inode.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. /*
  2. * hugetlbpage-backed filesystem. Based on ramfs.
  3. *
  4. * William Irwin, 2002
  5. *
  6. * Copyright (C) 2002 Linus Torvalds.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/thread_info.h>
  10. #include <asm/current.h>
  11. #include <linux/sched.h> /* remove ASAP */
  12. #include <linux/fs.h>
  13. #include <linux/mount.h>
  14. #include <linux/file.h>
  15. #include <linux/kernel.h>
  16. #include <linux/writeback.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/highmem.h>
  19. #include <linux/init.h>
  20. #include <linux/string.h>
  21. #include <linux/capability.h>
  22. #include <linux/ctype.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/pagevec.h>
  26. #include <linux/parser.h>
  27. #include <linux/mman.h>
  28. #include <linux/quotaops.h>
  29. #include <linux/slab.h>
  30. #include <linux/dnotify.h>
  31. #include <linux/statfs.h>
  32. #include <linux/security.h>
  33. #include <asm/uaccess.h>
  34. /* some random number */
  35. #define HUGETLBFS_MAGIC 0x958458f6
  36. static const struct super_operations hugetlbfs_ops;
  37. static const struct address_space_operations hugetlbfs_aops;
  38. const struct file_operations hugetlbfs_file_operations;
  39. static const struct inode_operations hugetlbfs_dir_inode_operations;
  40. static const struct inode_operations hugetlbfs_inode_operations;
  41. static struct backing_dev_info hugetlbfs_backing_dev_info = {
  42. .ra_pages = 0, /* No readahead */
  43. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  44. };
  45. int sysctl_hugetlb_shm_group;
  46. enum {
  47. Opt_size, Opt_nr_inodes,
  48. Opt_mode, Opt_uid, Opt_gid,
  49. Opt_pagesize,
  50. Opt_err,
  51. };
  52. static const match_table_t tokens = {
  53. {Opt_size, "size=%s"},
  54. {Opt_nr_inodes, "nr_inodes=%s"},
  55. {Opt_mode, "mode=%o"},
  56. {Opt_uid, "uid=%u"},
  57. {Opt_gid, "gid=%u"},
  58. {Opt_pagesize, "pagesize=%s"},
  59. {Opt_err, NULL},
  60. };
  61. static void huge_pagevec_release(struct pagevec *pvec)
  62. {
  63. int i;
  64. for (i = 0; i < pagevec_count(pvec); ++i)
  65. put_page(pvec->pages[i]);
  66. pagevec_reinit(pvec);
  67. }
  68. static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
  69. {
  70. struct inode *inode = file->f_path.dentry->d_inode;
  71. loff_t len, vma_len;
  72. int ret;
  73. struct hstate *h = hstate_file(file);
  74. /*
  75. * vma address alignment (but not the pgoff alignment) has
  76. * already been checked by prepare_hugepage_range. If you add
  77. * any error returns here, do so after setting VM_HUGETLB, so
  78. * is_vm_hugetlb_page tests below unmap_region go the right
  79. * way when do_mmap_pgoff unwinds (may be important on powerpc
  80. * and ia64).
  81. */
  82. vma->vm_flags |= VM_HUGETLB | VM_RESERVED;
  83. vma->vm_ops = &hugetlb_vm_ops;
  84. if (vma->vm_pgoff & ~(huge_page_mask(h) >> PAGE_SHIFT))
  85. return -EINVAL;
  86. vma_len = (loff_t)(vma->vm_end - vma->vm_start);
  87. mutex_lock(&inode->i_mutex);
  88. file_accessed(file);
  89. ret = -ENOMEM;
  90. len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
  91. if (hugetlb_reserve_pages(inode,
  92. vma->vm_pgoff >> huge_page_order(h),
  93. len >> huge_page_shift(h), vma))
  94. goto out;
  95. ret = 0;
  96. hugetlb_prefault_arch_hook(vma->vm_mm);
  97. if (vma->vm_flags & VM_WRITE && inode->i_size < len)
  98. inode->i_size = len;
  99. out:
  100. mutex_unlock(&inode->i_mutex);
  101. return ret;
  102. }
  103. /*
  104. * Called under down_write(mmap_sem).
  105. */
  106. #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  107. static unsigned long
  108. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  109. unsigned long len, unsigned long pgoff, unsigned long flags)
  110. {
  111. struct mm_struct *mm = current->mm;
  112. struct vm_area_struct *vma;
  113. unsigned long start_addr;
  114. struct hstate *h = hstate_file(file);
  115. if (len & ~huge_page_mask(h))
  116. return -EINVAL;
  117. if (len > TASK_SIZE)
  118. return -ENOMEM;
  119. if (flags & MAP_FIXED) {
  120. if (prepare_hugepage_range(file, addr, len))
  121. return -EINVAL;
  122. return addr;
  123. }
  124. if (addr) {
  125. addr = ALIGN(addr, huge_page_size(h));
  126. vma = find_vma(mm, addr);
  127. if (TASK_SIZE - len >= addr &&
  128. (!vma || addr + len <= vma->vm_start))
  129. return addr;
  130. }
  131. start_addr = mm->free_area_cache;
  132. if (len <= mm->cached_hole_size)
  133. start_addr = TASK_UNMAPPED_BASE;
  134. full_search:
  135. addr = ALIGN(start_addr, huge_page_size(h));
  136. for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
  137. /* At this point: (!vma || addr < vma->vm_end). */
  138. if (TASK_SIZE - len < addr) {
  139. /*
  140. * Start a new search - just in case we missed
  141. * some holes.
  142. */
  143. if (start_addr != TASK_UNMAPPED_BASE) {
  144. start_addr = TASK_UNMAPPED_BASE;
  145. goto full_search;
  146. }
  147. return -ENOMEM;
  148. }
  149. if (!vma || addr + len <= vma->vm_start)
  150. return addr;
  151. addr = ALIGN(vma->vm_end, huge_page_size(h));
  152. }
  153. }
  154. #endif
  155. static int
  156. hugetlbfs_read_actor(struct page *page, unsigned long offset,
  157. char __user *buf, unsigned long count,
  158. unsigned long size)
  159. {
  160. char *kaddr;
  161. unsigned long left, copied = 0;
  162. int i, chunksize;
  163. if (size > count)
  164. size = count;
  165. /* Find which 4k chunk and offset with in that chunk */
  166. i = offset >> PAGE_CACHE_SHIFT;
  167. offset = offset & ~PAGE_CACHE_MASK;
  168. while (size) {
  169. chunksize = PAGE_CACHE_SIZE;
  170. if (offset)
  171. chunksize -= offset;
  172. if (chunksize > size)
  173. chunksize = size;
  174. kaddr = kmap(&page[i]);
  175. left = __copy_to_user(buf, kaddr + offset, chunksize);
  176. kunmap(&page[i]);
  177. if (left) {
  178. copied += (chunksize - left);
  179. break;
  180. }
  181. offset = 0;
  182. size -= chunksize;
  183. buf += chunksize;
  184. copied += chunksize;
  185. i++;
  186. }
  187. return copied ? copied : -EFAULT;
  188. }
  189. /*
  190. * Support for read() - Find the page attached to f_mapping and copy out the
  191. * data. Its *very* similar to do_generic_mapping_read(), we can't use that
  192. * since it has PAGE_CACHE_SIZE assumptions.
  193. */
  194. static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
  195. size_t len, loff_t *ppos)
  196. {
  197. struct hstate *h = hstate_file(filp);
  198. struct address_space *mapping = filp->f_mapping;
  199. struct inode *inode = mapping->host;
  200. unsigned long index = *ppos >> huge_page_shift(h);
  201. unsigned long offset = *ppos & ~huge_page_mask(h);
  202. unsigned long end_index;
  203. loff_t isize;
  204. ssize_t retval = 0;
  205. mutex_lock(&inode->i_mutex);
  206. /* validate length */
  207. if (len == 0)
  208. goto out;
  209. isize = i_size_read(inode);
  210. if (!isize)
  211. goto out;
  212. end_index = (isize - 1) >> huge_page_shift(h);
  213. for (;;) {
  214. struct page *page;
  215. unsigned long nr, ret;
  216. int ra;
  217. /* nr is the maximum number of bytes to copy from this page */
  218. nr = huge_page_size(h);
  219. if (index >= end_index) {
  220. if (index > end_index)
  221. goto out;
  222. nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
  223. if (nr <= offset) {
  224. goto out;
  225. }
  226. }
  227. nr = nr - offset;
  228. /* Find the page */
  229. page = find_get_page(mapping, index);
  230. if (unlikely(page == NULL)) {
  231. /*
  232. * We have a HOLE, zero out the user-buffer for the
  233. * length of the hole or request.
  234. */
  235. ret = len < nr ? len : nr;
  236. if (clear_user(buf, ret))
  237. ra = -EFAULT;
  238. else
  239. ra = 0;
  240. } else {
  241. /*
  242. * We have the page, copy it to user space buffer.
  243. */
  244. ra = hugetlbfs_read_actor(page, offset, buf, len, nr);
  245. ret = ra;
  246. }
  247. if (ra < 0) {
  248. if (retval == 0)
  249. retval = ra;
  250. if (page)
  251. page_cache_release(page);
  252. goto out;
  253. }
  254. offset += ret;
  255. retval += ret;
  256. len -= ret;
  257. index += offset >> huge_page_shift(h);
  258. offset &= ~huge_page_mask(h);
  259. if (page)
  260. page_cache_release(page);
  261. /* short read or no more work */
  262. if ((ret != nr) || (len == 0))
  263. break;
  264. }
  265. out:
  266. *ppos = ((loff_t)index << huge_page_shift(h)) + offset;
  267. mutex_unlock(&inode->i_mutex);
  268. return retval;
  269. }
  270. /*
  271. * Read a page. Again trivial. If it didn't already exist
  272. * in the page cache, it is zero-filled.
  273. */
  274. static int hugetlbfs_readpage(struct file *file, struct page * page)
  275. {
  276. unlock_page(page);
  277. return -EINVAL;
  278. }
  279. static int hugetlbfs_write_begin(struct file *file,
  280. struct address_space *mapping,
  281. loff_t pos, unsigned len, unsigned flags,
  282. struct page **pagep, void **fsdata)
  283. {
  284. return -EINVAL;
  285. }
  286. static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
  287. loff_t pos, unsigned len, unsigned copied,
  288. struct page *page, void *fsdata)
  289. {
  290. BUG();
  291. return -EINVAL;
  292. }
  293. static void truncate_huge_page(struct page *page)
  294. {
  295. cancel_dirty_page(page, /* No IO accounting for huge pages? */0);
  296. ClearPageUptodate(page);
  297. remove_from_page_cache(page);
  298. put_page(page);
  299. }
  300. static void truncate_hugepages(struct inode *inode, loff_t lstart)
  301. {
  302. struct hstate *h = hstate_inode(inode);
  303. struct address_space *mapping = &inode->i_data;
  304. const pgoff_t start = lstart >> huge_page_shift(h);
  305. struct pagevec pvec;
  306. pgoff_t next;
  307. int i, freed = 0;
  308. pagevec_init(&pvec, 0);
  309. next = start;
  310. while (1) {
  311. if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  312. if (next == start)
  313. break;
  314. next = start;
  315. continue;
  316. }
  317. for (i = 0; i < pagevec_count(&pvec); ++i) {
  318. struct page *page = pvec.pages[i];
  319. lock_page(page);
  320. if (page->index > next)
  321. next = page->index;
  322. ++next;
  323. truncate_huge_page(page);
  324. unlock_page(page);
  325. freed++;
  326. }
  327. huge_pagevec_release(&pvec);
  328. }
  329. BUG_ON(!lstart && mapping->nrpages);
  330. hugetlb_unreserve_pages(inode, start, freed);
  331. }
  332. static void hugetlbfs_delete_inode(struct inode *inode)
  333. {
  334. truncate_hugepages(inode, 0);
  335. clear_inode(inode);
  336. }
  337. static void hugetlbfs_forget_inode(struct inode *inode) __releases(inode_lock)
  338. {
  339. struct super_block *sb = inode->i_sb;
  340. if (!hlist_unhashed(&inode->i_hash)) {
  341. if (!(inode->i_state & (I_DIRTY|I_SYNC)))
  342. list_move(&inode->i_list, &inode_unused);
  343. inodes_stat.nr_unused++;
  344. if (!sb || (sb->s_flags & MS_ACTIVE)) {
  345. spin_unlock(&inode_lock);
  346. return;
  347. }
  348. inode->i_state |= I_WILL_FREE;
  349. spin_unlock(&inode_lock);
  350. /*
  351. * write_inode_now is a noop as we set BDI_CAP_NO_WRITEBACK
  352. * in our backing_dev_info.
  353. */
  354. write_inode_now(inode, 1);
  355. spin_lock(&inode_lock);
  356. inode->i_state &= ~I_WILL_FREE;
  357. inodes_stat.nr_unused--;
  358. hlist_del_init(&inode->i_hash);
  359. }
  360. list_del_init(&inode->i_list);
  361. list_del_init(&inode->i_sb_list);
  362. inode->i_state |= I_FREEING;
  363. inodes_stat.nr_inodes--;
  364. spin_unlock(&inode_lock);
  365. truncate_hugepages(inode, 0);
  366. clear_inode(inode);
  367. destroy_inode(inode);
  368. }
  369. static void hugetlbfs_drop_inode(struct inode *inode)
  370. {
  371. if (!inode->i_nlink)
  372. generic_delete_inode(inode);
  373. else
  374. hugetlbfs_forget_inode(inode);
  375. }
  376. static inline void
  377. hugetlb_vmtruncate_list(struct prio_tree_root *root, pgoff_t pgoff)
  378. {
  379. struct vm_area_struct *vma;
  380. struct prio_tree_iter iter;
  381. vma_prio_tree_foreach(vma, &iter, root, pgoff, ULONG_MAX) {
  382. unsigned long v_offset;
  383. /*
  384. * Can the expression below overflow on 32-bit arches?
  385. * No, because the prio_tree returns us only those vmas
  386. * which overlap the truncated area starting at pgoff,
  387. * and no vma on a 32-bit arch can span beyond the 4GB.
  388. */
  389. if (vma->vm_pgoff < pgoff)
  390. v_offset = (pgoff - vma->vm_pgoff) << PAGE_SHIFT;
  391. else
  392. v_offset = 0;
  393. __unmap_hugepage_range(vma,
  394. vma->vm_start + v_offset, vma->vm_end, NULL);
  395. }
  396. }
  397. static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
  398. {
  399. pgoff_t pgoff;
  400. struct address_space *mapping = inode->i_mapping;
  401. struct hstate *h = hstate_inode(inode);
  402. BUG_ON(offset & ~huge_page_mask(h));
  403. pgoff = offset >> PAGE_SHIFT;
  404. i_size_write(inode, offset);
  405. spin_lock(&mapping->i_mmap_lock);
  406. if (!prio_tree_empty(&mapping->i_mmap))
  407. hugetlb_vmtruncate_list(&mapping->i_mmap, pgoff);
  408. spin_unlock(&mapping->i_mmap_lock);
  409. truncate_hugepages(inode, offset);
  410. return 0;
  411. }
  412. static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
  413. {
  414. struct inode *inode = dentry->d_inode;
  415. struct hstate *h = hstate_inode(inode);
  416. int error;
  417. unsigned int ia_valid = attr->ia_valid;
  418. BUG_ON(!inode);
  419. error = inode_change_ok(inode, attr);
  420. if (error)
  421. goto out;
  422. if (ia_valid & ATTR_SIZE) {
  423. error = -EINVAL;
  424. if (!(attr->ia_size & ~huge_page_mask(h)))
  425. error = hugetlb_vmtruncate(inode, attr->ia_size);
  426. if (error)
  427. goto out;
  428. attr->ia_valid &= ~ATTR_SIZE;
  429. }
  430. error = inode_setattr(inode, attr);
  431. out:
  432. return error;
  433. }
  434. static struct inode *hugetlbfs_get_inode(struct super_block *sb, uid_t uid,
  435. gid_t gid, int mode, dev_t dev)
  436. {
  437. struct inode *inode;
  438. inode = new_inode(sb);
  439. if (inode) {
  440. struct hugetlbfs_inode_info *info;
  441. inode->i_mode = mode;
  442. inode->i_uid = uid;
  443. inode->i_gid = gid;
  444. inode->i_mapping->a_ops = &hugetlbfs_aops;
  445. inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
  446. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  447. INIT_LIST_HEAD(&inode->i_mapping->private_list);
  448. info = HUGETLBFS_I(inode);
  449. mpol_shared_policy_init(&info->policy, NULL);
  450. switch (mode & S_IFMT) {
  451. default:
  452. init_special_inode(inode, mode, dev);
  453. break;
  454. case S_IFREG:
  455. inode->i_op = &hugetlbfs_inode_operations;
  456. inode->i_fop = &hugetlbfs_file_operations;
  457. break;
  458. case S_IFDIR:
  459. inode->i_op = &hugetlbfs_dir_inode_operations;
  460. inode->i_fop = &simple_dir_operations;
  461. /* directory inodes start off with i_nlink == 2 (for "." entry) */
  462. inc_nlink(inode);
  463. break;
  464. case S_IFLNK:
  465. inode->i_op = &page_symlink_inode_operations;
  466. break;
  467. }
  468. }
  469. return inode;
  470. }
  471. /*
  472. * File creation. Allocate an inode, and we're done..
  473. */
  474. static int hugetlbfs_mknod(struct inode *dir,
  475. struct dentry *dentry, int mode, dev_t dev)
  476. {
  477. struct inode *inode;
  478. int error = -ENOSPC;
  479. gid_t gid;
  480. if (dir->i_mode & S_ISGID) {
  481. gid = dir->i_gid;
  482. if (S_ISDIR(mode))
  483. mode |= S_ISGID;
  484. } else {
  485. gid = current_fsgid();
  486. }
  487. inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(), gid, mode, dev);
  488. if (inode) {
  489. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  490. d_instantiate(dentry, inode);
  491. dget(dentry); /* Extra count - pin the dentry in core */
  492. error = 0;
  493. }
  494. return error;
  495. }
  496. static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  497. {
  498. int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
  499. if (!retval)
  500. inc_nlink(dir);
  501. return retval;
  502. }
  503. static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)
  504. {
  505. return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
  506. }
  507. static int hugetlbfs_symlink(struct inode *dir,
  508. struct dentry *dentry, const char *symname)
  509. {
  510. struct inode *inode;
  511. int error = -ENOSPC;
  512. gid_t gid;
  513. if (dir->i_mode & S_ISGID)
  514. gid = dir->i_gid;
  515. else
  516. gid = current_fsgid();
  517. inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(),
  518. gid, S_IFLNK|S_IRWXUGO, 0);
  519. if (inode) {
  520. int l = strlen(symname)+1;
  521. error = page_symlink(inode, symname, l);
  522. if (!error) {
  523. d_instantiate(dentry, inode);
  524. dget(dentry);
  525. } else
  526. iput(inode);
  527. }
  528. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  529. return error;
  530. }
  531. /*
  532. * mark the head page dirty
  533. */
  534. static int hugetlbfs_set_page_dirty(struct page *page)
  535. {
  536. struct page *head = compound_head(page);
  537. SetPageDirty(head);
  538. return 0;
  539. }
  540. static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  541. {
  542. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
  543. struct hstate *h = hstate_inode(dentry->d_inode);
  544. buf->f_type = HUGETLBFS_MAGIC;
  545. buf->f_bsize = huge_page_size(h);
  546. if (sbinfo) {
  547. spin_lock(&sbinfo->stat_lock);
  548. /* If no limits set, just report 0 for max/free/used
  549. * blocks, like simple_statfs() */
  550. if (sbinfo->max_blocks >= 0) {
  551. buf->f_blocks = sbinfo->max_blocks;
  552. buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
  553. buf->f_files = sbinfo->max_inodes;
  554. buf->f_ffree = sbinfo->free_inodes;
  555. }
  556. spin_unlock(&sbinfo->stat_lock);
  557. }
  558. buf->f_namelen = NAME_MAX;
  559. return 0;
  560. }
  561. static void hugetlbfs_put_super(struct super_block *sb)
  562. {
  563. struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
  564. if (sbi) {
  565. sb->s_fs_info = NULL;
  566. kfree(sbi);
  567. }
  568. }
  569. static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  570. {
  571. if (sbinfo->free_inodes >= 0) {
  572. spin_lock(&sbinfo->stat_lock);
  573. if (unlikely(!sbinfo->free_inodes)) {
  574. spin_unlock(&sbinfo->stat_lock);
  575. return 0;
  576. }
  577. sbinfo->free_inodes--;
  578. spin_unlock(&sbinfo->stat_lock);
  579. }
  580. return 1;
  581. }
  582. static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  583. {
  584. if (sbinfo->free_inodes >= 0) {
  585. spin_lock(&sbinfo->stat_lock);
  586. sbinfo->free_inodes++;
  587. spin_unlock(&sbinfo->stat_lock);
  588. }
  589. }
  590. static struct kmem_cache *hugetlbfs_inode_cachep;
  591. static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
  592. {
  593. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
  594. struct hugetlbfs_inode_info *p;
  595. if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
  596. return NULL;
  597. p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
  598. if (unlikely(!p)) {
  599. hugetlbfs_inc_free_inodes(sbinfo);
  600. return NULL;
  601. }
  602. return &p->vfs_inode;
  603. }
  604. static void hugetlbfs_destroy_inode(struct inode *inode)
  605. {
  606. hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
  607. mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
  608. kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
  609. }
  610. static const struct address_space_operations hugetlbfs_aops = {
  611. .readpage = hugetlbfs_readpage,
  612. .write_begin = hugetlbfs_write_begin,
  613. .write_end = hugetlbfs_write_end,
  614. .set_page_dirty = hugetlbfs_set_page_dirty,
  615. };
  616. static void init_once(void *foo)
  617. {
  618. struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
  619. inode_init_once(&ei->vfs_inode);
  620. }
  621. const struct file_operations hugetlbfs_file_operations = {
  622. .read = hugetlbfs_read,
  623. .mmap = hugetlbfs_file_mmap,
  624. .fsync = simple_sync_file,
  625. .get_unmapped_area = hugetlb_get_unmapped_area,
  626. };
  627. static const struct inode_operations hugetlbfs_dir_inode_operations = {
  628. .create = hugetlbfs_create,
  629. .lookup = simple_lookup,
  630. .link = simple_link,
  631. .unlink = simple_unlink,
  632. .symlink = hugetlbfs_symlink,
  633. .mkdir = hugetlbfs_mkdir,
  634. .rmdir = simple_rmdir,
  635. .mknod = hugetlbfs_mknod,
  636. .rename = simple_rename,
  637. .setattr = hugetlbfs_setattr,
  638. };
  639. static const struct inode_operations hugetlbfs_inode_operations = {
  640. .setattr = hugetlbfs_setattr,
  641. };
  642. static const struct super_operations hugetlbfs_ops = {
  643. .alloc_inode = hugetlbfs_alloc_inode,
  644. .destroy_inode = hugetlbfs_destroy_inode,
  645. .statfs = hugetlbfs_statfs,
  646. .delete_inode = hugetlbfs_delete_inode,
  647. .drop_inode = hugetlbfs_drop_inode,
  648. .put_super = hugetlbfs_put_super,
  649. .show_options = generic_show_options,
  650. };
  651. static int
  652. hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
  653. {
  654. char *p, *rest;
  655. substring_t args[MAX_OPT_ARGS];
  656. int option;
  657. unsigned long long size = 0;
  658. enum { NO_SIZE, SIZE_STD, SIZE_PERCENT } setsize = NO_SIZE;
  659. if (!options)
  660. return 0;
  661. while ((p = strsep(&options, ",")) != NULL) {
  662. int token;
  663. if (!*p)
  664. continue;
  665. token = match_token(p, tokens, args);
  666. switch (token) {
  667. case Opt_uid:
  668. if (match_int(&args[0], &option))
  669. goto bad_val;
  670. pconfig->uid = option;
  671. break;
  672. case Opt_gid:
  673. if (match_int(&args[0], &option))
  674. goto bad_val;
  675. pconfig->gid = option;
  676. break;
  677. case Opt_mode:
  678. if (match_octal(&args[0], &option))
  679. goto bad_val;
  680. pconfig->mode = option & 01777U;
  681. break;
  682. case Opt_size: {
  683. /* memparse() will accept a K/M/G without a digit */
  684. if (!isdigit(*args[0].from))
  685. goto bad_val;
  686. size = memparse(args[0].from, &rest);
  687. setsize = SIZE_STD;
  688. if (*rest == '%')
  689. setsize = SIZE_PERCENT;
  690. break;
  691. }
  692. case Opt_nr_inodes:
  693. /* memparse() will accept a K/M/G without a digit */
  694. if (!isdigit(*args[0].from))
  695. goto bad_val;
  696. pconfig->nr_inodes = memparse(args[0].from, &rest);
  697. break;
  698. case Opt_pagesize: {
  699. unsigned long ps;
  700. ps = memparse(args[0].from, &rest);
  701. pconfig->hstate = size_to_hstate(ps);
  702. if (!pconfig->hstate) {
  703. printk(KERN_ERR
  704. "hugetlbfs: Unsupported page size %lu MB\n",
  705. ps >> 20);
  706. return -EINVAL;
  707. }
  708. break;
  709. }
  710. default:
  711. printk(KERN_ERR "hugetlbfs: Bad mount option: \"%s\"\n",
  712. p);
  713. return -EINVAL;
  714. break;
  715. }
  716. }
  717. /* Do size after hstate is set up */
  718. if (setsize > NO_SIZE) {
  719. struct hstate *h = pconfig->hstate;
  720. if (setsize == SIZE_PERCENT) {
  721. size <<= huge_page_shift(h);
  722. size *= h->max_huge_pages;
  723. do_div(size, 100);
  724. }
  725. pconfig->nr_blocks = (size >> huge_page_shift(h));
  726. }
  727. return 0;
  728. bad_val:
  729. printk(KERN_ERR "hugetlbfs: Bad value '%s' for mount option '%s'\n",
  730. args[0].from, p);
  731. return 1;
  732. }
  733. static int
  734. hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
  735. {
  736. struct inode * inode;
  737. struct dentry * root;
  738. int ret;
  739. struct hugetlbfs_config config;
  740. struct hugetlbfs_sb_info *sbinfo;
  741. save_mount_options(sb, data);
  742. config.nr_blocks = -1; /* No limit on size by default */
  743. config.nr_inodes = -1; /* No limit on number of inodes by default */
  744. config.uid = current_fsuid();
  745. config.gid = current_fsgid();
  746. config.mode = 0755;
  747. config.hstate = &default_hstate;
  748. ret = hugetlbfs_parse_options(data, &config);
  749. if (ret)
  750. return ret;
  751. sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
  752. if (!sbinfo)
  753. return -ENOMEM;
  754. sb->s_fs_info = sbinfo;
  755. sbinfo->hstate = config.hstate;
  756. spin_lock_init(&sbinfo->stat_lock);
  757. sbinfo->max_blocks = config.nr_blocks;
  758. sbinfo->free_blocks = config.nr_blocks;
  759. sbinfo->max_inodes = config.nr_inodes;
  760. sbinfo->free_inodes = config.nr_inodes;
  761. sb->s_maxbytes = MAX_LFS_FILESIZE;
  762. sb->s_blocksize = huge_page_size(config.hstate);
  763. sb->s_blocksize_bits = huge_page_shift(config.hstate);
  764. sb->s_magic = HUGETLBFS_MAGIC;
  765. sb->s_op = &hugetlbfs_ops;
  766. sb->s_time_gran = 1;
  767. inode = hugetlbfs_get_inode(sb, config.uid, config.gid,
  768. S_IFDIR | config.mode, 0);
  769. if (!inode)
  770. goto out_free;
  771. root = d_alloc_root(inode);
  772. if (!root) {
  773. iput(inode);
  774. goto out_free;
  775. }
  776. sb->s_root = root;
  777. return 0;
  778. out_free:
  779. kfree(sbinfo);
  780. return -ENOMEM;
  781. }
  782. int hugetlb_get_quota(struct address_space *mapping, long delta)
  783. {
  784. int ret = 0;
  785. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  786. if (sbinfo->free_blocks > -1) {
  787. spin_lock(&sbinfo->stat_lock);
  788. if (sbinfo->free_blocks - delta >= 0)
  789. sbinfo->free_blocks -= delta;
  790. else
  791. ret = -ENOMEM;
  792. spin_unlock(&sbinfo->stat_lock);
  793. }
  794. return ret;
  795. }
  796. void hugetlb_put_quota(struct address_space *mapping, long delta)
  797. {
  798. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  799. if (sbinfo->free_blocks > -1) {
  800. spin_lock(&sbinfo->stat_lock);
  801. sbinfo->free_blocks += delta;
  802. spin_unlock(&sbinfo->stat_lock);
  803. }
  804. }
  805. static int hugetlbfs_get_sb(struct file_system_type *fs_type,
  806. int flags, const char *dev_name, void *data, struct vfsmount *mnt)
  807. {
  808. return get_sb_nodev(fs_type, flags, data, hugetlbfs_fill_super, mnt);
  809. }
  810. static struct file_system_type hugetlbfs_fs_type = {
  811. .name = "hugetlbfs",
  812. .get_sb = hugetlbfs_get_sb,
  813. .kill_sb = kill_litter_super,
  814. };
  815. static struct vfsmount *hugetlbfs_vfsmount;
  816. static int can_do_hugetlb_shm(void)
  817. {
  818. return likely(capable(CAP_IPC_LOCK) ||
  819. in_group_p(sysctl_hugetlb_shm_group) ||
  820. can_do_mlock());
  821. }
  822. struct file *hugetlb_file_setup(const char *name, size_t size)
  823. {
  824. int error = -ENOMEM;
  825. struct file *file;
  826. struct inode *inode;
  827. struct dentry *dentry, *root;
  828. struct qstr quick_string;
  829. struct user_struct *user = current_user();
  830. if (!hugetlbfs_vfsmount)
  831. return ERR_PTR(-ENOENT);
  832. if (!can_do_hugetlb_shm())
  833. return ERR_PTR(-EPERM);
  834. if (!user_shm_lock(size, user))
  835. return ERR_PTR(-ENOMEM);
  836. root = hugetlbfs_vfsmount->mnt_root;
  837. quick_string.name = name;
  838. quick_string.len = strlen(quick_string.name);
  839. quick_string.hash = 0;
  840. dentry = d_alloc(root, &quick_string);
  841. if (!dentry)
  842. goto out_shm_unlock;
  843. error = -ENOSPC;
  844. inode = hugetlbfs_get_inode(root->d_sb, current_fsuid(),
  845. current_fsgid(), S_IFREG | S_IRWXUGO, 0);
  846. if (!inode)
  847. goto out_dentry;
  848. error = -ENOMEM;
  849. if (hugetlb_reserve_pages(inode, 0,
  850. size >> huge_page_shift(hstate_inode(inode)), NULL))
  851. goto out_inode;
  852. d_instantiate(dentry, inode);
  853. inode->i_size = size;
  854. inode->i_nlink = 0;
  855. error = -ENFILE;
  856. file = alloc_file(hugetlbfs_vfsmount, dentry,
  857. FMODE_WRITE | FMODE_READ,
  858. &hugetlbfs_file_operations);
  859. if (!file)
  860. goto out_dentry; /* inode is already attached */
  861. return file;
  862. out_inode:
  863. iput(inode);
  864. out_dentry:
  865. dput(dentry);
  866. out_shm_unlock:
  867. user_shm_unlock(size, user);
  868. return ERR_PTR(error);
  869. }
  870. static int __init init_hugetlbfs_fs(void)
  871. {
  872. int error;
  873. struct vfsmount *vfsmount;
  874. error = bdi_init(&hugetlbfs_backing_dev_info);
  875. if (error)
  876. return error;
  877. hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
  878. sizeof(struct hugetlbfs_inode_info),
  879. 0, 0, init_once);
  880. if (hugetlbfs_inode_cachep == NULL)
  881. goto out2;
  882. error = register_filesystem(&hugetlbfs_fs_type);
  883. if (error)
  884. goto out;
  885. vfsmount = kern_mount(&hugetlbfs_fs_type);
  886. if (!IS_ERR(vfsmount)) {
  887. hugetlbfs_vfsmount = vfsmount;
  888. return 0;
  889. }
  890. error = PTR_ERR(vfsmount);
  891. out:
  892. if (error)
  893. kmem_cache_destroy(hugetlbfs_inode_cachep);
  894. out2:
  895. bdi_destroy(&hugetlbfs_backing_dev_info);
  896. return error;
  897. }
  898. static void __exit exit_hugetlbfs_fs(void)
  899. {
  900. kmem_cache_destroy(hugetlbfs_inode_cachep);
  901. unregister_filesystem(&hugetlbfs_fs_type);
  902. bdi_destroy(&hugetlbfs_backing_dev_info);
  903. }
  904. module_init(init_hugetlbfs_fs)
  905. module_exit(exit_hugetlbfs_fs)
  906. MODULE_LICENSE("GPL");