: is this zone on an allowed node?
  1882. * @gfp_mask: memory allocation flags
  1883. *
  1884. * If we're in interrupt, yes, we can always allocate. If
  1885. * __GFP_THISNODE is set, yes, we can always allocate. If zone
  1886. * z's node is in our tasks mems_allowed, yes. If it's not a
  1887. * __GFP_HARDWALL request and this zone's nodes is in the nearest
  1888. * hardwalled cpuset ancestor to this tasks cpuset, yes.
  1889. * If the task has been OOM killed and has access to memory reserves
  1890. * as specified by the TIF_MEMDIE flag, yes.
  1891. * Otherwise, no.
  1892. *
  1893. * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
  1894. * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
  1895. * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
  1896. * from an enclosing cpuset.
  1897. *
  1898. * cpuset_zone_allowed_hardwall() only handles the simpler case of
  1899. * hardwall cpusets, and never sleeps.
  1900. *
  1901. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1902. * by forcibly using a zonelist starting at a specified node, and by
  1903. * (in get_page_from_freelist()) refusing to consider the zones for
  1904. * any node on the zonelist except the first. By the time any such
  1905. * calls get to this routine, we should just shut up and say 'yes'.
  1906. *
  1907. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1908. * and do not allow allocations outside the current tasks cpuset
  1909. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1910. * GFP_KERNEL allocations are not so marked, so can escape to the
  1911. * nearest enclosing hardwalled ancestor cpuset.
  1912. *
  1913. * Scanning up parent cpusets requires callback_mutex. The
  1914. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1915. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1916. * current tasks mems_allowed came up empty on the first pass over
  1917. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1918. * cpuset are short of memory, might require taking the callback_mutex
  1919. * mutex.
  1920. *
  1921. * The first call here from mm/page_alloc:get_page_from_freelist()
  1922. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1923. * so no allocation on a node outside the cpuset is allowed (unless
  1924. * in interrupt, of course).
  1925. *
  1926. * The second pass through get_page_from_freelist() doesn't even call
  1927. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1928. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1929. * in alloc_flags. That logic and the checks below have the combined
  1930. * affect that:
  1931. * in_interrupt - any node ok (current task context irrelevant)
  1932. * GFP_ATOMIC - any node ok
  1933. * TIF_MEMDIE - any node ok
  1934. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1935. * GFP_USER - only nodes in current tasks mems allowed ok.
  1936. *
  1937. * Rule:
  1938. * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
  1939. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1940. * the code that might scan up ancestor cpusets and sleep.
  1941. */
  1942. int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
  1943. {
  1944. int node; /* node that zone z is on */
  1945. const struct cpuset *cs; /* current cpuset ancestors */
  1946. int allowed; /* is allocation in zone z allowed? */
  1947. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1948. return 1;
  1949. node = zone_to_nid(z);
  1950. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  1951. if (node_isset(node, current->mems_allowed))
  1952. return 1;
  1953. /*
  1954. * Allow tasks that have access to memory reserves because they have
  1955. * been OOM killed to get memory anywhere.
  1956. */
  1957. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1958. return 1;
  1959. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  1960. return 0;
  1961. if (current->flags & PF_EXITING) /* Let dying task have memory */
  1962. return 1;
  1963. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  1964. mutex_lock(&callback_mutex);
  1965. task_lock(current);
  1966. cs = nearest_hardwall_ancestor(task_cs(current));
  1967. task_unlock(current);
  1968. allowed = node_isset(node, cs->mems_allowed);
  1969. mutex_unlock(&callback_mutex);
  1970. return allowed;
  1971. }
  1972. /*
  1973. * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
  1974. * @z: is this zone on an allowed node?
  1975. * @gfp_mask: memory allocation flags
  1976. *
  1977. * If we're in interrupt, yes, we can always allocate.
  1978. * If __GFP_THISNODE is set, yes, we can always allocate. If zone
  1979. * z's node is in our tasks mems_allowed, yes. If the task has been
  1980. * OOM killed and has access to memory reserves as specified by the
  1981. * TIF_MEMDIE flag, yes. Otherwise, no.
  1982. *
  1983. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1984. * by forcibly using a zonelist starting at a specified node, and by
  1985. * (in get_page_from_freelist()) refusing to consider the zones for
  1986. * any node on the zonelist except the first. By the time any such
  1987. * calls get to this routine, we should just shut up and say 'yes'.
  1988. *
  1989. * Unlike the cpuset_zone_allowed_softwall() variant, above,
  1990. * this variant requires that the zone be in the current tasks
  1991. * mems_allowed or that we're in interrupt. It does not scan up the
  1992. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  1993. * It never sleeps.
  1994. */
  1995. int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
  1996. {
  1997. int node; /* node that zone z is on */
  1998. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1999. return 1;
  2000. node = zone_to_nid(z);
  2001. if (node_isset(node, current->mems_allowed))
  2002. return 1;
  2003. /*
  2004. * Allow tasks that have access to memory reserves because they have
  2005. * been OOM killed to get memory anywhere.
  2006. */
  2007. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2008. return 1;
  2009. return 0;
  2010. }
  2011. /**
  2012. * cpuset_lock - lock out any changes to cpuset structures
  2013. *
  2014. * The out of memory (oom) code needs to mutex_lock cpusets
  2015. * from being changed while it scans the tasklist looking for a
  2016. * task in an overlapping cpuset. Expose callback_mutex via this
  2017. * cpuset_lock() routine, so the oom code can lock it, before
  2018. * locking the task list. The tasklist_lock is a spinlock, so
  2019. * must be taken inside callback_mutex.
  2020. */
  2021. void cpuset_lock(void)
  2022. {
  2023. mutex_lock(&callback_mutex);
  2024. }
  2025. /**
  2026. * cpuset_unlock - release lock on cpuset changes
  2027. *
  2028. * Undo the lock taken in a previous cpuset_lock() call.
  2029. */
  2030. void cpuset_unlock(void)
  2031. {
  2032. mutex_unlock(&callback_mutex);
  2033. }
  2034. /**
  2035. * cpuset_mem_spread_node() - On which node to begin search for a page
  2036. *
  2037. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2038. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2039. * and if the memory allocation used cpuset_mem_spread_node()
  2040. * to determine on which node to start looking, as it will for
  2041. * certain page cache or slab cache pages such as used for file
  2042. * system buffers and inode caches, then instead of starting on the
  2043. * local node to look for a free page, rather spread the starting
  2044. * node around the tasks mems_allowed nodes.
  2045. *
  2046. * We don't have to worry about the returned node being offline
  2047. * because "it can't happen", and even if it did, it would be ok.
  2048. *
  2049. * The routines calling guarantee_online_mems() are careful to
  2050. * only set nodes in task->mems_allowed that are online. So it
  2051. * should not be possible for the following code to return an
  2052. * offline node. But if it did, that would be ok, as this routine
  2053. * is not returning the node where the allocation must be, only
  2054. * the node where the search should start. The zonelist passed to
  2055. * __alloc_pages() will include all nodes. If the slab allocator
  2056. * is passed an offline node, it will fall back to the local node.
  2057. * See kmem_cache_alloc_node().
  2058. */
  2059. int cpuset_mem_spread_node(void)
  2060. {
  2061. int node;
  2062. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  2063. if (node == MAX_NUMNODES)
  2064. node = first_node(current->mems_allowed);
  2065. current->cpuset_mem_spread_rotor = node;
  2066. return node;
  2067. }
  2068. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2069. /**
  2070. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2071. * @tsk1: pointer to task_struct of some task.
  2072. * @tsk2: pointer to task_struct of some other task.
  2073. *
  2074. * Description: Return true if @tsk1's mems_allowed intersects the
  2075. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2076. * one of the task's memory usage might impact the memory available
  2077. * to the other.
  2078. **/
  2079. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2080. const struct task_struct *tsk2)
  2081. {
  2082. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2083. }
  2084. /**
  2085. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2086. * @task: pointer to task_struct of some task.
  2087. *
  2088. * Description: Prints @task's name, cpuset name, and cached copy of its
  2089. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2090. * dereferencing task_cs(task).
  2091. */
  2092. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2093. {
  2094. struct dentry *dentry;
  2095. dentry = task_cs(tsk)->css.cgroup->dentry;
  2096. spin_lock(&cpuset_buffer_lock);
  2097. snprintf(cpuset_name, CPUSET_NAME_LEN,
  2098. dentry ? (const char *)dentry->d_name.name : "/");
  2099. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2100. tsk->mems_allowed);
  2101. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2102. tsk->comm, cpuset_name, cpuset_nodelist);
  2103. spin_unlock(&cpuset_buffer_lock);
  2104. }
  2105. /*
  2106. * Collection of memory_pressure is suppressed unless
  2107. * this flag is enabled by writing "1" to the special
  2108. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2109. */
  2110. int cpuset_memory_pressure_enabled __read_mostly;
  2111. /**
  2112. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2113. *
  2114. * Keep a running average of the rate of synchronous (direct)
  2115. * page reclaim efforts initiated by tasks in each cpuset.
  2116. *
  2117. * This represents the rate at which some task in the cpuset
  2118. * ran low on memory on all nodes it was allowed to use, and
  2119. * had to enter the kernels page reclaim code in an effort to
  2120. * create more free memory by tossing clean pages or swapping
  2121. * or writing dirty pages.
  2122. *
  2123. * Display to user space in the per-cpuset read-only file
  2124. * "memory_pressure". Value displayed is an integer
  2125. * representing the recent rate of entry into the synchronous
  2126. * (direct) page reclaim by any task attached to the cpuset.
  2127. **/
  2128. void __cpuset_memory_pressure_bump(void)
  2129. {
  2130. task_lock(current);
  2131. fmeter_markevent(&task_cs(current)->fmeter);
  2132. task_unlock(current);
  2133. }
  2134. #ifdef CONFIG_PROC_PID_CPUSET
  2135. /*
  2136. * proc_cpuset_show()
  2137. * - Print tasks cpuset path into seq_file.
  2138. * - Used for /proc/<pid>/cpuset.
  2139. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2140. * doesn't really matter if tsk->cpuset changes after we read it,
  2141. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2142. * anyway.
  2143. */
  2144. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2145. {
  2146. struct pid *pid;
  2147. struct task_struct *tsk;
  2148. char *buf;
  2149. struct cgroup_subsys_state *css;
  2150. int retval;
  2151. retval = -ENOMEM;
  2152. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2153. if (!buf)
  2154. goto out;
  2155. retval = -ESRCH;
  2156. pid = m->private;
  2157. tsk = get_pid_task(pid, PIDTYPE_PID);
  2158. if (!tsk)
  2159. goto out_free;
  2160. retval = -EINVAL;
  2161. cgroup_lock();
  2162. css = task_subsys_state(tsk, cpuset_subsys_id);
  2163. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2164. if (retval < 0)
  2165. goto out_unlock;
  2166. seq_puts(m, buf);
  2167. seq_putc(m, '\n');
  2168. out_unlock:
  2169. cgroup_unlock();
  2170. put_task_struct(tsk);
  2171. out_free:
  2172. kfree(buf);
  2173. out:
  2174. return retval;
  2175. }
  2176. static int cpuset_open(struct inode *inode, struct file *file)
  2177. {
  2178. struct pid *pid = PROC_I(inode)->pid;
  2179. return single_open(file, proc_cpuset_show, pid);
  2180. }
  2181. const struct file_operations proc_cpuset_operations = {
  2182. .open = cpuset_open,
  2183. .read = seq_read,
  2184. .llseek = seq_lseek,
  2185. .release = single_release,
  2186. };
  2187. #endif /* CONFIG_PROC_PID_CPUSET */
  2188. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2189. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2190. {
  2191. seq_printf(m, "Cpus_allowed:\t");
  2192. seq_cpumask(m, &task->cpus_allowed);
  2193. seq_printf(m, "\n");
  2194. seq_printf(m, "Cpus_allowed_list:\t");
  2195. seq_cpumask_list(m, &task->cpus_allowed);
  2196. seq_printf(m, "\n");
  2197. seq_printf(m, "Mems_allowed:\t");
  2198. seq_nodemask(m, &task->mems_allowed);
  2199. seq_printf(m, "\n");
  2200. seq_printf(m, "Mems_allowed_list:\t");
  2201. seq_nodemask_list(m, &task->mems_allowed);
  2202. seq_printf(m, "\n");
  2203. }