x86.c 102 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/msr.h>
  39. #include <asm/desc.h>
  40. #include <asm/mtrr.h>
  41. #define MAX_IO_MSRS 256
  42. #define CR0_RESERVED_BITS \
  43. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  44. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  45. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  46. #define CR4_RESERVED_BITS \
  47. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  48. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  49. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  50. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  51. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  52. /* EFER defaults:
  53. * - enable syscall per default because its emulated by KVM
  54. * - enable LME and LMA per default on 64 bit KVM
  55. */
  56. #ifdef CONFIG_X86_64
  57. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  58. #else
  59. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  60. #endif
  61. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  62. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  63. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  64. struct kvm_cpuid_entry2 __user *entries);
  65. struct kvm_x86_ops *kvm_x86_ops;
  66. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  67. struct kvm_stats_debugfs_item debugfs_entries[] = {
  68. { "pf_fixed", VCPU_STAT(pf_fixed) },
  69. { "pf_guest", VCPU_STAT(pf_guest) },
  70. { "tlb_flush", VCPU_STAT(tlb_flush) },
  71. { "invlpg", VCPU_STAT(invlpg) },
  72. { "exits", VCPU_STAT(exits) },
  73. { "io_exits", VCPU_STAT(io_exits) },
  74. { "mmio_exits", VCPU_STAT(mmio_exits) },
  75. { "signal_exits", VCPU_STAT(signal_exits) },
  76. { "irq_window", VCPU_STAT(irq_window_exits) },
  77. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  78. { "halt_exits", VCPU_STAT(halt_exits) },
  79. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  80. { "hypercalls", VCPU_STAT(hypercalls) },
  81. { "request_irq", VCPU_STAT(request_irq_exits) },
  82. { "request_nmi", VCPU_STAT(request_nmi_exits) },
  83. { "irq_exits", VCPU_STAT(irq_exits) },
  84. { "host_state_reload", VCPU_STAT(host_state_reload) },
  85. { "efer_reload", VCPU_STAT(efer_reload) },
  86. { "fpu_reload", VCPU_STAT(fpu_reload) },
  87. { "insn_emulation", VCPU_STAT(insn_emulation) },
  88. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  89. { "irq_injections", VCPU_STAT(irq_injections) },
  90. { "nmi_injections", VCPU_STAT(nmi_injections) },
  91. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  92. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  93. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  94. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  95. { "mmu_flooded", VM_STAT(mmu_flooded) },
  96. { "mmu_recycled", VM_STAT(mmu_recycled) },
  97. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  98. { "mmu_unsync", VM_STAT(mmu_unsync) },
  99. { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
  100. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  101. { "largepages", VM_STAT(lpages) },
  102. { NULL }
  103. };
  104. unsigned long segment_base(u16 selector)
  105. {
  106. struct descriptor_table gdt;
  107. struct desc_struct *d;
  108. unsigned long table_base;
  109. unsigned long v;
  110. if (selector == 0)
  111. return 0;
  112. asm("sgdt %0" : "=m"(gdt));
  113. table_base = gdt.base;
  114. if (selector & 4) { /* from ldt */
  115. u16 ldt_selector;
  116. asm("sldt %0" : "=g"(ldt_selector));
  117. table_base = segment_base(ldt_selector);
  118. }
  119. d = (struct desc_struct *)(table_base + (selector & ~7));
  120. v = d->base0 | ((unsigned long)d->base1 << 16) |
  121. ((unsigned long)d->base2 << 24);
  122. #ifdef CONFIG_X86_64
  123. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  124. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  125. #endif
  126. return v;
  127. }
  128. EXPORT_SYMBOL_GPL(segment_base);
  129. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  130. {
  131. if (irqchip_in_kernel(vcpu->kvm))
  132. return vcpu->arch.apic_base;
  133. else
  134. return vcpu->arch.apic_base;
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  137. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  138. {
  139. /* TODO: reserve bits check */
  140. if (irqchip_in_kernel(vcpu->kvm))
  141. kvm_lapic_set_base(vcpu, data);
  142. else
  143. vcpu->arch.apic_base = data;
  144. }
  145. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  146. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  147. {
  148. WARN_ON(vcpu->arch.exception.pending);
  149. vcpu->arch.exception.pending = true;
  150. vcpu->arch.exception.has_error_code = false;
  151. vcpu->arch.exception.nr = nr;
  152. }
  153. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  154. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  155. u32 error_code)
  156. {
  157. ++vcpu->stat.pf_guest;
  158. if (vcpu->arch.exception.pending) {
  159. if (vcpu->arch.exception.nr == PF_VECTOR) {
  160. printk(KERN_DEBUG "kvm: inject_page_fault:"
  161. " double fault 0x%lx\n", addr);
  162. vcpu->arch.exception.nr = DF_VECTOR;
  163. vcpu->arch.exception.error_code = 0;
  164. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  165. /* triple fault -> shutdown */
  166. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  167. }
  168. return;
  169. }
  170. vcpu->arch.cr2 = addr;
  171. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  172. }
  173. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  174. {
  175. vcpu->arch.nmi_pending = 1;
  176. }
  177. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  178. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  179. {
  180. WARN_ON(vcpu->arch.exception.pending);
  181. vcpu->arch.exception.pending = true;
  182. vcpu->arch.exception.has_error_code = true;
  183. vcpu->arch.exception.nr = nr;
  184. vcpu->arch.exception.error_code = error_code;
  185. }
  186. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  187. static void __queue_exception(struct kvm_vcpu *vcpu)
  188. {
  189. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  190. vcpu->arch.exception.has_error_code,
  191. vcpu->arch.exception.error_code);
  192. }
  193. /*
  194. * Load the pae pdptrs. Return true is they are all valid.
  195. */
  196. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  197. {
  198. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  199. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  200. int i;
  201. int ret;
  202. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  203. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  204. offset * sizeof(u64), sizeof(pdpte));
  205. if (ret < 0) {
  206. ret = 0;
  207. goto out;
  208. }
  209. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  210. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  211. ret = 0;
  212. goto out;
  213. }
  214. }
  215. ret = 1;
  216. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  217. out:
  218. return ret;
  219. }
  220. EXPORT_SYMBOL_GPL(load_pdptrs);
  221. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  222. {
  223. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  224. bool changed = true;
  225. int r;
  226. if (is_long_mode(vcpu) || !is_pae(vcpu))
  227. return false;
  228. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  229. if (r < 0)
  230. goto out;
  231. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  232. out:
  233. return changed;
  234. }
  235. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  236. {
  237. if (cr0 & CR0_RESERVED_BITS) {
  238. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  239. cr0, vcpu->arch.cr0);
  240. kvm_inject_gp(vcpu, 0);
  241. return;
  242. }
  243. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  244. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  245. kvm_inject_gp(vcpu, 0);
  246. return;
  247. }
  248. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  249. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  250. "and a clear PE flag\n");
  251. kvm_inject_gp(vcpu, 0);
  252. return;
  253. }
  254. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  255. #ifdef CONFIG_X86_64
  256. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  257. int cs_db, cs_l;
  258. if (!is_pae(vcpu)) {
  259. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  260. "in long mode while PAE is disabled\n");
  261. kvm_inject_gp(vcpu, 0);
  262. return;
  263. }
  264. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  265. if (cs_l) {
  266. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  267. "in long mode while CS.L == 1\n");
  268. kvm_inject_gp(vcpu, 0);
  269. return;
  270. }
  271. } else
  272. #endif
  273. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  274. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  275. "reserved bits\n");
  276. kvm_inject_gp(vcpu, 0);
  277. return;
  278. }
  279. }
  280. kvm_x86_ops->set_cr0(vcpu, cr0);
  281. vcpu->arch.cr0 = cr0;
  282. kvm_mmu_sync_global(vcpu);
  283. kvm_mmu_reset_context(vcpu);
  284. return;
  285. }
  286. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  287. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  288. {
  289. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  290. KVMTRACE_1D(LMSW, vcpu,
  291. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  292. handler);
  293. }
  294. EXPORT_SYMBOL_GPL(kvm_lmsw);
  295. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  296. {
  297. if (cr4 & CR4_RESERVED_BITS) {
  298. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  299. kvm_inject_gp(vcpu, 0);
  300. return;
  301. }
  302. if (is_long_mode(vcpu)) {
  303. if (!(cr4 & X86_CR4_PAE)) {
  304. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  305. "in long mode\n");
  306. kvm_inject_gp(vcpu, 0);
  307. return;
  308. }
  309. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  310. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  311. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  312. kvm_inject_gp(vcpu, 0);
  313. return;
  314. }
  315. if (cr4 & X86_CR4_VMXE) {
  316. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  317. kvm_inject_gp(vcpu, 0);
  318. return;
  319. }
  320. kvm_x86_ops->set_cr4(vcpu, cr4);
  321. vcpu->arch.cr4 = cr4;
  322. kvm_mmu_sync_global(vcpu);
  323. kvm_mmu_reset_context(vcpu);
  324. }
  325. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  326. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  327. {
  328. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  329. kvm_mmu_sync_roots(vcpu);
  330. kvm_mmu_flush_tlb(vcpu);
  331. return;
  332. }
  333. if (is_long_mode(vcpu)) {
  334. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  335. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  336. kvm_inject_gp(vcpu, 0);
  337. return;
  338. }
  339. } else {
  340. if (is_pae(vcpu)) {
  341. if (cr3 & CR3_PAE_RESERVED_BITS) {
  342. printk(KERN_DEBUG
  343. "set_cr3: #GP, reserved bits\n");
  344. kvm_inject_gp(vcpu, 0);
  345. return;
  346. }
  347. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  348. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  349. "reserved bits\n");
  350. kvm_inject_gp(vcpu, 0);
  351. return;
  352. }
  353. }
  354. /*
  355. * We don't check reserved bits in nonpae mode, because
  356. * this isn't enforced, and VMware depends on this.
  357. */
  358. }
  359. /*
  360. * Does the new cr3 value map to physical memory? (Note, we
  361. * catch an invalid cr3 even in real-mode, because it would
  362. * cause trouble later on when we turn on paging anyway.)
  363. *
  364. * A real CPU would silently accept an invalid cr3 and would
  365. * attempt to use it - with largely undefined (and often hard
  366. * to debug) behavior on the guest side.
  367. */
  368. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  369. kvm_inject_gp(vcpu, 0);
  370. else {
  371. vcpu->arch.cr3 = cr3;
  372. vcpu->arch.mmu.new_cr3(vcpu);
  373. }
  374. }
  375. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  376. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  377. {
  378. if (cr8 & CR8_RESERVED_BITS) {
  379. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  380. kvm_inject_gp(vcpu, 0);
  381. return;
  382. }
  383. if (irqchip_in_kernel(vcpu->kvm))
  384. kvm_lapic_set_tpr(vcpu, cr8);
  385. else
  386. vcpu->arch.cr8 = cr8;
  387. }
  388. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  389. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  390. {
  391. if (irqchip_in_kernel(vcpu->kvm))
  392. return kvm_lapic_get_cr8(vcpu);
  393. else
  394. return vcpu->arch.cr8;
  395. }
  396. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  397. /*
  398. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  399. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  400. *
  401. * This list is modified at module load time to reflect the
  402. * capabilities of the host cpu.
  403. */
  404. static u32 msrs_to_save[] = {
  405. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  406. MSR_K6_STAR,
  407. #ifdef CONFIG_X86_64
  408. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  409. #endif
  410. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  411. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT
  412. };
  413. static unsigned num_msrs_to_save;
  414. static u32 emulated_msrs[] = {
  415. MSR_IA32_MISC_ENABLE,
  416. };
  417. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  418. {
  419. if (efer & efer_reserved_bits) {
  420. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  421. efer);
  422. kvm_inject_gp(vcpu, 0);
  423. return;
  424. }
  425. if (is_paging(vcpu)
  426. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  427. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  428. kvm_inject_gp(vcpu, 0);
  429. return;
  430. }
  431. kvm_x86_ops->set_efer(vcpu, efer);
  432. efer &= ~EFER_LMA;
  433. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  434. vcpu->arch.shadow_efer = efer;
  435. }
  436. void kvm_enable_efer_bits(u64 mask)
  437. {
  438. efer_reserved_bits &= ~mask;
  439. }
  440. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  441. /*
  442. * Writes msr value into into the appropriate "register".
  443. * Returns 0 on success, non-0 otherwise.
  444. * Assumes vcpu_load() was already called.
  445. */
  446. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  447. {
  448. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  449. }
  450. /*
  451. * Adapt set_msr() to msr_io()'s calling convention
  452. */
  453. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  454. {
  455. return kvm_set_msr(vcpu, index, *data);
  456. }
  457. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  458. {
  459. static int version;
  460. struct pvclock_wall_clock wc;
  461. struct timespec now, sys, boot;
  462. if (!wall_clock)
  463. return;
  464. version++;
  465. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  466. /*
  467. * The guest calculates current wall clock time by adding
  468. * system time (updated by kvm_write_guest_time below) to the
  469. * wall clock specified here. guest system time equals host
  470. * system time for us, thus we must fill in host boot time here.
  471. */
  472. now = current_kernel_time();
  473. ktime_get_ts(&sys);
  474. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  475. wc.sec = boot.tv_sec;
  476. wc.nsec = boot.tv_nsec;
  477. wc.version = version;
  478. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  479. version++;
  480. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  481. }
  482. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  483. {
  484. uint32_t quotient, remainder;
  485. /* Don't try to replace with do_div(), this one calculates
  486. * "(dividend << 32) / divisor" */
  487. __asm__ ( "divl %4"
  488. : "=a" (quotient), "=d" (remainder)
  489. : "0" (0), "1" (dividend), "r" (divisor) );
  490. return quotient;
  491. }
  492. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  493. {
  494. uint64_t nsecs = 1000000000LL;
  495. int32_t shift = 0;
  496. uint64_t tps64;
  497. uint32_t tps32;
  498. tps64 = tsc_khz * 1000LL;
  499. while (tps64 > nsecs*2) {
  500. tps64 >>= 1;
  501. shift--;
  502. }
  503. tps32 = (uint32_t)tps64;
  504. while (tps32 <= (uint32_t)nsecs) {
  505. tps32 <<= 1;
  506. shift++;
  507. }
  508. hv_clock->tsc_shift = shift;
  509. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  510. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  511. __func__, tsc_khz, hv_clock->tsc_shift,
  512. hv_clock->tsc_to_system_mul);
  513. }
  514. static void kvm_write_guest_time(struct kvm_vcpu *v)
  515. {
  516. struct timespec ts;
  517. unsigned long flags;
  518. struct kvm_vcpu_arch *vcpu = &v->arch;
  519. void *shared_kaddr;
  520. if ((!vcpu->time_page))
  521. return;
  522. if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
  523. kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
  524. vcpu->hv_clock_tsc_khz = tsc_khz;
  525. }
  526. /* Keep irq disabled to prevent changes to the clock */
  527. local_irq_save(flags);
  528. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  529. &vcpu->hv_clock.tsc_timestamp);
  530. ktime_get_ts(&ts);
  531. local_irq_restore(flags);
  532. /* With all the info we got, fill in the values */
  533. vcpu->hv_clock.system_time = ts.tv_nsec +
  534. (NSEC_PER_SEC * (u64)ts.tv_sec);
  535. /*
  536. * The interface expects us to write an even number signaling that the
  537. * update is finished. Since the guest won't see the intermediate
  538. * state, we just increase by 2 at the end.
  539. */
  540. vcpu->hv_clock.version += 2;
  541. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  542. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  543. sizeof(vcpu->hv_clock));
  544. kunmap_atomic(shared_kaddr, KM_USER0);
  545. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  546. }
  547. static bool msr_mtrr_valid(unsigned msr)
  548. {
  549. switch (msr) {
  550. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  551. case MSR_MTRRfix64K_00000:
  552. case MSR_MTRRfix16K_80000:
  553. case MSR_MTRRfix16K_A0000:
  554. case MSR_MTRRfix4K_C0000:
  555. case MSR_MTRRfix4K_C8000:
  556. case MSR_MTRRfix4K_D0000:
  557. case MSR_MTRRfix4K_D8000:
  558. case MSR_MTRRfix4K_E0000:
  559. case MSR_MTRRfix4K_E8000:
  560. case MSR_MTRRfix4K_F0000:
  561. case MSR_MTRRfix4K_F8000:
  562. case MSR_MTRRdefType:
  563. case MSR_IA32_CR_PAT:
  564. return true;
  565. case 0x2f8:
  566. return true;
  567. }
  568. return false;
  569. }
  570. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  571. {
  572. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  573. if (!msr_mtrr_valid(msr))
  574. return 1;
  575. if (msr == MSR_MTRRdefType) {
  576. vcpu->arch.mtrr_state.def_type = data;
  577. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  578. } else if (msr == MSR_MTRRfix64K_00000)
  579. p[0] = data;
  580. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  581. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  582. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  583. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  584. else if (msr == MSR_IA32_CR_PAT)
  585. vcpu->arch.pat = data;
  586. else { /* Variable MTRRs */
  587. int idx, is_mtrr_mask;
  588. u64 *pt;
  589. idx = (msr - 0x200) / 2;
  590. is_mtrr_mask = msr - 0x200 - 2 * idx;
  591. if (!is_mtrr_mask)
  592. pt =
  593. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  594. else
  595. pt =
  596. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  597. *pt = data;
  598. }
  599. kvm_mmu_reset_context(vcpu);
  600. return 0;
  601. }
  602. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  603. {
  604. switch (msr) {
  605. case MSR_EFER:
  606. set_efer(vcpu, data);
  607. break;
  608. case MSR_IA32_MC0_STATUS:
  609. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  610. __func__, data);
  611. break;
  612. case MSR_IA32_MCG_STATUS:
  613. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  614. __func__, data);
  615. break;
  616. case MSR_IA32_MCG_CTL:
  617. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  618. __func__, data);
  619. break;
  620. case MSR_IA32_DEBUGCTLMSR:
  621. if (!data) {
  622. /* We support the non-activated case already */
  623. break;
  624. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  625. /* Values other than LBR and BTF are vendor-specific,
  626. thus reserved and should throw a #GP */
  627. return 1;
  628. }
  629. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  630. __func__, data);
  631. break;
  632. case MSR_IA32_UCODE_REV:
  633. case MSR_IA32_UCODE_WRITE:
  634. break;
  635. case 0x200 ... 0x2ff:
  636. return set_msr_mtrr(vcpu, msr, data);
  637. case MSR_IA32_APICBASE:
  638. kvm_set_apic_base(vcpu, data);
  639. break;
  640. case MSR_IA32_MISC_ENABLE:
  641. vcpu->arch.ia32_misc_enable_msr = data;
  642. break;
  643. case MSR_KVM_WALL_CLOCK:
  644. vcpu->kvm->arch.wall_clock = data;
  645. kvm_write_wall_clock(vcpu->kvm, data);
  646. break;
  647. case MSR_KVM_SYSTEM_TIME: {
  648. if (vcpu->arch.time_page) {
  649. kvm_release_page_dirty(vcpu->arch.time_page);
  650. vcpu->arch.time_page = NULL;
  651. }
  652. vcpu->arch.time = data;
  653. /* we verify if the enable bit is set... */
  654. if (!(data & 1))
  655. break;
  656. /* ...but clean it before doing the actual write */
  657. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  658. vcpu->arch.time_page =
  659. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  660. if (is_error_page(vcpu->arch.time_page)) {
  661. kvm_release_page_clean(vcpu->arch.time_page);
  662. vcpu->arch.time_page = NULL;
  663. }
  664. kvm_write_guest_time(vcpu);
  665. break;
  666. }
  667. default:
  668. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  669. return 1;
  670. }
  671. return 0;
  672. }
  673. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  674. /*
  675. * Reads an msr value (of 'msr_index') into 'pdata'.
  676. * Returns 0 on success, non-0 otherwise.
  677. * Assumes vcpu_load() was already called.
  678. */
  679. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  680. {
  681. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  682. }
  683. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  684. {
  685. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  686. if (!msr_mtrr_valid(msr))
  687. return 1;
  688. if (msr == MSR_MTRRdefType)
  689. *pdata = vcpu->arch.mtrr_state.def_type +
  690. (vcpu->arch.mtrr_state.enabled << 10);
  691. else if (msr == MSR_MTRRfix64K_00000)
  692. *pdata = p[0];
  693. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  694. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  695. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  696. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  697. else if (msr == MSR_IA32_CR_PAT)
  698. *pdata = vcpu->arch.pat;
  699. else { /* Variable MTRRs */
  700. int idx, is_mtrr_mask;
  701. u64 *pt;
  702. idx = (msr - 0x200) / 2;
  703. is_mtrr_mask = msr - 0x200 - 2 * idx;
  704. if (!is_mtrr_mask)
  705. pt =
  706. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  707. else
  708. pt =
  709. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  710. *pdata = *pt;
  711. }
  712. return 0;
  713. }
  714. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  715. {
  716. u64 data;
  717. switch (msr) {
  718. case 0xc0010010: /* SYSCFG */
  719. case 0xc0010015: /* HWCR */
  720. case MSR_IA32_PLATFORM_ID:
  721. case MSR_IA32_P5_MC_ADDR:
  722. case MSR_IA32_P5_MC_TYPE:
  723. case MSR_IA32_MC0_CTL:
  724. case MSR_IA32_MCG_STATUS:
  725. case MSR_IA32_MCG_CAP:
  726. case MSR_IA32_MCG_CTL:
  727. case MSR_IA32_MC0_MISC:
  728. case MSR_IA32_MC0_MISC+4:
  729. case MSR_IA32_MC0_MISC+8:
  730. case MSR_IA32_MC0_MISC+12:
  731. case MSR_IA32_MC0_MISC+16:
  732. case MSR_IA32_MC0_MISC+20:
  733. case MSR_IA32_UCODE_REV:
  734. case MSR_IA32_EBL_CR_POWERON:
  735. case MSR_IA32_DEBUGCTLMSR:
  736. case MSR_IA32_LASTBRANCHFROMIP:
  737. case MSR_IA32_LASTBRANCHTOIP:
  738. case MSR_IA32_LASTINTFROMIP:
  739. case MSR_IA32_LASTINTTOIP:
  740. data = 0;
  741. break;
  742. case MSR_MTRRcap:
  743. data = 0x500 | KVM_NR_VAR_MTRR;
  744. break;
  745. case 0x200 ... 0x2ff:
  746. return get_msr_mtrr(vcpu, msr, pdata);
  747. case 0xcd: /* fsb frequency */
  748. data = 3;
  749. break;
  750. case MSR_IA32_APICBASE:
  751. data = kvm_get_apic_base(vcpu);
  752. break;
  753. case MSR_IA32_MISC_ENABLE:
  754. data = vcpu->arch.ia32_misc_enable_msr;
  755. break;
  756. case MSR_IA32_PERF_STATUS:
  757. /* TSC increment by tick */
  758. data = 1000ULL;
  759. /* CPU multiplier */
  760. data |= (((uint64_t)4ULL) << 40);
  761. break;
  762. case MSR_EFER:
  763. data = vcpu->arch.shadow_efer;
  764. break;
  765. case MSR_KVM_WALL_CLOCK:
  766. data = vcpu->kvm->arch.wall_clock;
  767. break;
  768. case MSR_KVM_SYSTEM_TIME:
  769. data = vcpu->arch.time;
  770. break;
  771. default:
  772. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  773. return 1;
  774. }
  775. *pdata = data;
  776. return 0;
  777. }
  778. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  779. /*
  780. * Read or write a bunch of msrs. All parameters are kernel addresses.
  781. *
  782. * @return number of msrs set successfully.
  783. */
  784. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  785. struct kvm_msr_entry *entries,
  786. int (*do_msr)(struct kvm_vcpu *vcpu,
  787. unsigned index, u64 *data))
  788. {
  789. int i;
  790. vcpu_load(vcpu);
  791. down_read(&vcpu->kvm->slots_lock);
  792. for (i = 0; i < msrs->nmsrs; ++i)
  793. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  794. break;
  795. up_read(&vcpu->kvm->slots_lock);
  796. vcpu_put(vcpu);
  797. return i;
  798. }
  799. /*
  800. * Read or write a bunch of msrs. Parameters are user addresses.
  801. *
  802. * @return number of msrs set successfully.
  803. */
  804. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  805. int (*do_msr)(struct kvm_vcpu *vcpu,
  806. unsigned index, u64 *data),
  807. int writeback)
  808. {
  809. struct kvm_msrs msrs;
  810. struct kvm_msr_entry *entries;
  811. int r, n;
  812. unsigned size;
  813. r = -EFAULT;
  814. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  815. goto out;
  816. r = -E2BIG;
  817. if (msrs.nmsrs >= MAX_IO_MSRS)
  818. goto out;
  819. r = -ENOMEM;
  820. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  821. entries = vmalloc(size);
  822. if (!entries)
  823. goto out;
  824. r = -EFAULT;
  825. if (copy_from_user(entries, user_msrs->entries, size))
  826. goto out_free;
  827. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  828. if (r < 0)
  829. goto out_free;
  830. r = -EFAULT;
  831. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  832. goto out_free;
  833. r = n;
  834. out_free:
  835. vfree(entries);
  836. out:
  837. return r;
  838. }
  839. int kvm_dev_ioctl_check_extension(long ext)
  840. {
  841. int r;
  842. switch (ext) {
  843. case KVM_CAP_IRQCHIP:
  844. case KVM_CAP_HLT:
  845. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  846. case KVM_CAP_SET_TSS_ADDR:
  847. case KVM_CAP_EXT_CPUID:
  848. case KVM_CAP_CLOCKSOURCE:
  849. case KVM_CAP_PIT:
  850. case KVM_CAP_NOP_IO_DELAY:
  851. case KVM_CAP_MP_STATE:
  852. case KVM_CAP_SYNC_MMU:
  853. r = 1;
  854. break;
  855. case KVM_CAP_COALESCED_MMIO:
  856. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  857. break;
  858. case KVM_CAP_VAPIC:
  859. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  860. break;
  861. case KVM_CAP_NR_VCPUS:
  862. r = KVM_MAX_VCPUS;
  863. break;
  864. case KVM_CAP_NR_MEMSLOTS:
  865. r = KVM_MEMORY_SLOTS;
  866. break;
  867. case KVM_CAP_PV_MMU:
  868. r = !tdp_enabled;
  869. break;
  870. case KVM_CAP_IOMMU:
  871. r = iommu_found();
  872. break;
  873. default:
  874. r = 0;
  875. break;
  876. }
  877. return r;
  878. }
  879. long kvm_arch_dev_ioctl(struct file *filp,
  880. unsigned int ioctl, unsigned long arg)
  881. {
  882. void __user *argp = (void __user *)arg;
  883. long r;
  884. switch (ioctl) {
  885. case KVM_GET_MSR_INDEX_LIST: {
  886. struct kvm_msr_list __user *user_msr_list = argp;
  887. struct kvm_msr_list msr_list;
  888. unsigned n;
  889. r = -EFAULT;
  890. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  891. goto out;
  892. n = msr_list.nmsrs;
  893. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  894. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  895. goto out;
  896. r = -E2BIG;
  897. if (n < num_msrs_to_save)
  898. goto out;
  899. r = -EFAULT;
  900. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  901. num_msrs_to_save * sizeof(u32)))
  902. goto out;
  903. if (copy_to_user(user_msr_list->indices
  904. + num_msrs_to_save * sizeof(u32),
  905. &emulated_msrs,
  906. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  907. goto out;
  908. r = 0;
  909. break;
  910. }
  911. case KVM_GET_SUPPORTED_CPUID: {
  912. struct kvm_cpuid2 __user *cpuid_arg = argp;
  913. struct kvm_cpuid2 cpuid;
  914. r = -EFAULT;
  915. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  916. goto out;
  917. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  918. cpuid_arg->entries);
  919. if (r)
  920. goto out;
  921. r = -EFAULT;
  922. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  923. goto out;
  924. r = 0;
  925. break;
  926. }
  927. default:
  928. r = -EINVAL;
  929. }
  930. out:
  931. return r;
  932. }
  933. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  934. {
  935. kvm_x86_ops->vcpu_load(vcpu, cpu);
  936. kvm_write_guest_time(vcpu);
  937. }
  938. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  939. {
  940. kvm_x86_ops->vcpu_put(vcpu);
  941. kvm_put_guest_fpu(vcpu);
  942. }
  943. static int is_efer_nx(void)
  944. {
  945. u64 efer;
  946. rdmsrl(MSR_EFER, efer);
  947. return efer & EFER_NX;
  948. }
  949. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  950. {
  951. int i;
  952. struct kvm_cpuid_entry2 *e, *entry;
  953. entry = NULL;
  954. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  955. e = &vcpu->arch.cpuid_entries[i];
  956. if (e->function == 0x80000001) {
  957. entry = e;
  958. break;
  959. }
  960. }
  961. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  962. entry->edx &= ~(1 << 20);
  963. printk(KERN_INFO "kvm: guest NX capability removed\n");
  964. }
  965. }
  966. /* when an old userspace process fills a new kernel module */
  967. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  968. struct kvm_cpuid *cpuid,
  969. struct kvm_cpuid_entry __user *entries)
  970. {
  971. int r, i;
  972. struct kvm_cpuid_entry *cpuid_entries;
  973. r = -E2BIG;
  974. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  975. goto out;
  976. r = -ENOMEM;
  977. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  978. if (!cpuid_entries)
  979. goto out;
  980. r = -EFAULT;
  981. if (copy_from_user(cpuid_entries, entries,
  982. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  983. goto out_free;
  984. for (i = 0; i < cpuid->nent; i++) {
  985. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  986. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  987. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  988. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  989. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  990. vcpu->arch.cpuid_entries[i].index = 0;
  991. vcpu->arch.cpuid_entries[i].flags = 0;
  992. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  993. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  994. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  995. }
  996. vcpu->arch.cpuid_nent = cpuid->nent;
  997. cpuid_fix_nx_cap(vcpu);
  998. r = 0;
  999. out_free:
  1000. vfree(cpuid_entries);
  1001. out:
  1002. return r;
  1003. }
  1004. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1005. struct kvm_cpuid2 *cpuid,
  1006. struct kvm_cpuid_entry2 __user *entries)
  1007. {
  1008. int r;
  1009. r = -E2BIG;
  1010. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1011. goto out;
  1012. r = -EFAULT;
  1013. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1014. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1015. goto out;
  1016. vcpu->arch.cpuid_nent = cpuid->nent;
  1017. return 0;
  1018. out:
  1019. return r;
  1020. }
  1021. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1022. struct kvm_cpuid2 *cpuid,
  1023. struct kvm_cpuid_entry2 __user *entries)
  1024. {
  1025. int r;
  1026. r = -E2BIG;
  1027. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1028. goto out;
  1029. r = -EFAULT;
  1030. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1031. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1032. goto out;
  1033. return 0;
  1034. out:
  1035. cpuid->nent = vcpu->arch.cpuid_nent;
  1036. return r;
  1037. }
  1038. static inline u32 bit(int bitno)
  1039. {
  1040. return 1 << (bitno & 31);
  1041. }
  1042. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1043. u32 index)
  1044. {
  1045. entry->function = function;
  1046. entry->index = index;
  1047. cpuid_count(entry->function, entry->index,
  1048. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1049. entry->flags = 0;
  1050. }
  1051. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1052. u32 index, int *nent, int maxnent)
  1053. {
  1054. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  1055. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1056. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1057. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1058. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1059. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  1060. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1061. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  1062. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  1063. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  1064. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  1065. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1066. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1067. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1068. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1069. bit(X86_FEATURE_PGE) |
  1070. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1071. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  1072. bit(X86_FEATURE_SYSCALL) |
  1073. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  1074. #ifdef CONFIG_X86_64
  1075. bit(X86_FEATURE_LM) |
  1076. #endif
  1077. bit(X86_FEATURE_MMXEXT) |
  1078. bit(X86_FEATURE_3DNOWEXT) |
  1079. bit(X86_FEATURE_3DNOW);
  1080. const u32 kvm_supported_word3_x86_features =
  1081. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  1082. const u32 kvm_supported_word6_x86_features =
  1083. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  1084. /* all func 2 cpuid_count() should be called on the same cpu */
  1085. get_cpu();
  1086. do_cpuid_1_ent(entry, function, index);
  1087. ++*nent;
  1088. switch (function) {
  1089. case 0:
  1090. entry->eax = min(entry->eax, (u32)0xb);
  1091. break;
  1092. case 1:
  1093. entry->edx &= kvm_supported_word0_x86_features;
  1094. entry->ecx &= kvm_supported_word3_x86_features;
  1095. break;
  1096. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1097. * may return different values. This forces us to get_cpu() before
  1098. * issuing the first command, and also to emulate this annoying behavior
  1099. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1100. case 2: {
  1101. int t, times = entry->eax & 0xff;
  1102. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1103. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1104. for (t = 1; t < times && *nent < maxnent; ++t) {
  1105. do_cpuid_1_ent(&entry[t], function, 0);
  1106. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1107. ++*nent;
  1108. }
  1109. break;
  1110. }
  1111. /* function 4 and 0xb have additional index. */
  1112. case 4: {
  1113. int i, cache_type;
  1114. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1115. /* read more entries until cache_type is zero */
  1116. for (i = 1; *nent < maxnent; ++i) {
  1117. cache_type = entry[i - 1].eax & 0x1f;
  1118. if (!cache_type)
  1119. break;
  1120. do_cpuid_1_ent(&entry[i], function, i);
  1121. entry[i].flags |=
  1122. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1123. ++*nent;
  1124. }
  1125. break;
  1126. }
  1127. case 0xb: {
  1128. int i, level_type;
  1129. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1130. /* read more entries until level_type is zero */
  1131. for (i = 1; *nent < maxnent; ++i) {
  1132. level_type = entry[i - 1].ecx & 0xff00;
  1133. if (!level_type)
  1134. break;
  1135. do_cpuid_1_ent(&entry[i], function, i);
  1136. entry[i].flags |=
  1137. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1138. ++*nent;
  1139. }
  1140. break;
  1141. }
  1142. case 0x80000000:
  1143. entry->eax = min(entry->eax, 0x8000001a);
  1144. break;
  1145. case 0x80000001:
  1146. entry->edx &= kvm_supported_word1_x86_features;
  1147. entry->ecx &= kvm_supported_word6_x86_features;
  1148. break;
  1149. }
  1150. put_cpu();
  1151. }
  1152. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1153. struct kvm_cpuid_entry2 __user *entries)
  1154. {
  1155. struct kvm_cpuid_entry2 *cpuid_entries;
  1156. int limit, nent = 0, r = -E2BIG;
  1157. u32 func;
  1158. if (cpuid->nent < 1)
  1159. goto out;
  1160. r = -ENOMEM;
  1161. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1162. if (!cpuid_entries)
  1163. goto out;
  1164. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1165. limit = cpuid_entries[0].eax;
  1166. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1167. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1168. &nent, cpuid->nent);
  1169. r = -E2BIG;
  1170. if (nent >= cpuid->nent)
  1171. goto out_free;
  1172. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1173. limit = cpuid_entries[nent - 1].eax;
  1174. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1175. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1176. &nent, cpuid->nent);
  1177. r = -EFAULT;
  1178. if (copy_to_user(entries, cpuid_entries,
  1179. nent * sizeof(struct kvm_cpuid_entry2)))
  1180. goto out_free;
  1181. cpuid->nent = nent;
  1182. r = 0;
  1183. out_free:
  1184. vfree(cpuid_entries);
  1185. out:
  1186. return r;
  1187. }
  1188. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1189. struct kvm_lapic_state *s)
  1190. {
  1191. vcpu_load(vcpu);
  1192. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1193. vcpu_put(vcpu);
  1194. return 0;
  1195. }
  1196. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1197. struct kvm_lapic_state *s)
  1198. {
  1199. vcpu_load(vcpu);
  1200. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1201. kvm_apic_post_state_restore(vcpu);
  1202. vcpu_put(vcpu);
  1203. return 0;
  1204. }
  1205. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1206. struct kvm_interrupt *irq)
  1207. {
  1208. if (irq->irq < 0 || irq->irq >= 256)
  1209. return -EINVAL;
  1210. if (irqchip_in_kernel(vcpu->kvm))
  1211. return -ENXIO;
  1212. vcpu_load(vcpu);
  1213. set_bit(irq->irq, vcpu->arch.irq_pending);
  1214. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1215. vcpu_put(vcpu);
  1216. return 0;
  1217. }
  1218. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1219. {
  1220. vcpu_load(vcpu);
  1221. kvm_inject_nmi(vcpu);
  1222. vcpu_put(vcpu);
  1223. return 0;
  1224. }
  1225. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1226. struct kvm_tpr_access_ctl *tac)
  1227. {
  1228. if (tac->flags)
  1229. return -EINVAL;
  1230. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1231. return 0;
  1232. }
  1233. long kvm_arch_vcpu_ioctl(struct file *filp,
  1234. unsigned int ioctl, unsigned long arg)
  1235. {
  1236. struct kvm_vcpu *vcpu = filp->private_data;
  1237. void __user *argp = (void __user *)arg;
  1238. int r;
  1239. struct kvm_lapic_state *lapic = NULL;
  1240. switch (ioctl) {
  1241. case KVM_GET_LAPIC: {
  1242. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1243. r = -ENOMEM;
  1244. if (!lapic)
  1245. goto out;
  1246. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1247. if (r)
  1248. goto out;
  1249. r = -EFAULT;
  1250. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1251. goto out;
  1252. r = 0;
  1253. break;
  1254. }
  1255. case KVM_SET_LAPIC: {
  1256. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1257. r = -ENOMEM;
  1258. if (!lapic)
  1259. goto out;
  1260. r = -EFAULT;
  1261. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1262. goto out;
  1263. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1264. if (r)
  1265. goto out;
  1266. r = 0;
  1267. break;
  1268. }
  1269. case KVM_INTERRUPT: {
  1270. struct kvm_interrupt irq;
  1271. r = -EFAULT;
  1272. if (copy_from_user(&irq, argp, sizeof irq))
  1273. goto out;
  1274. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1275. if (r)
  1276. goto out;
  1277. r = 0;
  1278. break;
  1279. }
  1280. case KVM_NMI: {
  1281. r = kvm_vcpu_ioctl_nmi(vcpu);
  1282. if (r)
  1283. goto out;
  1284. r = 0;
  1285. break;
  1286. }
  1287. case KVM_SET_CPUID: {
  1288. struct kvm_cpuid __user *cpuid_arg = argp;
  1289. struct kvm_cpuid cpuid;
  1290. r = -EFAULT;
  1291. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1292. goto out;
  1293. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1294. if (r)
  1295. goto out;
  1296. break;
  1297. }
  1298. case KVM_SET_CPUID2: {
  1299. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1300. struct kvm_cpuid2 cpuid;
  1301. r = -EFAULT;
  1302. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1303. goto out;
  1304. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1305. cpuid_arg->entries);
  1306. if (r)
  1307. goto out;
  1308. break;
  1309. }
  1310. case KVM_GET_CPUID2: {
  1311. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1312. struct kvm_cpuid2 cpuid;
  1313. r = -EFAULT;
  1314. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1315. goto out;
  1316. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1317. cpuid_arg->entries);
  1318. if (r)
  1319. goto out;
  1320. r = -EFAULT;
  1321. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1322. goto out;
  1323. r = 0;
  1324. break;
  1325. }
  1326. case KVM_GET_MSRS:
  1327. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1328. break;
  1329. case KVM_SET_MSRS:
  1330. r = msr_io(vcpu, argp, do_set_msr, 0);
  1331. break;
  1332. case KVM_TPR_ACCESS_REPORTING: {
  1333. struct kvm_tpr_access_ctl tac;
  1334. r = -EFAULT;
  1335. if (copy_from_user(&tac, argp, sizeof tac))
  1336. goto out;
  1337. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1338. if (r)
  1339. goto out;
  1340. r = -EFAULT;
  1341. if (copy_to_user(argp, &tac, sizeof tac))
  1342. goto out;
  1343. r = 0;
  1344. break;
  1345. };
  1346. case KVM_SET_VAPIC_ADDR: {
  1347. struct kvm_vapic_addr va;
  1348. r = -EINVAL;
  1349. if (!irqchip_in_kernel(vcpu->kvm))
  1350. goto out;
  1351. r = -EFAULT;
  1352. if (copy_from_user(&va, argp, sizeof va))
  1353. goto out;
  1354. r = 0;
  1355. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1356. break;
  1357. }
  1358. default:
  1359. r = -EINVAL;
  1360. }
  1361. out:
  1362. if (lapic)
  1363. kfree(lapic);
  1364. return r;
  1365. }
  1366. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1367. {
  1368. int ret;
  1369. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1370. return -1;
  1371. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1372. return ret;
  1373. }
  1374. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1375. u32 kvm_nr_mmu_pages)
  1376. {
  1377. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1378. return -EINVAL;
  1379. down_write(&kvm->slots_lock);
  1380. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1381. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1382. up_write(&kvm->slots_lock);
  1383. return 0;
  1384. }
  1385. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1386. {
  1387. return kvm->arch.n_alloc_mmu_pages;
  1388. }
  1389. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1390. {
  1391. int i;
  1392. struct kvm_mem_alias *alias;
  1393. for (i = 0; i < kvm->arch.naliases; ++i) {
  1394. alias = &kvm->arch.aliases[i];
  1395. if (gfn >= alias->base_gfn
  1396. && gfn < alias->base_gfn + alias->npages)
  1397. return alias->target_gfn + gfn - alias->base_gfn;
  1398. }
  1399. return gfn;
  1400. }
  1401. /*
  1402. * Set a new alias region. Aliases map a portion of physical memory into
  1403. * another portion. This is useful for memory windows, for example the PC
  1404. * VGA region.
  1405. */
  1406. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1407. struct kvm_memory_alias *alias)
  1408. {
  1409. int r, n;
  1410. struct kvm_mem_alias *p;
  1411. r = -EINVAL;
  1412. /* General sanity checks */
  1413. if (alias->memory_size & (PAGE_SIZE - 1))
  1414. goto out;
  1415. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1416. goto out;
  1417. if (alias->slot >= KVM_ALIAS_SLOTS)
  1418. goto out;
  1419. if (alias->guest_phys_addr + alias->memory_size
  1420. < alias->guest_phys_addr)
  1421. goto out;
  1422. if (alias->target_phys_addr + alias->memory_size
  1423. < alias->target_phys_addr)
  1424. goto out;
  1425. down_write(&kvm->slots_lock);
  1426. spin_lock(&kvm->mmu_lock);
  1427. p = &kvm->arch.aliases[alias->slot];
  1428. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1429. p->npages = alias->memory_size >> PAGE_SHIFT;
  1430. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1431. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1432. if (kvm->arch.aliases[n - 1].npages)
  1433. break;
  1434. kvm->arch.naliases = n;
  1435. spin_unlock(&kvm->mmu_lock);
  1436. kvm_mmu_zap_all(kvm);
  1437. up_write(&kvm->slots_lock);
  1438. return 0;
  1439. out:
  1440. return r;
  1441. }
  1442. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1443. {
  1444. int r;
  1445. r = 0;
  1446. switch (chip->chip_id) {
  1447. case KVM_IRQCHIP_PIC_MASTER:
  1448. memcpy(&chip->chip.pic,
  1449. &pic_irqchip(kvm)->pics[0],
  1450. sizeof(struct kvm_pic_state));
  1451. break;
  1452. case KVM_IRQCHIP_PIC_SLAVE:
  1453. memcpy(&chip->chip.pic,
  1454. &pic_irqchip(kvm)->pics[1],
  1455. sizeof(struct kvm_pic_state));
  1456. break;
  1457. case KVM_IRQCHIP_IOAPIC:
  1458. memcpy(&chip->chip.ioapic,
  1459. ioapic_irqchip(kvm),
  1460. sizeof(struct kvm_ioapic_state));
  1461. break;
  1462. default:
  1463. r = -EINVAL;
  1464. break;
  1465. }
  1466. return r;
  1467. }
  1468. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1469. {
  1470. int r;
  1471. r = 0;
  1472. switch (chip->chip_id) {
  1473. case KVM_IRQCHIP_PIC_MASTER:
  1474. memcpy(&pic_irqchip(kvm)->pics[0],
  1475. &chip->chip.pic,
  1476. sizeof(struct kvm_pic_state));
  1477. break;
  1478. case KVM_IRQCHIP_PIC_SLAVE:
  1479. memcpy(&pic_irqchip(kvm)->pics[1],
  1480. &chip->chip.pic,
  1481. sizeof(struct kvm_pic_state));
  1482. break;
  1483. case KVM_IRQCHIP_IOAPIC:
  1484. memcpy(ioapic_irqchip(kvm),
  1485. &chip->chip.ioapic,
  1486. sizeof(struct kvm_ioapic_state));
  1487. break;
  1488. default:
  1489. r = -EINVAL;
  1490. break;
  1491. }
  1492. kvm_pic_update_irq(pic_irqchip(kvm));
  1493. return r;
  1494. }
  1495. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1496. {
  1497. int r = 0;
  1498. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1499. return r;
  1500. }
  1501. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1502. {
  1503. int r = 0;
  1504. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1505. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1506. return r;
  1507. }
  1508. /*
  1509. * Get (and clear) the dirty memory log for a memory slot.
  1510. */
  1511. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1512. struct kvm_dirty_log *log)
  1513. {
  1514. int r;
  1515. int n;
  1516. struct kvm_memory_slot *memslot;
  1517. int is_dirty = 0;
  1518. down_write(&kvm->slots_lock);
  1519. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1520. if (r)
  1521. goto out;
  1522. /* If nothing is dirty, don't bother messing with page tables. */
  1523. if (is_dirty) {
  1524. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1525. kvm_flush_remote_tlbs(kvm);
  1526. memslot = &kvm->memslots[log->slot];
  1527. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1528. memset(memslot->dirty_bitmap, 0, n);
  1529. }
  1530. r = 0;
  1531. out:
  1532. up_write(&kvm->slots_lock);
  1533. return r;
  1534. }
  1535. long kvm_arch_vm_ioctl(struct file *filp,
  1536. unsigned int ioctl, unsigned long arg)
  1537. {
  1538. struct kvm *kvm = filp->private_data;
  1539. void __user *argp = (void __user *)arg;
  1540. int r = -EINVAL;
  1541. /*
  1542. * This union makes it completely explicit to gcc-3.x
  1543. * that these two variables' stack usage should be
  1544. * combined, not added together.
  1545. */
  1546. union {
  1547. struct kvm_pit_state ps;
  1548. struct kvm_memory_alias alias;
  1549. } u;
  1550. switch (ioctl) {
  1551. case KVM_SET_TSS_ADDR:
  1552. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1553. if (r < 0)
  1554. goto out;
  1555. break;
  1556. case KVM_SET_MEMORY_REGION: {
  1557. struct kvm_memory_region kvm_mem;
  1558. struct kvm_userspace_memory_region kvm_userspace_mem;
  1559. r = -EFAULT;
  1560. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1561. goto out;
  1562. kvm_userspace_mem.slot = kvm_mem.slot;
  1563. kvm_userspace_mem.flags = kvm_mem.flags;
  1564. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1565. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1566. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1567. if (r)
  1568. goto out;
  1569. break;
  1570. }
  1571. case KVM_SET_NR_MMU_PAGES:
  1572. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1573. if (r)
  1574. goto out;
  1575. break;
  1576. case KVM_GET_NR_MMU_PAGES:
  1577. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1578. break;
  1579. case KVM_SET_MEMORY_ALIAS:
  1580. r = -EFAULT;
  1581. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1582. goto out;
  1583. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1584. if (r)
  1585. goto out;
  1586. break;
  1587. case KVM_CREATE_IRQCHIP:
  1588. r = -ENOMEM;
  1589. kvm->arch.vpic = kvm_create_pic(kvm);
  1590. if (kvm->arch.vpic) {
  1591. r = kvm_ioapic_init(kvm);
  1592. if (r) {
  1593. kfree(kvm->arch.vpic);
  1594. kvm->arch.vpic = NULL;
  1595. goto out;
  1596. }
  1597. } else
  1598. goto out;
  1599. break;
  1600. case KVM_CREATE_PIT:
  1601. r = -ENOMEM;
  1602. kvm->arch.vpit = kvm_create_pit(kvm);
  1603. if (kvm->arch.vpit)
  1604. r = 0;
  1605. break;
  1606. case KVM_IRQ_LINE: {
  1607. struct kvm_irq_level irq_event;
  1608. r = -EFAULT;
  1609. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1610. goto out;
  1611. if (irqchip_in_kernel(kvm)) {
  1612. mutex_lock(&kvm->lock);
  1613. kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1614. irq_event.irq, irq_event.level);
  1615. mutex_unlock(&kvm->lock);
  1616. r = 0;
  1617. }
  1618. break;
  1619. }
  1620. case KVM_GET_IRQCHIP: {
  1621. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1622. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1623. r = -ENOMEM;
  1624. if (!chip)
  1625. goto out;
  1626. r = -EFAULT;
  1627. if (copy_from_user(chip, argp, sizeof *chip))
  1628. goto get_irqchip_out;
  1629. r = -ENXIO;
  1630. if (!irqchip_in_kernel(kvm))
  1631. goto get_irqchip_out;
  1632. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1633. if (r)
  1634. goto get_irqchip_out;
  1635. r = -EFAULT;
  1636. if (copy_to_user(argp, chip, sizeof *chip))
  1637. goto get_irqchip_out;
  1638. r = 0;
  1639. get_irqchip_out:
  1640. kfree(chip);
  1641. if (r)
  1642. goto out;
  1643. break;
  1644. }
  1645. case KVM_SET_IRQCHIP: {
  1646. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1647. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1648. r = -ENOMEM;
  1649. if (!chip)
  1650. goto out;
  1651. r = -EFAULT;
  1652. if (copy_from_user(chip, argp, sizeof *chip))
  1653. goto set_irqchip_out;
  1654. r = -ENXIO;
  1655. if (!irqchip_in_kernel(kvm))
  1656. goto set_irqchip_out;
  1657. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1658. if (r)
  1659. goto set_irqchip_out;
  1660. r = 0;
  1661. set_irqchip_out:
  1662. kfree(chip);
  1663. if (r)
  1664. goto out;
  1665. break;
  1666. }
  1667. case KVM_GET_PIT: {
  1668. r = -EFAULT;
  1669. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1670. goto out;
  1671. r = -ENXIO;
  1672. if (!kvm->arch.vpit)
  1673. goto out;
  1674. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1675. if (r)
  1676. goto out;
  1677. r = -EFAULT;
  1678. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1679. goto out;
  1680. r = 0;
  1681. break;
  1682. }
  1683. case KVM_SET_PIT: {
  1684. r = -EFAULT;
  1685. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1686. goto out;
  1687. r = -ENXIO;
  1688. if (!kvm->arch.vpit)
  1689. goto out;
  1690. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1691. if (r)
  1692. goto out;
  1693. r = 0;
  1694. break;
  1695. }
  1696. default:
  1697. ;
  1698. }
  1699. out:
  1700. return r;
  1701. }
  1702. static void kvm_init_msr_list(void)
  1703. {
  1704. u32 dummy[2];
  1705. unsigned i, j;
  1706. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1707. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1708. continue;
  1709. if (j < i)
  1710. msrs_to_save[j] = msrs_to_save[i];
  1711. j++;
  1712. }
  1713. num_msrs_to_save = j;
  1714. }
  1715. /*
  1716. * Only apic need an MMIO device hook, so shortcut now..
  1717. */
  1718. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1719. gpa_t addr, int len,
  1720. int is_write)
  1721. {
  1722. struct kvm_io_device *dev;
  1723. if (vcpu->arch.apic) {
  1724. dev = &vcpu->arch.apic->dev;
  1725. if (dev->in_range(dev, addr, len, is_write))
  1726. return dev;
  1727. }
  1728. return NULL;
  1729. }
  1730. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1731. gpa_t addr, int len,
  1732. int is_write)
  1733. {
  1734. struct kvm_io_device *dev;
  1735. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1736. if (dev == NULL)
  1737. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1738. is_write);
  1739. return dev;
  1740. }
  1741. int emulator_read_std(unsigned long addr,
  1742. void *val,
  1743. unsigned int bytes,
  1744. struct kvm_vcpu *vcpu)
  1745. {
  1746. void *data = val;
  1747. int r = X86EMUL_CONTINUE;
  1748. while (bytes) {
  1749. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1750. unsigned offset = addr & (PAGE_SIZE-1);
  1751. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1752. int ret;
  1753. if (gpa == UNMAPPED_GVA) {
  1754. r = X86EMUL_PROPAGATE_FAULT;
  1755. goto out;
  1756. }
  1757. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1758. if (ret < 0) {
  1759. r = X86EMUL_UNHANDLEABLE;
  1760. goto out;
  1761. }
  1762. bytes -= tocopy;
  1763. data += tocopy;
  1764. addr += tocopy;
  1765. }
  1766. out:
  1767. return r;
  1768. }
  1769. EXPORT_SYMBOL_GPL(emulator_read_std);
  1770. static int emulator_read_emulated(unsigned long addr,
  1771. void *val,
  1772. unsigned int bytes,
  1773. struct kvm_vcpu *vcpu)
  1774. {
  1775. struct kvm_io_device *mmio_dev;
  1776. gpa_t gpa;
  1777. if (vcpu->mmio_read_completed) {
  1778. memcpy(val, vcpu->mmio_data, bytes);
  1779. vcpu->mmio_read_completed = 0;
  1780. return X86EMUL_CONTINUE;
  1781. }
  1782. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1783. /* For APIC access vmexit */
  1784. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1785. goto mmio;
  1786. if (emulator_read_std(addr, val, bytes, vcpu)
  1787. == X86EMUL_CONTINUE)
  1788. return X86EMUL_CONTINUE;
  1789. if (gpa == UNMAPPED_GVA)
  1790. return X86EMUL_PROPAGATE_FAULT;
  1791. mmio:
  1792. /*
  1793. * Is this MMIO handled locally?
  1794. */
  1795. mutex_lock(&vcpu->kvm->lock);
  1796. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1797. if (mmio_dev) {
  1798. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1799. mutex_unlock(&vcpu->kvm->lock);
  1800. return X86EMUL_CONTINUE;
  1801. }
  1802. mutex_unlock(&vcpu->kvm->lock);
  1803. vcpu->mmio_needed = 1;
  1804. vcpu->mmio_phys_addr = gpa;
  1805. vcpu->mmio_size = bytes;
  1806. vcpu->mmio_is_write = 0;
  1807. return X86EMUL_UNHANDLEABLE;
  1808. }
  1809. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1810. const void *val, int bytes)
  1811. {
  1812. int ret;
  1813. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1814. if (ret < 0)
  1815. return 0;
  1816. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  1817. return 1;
  1818. }
  1819. static int emulator_write_emulated_onepage(unsigned long addr,
  1820. const void *val,
  1821. unsigned int bytes,
  1822. struct kvm_vcpu *vcpu)
  1823. {
  1824. struct kvm_io_device *mmio_dev;
  1825. gpa_t gpa;
  1826. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1827. if (gpa == UNMAPPED_GVA) {
  1828. kvm_inject_page_fault(vcpu, addr, 2);
  1829. return X86EMUL_PROPAGATE_FAULT;
  1830. }
  1831. /* For APIC access vmexit */
  1832. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1833. goto mmio;
  1834. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1835. return X86EMUL_CONTINUE;
  1836. mmio:
  1837. /*
  1838. * Is this MMIO handled locally?
  1839. */
  1840. mutex_lock(&vcpu->kvm->lock);
  1841. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1842. if (mmio_dev) {
  1843. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1844. mutex_unlock(&vcpu->kvm->lock);
  1845. return X86EMUL_CONTINUE;
  1846. }
  1847. mutex_unlock(&vcpu->kvm->lock);
  1848. vcpu->mmio_needed = 1;
  1849. vcpu->mmio_phys_addr = gpa;
  1850. vcpu->mmio_size = bytes;
  1851. vcpu->mmio_is_write = 1;
  1852. memcpy(vcpu->mmio_data, val, bytes);
  1853. return X86EMUL_CONTINUE;
  1854. }
  1855. int emulator_write_emulated(unsigned long addr,
  1856. const void *val,
  1857. unsigned int bytes,
  1858. struct kvm_vcpu *vcpu)
  1859. {
  1860. /* Crossing a page boundary? */
  1861. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1862. int rc, now;
  1863. now = -addr & ~PAGE_MASK;
  1864. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1865. if (rc != X86EMUL_CONTINUE)
  1866. return rc;
  1867. addr += now;
  1868. val += now;
  1869. bytes -= now;
  1870. }
  1871. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1872. }
  1873. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1874. static int emulator_cmpxchg_emulated(unsigned long addr,
  1875. const void *old,
  1876. const void *new,
  1877. unsigned int bytes,
  1878. struct kvm_vcpu *vcpu)
  1879. {
  1880. static int reported;
  1881. if (!reported) {
  1882. reported = 1;
  1883. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1884. }
  1885. #ifndef CONFIG_X86_64
  1886. /* guests cmpxchg8b have to be emulated atomically */
  1887. if (bytes == 8) {
  1888. gpa_t gpa;
  1889. struct page *page;
  1890. char *kaddr;
  1891. u64 val;
  1892. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1893. if (gpa == UNMAPPED_GVA ||
  1894. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1895. goto emul_write;
  1896. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1897. goto emul_write;
  1898. val = *(u64 *)new;
  1899. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1900. kaddr = kmap_atomic(page, KM_USER0);
  1901. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1902. kunmap_atomic(kaddr, KM_USER0);
  1903. kvm_release_page_dirty(page);
  1904. }
  1905. emul_write:
  1906. #endif
  1907. return emulator_write_emulated(addr, new, bytes, vcpu);
  1908. }
  1909. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1910. {
  1911. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1912. }
  1913. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1914. {
  1915. kvm_mmu_invlpg(vcpu, address);
  1916. return X86EMUL_CONTINUE;
  1917. }
  1918. int emulate_clts(struct kvm_vcpu *vcpu)
  1919. {
  1920. KVMTRACE_0D(CLTS, vcpu, handler);
  1921. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1922. return X86EMUL_CONTINUE;
  1923. }
  1924. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1925. {
  1926. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1927. switch (dr) {
  1928. case 0 ... 3:
  1929. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1930. return X86EMUL_CONTINUE;
  1931. default:
  1932. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1933. return X86EMUL_UNHANDLEABLE;
  1934. }
  1935. }
  1936. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1937. {
  1938. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1939. int exception;
  1940. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1941. if (exception) {
  1942. /* FIXME: better handling */
  1943. return X86EMUL_UNHANDLEABLE;
  1944. }
  1945. return X86EMUL_CONTINUE;
  1946. }
  1947. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1948. {
  1949. u8 opcodes[4];
  1950. unsigned long rip = kvm_rip_read(vcpu);
  1951. unsigned long rip_linear;
  1952. if (!printk_ratelimit())
  1953. return;
  1954. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1955. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1956. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1957. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1958. }
  1959. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1960. static struct x86_emulate_ops emulate_ops = {
  1961. .read_std = emulator_read_std,
  1962. .read_emulated = emulator_read_emulated,
  1963. .write_emulated = emulator_write_emulated,
  1964. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1965. };
  1966. static void cache_all_regs(struct kvm_vcpu *vcpu)
  1967. {
  1968. kvm_register_read(vcpu, VCPU_REGS_RAX);
  1969. kvm_register_read(vcpu, VCPU_REGS_RSP);
  1970. kvm_register_read(vcpu, VCPU_REGS_RIP);
  1971. vcpu->arch.regs_dirty = ~0;
  1972. }
  1973. int emulate_instruction(struct kvm_vcpu *vcpu,
  1974. struct kvm_run *run,
  1975. unsigned long cr2,
  1976. u16 error_code,
  1977. int emulation_type)
  1978. {
  1979. int r;
  1980. struct decode_cache *c;
  1981. kvm_clear_exception_queue(vcpu);
  1982. vcpu->arch.mmio_fault_cr2 = cr2;
  1983. /*
  1984. * TODO: fix x86_emulate.c to use guest_read/write_register
  1985. * instead of direct ->regs accesses, can save hundred cycles
  1986. * on Intel for instructions that don't read/change RSP, for
  1987. * for example.
  1988. */
  1989. cache_all_regs(vcpu);
  1990. vcpu->mmio_is_write = 0;
  1991. vcpu->arch.pio.string = 0;
  1992. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1993. int cs_db, cs_l;
  1994. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1995. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1996. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1997. vcpu->arch.emulate_ctxt.mode =
  1998. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1999. ? X86EMUL_MODE_REAL : cs_l
  2000. ? X86EMUL_MODE_PROT64 : cs_db
  2001. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2002. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2003. /* Reject the instructions other than VMCALL/VMMCALL when
  2004. * try to emulate invalid opcode */
  2005. c = &vcpu->arch.emulate_ctxt.decode;
  2006. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2007. (!(c->twobyte && c->b == 0x01 &&
  2008. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2009. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2010. return EMULATE_FAIL;
  2011. ++vcpu->stat.insn_emulation;
  2012. if (r) {
  2013. ++vcpu->stat.insn_emulation_fail;
  2014. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2015. return EMULATE_DONE;
  2016. return EMULATE_FAIL;
  2017. }
  2018. }
  2019. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2020. if (vcpu->arch.pio.string)
  2021. return EMULATE_DO_MMIO;
  2022. if ((r || vcpu->mmio_is_write) && run) {
  2023. run->exit_reason = KVM_EXIT_MMIO;
  2024. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2025. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2026. run->mmio.len = vcpu->mmio_size;
  2027. run->mmio.is_write = vcpu->mmio_is_write;
  2028. }
  2029. if (r) {
  2030. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2031. return EMULATE_DONE;
  2032. if (!vcpu->mmio_needed) {
  2033. kvm_report_emulation_failure(vcpu, "mmio");
  2034. return EMULATE_FAIL;
  2035. }
  2036. return EMULATE_DO_MMIO;
  2037. }
  2038. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2039. if (vcpu->mmio_is_write) {
  2040. vcpu->mmio_needed = 0;
  2041. return EMULATE_DO_MMIO;
  2042. }
  2043. return EMULATE_DONE;
  2044. }
  2045. EXPORT_SYMBOL_GPL(emulate_instruction);
  2046. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  2047. {
  2048. int i;
  2049. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  2050. if (vcpu->arch.pio.guest_pages[i]) {
  2051. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  2052. vcpu->arch.pio.guest_pages[i] = NULL;
  2053. }
  2054. }
  2055. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2056. {
  2057. void *p = vcpu->arch.pio_data;
  2058. void *q;
  2059. unsigned bytes;
  2060. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  2061. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  2062. PAGE_KERNEL);
  2063. if (!q) {
  2064. free_pio_guest_pages(vcpu);
  2065. return -ENOMEM;
  2066. }
  2067. q += vcpu->arch.pio.guest_page_offset;
  2068. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2069. if (vcpu->arch.pio.in)
  2070. memcpy(q, p, bytes);
  2071. else
  2072. memcpy(p, q, bytes);
  2073. q -= vcpu->arch.pio.guest_page_offset;
  2074. vunmap(q);
  2075. free_pio_guest_pages(vcpu);
  2076. return 0;
  2077. }
  2078. int complete_pio(struct kvm_vcpu *vcpu)
  2079. {
  2080. struct kvm_pio_request *io = &vcpu->arch.pio;
  2081. long delta;
  2082. int r;
  2083. unsigned long val;
  2084. if (!io->string) {
  2085. if (io->in) {
  2086. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2087. memcpy(&val, vcpu->arch.pio_data, io->size);
  2088. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2089. }
  2090. } else {
  2091. if (io->in) {
  2092. r = pio_copy_data(vcpu);
  2093. if (r)
  2094. return r;
  2095. }
  2096. delta = 1;
  2097. if (io->rep) {
  2098. delta *= io->cur_count;
  2099. /*
  2100. * The size of the register should really depend on
  2101. * current address size.
  2102. */
  2103. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2104. val -= delta;
  2105. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2106. }
  2107. if (io->down)
  2108. delta = -delta;
  2109. delta *= io->size;
  2110. if (io->in) {
  2111. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2112. val += delta;
  2113. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2114. } else {
  2115. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2116. val += delta;
  2117. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2118. }
  2119. }
  2120. io->count -= io->cur_count;
  2121. io->cur_count = 0;
  2122. return 0;
  2123. }
  2124. static void kernel_pio(struct kvm_io_device *pio_dev,
  2125. struct kvm_vcpu *vcpu,
  2126. void *pd)
  2127. {
  2128. /* TODO: String I/O for in kernel device */
  2129. mutex_lock(&vcpu->kvm->lock);
  2130. if (vcpu->arch.pio.in)
  2131. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2132. vcpu->arch.pio.size,
  2133. pd);
  2134. else
  2135. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2136. vcpu->arch.pio.size,
  2137. pd);
  2138. mutex_unlock(&vcpu->kvm->lock);
  2139. }
  2140. static void pio_string_write(struct kvm_io_device *pio_dev,
  2141. struct kvm_vcpu *vcpu)
  2142. {
  2143. struct kvm_pio_request *io = &vcpu->arch.pio;
  2144. void *pd = vcpu->arch.pio_data;
  2145. int i;
  2146. mutex_lock(&vcpu->kvm->lock);
  2147. for (i = 0; i < io->cur_count; i++) {
  2148. kvm_iodevice_write(pio_dev, io->port,
  2149. io->size,
  2150. pd);
  2151. pd += io->size;
  2152. }
  2153. mutex_unlock(&vcpu->kvm->lock);
  2154. }
  2155. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2156. gpa_t addr, int len,
  2157. int is_write)
  2158. {
  2159. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2160. }
  2161. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2162. int size, unsigned port)
  2163. {
  2164. struct kvm_io_device *pio_dev;
  2165. unsigned long val;
  2166. vcpu->run->exit_reason = KVM_EXIT_IO;
  2167. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2168. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2169. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2170. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2171. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2172. vcpu->arch.pio.in = in;
  2173. vcpu->arch.pio.string = 0;
  2174. vcpu->arch.pio.down = 0;
  2175. vcpu->arch.pio.guest_page_offset = 0;
  2176. vcpu->arch.pio.rep = 0;
  2177. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2178. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2179. handler);
  2180. else
  2181. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2182. handler);
  2183. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2184. memcpy(vcpu->arch.pio_data, &val, 4);
  2185. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2186. if (pio_dev) {
  2187. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2188. complete_pio(vcpu);
  2189. return 1;
  2190. }
  2191. return 0;
  2192. }
  2193. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2194. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2195. int size, unsigned long count, int down,
  2196. gva_t address, int rep, unsigned port)
  2197. {
  2198. unsigned now, in_page;
  2199. int i, ret = 0;
  2200. int nr_pages = 1;
  2201. struct page *page;
  2202. struct kvm_io_device *pio_dev;
  2203. vcpu->run->exit_reason = KVM_EXIT_IO;
  2204. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2205. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2206. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2207. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2208. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2209. vcpu->arch.pio.in = in;
  2210. vcpu->arch.pio.string = 1;
  2211. vcpu->arch.pio.down = down;
  2212. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2213. vcpu->arch.pio.rep = rep;
  2214. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2215. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2216. handler);
  2217. else
  2218. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2219. handler);
  2220. if (!count) {
  2221. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2222. return 1;
  2223. }
  2224. if (!down)
  2225. in_page = PAGE_SIZE - offset_in_page(address);
  2226. else
  2227. in_page = offset_in_page(address) + size;
  2228. now = min(count, (unsigned long)in_page / size);
  2229. if (!now) {
  2230. /*
  2231. * String I/O straddles page boundary. Pin two guest pages
  2232. * so that we satisfy atomicity constraints. Do just one
  2233. * transaction to avoid complexity.
  2234. */
  2235. nr_pages = 2;
  2236. now = 1;
  2237. }
  2238. if (down) {
  2239. /*
  2240. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2241. */
  2242. pr_unimpl(vcpu, "guest string pio down\n");
  2243. kvm_inject_gp(vcpu, 0);
  2244. return 1;
  2245. }
  2246. vcpu->run->io.count = now;
  2247. vcpu->arch.pio.cur_count = now;
  2248. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2249. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2250. for (i = 0; i < nr_pages; ++i) {
  2251. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2252. vcpu->arch.pio.guest_pages[i] = page;
  2253. if (!page) {
  2254. kvm_inject_gp(vcpu, 0);
  2255. free_pio_guest_pages(vcpu);
  2256. return 1;
  2257. }
  2258. }
  2259. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2260. vcpu->arch.pio.cur_count,
  2261. !vcpu->arch.pio.in);
  2262. if (!vcpu->arch.pio.in) {
  2263. /* string PIO write */
  2264. ret = pio_copy_data(vcpu);
  2265. if (ret >= 0 && pio_dev) {
  2266. pio_string_write(pio_dev, vcpu);
  2267. complete_pio(vcpu);
  2268. if (vcpu->arch.pio.count == 0)
  2269. ret = 1;
  2270. }
  2271. } else if (pio_dev)
  2272. pr_unimpl(vcpu, "no string pio read support yet, "
  2273. "port %x size %d count %ld\n",
  2274. port, size, count);
  2275. return ret;
  2276. }
  2277. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2278. int kvm_arch_init(void *opaque)
  2279. {
  2280. int r;
  2281. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2282. if (kvm_x86_ops) {
  2283. printk(KERN_ERR "kvm: already loaded the other module\n");
  2284. r = -EEXIST;
  2285. goto out;
  2286. }
  2287. if (!ops->cpu_has_kvm_support()) {
  2288. printk(KERN_ERR "kvm: no hardware support\n");
  2289. r = -EOPNOTSUPP;
  2290. goto out;
  2291. }
  2292. if (ops->disabled_by_bios()) {
  2293. printk(KERN_ERR "kvm: disabled by bios\n");
  2294. r = -EOPNOTSUPP;
  2295. goto out;
  2296. }
  2297. r = kvm_mmu_module_init();
  2298. if (r)
  2299. goto out;
  2300. kvm_init_msr_list();
  2301. kvm_x86_ops = ops;
  2302. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2303. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2304. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2305. PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
  2306. return 0;
  2307. out:
  2308. return r;
  2309. }
  2310. void kvm_arch_exit(void)
  2311. {
  2312. kvm_x86_ops = NULL;
  2313. kvm_mmu_module_exit();
  2314. }
  2315. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2316. {
  2317. ++vcpu->stat.halt_exits;
  2318. KVMTRACE_0D(HLT, vcpu, handler);
  2319. if (irqchip_in_kernel(vcpu->kvm)) {
  2320. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2321. return 1;
  2322. } else {
  2323. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2324. return 0;
  2325. }
  2326. }
  2327. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2328. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2329. unsigned long a1)
  2330. {
  2331. if (is_long_mode(vcpu))
  2332. return a0;
  2333. else
  2334. return a0 | ((gpa_t)a1 << 32);
  2335. }
  2336. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2337. {
  2338. unsigned long nr, a0, a1, a2, a3, ret;
  2339. int r = 1;
  2340. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2341. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2342. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2343. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2344. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2345. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2346. if (!is_long_mode(vcpu)) {
  2347. nr &= 0xFFFFFFFF;
  2348. a0 &= 0xFFFFFFFF;
  2349. a1 &= 0xFFFFFFFF;
  2350. a2 &= 0xFFFFFFFF;
  2351. a3 &= 0xFFFFFFFF;
  2352. }
  2353. switch (nr) {
  2354. case KVM_HC_VAPIC_POLL_IRQ:
  2355. ret = 0;
  2356. break;
  2357. case KVM_HC_MMU_OP:
  2358. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2359. break;
  2360. default:
  2361. ret = -KVM_ENOSYS;
  2362. break;
  2363. }
  2364. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2365. ++vcpu->stat.hypercalls;
  2366. return r;
  2367. }
  2368. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2369. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2370. {
  2371. char instruction[3];
  2372. int ret = 0;
  2373. unsigned long rip = kvm_rip_read(vcpu);
  2374. /*
  2375. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2376. * to ensure that the updated hypercall appears atomically across all
  2377. * VCPUs.
  2378. */
  2379. kvm_mmu_zap_all(vcpu->kvm);
  2380. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2381. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2382. != X86EMUL_CONTINUE)
  2383. ret = -EFAULT;
  2384. return ret;
  2385. }
  2386. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2387. {
  2388. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2389. }
  2390. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2391. {
  2392. struct descriptor_table dt = { limit, base };
  2393. kvm_x86_ops->set_gdt(vcpu, &dt);
  2394. }
  2395. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2396. {
  2397. struct descriptor_table dt = { limit, base };
  2398. kvm_x86_ops->set_idt(vcpu, &dt);
  2399. }
  2400. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2401. unsigned long *rflags)
  2402. {
  2403. kvm_lmsw(vcpu, msw);
  2404. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2405. }
  2406. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2407. {
  2408. unsigned long value;
  2409. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2410. switch (cr) {
  2411. case 0:
  2412. value = vcpu->arch.cr0;
  2413. break;
  2414. case 2:
  2415. value = vcpu->arch.cr2;
  2416. break;
  2417. case 3:
  2418. value = vcpu->arch.cr3;
  2419. break;
  2420. case 4:
  2421. value = vcpu->arch.cr4;
  2422. break;
  2423. case 8:
  2424. value = kvm_get_cr8(vcpu);
  2425. break;
  2426. default:
  2427. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2428. return 0;
  2429. }
  2430. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2431. (u32)((u64)value >> 32), handler);
  2432. return value;
  2433. }
  2434. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2435. unsigned long *rflags)
  2436. {
  2437. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2438. (u32)((u64)val >> 32), handler);
  2439. switch (cr) {
  2440. case 0:
  2441. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2442. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2443. break;
  2444. case 2:
  2445. vcpu->arch.cr2 = val;
  2446. break;
  2447. case 3:
  2448. kvm_set_cr3(vcpu, val);
  2449. break;
  2450. case 4:
  2451. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2452. break;
  2453. case 8:
  2454. kvm_set_cr8(vcpu, val & 0xfUL);
  2455. break;
  2456. default:
  2457. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2458. }
  2459. }
  2460. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2461. {
  2462. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2463. int j, nent = vcpu->arch.cpuid_nent;
  2464. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2465. /* when no next entry is found, the current entry[i] is reselected */
  2466. for (j = i + 1; ; j = (j + 1) % nent) {
  2467. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2468. if (ej->function == e->function) {
  2469. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2470. return j;
  2471. }
  2472. }
  2473. return 0; /* silence gcc, even though control never reaches here */
  2474. }
  2475. /* find an entry with matching function, matching index (if needed), and that
  2476. * should be read next (if it's stateful) */
  2477. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2478. u32 function, u32 index)
  2479. {
  2480. if (e->function != function)
  2481. return 0;
  2482. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2483. return 0;
  2484. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2485. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2486. return 0;
  2487. return 1;
  2488. }
  2489. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2490. {
  2491. int i;
  2492. u32 function, index;
  2493. struct kvm_cpuid_entry2 *e, *best;
  2494. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2495. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2496. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2497. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2498. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2499. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2500. best = NULL;
  2501. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2502. e = &vcpu->arch.cpuid_entries[i];
  2503. if (is_matching_cpuid_entry(e, function, index)) {
  2504. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2505. move_to_next_stateful_cpuid_entry(vcpu, i);
  2506. best = e;
  2507. break;
  2508. }
  2509. /*
  2510. * Both basic or both extended?
  2511. */
  2512. if (((e->function ^ function) & 0x80000000) == 0)
  2513. if (!best || e->function > best->function)
  2514. best = e;
  2515. }
  2516. if (best) {
  2517. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2518. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2519. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2520. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2521. }
  2522. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2523. KVMTRACE_5D(CPUID, vcpu, function,
  2524. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2525. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2526. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2527. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2528. }
  2529. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2530. /*
  2531. * Check if userspace requested an interrupt window, and that the
  2532. * interrupt window is open.
  2533. *
  2534. * No need to exit to userspace if we already have an interrupt queued.
  2535. */
  2536. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2537. struct kvm_run *kvm_run)
  2538. {
  2539. return (!vcpu->arch.irq_summary &&
  2540. kvm_run->request_interrupt_window &&
  2541. vcpu->arch.interrupt_window_open &&
  2542. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2543. }
  2544. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2545. struct kvm_run *kvm_run)
  2546. {
  2547. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2548. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2549. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2550. if (irqchip_in_kernel(vcpu->kvm))
  2551. kvm_run->ready_for_interrupt_injection = 1;
  2552. else
  2553. kvm_run->ready_for_interrupt_injection =
  2554. (vcpu->arch.interrupt_window_open &&
  2555. vcpu->arch.irq_summary == 0);
  2556. }
  2557. static void vapic_enter(struct kvm_vcpu *vcpu)
  2558. {
  2559. struct kvm_lapic *apic = vcpu->arch.apic;
  2560. struct page *page;
  2561. if (!apic || !apic->vapic_addr)
  2562. return;
  2563. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2564. vcpu->arch.apic->vapic_page = page;
  2565. }
  2566. static void vapic_exit(struct kvm_vcpu *vcpu)
  2567. {
  2568. struct kvm_lapic *apic = vcpu->arch.apic;
  2569. if (!apic || !apic->vapic_addr)
  2570. return;
  2571. down_read(&vcpu->kvm->slots_lock);
  2572. kvm_release_page_dirty(apic->vapic_page);
  2573. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2574. up_read(&vcpu->kvm->slots_lock);
  2575. }
  2576. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2577. {
  2578. int r;
  2579. if (vcpu->requests)
  2580. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2581. kvm_mmu_unload(vcpu);
  2582. r = kvm_mmu_reload(vcpu);
  2583. if (unlikely(r))
  2584. goto out;
  2585. if (vcpu->requests) {
  2586. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2587. __kvm_migrate_timers(vcpu);
  2588. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2589. kvm_mmu_sync_roots(vcpu);
  2590. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2591. kvm_x86_ops->tlb_flush(vcpu);
  2592. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2593. &vcpu->requests)) {
  2594. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2595. r = 0;
  2596. goto out;
  2597. }
  2598. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2599. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2600. r = 0;
  2601. goto out;
  2602. }
  2603. }
  2604. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2605. kvm_inject_pending_timer_irqs(vcpu);
  2606. preempt_disable();
  2607. kvm_x86_ops->prepare_guest_switch(vcpu);
  2608. kvm_load_guest_fpu(vcpu);
  2609. local_irq_disable();
  2610. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2611. local_irq_enable();
  2612. preempt_enable();
  2613. r = 1;
  2614. goto out;
  2615. }
  2616. if (vcpu->guest_debug.enabled)
  2617. kvm_x86_ops->guest_debug_pre(vcpu);
  2618. vcpu->guest_mode = 1;
  2619. /*
  2620. * Make sure that guest_mode assignment won't happen after
  2621. * testing the pending IRQ vector bitmap.
  2622. */
  2623. smp_wmb();
  2624. if (vcpu->arch.exception.pending)
  2625. __queue_exception(vcpu);
  2626. else if (irqchip_in_kernel(vcpu->kvm))
  2627. kvm_x86_ops->inject_pending_irq(vcpu);
  2628. else
  2629. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2630. kvm_lapic_sync_to_vapic(vcpu);
  2631. up_read(&vcpu->kvm->slots_lock);
  2632. kvm_guest_enter();
  2633. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2634. kvm_x86_ops->run(vcpu, kvm_run);
  2635. vcpu->guest_mode = 0;
  2636. local_irq_enable();
  2637. ++vcpu->stat.exits;
  2638. /*
  2639. * We must have an instruction between local_irq_enable() and
  2640. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2641. * the interrupt shadow. The stat.exits increment will do nicely.
  2642. * But we need to prevent reordering, hence this barrier():
  2643. */
  2644. barrier();
  2645. kvm_guest_exit();
  2646. preempt_enable();
  2647. down_read(&vcpu->kvm->slots_lock);
  2648. /*
  2649. * Profile KVM exit RIPs:
  2650. */
  2651. if (unlikely(prof_on == KVM_PROFILING)) {
  2652. unsigned long rip = kvm_rip_read(vcpu);
  2653. profile_hit(KVM_PROFILING, (void *)rip);
  2654. }
  2655. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2656. vcpu->arch.exception.pending = false;
  2657. kvm_lapic_sync_from_vapic(vcpu);
  2658. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2659. out:
  2660. return r;
  2661. }
  2662. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2663. {
  2664. int r;
  2665. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2666. pr_debug("vcpu %d received sipi with vector # %x\n",
  2667. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2668. kvm_lapic_reset(vcpu);
  2669. r = kvm_arch_vcpu_reset(vcpu);
  2670. if (r)
  2671. return r;
  2672. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2673. }
  2674. down_read(&vcpu->kvm->slots_lock);
  2675. vapic_enter(vcpu);
  2676. r = 1;
  2677. while (r > 0) {
  2678. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2679. r = vcpu_enter_guest(vcpu, kvm_run);
  2680. else {
  2681. up_read(&vcpu->kvm->slots_lock);
  2682. kvm_vcpu_block(vcpu);
  2683. down_read(&vcpu->kvm->slots_lock);
  2684. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2685. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  2686. vcpu->arch.mp_state =
  2687. KVM_MP_STATE_RUNNABLE;
  2688. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  2689. r = -EINTR;
  2690. }
  2691. if (r > 0) {
  2692. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2693. r = -EINTR;
  2694. kvm_run->exit_reason = KVM_EXIT_INTR;
  2695. ++vcpu->stat.request_irq_exits;
  2696. }
  2697. if (signal_pending(current)) {
  2698. r = -EINTR;
  2699. kvm_run->exit_reason = KVM_EXIT_INTR;
  2700. ++vcpu->stat.signal_exits;
  2701. }
  2702. if (need_resched()) {
  2703. up_read(&vcpu->kvm->slots_lock);
  2704. kvm_resched(vcpu);
  2705. down_read(&vcpu->kvm->slots_lock);
  2706. }
  2707. }
  2708. }
  2709. up_read(&vcpu->kvm->slots_lock);
  2710. post_kvm_run_save(vcpu, kvm_run);
  2711. vapic_exit(vcpu);
  2712. return r;
  2713. }
  2714. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2715. {
  2716. int r;
  2717. sigset_t sigsaved;
  2718. vcpu_load(vcpu);
  2719. if (vcpu->sigset_active)
  2720. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2721. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2722. kvm_vcpu_block(vcpu);
  2723. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  2724. r = -EAGAIN;
  2725. goto out;
  2726. }
  2727. /* re-sync apic's tpr */
  2728. if (!irqchip_in_kernel(vcpu->kvm))
  2729. kvm_set_cr8(vcpu, kvm_run->cr8);
  2730. if (vcpu->arch.pio.cur_count) {
  2731. r = complete_pio(vcpu);
  2732. if (r)
  2733. goto out;
  2734. }
  2735. #if CONFIG_HAS_IOMEM
  2736. if (vcpu->mmio_needed) {
  2737. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2738. vcpu->mmio_read_completed = 1;
  2739. vcpu->mmio_needed = 0;
  2740. down_read(&vcpu->kvm->slots_lock);
  2741. r = emulate_instruction(vcpu, kvm_run,
  2742. vcpu->arch.mmio_fault_cr2, 0,
  2743. EMULTYPE_NO_DECODE);
  2744. up_read(&vcpu->kvm->slots_lock);
  2745. if (r == EMULATE_DO_MMIO) {
  2746. /*
  2747. * Read-modify-write. Back to userspace.
  2748. */
  2749. r = 0;
  2750. goto out;
  2751. }
  2752. }
  2753. #endif
  2754. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  2755. kvm_register_write(vcpu, VCPU_REGS_RAX,
  2756. kvm_run->hypercall.ret);
  2757. r = __vcpu_run(vcpu, kvm_run);
  2758. out:
  2759. if (vcpu->sigset_active)
  2760. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2761. vcpu_put(vcpu);
  2762. return r;
  2763. }
  2764. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2765. {
  2766. vcpu_load(vcpu);
  2767. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2768. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2769. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2770. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2771. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2772. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2773. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  2774. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  2775. #ifdef CONFIG_X86_64
  2776. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  2777. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  2778. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  2779. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  2780. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  2781. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  2782. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  2783. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  2784. #endif
  2785. regs->rip = kvm_rip_read(vcpu);
  2786. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2787. /*
  2788. * Don't leak debug flags in case they were set for guest debugging
  2789. */
  2790. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2791. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2792. vcpu_put(vcpu);
  2793. return 0;
  2794. }
  2795. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2796. {
  2797. vcpu_load(vcpu);
  2798. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  2799. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  2800. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  2801. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  2802. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  2803. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  2804. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  2805. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  2806. #ifdef CONFIG_X86_64
  2807. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  2808. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  2809. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  2810. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  2811. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  2812. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  2813. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  2814. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  2815. #endif
  2816. kvm_rip_write(vcpu, regs->rip);
  2817. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2818. vcpu->arch.exception.pending = false;
  2819. vcpu_put(vcpu);
  2820. return 0;
  2821. }
  2822. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2823. struct kvm_segment *var, int seg)
  2824. {
  2825. kvm_x86_ops->get_segment(vcpu, var, seg);
  2826. }
  2827. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2828. {
  2829. struct kvm_segment cs;
  2830. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2831. *db = cs.db;
  2832. *l = cs.l;
  2833. }
  2834. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2835. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2836. struct kvm_sregs *sregs)
  2837. {
  2838. struct descriptor_table dt;
  2839. int pending_vec;
  2840. vcpu_load(vcpu);
  2841. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2842. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2843. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2844. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2845. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2846. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2847. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2848. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2849. kvm_x86_ops->get_idt(vcpu, &dt);
  2850. sregs->idt.limit = dt.limit;
  2851. sregs->idt.base = dt.base;
  2852. kvm_x86_ops->get_gdt(vcpu, &dt);
  2853. sregs->gdt.limit = dt.limit;
  2854. sregs->gdt.base = dt.base;
  2855. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2856. sregs->cr0 = vcpu->arch.cr0;
  2857. sregs->cr2 = vcpu->arch.cr2;
  2858. sregs->cr3 = vcpu->arch.cr3;
  2859. sregs->cr4 = vcpu->arch.cr4;
  2860. sregs->cr8 = kvm_get_cr8(vcpu);
  2861. sregs->efer = vcpu->arch.shadow_efer;
  2862. sregs->apic_base = kvm_get_apic_base(vcpu);
  2863. if (irqchip_in_kernel(vcpu->kvm)) {
  2864. memset(sregs->interrupt_bitmap, 0,
  2865. sizeof sregs->interrupt_bitmap);
  2866. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2867. if (pending_vec >= 0)
  2868. set_bit(pending_vec,
  2869. (unsigned long *)sregs->interrupt_bitmap);
  2870. } else
  2871. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2872. sizeof sregs->interrupt_bitmap);
  2873. vcpu_put(vcpu);
  2874. return 0;
  2875. }
  2876. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  2877. struct kvm_mp_state *mp_state)
  2878. {
  2879. vcpu_load(vcpu);
  2880. mp_state->mp_state = vcpu->arch.mp_state;
  2881. vcpu_put(vcpu);
  2882. return 0;
  2883. }
  2884. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  2885. struct kvm_mp_state *mp_state)
  2886. {
  2887. vcpu_load(vcpu);
  2888. vcpu->arch.mp_state = mp_state->mp_state;
  2889. vcpu_put(vcpu);
  2890. return 0;
  2891. }
  2892. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2893. struct kvm_segment *var, int seg)
  2894. {
  2895. kvm_x86_ops->set_segment(vcpu, var, seg);
  2896. }
  2897. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2898. struct kvm_segment *kvm_desct)
  2899. {
  2900. kvm_desct->base = seg_desc->base0;
  2901. kvm_desct->base |= seg_desc->base1 << 16;
  2902. kvm_desct->base |= seg_desc->base2 << 24;
  2903. kvm_desct->limit = seg_desc->limit0;
  2904. kvm_desct->limit |= seg_desc->limit << 16;
  2905. if (seg_desc->g) {
  2906. kvm_desct->limit <<= 12;
  2907. kvm_desct->limit |= 0xfff;
  2908. }
  2909. kvm_desct->selector = selector;
  2910. kvm_desct->type = seg_desc->type;
  2911. kvm_desct->present = seg_desc->p;
  2912. kvm_desct->dpl = seg_desc->dpl;
  2913. kvm_desct->db = seg_desc->d;
  2914. kvm_desct->s = seg_desc->s;
  2915. kvm_desct->l = seg_desc->l;
  2916. kvm_desct->g = seg_desc->g;
  2917. kvm_desct->avl = seg_desc->avl;
  2918. if (!selector)
  2919. kvm_desct->unusable = 1;
  2920. else
  2921. kvm_desct->unusable = 0;
  2922. kvm_desct->padding = 0;
  2923. }
  2924. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  2925. u16 selector,
  2926. struct descriptor_table *dtable)
  2927. {
  2928. if (selector & 1 << 2) {
  2929. struct kvm_segment kvm_seg;
  2930. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2931. if (kvm_seg.unusable)
  2932. dtable->limit = 0;
  2933. else
  2934. dtable->limit = kvm_seg.limit;
  2935. dtable->base = kvm_seg.base;
  2936. }
  2937. else
  2938. kvm_x86_ops->get_gdt(vcpu, dtable);
  2939. }
  2940. /* allowed just for 8 bytes segments */
  2941. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2942. struct desc_struct *seg_desc)
  2943. {
  2944. gpa_t gpa;
  2945. struct descriptor_table dtable;
  2946. u16 index = selector >> 3;
  2947. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  2948. if (dtable.limit < index * 8 + 7) {
  2949. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2950. return 1;
  2951. }
  2952. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2953. gpa += index * 8;
  2954. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  2955. }
  2956. /* allowed just for 8 bytes segments */
  2957. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2958. struct desc_struct *seg_desc)
  2959. {
  2960. gpa_t gpa;
  2961. struct descriptor_table dtable;
  2962. u16 index = selector >> 3;
  2963. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  2964. if (dtable.limit < index * 8 + 7)
  2965. return 1;
  2966. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2967. gpa += index * 8;
  2968. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  2969. }
  2970. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  2971. struct desc_struct *seg_desc)
  2972. {
  2973. u32 base_addr;
  2974. base_addr = seg_desc->base0;
  2975. base_addr |= (seg_desc->base1 << 16);
  2976. base_addr |= (seg_desc->base2 << 24);
  2977. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  2978. }
  2979. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  2980. {
  2981. struct kvm_segment kvm_seg;
  2982. kvm_get_segment(vcpu, &kvm_seg, seg);
  2983. return kvm_seg.selector;
  2984. }
  2985. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  2986. u16 selector,
  2987. struct kvm_segment *kvm_seg)
  2988. {
  2989. struct desc_struct seg_desc;
  2990. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  2991. return 1;
  2992. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  2993. return 0;
  2994. }
  2995. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  2996. {
  2997. struct kvm_segment segvar = {
  2998. .base = selector << 4,
  2999. .limit = 0xffff,
  3000. .selector = selector,
  3001. .type = 3,
  3002. .present = 1,
  3003. .dpl = 3,
  3004. .db = 0,
  3005. .s = 1,
  3006. .l = 0,
  3007. .g = 0,
  3008. .avl = 0,
  3009. .unusable = 0,
  3010. };
  3011. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3012. return 0;
  3013. }
  3014. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3015. int type_bits, int seg)
  3016. {
  3017. struct kvm_segment kvm_seg;
  3018. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3019. return kvm_load_realmode_segment(vcpu, selector, seg);
  3020. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3021. return 1;
  3022. kvm_seg.type |= type_bits;
  3023. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3024. seg != VCPU_SREG_LDTR)
  3025. if (!kvm_seg.s)
  3026. kvm_seg.unusable = 1;
  3027. kvm_set_segment(vcpu, &kvm_seg, seg);
  3028. return 0;
  3029. }
  3030. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3031. struct tss_segment_32 *tss)
  3032. {
  3033. tss->cr3 = vcpu->arch.cr3;
  3034. tss->eip = kvm_rip_read(vcpu);
  3035. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3036. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3037. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3038. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3039. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3040. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3041. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3042. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3043. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3044. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3045. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3046. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3047. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3048. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3049. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3050. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3051. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3052. }
  3053. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3054. struct tss_segment_32 *tss)
  3055. {
  3056. kvm_set_cr3(vcpu, tss->cr3);
  3057. kvm_rip_write(vcpu, tss->eip);
  3058. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3059. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3060. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3061. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3062. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3063. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3064. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3065. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3066. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3067. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3068. return 1;
  3069. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3070. return 1;
  3071. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3072. return 1;
  3073. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3074. return 1;
  3075. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3076. return 1;
  3077. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3078. return 1;
  3079. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3080. return 1;
  3081. return 0;
  3082. }
  3083. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3084. struct tss_segment_16 *tss)
  3085. {
  3086. tss->ip = kvm_rip_read(vcpu);
  3087. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3088. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3089. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3090. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3091. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3092. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3093. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3094. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3095. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3096. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3097. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3098. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3099. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3100. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3101. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3102. }
  3103. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3104. struct tss_segment_16 *tss)
  3105. {
  3106. kvm_rip_write(vcpu, tss->ip);
  3107. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3108. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3109. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3110. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3111. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3112. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3113. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3114. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3115. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3116. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3117. return 1;
  3118. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3119. return 1;
  3120. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3121. return 1;
  3122. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3123. return 1;
  3124. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3125. return 1;
  3126. return 0;
  3127. }
  3128. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3129. u32 old_tss_base,
  3130. struct desc_struct *nseg_desc)
  3131. {
  3132. struct tss_segment_16 tss_segment_16;
  3133. int ret = 0;
  3134. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3135. sizeof tss_segment_16))
  3136. goto out;
  3137. save_state_to_tss16(vcpu, &tss_segment_16);
  3138. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3139. sizeof tss_segment_16))
  3140. goto out;
  3141. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3142. &tss_segment_16, sizeof tss_segment_16))
  3143. goto out;
  3144. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3145. goto out;
  3146. ret = 1;
  3147. out:
  3148. return ret;
  3149. }
  3150. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3151. u32 old_tss_base,
  3152. struct desc_struct *nseg_desc)
  3153. {
  3154. struct tss_segment_32 tss_segment_32;
  3155. int ret = 0;
  3156. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3157. sizeof tss_segment_32))
  3158. goto out;
  3159. save_state_to_tss32(vcpu, &tss_segment_32);
  3160. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3161. sizeof tss_segment_32))
  3162. goto out;
  3163. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3164. &tss_segment_32, sizeof tss_segment_32))
  3165. goto out;
  3166. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3167. goto out;
  3168. ret = 1;
  3169. out:
  3170. return ret;
  3171. }
  3172. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3173. {
  3174. struct kvm_segment tr_seg;
  3175. struct desc_struct cseg_desc;
  3176. struct desc_struct nseg_desc;
  3177. int ret = 0;
  3178. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3179. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3180. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3181. /* FIXME: Handle errors. Failure to read either TSS or their
  3182. * descriptors should generate a pagefault.
  3183. */
  3184. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3185. goto out;
  3186. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3187. goto out;
  3188. if (reason != TASK_SWITCH_IRET) {
  3189. int cpl;
  3190. cpl = kvm_x86_ops->get_cpl(vcpu);
  3191. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3192. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3193. return 1;
  3194. }
  3195. }
  3196. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3197. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3198. return 1;
  3199. }
  3200. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3201. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3202. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3203. }
  3204. if (reason == TASK_SWITCH_IRET) {
  3205. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3206. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3207. }
  3208. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3209. if (nseg_desc.type & 8)
  3210. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
  3211. &nseg_desc);
  3212. else
  3213. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
  3214. &nseg_desc);
  3215. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3216. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3217. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3218. }
  3219. if (reason != TASK_SWITCH_IRET) {
  3220. nseg_desc.type |= (1 << 1);
  3221. save_guest_segment_descriptor(vcpu, tss_selector,
  3222. &nseg_desc);
  3223. }
  3224. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3225. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3226. tr_seg.type = 11;
  3227. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3228. out:
  3229. return ret;
  3230. }
  3231. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3232. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3233. struct kvm_sregs *sregs)
  3234. {
  3235. int mmu_reset_needed = 0;
  3236. int i, pending_vec, max_bits;
  3237. struct descriptor_table dt;
  3238. vcpu_load(vcpu);
  3239. dt.limit = sregs->idt.limit;
  3240. dt.base = sregs->idt.base;
  3241. kvm_x86_ops->set_idt(vcpu, &dt);
  3242. dt.limit = sregs->gdt.limit;
  3243. dt.base = sregs->gdt.base;
  3244. kvm_x86_ops->set_gdt(vcpu, &dt);
  3245. vcpu->arch.cr2 = sregs->cr2;
  3246. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3247. vcpu->arch.cr3 = sregs->cr3;
  3248. kvm_set_cr8(vcpu, sregs->cr8);
  3249. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3250. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3251. kvm_set_apic_base(vcpu, sregs->apic_base);
  3252. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3253. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3254. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3255. vcpu->arch.cr0 = sregs->cr0;
  3256. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3257. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3258. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3259. load_pdptrs(vcpu, vcpu->arch.cr3);
  3260. if (mmu_reset_needed)
  3261. kvm_mmu_reset_context(vcpu);
  3262. if (!irqchip_in_kernel(vcpu->kvm)) {
  3263. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3264. sizeof vcpu->arch.irq_pending);
  3265. vcpu->arch.irq_summary = 0;
  3266. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3267. if (vcpu->arch.irq_pending[i])
  3268. __set_bit(i, &vcpu->arch.irq_summary);
  3269. } else {
  3270. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3271. pending_vec = find_first_bit(
  3272. (const unsigned long *)sregs->interrupt_bitmap,
  3273. max_bits);
  3274. /* Only pending external irq is handled here */
  3275. if (pending_vec < max_bits) {
  3276. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3277. pr_debug("Set back pending irq %d\n",
  3278. pending_vec);
  3279. }
  3280. kvm_pic_clear_isr_ack(vcpu->kvm);
  3281. }
  3282. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3283. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3284. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3285. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3286. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3287. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3288. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3289. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3290. /* Older userspace won't unhalt the vcpu on reset. */
  3291. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3292. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3293. !(vcpu->arch.cr0 & X86_CR0_PE))
  3294. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3295. vcpu_put(vcpu);
  3296. return 0;
  3297. }
  3298. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  3299. struct kvm_debug_guest *dbg)
  3300. {
  3301. int r;
  3302. vcpu_load(vcpu);
  3303. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3304. vcpu_put(vcpu);
  3305. return r;
  3306. }
  3307. /*
  3308. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3309. * we have asm/x86/processor.h
  3310. */
  3311. struct fxsave {
  3312. u16 cwd;
  3313. u16 swd;
  3314. u16 twd;
  3315. u16 fop;
  3316. u64 rip;
  3317. u64 rdp;
  3318. u32 mxcsr;
  3319. u32 mxcsr_mask;
  3320. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3321. #ifdef CONFIG_X86_64
  3322. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3323. #else
  3324. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3325. #endif
  3326. };
  3327. /*
  3328. * Translate a guest virtual address to a guest physical address.
  3329. */
  3330. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3331. struct kvm_translation *tr)
  3332. {
  3333. unsigned long vaddr = tr->linear_address;
  3334. gpa_t gpa;
  3335. vcpu_load(vcpu);
  3336. down_read(&vcpu->kvm->slots_lock);
  3337. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3338. up_read(&vcpu->kvm->slots_lock);
  3339. tr->physical_address = gpa;
  3340. tr->valid = gpa != UNMAPPED_GVA;
  3341. tr->writeable = 1;
  3342. tr->usermode = 0;
  3343. vcpu_put(vcpu);
  3344. return 0;
  3345. }
  3346. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3347. {
  3348. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3349. vcpu_load(vcpu);
  3350. memcpy(fpu->fpr, fxsave->st_space, 128);
  3351. fpu->fcw = fxsave->cwd;
  3352. fpu->fsw = fxsave->swd;
  3353. fpu->ftwx = fxsave->twd;
  3354. fpu->last_opcode = fxsave->fop;
  3355. fpu->last_ip = fxsave->rip;
  3356. fpu->last_dp = fxsave->rdp;
  3357. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3358. vcpu_put(vcpu);
  3359. return 0;
  3360. }
  3361. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3362. {
  3363. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3364. vcpu_load(vcpu);
  3365. memcpy(fxsave->st_space, fpu->fpr, 128);
  3366. fxsave->cwd = fpu->fcw;
  3367. fxsave->swd = fpu->fsw;
  3368. fxsave->twd = fpu->ftwx;
  3369. fxsave->fop = fpu->last_opcode;
  3370. fxsave->rip = fpu->last_ip;
  3371. fxsave->rdp = fpu->last_dp;
  3372. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3373. vcpu_put(vcpu);
  3374. return 0;
  3375. }
  3376. void fx_init(struct kvm_vcpu *vcpu)
  3377. {
  3378. unsigned after_mxcsr_mask;
  3379. /*
  3380. * Touch the fpu the first time in non atomic context as if
  3381. * this is the first fpu instruction the exception handler
  3382. * will fire before the instruction returns and it'll have to
  3383. * allocate ram with GFP_KERNEL.
  3384. */
  3385. if (!used_math())
  3386. kvm_fx_save(&vcpu->arch.host_fx_image);
  3387. /* Initialize guest FPU by resetting ours and saving into guest's */
  3388. preempt_disable();
  3389. kvm_fx_save(&vcpu->arch.host_fx_image);
  3390. kvm_fx_finit();
  3391. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3392. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3393. preempt_enable();
  3394. vcpu->arch.cr0 |= X86_CR0_ET;
  3395. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3396. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3397. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3398. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3399. }
  3400. EXPORT_SYMBOL_GPL(fx_init);
  3401. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3402. {
  3403. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3404. return;
  3405. vcpu->guest_fpu_loaded = 1;
  3406. kvm_fx_save(&vcpu->arch.host_fx_image);
  3407. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3408. }
  3409. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3410. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3411. {
  3412. if (!vcpu->guest_fpu_loaded)
  3413. return;
  3414. vcpu->guest_fpu_loaded = 0;
  3415. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3416. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3417. ++vcpu->stat.fpu_reload;
  3418. }
  3419. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3420. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3421. {
  3422. kvm_x86_ops->vcpu_free(vcpu);
  3423. }
  3424. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3425. unsigned int id)
  3426. {
  3427. return kvm_x86_ops->vcpu_create(kvm, id);
  3428. }
  3429. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3430. {
  3431. int r;
  3432. /* We do fxsave: this must be aligned. */
  3433. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3434. vcpu->arch.mtrr_state.have_fixed = 1;
  3435. vcpu_load(vcpu);
  3436. r = kvm_arch_vcpu_reset(vcpu);
  3437. if (r == 0)
  3438. r = kvm_mmu_setup(vcpu);
  3439. vcpu_put(vcpu);
  3440. if (r < 0)
  3441. goto free_vcpu;
  3442. return 0;
  3443. free_vcpu:
  3444. kvm_x86_ops->vcpu_free(vcpu);
  3445. return r;
  3446. }
  3447. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3448. {
  3449. vcpu_load(vcpu);
  3450. kvm_mmu_unload(vcpu);
  3451. vcpu_put(vcpu);
  3452. kvm_x86_ops->vcpu_free(vcpu);
  3453. }
  3454. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3455. {
  3456. vcpu->arch.nmi_pending = false;
  3457. vcpu->arch.nmi_injected = false;
  3458. return kvm_x86_ops->vcpu_reset(vcpu);
  3459. }
  3460. void kvm_arch_hardware_enable(void *garbage)
  3461. {
  3462. kvm_x86_ops->hardware_enable(garbage);
  3463. }
  3464. void kvm_arch_hardware_disable(void *garbage)
  3465. {
  3466. kvm_x86_ops->hardware_disable(garbage);
  3467. }
  3468. int kvm_arch_hardware_setup(void)
  3469. {
  3470. return kvm_x86_ops->hardware_setup();
  3471. }
  3472. void kvm_arch_hardware_unsetup(void)
  3473. {
  3474. kvm_x86_ops->hardware_unsetup();
  3475. }
  3476. void kvm_arch_check_processor_compat(void *rtn)
  3477. {
  3478. kvm_x86_ops->check_processor_compatibility(rtn);
  3479. }
  3480. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3481. {
  3482. struct page *page;
  3483. struct kvm *kvm;
  3484. int r;
  3485. BUG_ON(vcpu->kvm == NULL);
  3486. kvm = vcpu->kvm;
  3487. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3488. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3489. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3490. else
  3491. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3492. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3493. if (!page) {
  3494. r = -ENOMEM;
  3495. goto fail;
  3496. }
  3497. vcpu->arch.pio_data = page_address(page);
  3498. r = kvm_mmu_create(vcpu);
  3499. if (r < 0)
  3500. goto fail_free_pio_data;
  3501. if (irqchip_in_kernel(kvm)) {
  3502. r = kvm_create_lapic(vcpu);
  3503. if (r < 0)
  3504. goto fail_mmu_destroy;
  3505. }
  3506. return 0;
  3507. fail_mmu_destroy:
  3508. kvm_mmu_destroy(vcpu);
  3509. fail_free_pio_data:
  3510. free_page((unsigned long)vcpu->arch.pio_data);
  3511. fail:
  3512. return r;
  3513. }
  3514. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3515. {
  3516. kvm_free_lapic(vcpu);
  3517. down_read(&vcpu->kvm->slots_lock);
  3518. kvm_mmu_destroy(vcpu);
  3519. up_read(&vcpu->kvm->slots_lock);
  3520. free_page((unsigned long)vcpu->arch.pio_data);
  3521. }
  3522. struct kvm *kvm_arch_create_vm(void)
  3523. {
  3524. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3525. if (!kvm)
  3526. return ERR_PTR(-ENOMEM);
  3527. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3528. INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
  3529. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3530. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3531. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3532. return kvm;
  3533. }
  3534. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3535. {
  3536. vcpu_load(vcpu);
  3537. kvm_mmu_unload(vcpu);
  3538. vcpu_put(vcpu);
  3539. }
  3540. static void kvm_free_vcpus(struct kvm *kvm)
  3541. {
  3542. unsigned int i;
  3543. /*
  3544. * Unpin any mmu pages first.
  3545. */
  3546. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3547. if (kvm->vcpus[i])
  3548. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3549. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3550. if (kvm->vcpus[i]) {
  3551. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3552. kvm->vcpus[i] = NULL;
  3553. }
  3554. }
  3555. }
  3556. void kvm_arch_destroy_vm(struct kvm *kvm)
  3557. {
  3558. kvm_free_all_assigned_devices(kvm);
  3559. kvm_iommu_unmap_guest(kvm);
  3560. kvm_free_pit(kvm);
  3561. kfree(kvm->arch.vpic);
  3562. kfree(kvm->arch.vioapic);
  3563. kvm_free_vcpus(kvm);
  3564. kvm_free_physmem(kvm);
  3565. if (kvm->arch.apic_access_page)
  3566. put_page(kvm->arch.apic_access_page);
  3567. if (kvm->arch.ept_identity_pagetable)
  3568. put_page(kvm->arch.ept_identity_pagetable);
  3569. kfree(kvm);
  3570. }
  3571. int kvm_arch_set_memory_region(struct kvm *kvm,
  3572. struct kvm_userspace_memory_region *mem,
  3573. struct kvm_memory_slot old,
  3574. int user_alloc)
  3575. {
  3576. int npages = mem->memory_size >> PAGE_SHIFT;
  3577. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3578. /*To keep backward compatibility with older userspace,
  3579. *x86 needs to hanlde !user_alloc case.
  3580. */
  3581. if (!user_alloc) {
  3582. if (npages && !old.rmap) {
  3583. unsigned long userspace_addr;
  3584. down_write(&current->mm->mmap_sem);
  3585. userspace_addr = do_mmap(NULL, 0,
  3586. npages * PAGE_SIZE,
  3587. PROT_READ | PROT_WRITE,
  3588. MAP_PRIVATE | MAP_ANONYMOUS,
  3589. 0);
  3590. up_write(&current->mm->mmap_sem);
  3591. if (IS_ERR((void *)userspace_addr))
  3592. return PTR_ERR((void *)userspace_addr);
  3593. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3594. spin_lock(&kvm->mmu_lock);
  3595. memslot->userspace_addr = userspace_addr;
  3596. spin_unlock(&kvm->mmu_lock);
  3597. } else {
  3598. if (!old.user_alloc && old.rmap) {
  3599. int ret;
  3600. down_write(&current->mm->mmap_sem);
  3601. ret = do_munmap(current->mm, old.userspace_addr,
  3602. old.npages * PAGE_SIZE);
  3603. up_write(&current->mm->mmap_sem);
  3604. if (ret < 0)
  3605. printk(KERN_WARNING
  3606. "kvm_vm_ioctl_set_memory_region: "
  3607. "failed to munmap memory\n");
  3608. }
  3609. }
  3610. }
  3611. if (!kvm->arch.n_requested_mmu_pages) {
  3612. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3613. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3614. }
  3615. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3616. kvm_flush_remote_tlbs(kvm);
  3617. return 0;
  3618. }
  3619. void kvm_arch_flush_shadow(struct kvm *kvm)
  3620. {
  3621. kvm_mmu_zap_all(kvm);
  3622. }
  3623. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3624. {
  3625. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3626. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3627. || vcpu->arch.nmi_pending;
  3628. }
  3629. static void vcpu_kick_intr(void *info)
  3630. {
  3631. #ifdef DEBUG
  3632. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3633. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3634. #endif
  3635. }
  3636. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3637. {
  3638. int ipi_pcpu = vcpu->cpu;
  3639. int cpu = get_cpu();
  3640. if (waitqueue_active(&vcpu->wq)) {
  3641. wake_up_interruptible(&vcpu->wq);
  3642. ++vcpu->stat.halt_wakeup;
  3643. }
  3644. /*
  3645. * We may be called synchronously with irqs disabled in guest mode,
  3646. * So need not to call smp_call_function_single() in that case.
  3647. */
  3648. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3649. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3650. put_cpu();
  3651. }