paging_tmpl.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define shadow_walker shadow_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  30. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define shadow_walker shadow_walker32
  44. #define FNAME(name) paging##32_##name
  45. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  46. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  49. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  50. #define PT_MAX_FULL_LEVELS 2
  51. #define CMPXCHG cmpxchg
  52. #else
  53. #error Invalid PTTYPE value
  54. #endif
  55. #define gpte_to_gfn FNAME(gpte_to_gfn)
  56. #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
  57. /*
  58. * The guest_walker structure emulates the behavior of the hardware page
  59. * table walker.
  60. */
  61. struct guest_walker {
  62. int level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  66. unsigned pt_access;
  67. unsigned pte_access;
  68. gfn_t gfn;
  69. u32 error_code;
  70. };
  71. struct shadow_walker {
  72. struct kvm_shadow_walk walker;
  73. struct guest_walker *guest_walker;
  74. int user_fault;
  75. int write_fault;
  76. int largepage;
  77. int *ptwrite;
  78. pfn_t pfn;
  79. u64 *sptep;
  80. gpa_t pte_gpa;
  81. };
  82. static gfn_t gpte_to_gfn(pt_element_t gpte)
  83. {
  84. return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  85. }
  86. static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
  87. {
  88. return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  89. }
  90. static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
  91. gfn_t table_gfn, unsigned index,
  92. pt_element_t orig_pte, pt_element_t new_pte)
  93. {
  94. pt_element_t ret;
  95. pt_element_t *table;
  96. struct page *page;
  97. page = gfn_to_page(kvm, table_gfn);
  98. table = kmap_atomic(page, KM_USER0);
  99. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  100. kunmap_atomic(table, KM_USER0);
  101. kvm_release_page_dirty(page);
  102. return (ret != orig_pte);
  103. }
  104. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  105. {
  106. unsigned access;
  107. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  108. #if PTTYPE == 64
  109. if (is_nx(vcpu))
  110. access &= ~(gpte >> PT64_NX_SHIFT);
  111. #endif
  112. return access;
  113. }
  114. /*
  115. * Fetch a guest pte for a guest virtual address
  116. */
  117. static int FNAME(walk_addr)(struct guest_walker *walker,
  118. struct kvm_vcpu *vcpu, gva_t addr,
  119. int write_fault, int user_fault, int fetch_fault)
  120. {
  121. pt_element_t pte;
  122. gfn_t table_gfn;
  123. unsigned index, pt_access, pte_access;
  124. gpa_t pte_gpa;
  125. pgprintk("%s: addr %lx\n", __func__, addr);
  126. walk:
  127. walker->level = vcpu->arch.mmu.root_level;
  128. pte = vcpu->arch.cr3;
  129. #if PTTYPE == 64
  130. if (!is_long_mode(vcpu)) {
  131. pte = vcpu->arch.pdptrs[(addr >> 30) & 3];
  132. if (!is_present_pte(pte))
  133. goto not_present;
  134. --walker->level;
  135. }
  136. #endif
  137. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  138. (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  139. pt_access = ACC_ALL;
  140. for (;;) {
  141. index = PT_INDEX(addr, walker->level);
  142. table_gfn = gpte_to_gfn(pte);
  143. pte_gpa = gfn_to_gpa(table_gfn);
  144. pte_gpa += index * sizeof(pt_element_t);
  145. walker->table_gfn[walker->level - 1] = table_gfn;
  146. walker->pte_gpa[walker->level - 1] = pte_gpa;
  147. pgprintk("%s: table_gfn[%d] %lx\n", __func__,
  148. walker->level - 1, table_gfn);
  149. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  150. if (!is_present_pte(pte))
  151. goto not_present;
  152. if (write_fault && !is_writeble_pte(pte))
  153. if (user_fault || is_write_protection(vcpu))
  154. goto access_error;
  155. if (user_fault && !(pte & PT_USER_MASK))
  156. goto access_error;
  157. #if PTTYPE == 64
  158. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  159. goto access_error;
  160. #endif
  161. if (!(pte & PT_ACCESSED_MASK)) {
  162. mark_page_dirty(vcpu->kvm, table_gfn);
  163. if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
  164. index, pte, pte|PT_ACCESSED_MASK))
  165. goto walk;
  166. pte |= PT_ACCESSED_MASK;
  167. }
  168. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  169. walker->ptes[walker->level - 1] = pte;
  170. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  171. walker->gfn = gpte_to_gfn(pte);
  172. break;
  173. }
  174. if (walker->level == PT_DIRECTORY_LEVEL
  175. && (pte & PT_PAGE_SIZE_MASK)
  176. && (PTTYPE == 64 || is_pse(vcpu))) {
  177. walker->gfn = gpte_to_gfn_pde(pte);
  178. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  179. if (PTTYPE == 32 && is_cpuid_PSE36())
  180. walker->gfn += pse36_gfn_delta(pte);
  181. break;
  182. }
  183. pt_access = pte_access;
  184. --walker->level;
  185. }
  186. if (write_fault && !is_dirty_pte(pte)) {
  187. bool ret;
  188. mark_page_dirty(vcpu->kvm, table_gfn);
  189. ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
  190. pte|PT_DIRTY_MASK);
  191. if (ret)
  192. goto walk;
  193. pte |= PT_DIRTY_MASK;
  194. kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte), 0);
  195. walker->ptes[walker->level - 1] = pte;
  196. }
  197. walker->pt_access = pt_access;
  198. walker->pte_access = pte_access;
  199. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  200. __func__, (u64)pte, pt_access, pte_access);
  201. return 1;
  202. not_present:
  203. walker->error_code = 0;
  204. goto err;
  205. access_error:
  206. walker->error_code = PFERR_PRESENT_MASK;
  207. err:
  208. if (write_fault)
  209. walker->error_code |= PFERR_WRITE_MASK;
  210. if (user_fault)
  211. walker->error_code |= PFERR_USER_MASK;
  212. if (fetch_fault)
  213. walker->error_code |= PFERR_FETCH_MASK;
  214. return 0;
  215. }
  216. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  217. u64 *spte, const void *pte)
  218. {
  219. pt_element_t gpte;
  220. unsigned pte_access;
  221. pfn_t pfn;
  222. int largepage = vcpu->arch.update_pte.largepage;
  223. gpte = *(const pt_element_t *)pte;
  224. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  225. if (!is_present_pte(gpte))
  226. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  227. return;
  228. }
  229. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  230. pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
  231. if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
  232. return;
  233. pfn = vcpu->arch.update_pte.pfn;
  234. if (is_error_pfn(pfn))
  235. return;
  236. if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
  237. return;
  238. kvm_get_pfn(pfn);
  239. mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
  240. gpte & PT_DIRTY_MASK, NULL, largepage,
  241. gpte & PT_GLOBAL_MASK, gpte_to_gfn(gpte),
  242. pfn, true);
  243. }
  244. /*
  245. * Fetch a shadow pte for a specific level in the paging hierarchy.
  246. */
  247. static int FNAME(shadow_walk_entry)(struct kvm_shadow_walk *_sw,
  248. struct kvm_vcpu *vcpu, u64 addr,
  249. u64 *sptep, int level)
  250. {
  251. struct shadow_walker *sw =
  252. container_of(_sw, struct shadow_walker, walker);
  253. struct guest_walker *gw = sw->guest_walker;
  254. unsigned access = gw->pt_access;
  255. struct kvm_mmu_page *shadow_page;
  256. u64 spte;
  257. int metaphysical;
  258. gfn_t table_gfn;
  259. int r;
  260. pt_element_t curr_pte;
  261. if (level == PT_PAGE_TABLE_LEVEL
  262. || (sw->largepage && level == PT_DIRECTORY_LEVEL)) {
  263. mmu_set_spte(vcpu, sptep, access, gw->pte_access & access,
  264. sw->user_fault, sw->write_fault,
  265. gw->ptes[gw->level-1] & PT_DIRTY_MASK,
  266. sw->ptwrite, sw->largepage,
  267. gw->ptes[gw->level-1] & PT_GLOBAL_MASK,
  268. gw->gfn, sw->pfn, false);
  269. sw->sptep = sptep;
  270. return 1;
  271. }
  272. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
  273. return 0;
  274. if (is_large_pte(*sptep)) {
  275. set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
  276. kvm_flush_remote_tlbs(vcpu->kvm);
  277. rmap_remove(vcpu->kvm, sptep);
  278. }
  279. if (level == PT_DIRECTORY_LEVEL && gw->level == PT_DIRECTORY_LEVEL) {
  280. metaphysical = 1;
  281. if (!is_dirty_pte(gw->ptes[level - 1]))
  282. access &= ~ACC_WRITE_MASK;
  283. table_gfn = gpte_to_gfn(gw->ptes[level - 1]);
  284. } else {
  285. metaphysical = 0;
  286. table_gfn = gw->table_gfn[level - 2];
  287. }
  288. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, (gva_t)addr, level-1,
  289. metaphysical, access, sptep);
  290. if (!metaphysical) {
  291. r = kvm_read_guest_atomic(vcpu->kvm, gw->pte_gpa[level - 2],
  292. &curr_pte, sizeof(curr_pte));
  293. if (r || curr_pte != gw->ptes[level - 2]) {
  294. kvm_mmu_put_page(shadow_page, sptep);
  295. kvm_release_pfn_clean(sw->pfn);
  296. sw->sptep = NULL;
  297. return 1;
  298. }
  299. }
  300. spte = __pa(shadow_page->spt) | PT_PRESENT_MASK | PT_ACCESSED_MASK
  301. | PT_WRITABLE_MASK | PT_USER_MASK;
  302. *sptep = spte;
  303. return 0;
  304. }
  305. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  306. struct guest_walker *guest_walker,
  307. int user_fault, int write_fault, int largepage,
  308. int *ptwrite, pfn_t pfn)
  309. {
  310. struct shadow_walker walker = {
  311. .walker = { .entry = FNAME(shadow_walk_entry), },
  312. .guest_walker = guest_walker,
  313. .user_fault = user_fault,
  314. .write_fault = write_fault,
  315. .largepage = largepage,
  316. .ptwrite = ptwrite,
  317. .pfn = pfn,
  318. };
  319. if (!is_present_pte(guest_walker->ptes[guest_walker->level - 1]))
  320. return NULL;
  321. walk_shadow(&walker.walker, vcpu, addr);
  322. return walker.sptep;
  323. }
  324. /*
  325. * Page fault handler. There are several causes for a page fault:
  326. * - there is no shadow pte for the guest pte
  327. * - write access through a shadow pte marked read only so that we can set
  328. * the dirty bit
  329. * - write access to a shadow pte marked read only so we can update the page
  330. * dirty bitmap, when userspace requests it
  331. * - mmio access; in this case we will never install a present shadow pte
  332. * - normal guest page fault due to the guest pte marked not present, not
  333. * writable, or not executable
  334. *
  335. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  336. * a negative value on error.
  337. */
  338. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  339. u32 error_code)
  340. {
  341. int write_fault = error_code & PFERR_WRITE_MASK;
  342. int user_fault = error_code & PFERR_USER_MASK;
  343. int fetch_fault = error_code & PFERR_FETCH_MASK;
  344. struct guest_walker walker;
  345. u64 *shadow_pte;
  346. int write_pt = 0;
  347. int r;
  348. pfn_t pfn;
  349. int largepage = 0;
  350. unsigned long mmu_seq;
  351. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  352. kvm_mmu_audit(vcpu, "pre page fault");
  353. r = mmu_topup_memory_caches(vcpu);
  354. if (r)
  355. return r;
  356. /*
  357. * Look up the shadow pte for the faulting address.
  358. */
  359. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  360. fetch_fault);
  361. /*
  362. * The page is not mapped by the guest. Let the guest handle it.
  363. */
  364. if (!r) {
  365. pgprintk("%s: guest page fault\n", __func__);
  366. inject_page_fault(vcpu, addr, walker.error_code);
  367. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  368. return 0;
  369. }
  370. if (walker.level == PT_DIRECTORY_LEVEL) {
  371. gfn_t large_gfn;
  372. large_gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE-1);
  373. if (is_largepage_backed(vcpu, large_gfn)) {
  374. walker.gfn = large_gfn;
  375. largepage = 1;
  376. }
  377. }
  378. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  379. smp_rmb();
  380. pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
  381. /* mmio */
  382. if (is_error_pfn(pfn)) {
  383. pgprintk("gfn %lx is mmio\n", walker.gfn);
  384. kvm_release_pfn_clean(pfn);
  385. return 1;
  386. }
  387. spin_lock(&vcpu->kvm->mmu_lock);
  388. if (mmu_notifier_retry(vcpu, mmu_seq))
  389. goto out_unlock;
  390. kvm_mmu_free_some_pages(vcpu);
  391. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  392. largepage, &write_pt, pfn);
  393. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  394. shadow_pte, *shadow_pte, write_pt);
  395. if (!write_pt)
  396. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  397. ++vcpu->stat.pf_fixed;
  398. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  399. spin_unlock(&vcpu->kvm->mmu_lock);
  400. return write_pt;
  401. out_unlock:
  402. spin_unlock(&vcpu->kvm->mmu_lock);
  403. kvm_release_pfn_clean(pfn);
  404. return 0;
  405. }
  406. static int FNAME(shadow_invlpg_entry)(struct kvm_shadow_walk *_sw,
  407. struct kvm_vcpu *vcpu, u64 addr,
  408. u64 *sptep, int level)
  409. {
  410. struct shadow_walker *sw =
  411. container_of(_sw, struct shadow_walker, walker);
  412. /* FIXME: properly handle invlpg on large guest pages */
  413. if (level == PT_PAGE_TABLE_LEVEL ||
  414. ((level == PT_DIRECTORY_LEVEL) && is_large_pte(*sptep))) {
  415. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  416. sw->pte_gpa = (sp->gfn << PAGE_SHIFT);
  417. sw->pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  418. if (is_shadow_present_pte(*sptep)) {
  419. rmap_remove(vcpu->kvm, sptep);
  420. if (is_large_pte(*sptep))
  421. --vcpu->kvm->stat.lpages;
  422. }
  423. set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
  424. return 1;
  425. }
  426. if (!is_shadow_present_pte(*sptep))
  427. return 1;
  428. return 0;
  429. }
  430. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  431. {
  432. pt_element_t gpte;
  433. struct shadow_walker walker = {
  434. .walker = { .entry = FNAME(shadow_invlpg_entry), },
  435. .pte_gpa = -1,
  436. };
  437. spin_lock(&vcpu->kvm->mmu_lock);
  438. walk_shadow(&walker.walker, vcpu, gva);
  439. spin_unlock(&vcpu->kvm->mmu_lock);
  440. if (walker.pte_gpa == -1)
  441. return;
  442. if (kvm_read_guest_atomic(vcpu->kvm, walker.pte_gpa, &gpte,
  443. sizeof(pt_element_t)))
  444. return;
  445. if (is_present_pte(gpte) && (gpte & PT_ACCESSED_MASK)) {
  446. if (mmu_topup_memory_caches(vcpu))
  447. return;
  448. kvm_mmu_pte_write(vcpu, walker.pte_gpa, (const u8 *)&gpte,
  449. sizeof(pt_element_t), 0);
  450. }
  451. }
  452. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  453. {
  454. struct guest_walker walker;
  455. gpa_t gpa = UNMAPPED_GVA;
  456. int r;
  457. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  458. if (r) {
  459. gpa = gfn_to_gpa(walker.gfn);
  460. gpa |= vaddr & ~PAGE_MASK;
  461. }
  462. return gpa;
  463. }
  464. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  465. struct kvm_mmu_page *sp)
  466. {
  467. int i, j, offset, r;
  468. pt_element_t pt[256 / sizeof(pt_element_t)];
  469. gpa_t pte_gpa;
  470. if (sp->role.metaphysical
  471. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  472. nonpaging_prefetch_page(vcpu, sp);
  473. return;
  474. }
  475. pte_gpa = gfn_to_gpa(sp->gfn);
  476. if (PTTYPE == 32) {
  477. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  478. pte_gpa += offset * sizeof(pt_element_t);
  479. }
  480. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  481. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  482. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  483. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  484. if (r || is_present_pte(pt[j]))
  485. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  486. else
  487. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  488. }
  489. }
  490. /*
  491. * Using the cached information from sp->gfns is safe because:
  492. * - The spte has a reference to the struct page, so the pfn for a given gfn
  493. * can't change unless all sptes pointing to it are nuked first.
  494. * - Alias changes zap the entire shadow cache.
  495. */
  496. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  497. {
  498. int i, offset, nr_present;
  499. offset = nr_present = 0;
  500. if (PTTYPE == 32)
  501. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  502. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  503. unsigned pte_access;
  504. pt_element_t gpte;
  505. gpa_t pte_gpa;
  506. gfn_t gfn = sp->gfns[i];
  507. if (!is_shadow_present_pte(sp->spt[i]))
  508. continue;
  509. pte_gpa = gfn_to_gpa(sp->gfn);
  510. pte_gpa += (i+offset) * sizeof(pt_element_t);
  511. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  512. sizeof(pt_element_t)))
  513. return -EINVAL;
  514. if (gpte_to_gfn(gpte) != gfn || !is_present_pte(gpte) ||
  515. !(gpte & PT_ACCESSED_MASK)) {
  516. u64 nonpresent;
  517. rmap_remove(vcpu->kvm, &sp->spt[i]);
  518. if (is_present_pte(gpte))
  519. nonpresent = shadow_trap_nonpresent_pte;
  520. else
  521. nonpresent = shadow_notrap_nonpresent_pte;
  522. set_shadow_pte(&sp->spt[i], nonpresent);
  523. continue;
  524. }
  525. nr_present++;
  526. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  527. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  528. is_dirty_pte(gpte), 0, gpte & PT_GLOBAL_MASK, gfn,
  529. spte_to_pfn(sp->spt[i]), true, false);
  530. }
  531. return !nr_present;
  532. }
  533. #undef pt_element_t
  534. #undef guest_walker
  535. #undef shadow_walker
  536. #undef FNAME
  537. #undef PT_BASE_ADDR_MASK
  538. #undef PT_INDEX
  539. #undef PT_LEVEL_MASK
  540. #undef PT_DIR_BASE_ADDR_MASK
  541. #undef PT_LEVEL_BITS
  542. #undef PT_MAX_FULL_LEVELS
  543. #undef gpte_to_gfn
  544. #undef gpte_to_gfn_pde
  545. #undef CMPXCHG