mmu.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <linux/swap.h>
  27. #include <linux/hugetlb.h>
  28. #include <linux/compiler.h>
  29. #include <asm/page.h>
  30. #include <asm/cmpxchg.h>
  31. #include <asm/io.h>
  32. #include <asm/vmx.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. static int oos_shadow = 1;
  60. module_param(oos_shadow, bool, 0644);
  61. #ifndef MMU_DEBUG
  62. #define ASSERT(x) do { } while (0)
  63. #else
  64. #define ASSERT(x) \
  65. if (!(x)) { \
  66. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  67. __FILE__, __LINE__, #x); \
  68. }
  69. #endif
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  73. #define PT64_LEVEL_BITS 9
  74. #define PT64_LEVEL_SHIFT(level) \
  75. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  76. #define PT64_LEVEL_MASK(level) \
  77. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  78. #define PT64_INDEX(address, level)\
  79. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  80. #define PT32_LEVEL_BITS 10
  81. #define PT32_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  83. #define PT32_LEVEL_MASK(level) \
  84. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  85. #define PT32_INDEX(address, level)\
  86. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  87. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  88. #define PT64_DIR_BASE_ADDR_MASK \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  90. #define PT32_BASE_ADDR_MASK PAGE_MASK
  91. #define PT32_DIR_BASE_ADDR_MASK \
  92. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  93. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  94. | PT64_NX_MASK)
  95. #define PFERR_PRESENT_MASK (1U << 0)
  96. #define PFERR_WRITE_MASK (1U << 1)
  97. #define PFERR_USER_MASK (1U << 2)
  98. #define PFERR_FETCH_MASK (1U << 4)
  99. #define PT_DIRECTORY_LEVEL 2
  100. #define PT_PAGE_TABLE_LEVEL 1
  101. #define RMAP_EXT 4
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  107. struct kvm_rmap_desc {
  108. u64 *shadow_ptes[RMAP_EXT];
  109. struct kvm_rmap_desc *more;
  110. };
  111. struct kvm_shadow_walk {
  112. int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
  113. u64 addr, u64 *spte, int level);
  114. };
  115. struct kvm_unsync_walk {
  116. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  117. };
  118. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  119. static struct kmem_cache *pte_chain_cache;
  120. static struct kmem_cache *rmap_desc_cache;
  121. static struct kmem_cache *mmu_page_header_cache;
  122. static u64 __read_mostly shadow_trap_nonpresent_pte;
  123. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  124. static u64 __read_mostly shadow_base_present_pte;
  125. static u64 __read_mostly shadow_nx_mask;
  126. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  127. static u64 __read_mostly shadow_user_mask;
  128. static u64 __read_mostly shadow_accessed_mask;
  129. static u64 __read_mostly shadow_dirty_mask;
  130. static u64 __read_mostly shadow_mt_mask;
  131. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  132. {
  133. shadow_trap_nonpresent_pte = trap_pte;
  134. shadow_notrap_nonpresent_pte = notrap_pte;
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  137. void kvm_mmu_set_base_ptes(u64 base_pte)
  138. {
  139. shadow_base_present_pte = base_pte;
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  142. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  143. u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
  144. {
  145. shadow_user_mask = user_mask;
  146. shadow_accessed_mask = accessed_mask;
  147. shadow_dirty_mask = dirty_mask;
  148. shadow_nx_mask = nx_mask;
  149. shadow_x_mask = x_mask;
  150. shadow_mt_mask = mt_mask;
  151. }
  152. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  153. static int is_write_protection(struct kvm_vcpu *vcpu)
  154. {
  155. return vcpu->arch.cr0 & X86_CR0_WP;
  156. }
  157. static int is_cpuid_PSE36(void)
  158. {
  159. return 1;
  160. }
  161. static int is_nx(struct kvm_vcpu *vcpu)
  162. {
  163. return vcpu->arch.shadow_efer & EFER_NX;
  164. }
  165. static int is_present_pte(unsigned long pte)
  166. {
  167. return pte & PT_PRESENT_MASK;
  168. }
  169. static int is_shadow_present_pte(u64 pte)
  170. {
  171. return pte != shadow_trap_nonpresent_pte
  172. && pte != shadow_notrap_nonpresent_pte;
  173. }
  174. static int is_large_pte(u64 pte)
  175. {
  176. return pte & PT_PAGE_SIZE_MASK;
  177. }
  178. static int is_writeble_pte(unsigned long pte)
  179. {
  180. return pte & PT_WRITABLE_MASK;
  181. }
  182. static int is_dirty_pte(unsigned long pte)
  183. {
  184. return pte & shadow_dirty_mask;
  185. }
  186. static int is_rmap_pte(u64 pte)
  187. {
  188. return is_shadow_present_pte(pte);
  189. }
  190. static pfn_t spte_to_pfn(u64 pte)
  191. {
  192. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  193. }
  194. static gfn_t pse36_gfn_delta(u32 gpte)
  195. {
  196. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  197. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  198. }
  199. static void set_shadow_pte(u64 *sptep, u64 spte)
  200. {
  201. #ifdef CONFIG_X86_64
  202. set_64bit((unsigned long *)sptep, spte);
  203. #else
  204. set_64bit((unsigned long long *)sptep, spte);
  205. #endif
  206. }
  207. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  208. struct kmem_cache *base_cache, int min)
  209. {
  210. void *obj;
  211. if (cache->nobjs >= min)
  212. return 0;
  213. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  214. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  215. if (!obj)
  216. return -ENOMEM;
  217. cache->objects[cache->nobjs++] = obj;
  218. }
  219. return 0;
  220. }
  221. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  222. {
  223. while (mc->nobjs)
  224. kfree(mc->objects[--mc->nobjs]);
  225. }
  226. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  227. int min)
  228. {
  229. struct page *page;
  230. if (cache->nobjs >= min)
  231. return 0;
  232. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  233. page = alloc_page(GFP_KERNEL);
  234. if (!page)
  235. return -ENOMEM;
  236. set_page_private(page, 0);
  237. cache->objects[cache->nobjs++] = page_address(page);
  238. }
  239. return 0;
  240. }
  241. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  242. {
  243. while (mc->nobjs)
  244. free_page((unsigned long)mc->objects[--mc->nobjs]);
  245. }
  246. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  247. {
  248. int r;
  249. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  250. pte_chain_cache, 4);
  251. if (r)
  252. goto out;
  253. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  254. rmap_desc_cache, 4);
  255. if (r)
  256. goto out;
  257. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  258. if (r)
  259. goto out;
  260. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  261. mmu_page_header_cache, 4);
  262. out:
  263. return r;
  264. }
  265. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  266. {
  267. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  268. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  269. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  270. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  271. }
  272. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  273. size_t size)
  274. {
  275. void *p;
  276. BUG_ON(!mc->nobjs);
  277. p = mc->objects[--mc->nobjs];
  278. memset(p, 0, size);
  279. return p;
  280. }
  281. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  282. {
  283. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  284. sizeof(struct kvm_pte_chain));
  285. }
  286. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  287. {
  288. kfree(pc);
  289. }
  290. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  291. {
  292. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  293. sizeof(struct kvm_rmap_desc));
  294. }
  295. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  296. {
  297. kfree(rd);
  298. }
  299. /*
  300. * Return the pointer to the largepage write count for a given
  301. * gfn, handling slots that are not large page aligned.
  302. */
  303. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  304. {
  305. unsigned long idx;
  306. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  307. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  308. return &slot->lpage_info[idx].write_count;
  309. }
  310. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  311. {
  312. int *write_count;
  313. gfn = unalias_gfn(kvm, gfn);
  314. write_count = slot_largepage_idx(gfn,
  315. gfn_to_memslot_unaliased(kvm, gfn));
  316. *write_count += 1;
  317. }
  318. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  319. {
  320. int *write_count;
  321. gfn = unalias_gfn(kvm, gfn);
  322. write_count = slot_largepage_idx(gfn,
  323. gfn_to_memslot_unaliased(kvm, gfn));
  324. *write_count -= 1;
  325. WARN_ON(*write_count < 0);
  326. }
  327. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  328. {
  329. struct kvm_memory_slot *slot;
  330. int *largepage_idx;
  331. gfn = unalias_gfn(kvm, gfn);
  332. slot = gfn_to_memslot_unaliased(kvm, gfn);
  333. if (slot) {
  334. largepage_idx = slot_largepage_idx(gfn, slot);
  335. return *largepage_idx;
  336. }
  337. return 1;
  338. }
  339. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  340. {
  341. struct vm_area_struct *vma;
  342. unsigned long addr;
  343. int ret = 0;
  344. addr = gfn_to_hva(kvm, gfn);
  345. if (kvm_is_error_hva(addr))
  346. return ret;
  347. down_read(&current->mm->mmap_sem);
  348. vma = find_vma(current->mm, addr);
  349. if (vma && is_vm_hugetlb_page(vma))
  350. ret = 1;
  351. up_read(&current->mm->mmap_sem);
  352. return ret;
  353. }
  354. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  355. {
  356. struct kvm_memory_slot *slot;
  357. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  358. return 0;
  359. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  360. return 0;
  361. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  362. if (slot && slot->dirty_bitmap)
  363. return 0;
  364. return 1;
  365. }
  366. /*
  367. * Take gfn and return the reverse mapping to it.
  368. * Note: gfn must be unaliased before this function get called
  369. */
  370. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  371. {
  372. struct kvm_memory_slot *slot;
  373. unsigned long idx;
  374. slot = gfn_to_memslot(kvm, gfn);
  375. if (!lpage)
  376. return &slot->rmap[gfn - slot->base_gfn];
  377. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  378. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  379. return &slot->lpage_info[idx].rmap_pde;
  380. }
  381. /*
  382. * Reverse mapping data structures:
  383. *
  384. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  385. * that points to page_address(page).
  386. *
  387. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  388. * containing more mappings.
  389. */
  390. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  391. {
  392. struct kvm_mmu_page *sp;
  393. struct kvm_rmap_desc *desc;
  394. unsigned long *rmapp;
  395. int i;
  396. if (!is_rmap_pte(*spte))
  397. return;
  398. gfn = unalias_gfn(vcpu->kvm, gfn);
  399. sp = page_header(__pa(spte));
  400. sp->gfns[spte - sp->spt] = gfn;
  401. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  402. if (!*rmapp) {
  403. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  404. *rmapp = (unsigned long)spte;
  405. } else if (!(*rmapp & 1)) {
  406. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  407. desc = mmu_alloc_rmap_desc(vcpu);
  408. desc->shadow_ptes[0] = (u64 *)*rmapp;
  409. desc->shadow_ptes[1] = spte;
  410. *rmapp = (unsigned long)desc | 1;
  411. } else {
  412. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  413. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  414. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  415. desc = desc->more;
  416. if (desc->shadow_ptes[RMAP_EXT-1]) {
  417. desc->more = mmu_alloc_rmap_desc(vcpu);
  418. desc = desc->more;
  419. }
  420. for (i = 0; desc->shadow_ptes[i]; ++i)
  421. ;
  422. desc->shadow_ptes[i] = spte;
  423. }
  424. }
  425. static void rmap_desc_remove_entry(unsigned long *rmapp,
  426. struct kvm_rmap_desc *desc,
  427. int i,
  428. struct kvm_rmap_desc *prev_desc)
  429. {
  430. int j;
  431. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  432. ;
  433. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  434. desc->shadow_ptes[j] = NULL;
  435. if (j != 0)
  436. return;
  437. if (!prev_desc && !desc->more)
  438. *rmapp = (unsigned long)desc->shadow_ptes[0];
  439. else
  440. if (prev_desc)
  441. prev_desc->more = desc->more;
  442. else
  443. *rmapp = (unsigned long)desc->more | 1;
  444. mmu_free_rmap_desc(desc);
  445. }
  446. static void rmap_remove(struct kvm *kvm, u64 *spte)
  447. {
  448. struct kvm_rmap_desc *desc;
  449. struct kvm_rmap_desc *prev_desc;
  450. struct kvm_mmu_page *sp;
  451. pfn_t pfn;
  452. unsigned long *rmapp;
  453. int i;
  454. if (!is_rmap_pte(*spte))
  455. return;
  456. sp = page_header(__pa(spte));
  457. pfn = spte_to_pfn(*spte);
  458. if (*spte & shadow_accessed_mask)
  459. kvm_set_pfn_accessed(pfn);
  460. if (is_writeble_pte(*spte))
  461. kvm_release_pfn_dirty(pfn);
  462. else
  463. kvm_release_pfn_clean(pfn);
  464. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  465. if (!*rmapp) {
  466. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  467. BUG();
  468. } else if (!(*rmapp & 1)) {
  469. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  470. if ((u64 *)*rmapp != spte) {
  471. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  472. spte, *spte);
  473. BUG();
  474. }
  475. *rmapp = 0;
  476. } else {
  477. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  478. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  479. prev_desc = NULL;
  480. while (desc) {
  481. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  482. if (desc->shadow_ptes[i] == spte) {
  483. rmap_desc_remove_entry(rmapp,
  484. desc, i,
  485. prev_desc);
  486. return;
  487. }
  488. prev_desc = desc;
  489. desc = desc->more;
  490. }
  491. BUG();
  492. }
  493. }
  494. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  495. {
  496. struct kvm_rmap_desc *desc;
  497. struct kvm_rmap_desc *prev_desc;
  498. u64 *prev_spte;
  499. int i;
  500. if (!*rmapp)
  501. return NULL;
  502. else if (!(*rmapp & 1)) {
  503. if (!spte)
  504. return (u64 *)*rmapp;
  505. return NULL;
  506. }
  507. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  508. prev_desc = NULL;
  509. prev_spte = NULL;
  510. while (desc) {
  511. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  512. if (prev_spte == spte)
  513. return desc->shadow_ptes[i];
  514. prev_spte = desc->shadow_ptes[i];
  515. }
  516. desc = desc->more;
  517. }
  518. return NULL;
  519. }
  520. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  521. {
  522. unsigned long *rmapp;
  523. u64 *spte;
  524. int write_protected = 0;
  525. gfn = unalias_gfn(kvm, gfn);
  526. rmapp = gfn_to_rmap(kvm, gfn, 0);
  527. spte = rmap_next(kvm, rmapp, NULL);
  528. while (spte) {
  529. BUG_ON(!spte);
  530. BUG_ON(!(*spte & PT_PRESENT_MASK));
  531. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  532. if (is_writeble_pte(*spte)) {
  533. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  534. write_protected = 1;
  535. }
  536. spte = rmap_next(kvm, rmapp, spte);
  537. }
  538. if (write_protected) {
  539. pfn_t pfn;
  540. spte = rmap_next(kvm, rmapp, NULL);
  541. pfn = spte_to_pfn(*spte);
  542. kvm_set_pfn_dirty(pfn);
  543. }
  544. /* check for huge page mappings */
  545. rmapp = gfn_to_rmap(kvm, gfn, 1);
  546. spte = rmap_next(kvm, rmapp, NULL);
  547. while (spte) {
  548. BUG_ON(!spte);
  549. BUG_ON(!(*spte & PT_PRESENT_MASK));
  550. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  551. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  552. if (is_writeble_pte(*spte)) {
  553. rmap_remove(kvm, spte);
  554. --kvm->stat.lpages;
  555. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  556. spte = NULL;
  557. write_protected = 1;
  558. }
  559. spte = rmap_next(kvm, rmapp, spte);
  560. }
  561. return write_protected;
  562. }
  563. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  564. {
  565. u64 *spte;
  566. int need_tlb_flush = 0;
  567. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  568. BUG_ON(!(*spte & PT_PRESENT_MASK));
  569. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  570. rmap_remove(kvm, spte);
  571. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  572. need_tlb_flush = 1;
  573. }
  574. return need_tlb_flush;
  575. }
  576. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  577. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  578. {
  579. int i;
  580. int retval = 0;
  581. /*
  582. * If mmap_sem isn't taken, we can look the memslots with only
  583. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  584. */
  585. for (i = 0; i < kvm->nmemslots; i++) {
  586. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  587. unsigned long start = memslot->userspace_addr;
  588. unsigned long end;
  589. /* mmu_lock protects userspace_addr */
  590. if (!start)
  591. continue;
  592. end = start + (memslot->npages << PAGE_SHIFT);
  593. if (hva >= start && hva < end) {
  594. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  595. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  596. retval |= handler(kvm,
  597. &memslot->lpage_info[
  598. gfn_offset /
  599. KVM_PAGES_PER_HPAGE].rmap_pde);
  600. }
  601. }
  602. return retval;
  603. }
  604. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  605. {
  606. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  607. }
  608. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  609. {
  610. u64 *spte;
  611. int young = 0;
  612. /* always return old for EPT */
  613. if (!shadow_accessed_mask)
  614. return 0;
  615. spte = rmap_next(kvm, rmapp, NULL);
  616. while (spte) {
  617. int _young;
  618. u64 _spte = *spte;
  619. BUG_ON(!(_spte & PT_PRESENT_MASK));
  620. _young = _spte & PT_ACCESSED_MASK;
  621. if (_young) {
  622. young = 1;
  623. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  624. }
  625. spte = rmap_next(kvm, rmapp, spte);
  626. }
  627. return young;
  628. }
  629. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  630. {
  631. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  632. }
  633. #ifdef MMU_DEBUG
  634. static int is_empty_shadow_page(u64 *spt)
  635. {
  636. u64 *pos;
  637. u64 *end;
  638. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  639. if (is_shadow_present_pte(*pos)) {
  640. printk(KERN_ERR "%s: %p %llx\n", __func__,
  641. pos, *pos);
  642. return 0;
  643. }
  644. return 1;
  645. }
  646. #endif
  647. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  648. {
  649. ASSERT(is_empty_shadow_page(sp->spt));
  650. list_del(&sp->link);
  651. __free_page(virt_to_page(sp->spt));
  652. __free_page(virt_to_page(sp->gfns));
  653. kfree(sp);
  654. ++kvm->arch.n_free_mmu_pages;
  655. }
  656. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  657. {
  658. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  659. }
  660. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  661. u64 *parent_pte)
  662. {
  663. struct kvm_mmu_page *sp;
  664. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  665. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  666. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  667. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  668. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  669. INIT_LIST_HEAD(&sp->oos_link);
  670. ASSERT(is_empty_shadow_page(sp->spt));
  671. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  672. sp->multimapped = 0;
  673. sp->global = 1;
  674. sp->parent_pte = parent_pte;
  675. --vcpu->kvm->arch.n_free_mmu_pages;
  676. return sp;
  677. }
  678. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  679. struct kvm_mmu_page *sp, u64 *parent_pte)
  680. {
  681. struct kvm_pte_chain *pte_chain;
  682. struct hlist_node *node;
  683. int i;
  684. if (!parent_pte)
  685. return;
  686. if (!sp->multimapped) {
  687. u64 *old = sp->parent_pte;
  688. if (!old) {
  689. sp->parent_pte = parent_pte;
  690. return;
  691. }
  692. sp->multimapped = 1;
  693. pte_chain = mmu_alloc_pte_chain(vcpu);
  694. INIT_HLIST_HEAD(&sp->parent_ptes);
  695. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  696. pte_chain->parent_ptes[0] = old;
  697. }
  698. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  699. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  700. continue;
  701. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  702. if (!pte_chain->parent_ptes[i]) {
  703. pte_chain->parent_ptes[i] = parent_pte;
  704. return;
  705. }
  706. }
  707. pte_chain = mmu_alloc_pte_chain(vcpu);
  708. BUG_ON(!pte_chain);
  709. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  710. pte_chain->parent_ptes[0] = parent_pte;
  711. }
  712. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  713. u64 *parent_pte)
  714. {
  715. struct kvm_pte_chain *pte_chain;
  716. struct hlist_node *node;
  717. int i;
  718. if (!sp->multimapped) {
  719. BUG_ON(sp->parent_pte != parent_pte);
  720. sp->parent_pte = NULL;
  721. return;
  722. }
  723. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  724. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  725. if (!pte_chain->parent_ptes[i])
  726. break;
  727. if (pte_chain->parent_ptes[i] != parent_pte)
  728. continue;
  729. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  730. && pte_chain->parent_ptes[i + 1]) {
  731. pte_chain->parent_ptes[i]
  732. = pte_chain->parent_ptes[i + 1];
  733. ++i;
  734. }
  735. pte_chain->parent_ptes[i] = NULL;
  736. if (i == 0) {
  737. hlist_del(&pte_chain->link);
  738. mmu_free_pte_chain(pte_chain);
  739. if (hlist_empty(&sp->parent_ptes)) {
  740. sp->multimapped = 0;
  741. sp->parent_pte = NULL;
  742. }
  743. }
  744. return;
  745. }
  746. BUG();
  747. }
  748. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  749. mmu_parent_walk_fn fn)
  750. {
  751. struct kvm_pte_chain *pte_chain;
  752. struct hlist_node *node;
  753. struct kvm_mmu_page *parent_sp;
  754. int i;
  755. if (!sp->multimapped && sp->parent_pte) {
  756. parent_sp = page_header(__pa(sp->parent_pte));
  757. fn(vcpu, parent_sp);
  758. mmu_parent_walk(vcpu, parent_sp, fn);
  759. return;
  760. }
  761. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  762. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  763. if (!pte_chain->parent_ptes[i])
  764. break;
  765. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  766. fn(vcpu, parent_sp);
  767. mmu_parent_walk(vcpu, parent_sp, fn);
  768. }
  769. }
  770. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  771. {
  772. unsigned int index;
  773. struct kvm_mmu_page *sp = page_header(__pa(spte));
  774. index = spte - sp->spt;
  775. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  776. sp->unsync_children++;
  777. WARN_ON(!sp->unsync_children);
  778. }
  779. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  780. {
  781. struct kvm_pte_chain *pte_chain;
  782. struct hlist_node *node;
  783. int i;
  784. if (!sp->parent_pte)
  785. return;
  786. if (!sp->multimapped) {
  787. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  788. return;
  789. }
  790. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  791. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  792. if (!pte_chain->parent_ptes[i])
  793. break;
  794. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  795. }
  796. }
  797. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  798. {
  799. kvm_mmu_update_parents_unsync(sp);
  800. return 1;
  801. }
  802. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  803. struct kvm_mmu_page *sp)
  804. {
  805. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  806. kvm_mmu_update_parents_unsync(sp);
  807. }
  808. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  809. struct kvm_mmu_page *sp)
  810. {
  811. int i;
  812. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  813. sp->spt[i] = shadow_trap_nonpresent_pte;
  814. }
  815. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  816. struct kvm_mmu_page *sp)
  817. {
  818. return 1;
  819. }
  820. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  821. {
  822. }
  823. #define KVM_PAGE_ARRAY_NR 16
  824. struct kvm_mmu_pages {
  825. struct mmu_page_and_offset {
  826. struct kvm_mmu_page *sp;
  827. unsigned int idx;
  828. } page[KVM_PAGE_ARRAY_NR];
  829. unsigned int nr;
  830. };
  831. #define for_each_unsync_children(bitmap, idx) \
  832. for (idx = find_first_bit(bitmap, 512); \
  833. idx < 512; \
  834. idx = find_next_bit(bitmap, 512, idx+1))
  835. int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  836. int idx)
  837. {
  838. int i;
  839. if (sp->unsync)
  840. for (i=0; i < pvec->nr; i++)
  841. if (pvec->page[i].sp == sp)
  842. return 0;
  843. pvec->page[pvec->nr].sp = sp;
  844. pvec->page[pvec->nr].idx = idx;
  845. pvec->nr++;
  846. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  847. }
  848. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  849. struct kvm_mmu_pages *pvec)
  850. {
  851. int i, ret, nr_unsync_leaf = 0;
  852. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  853. u64 ent = sp->spt[i];
  854. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  855. struct kvm_mmu_page *child;
  856. child = page_header(ent & PT64_BASE_ADDR_MASK);
  857. if (child->unsync_children) {
  858. if (mmu_pages_add(pvec, child, i))
  859. return -ENOSPC;
  860. ret = __mmu_unsync_walk(child, pvec);
  861. if (!ret)
  862. __clear_bit(i, sp->unsync_child_bitmap);
  863. else if (ret > 0)
  864. nr_unsync_leaf += ret;
  865. else
  866. return ret;
  867. }
  868. if (child->unsync) {
  869. nr_unsync_leaf++;
  870. if (mmu_pages_add(pvec, child, i))
  871. return -ENOSPC;
  872. }
  873. }
  874. }
  875. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  876. sp->unsync_children = 0;
  877. return nr_unsync_leaf;
  878. }
  879. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  880. struct kvm_mmu_pages *pvec)
  881. {
  882. if (!sp->unsync_children)
  883. return 0;
  884. mmu_pages_add(pvec, sp, 0);
  885. return __mmu_unsync_walk(sp, pvec);
  886. }
  887. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  888. {
  889. unsigned index;
  890. struct hlist_head *bucket;
  891. struct kvm_mmu_page *sp;
  892. struct hlist_node *node;
  893. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  894. index = kvm_page_table_hashfn(gfn);
  895. bucket = &kvm->arch.mmu_page_hash[index];
  896. hlist_for_each_entry(sp, node, bucket, hash_link)
  897. if (sp->gfn == gfn && !sp->role.metaphysical
  898. && !sp->role.invalid) {
  899. pgprintk("%s: found role %x\n",
  900. __func__, sp->role.word);
  901. return sp;
  902. }
  903. return NULL;
  904. }
  905. static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
  906. {
  907. list_del(&sp->oos_link);
  908. --kvm->stat.mmu_unsync_global;
  909. }
  910. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  911. {
  912. WARN_ON(!sp->unsync);
  913. sp->unsync = 0;
  914. if (sp->global)
  915. kvm_unlink_unsync_global(kvm, sp);
  916. --kvm->stat.mmu_unsync;
  917. }
  918. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  919. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  920. {
  921. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  922. kvm_mmu_zap_page(vcpu->kvm, sp);
  923. return 1;
  924. }
  925. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  926. kvm_flush_remote_tlbs(vcpu->kvm);
  927. kvm_unlink_unsync_page(vcpu->kvm, sp);
  928. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  929. kvm_mmu_zap_page(vcpu->kvm, sp);
  930. return 1;
  931. }
  932. kvm_mmu_flush_tlb(vcpu);
  933. return 0;
  934. }
  935. struct mmu_page_path {
  936. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  937. unsigned int idx[PT64_ROOT_LEVEL-1];
  938. };
  939. #define for_each_sp(pvec, sp, parents, i) \
  940. for (i = mmu_pages_next(&pvec, &parents, -1), \
  941. sp = pvec.page[i].sp; \
  942. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  943. i = mmu_pages_next(&pvec, &parents, i))
  944. int mmu_pages_next(struct kvm_mmu_pages *pvec, struct mmu_page_path *parents,
  945. int i)
  946. {
  947. int n;
  948. for (n = i+1; n < pvec->nr; n++) {
  949. struct kvm_mmu_page *sp = pvec->page[n].sp;
  950. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  951. parents->idx[0] = pvec->page[n].idx;
  952. return n;
  953. }
  954. parents->parent[sp->role.level-2] = sp;
  955. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  956. }
  957. return n;
  958. }
  959. void mmu_pages_clear_parents(struct mmu_page_path *parents)
  960. {
  961. struct kvm_mmu_page *sp;
  962. unsigned int level = 0;
  963. do {
  964. unsigned int idx = parents->idx[level];
  965. sp = parents->parent[level];
  966. if (!sp)
  967. return;
  968. --sp->unsync_children;
  969. WARN_ON((int)sp->unsync_children < 0);
  970. __clear_bit(idx, sp->unsync_child_bitmap);
  971. level++;
  972. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  973. }
  974. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  975. struct mmu_page_path *parents,
  976. struct kvm_mmu_pages *pvec)
  977. {
  978. parents->parent[parent->role.level-1] = NULL;
  979. pvec->nr = 0;
  980. }
  981. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  982. struct kvm_mmu_page *parent)
  983. {
  984. int i;
  985. struct kvm_mmu_page *sp;
  986. struct mmu_page_path parents;
  987. struct kvm_mmu_pages pages;
  988. kvm_mmu_pages_init(parent, &parents, &pages);
  989. while (mmu_unsync_walk(parent, &pages)) {
  990. int protected = 0;
  991. for_each_sp(pages, sp, parents, i)
  992. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  993. if (protected)
  994. kvm_flush_remote_tlbs(vcpu->kvm);
  995. for_each_sp(pages, sp, parents, i) {
  996. kvm_sync_page(vcpu, sp);
  997. mmu_pages_clear_parents(&parents);
  998. }
  999. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1000. kvm_mmu_pages_init(parent, &parents, &pages);
  1001. }
  1002. }
  1003. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1004. gfn_t gfn,
  1005. gva_t gaddr,
  1006. unsigned level,
  1007. int metaphysical,
  1008. unsigned access,
  1009. u64 *parent_pte)
  1010. {
  1011. union kvm_mmu_page_role role;
  1012. unsigned index;
  1013. unsigned quadrant;
  1014. struct hlist_head *bucket;
  1015. struct kvm_mmu_page *sp;
  1016. struct hlist_node *node, *tmp;
  1017. role.word = 0;
  1018. role.glevels = vcpu->arch.mmu.root_level;
  1019. role.level = level;
  1020. role.metaphysical = metaphysical;
  1021. role.access = access;
  1022. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1023. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1024. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1025. role.quadrant = quadrant;
  1026. }
  1027. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  1028. gfn, role.word);
  1029. index = kvm_page_table_hashfn(gfn);
  1030. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1031. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1032. if (sp->gfn == gfn) {
  1033. if (sp->unsync)
  1034. if (kvm_sync_page(vcpu, sp))
  1035. continue;
  1036. if (sp->role.word != role.word)
  1037. continue;
  1038. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1039. if (sp->unsync_children) {
  1040. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1041. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1042. }
  1043. pgprintk("%s: found\n", __func__);
  1044. return sp;
  1045. }
  1046. ++vcpu->kvm->stat.mmu_cache_miss;
  1047. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1048. if (!sp)
  1049. return sp;
  1050. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  1051. sp->gfn = gfn;
  1052. sp->role = role;
  1053. hlist_add_head(&sp->hash_link, bucket);
  1054. if (!metaphysical) {
  1055. if (rmap_write_protect(vcpu->kvm, gfn))
  1056. kvm_flush_remote_tlbs(vcpu->kvm);
  1057. account_shadowed(vcpu->kvm, gfn);
  1058. }
  1059. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1060. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1061. else
  1062. nonpaging_prefetch_page(vcpu, sp);
  1063. return sp;
  1064. }
  1065. static int walk_shadow(struct kvm_shadow_walk *walker,
  1066. struct kvm_vcpu *vcpu, u64 addr)
  1067. {
  1068. hpa_t shadow_addr;
  1069. int level;
  1070. int r;
  1071. u64 *sptep;
  1072. unsigned index;
  1073. shadow_addr = vcpu->arch.mmu.root_hpa;
  1074. level = vcpu->arch.mmu.shadow_root_level;
  1075. if (level == PT32E_ROOT_LEVEL) {
  1076. shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1077. shadow_addr &= PT64_BASE_ADDR_MASK;
  1078. if (!shadow_addr)
  1079. return 1;
  1080. --level;
  1081. }
  1082. while (level >= PT_PAGE_TABLE_LEVEL) {
  1083. index = SHADOW_PT_INDEX(addr, level);
  1084. sptep = ((u64 *)__va(shadow_addr)) + index;
  1085. r = walker->entry(walker, vcpu, addr, sptep, level);
  1086. if (r)
  1087. return r;
  1088. shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
  1089. --level;
  1090. }
  1091. return 0;
  1092. }
  1093. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1094. struct kvm_mmu_page *sp)
  1095. {
  1096. unsigned i;
  1097. u64 *pt;
  1098. u64 ent;
  1099. pt = sp->spt;
  1100. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1101. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1102. if (is_shadow_present_pte(pt[i]))
  1103. rmap_remove(kvm, &pt[i]);
  1104. pt[i] = shadow_trap_nonpresent_pte;
  1105. }
  1106. return;
  1107. }
  1108. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1109. ent = pt[i];
  1110. if (is_shadow_present_pte(ent)) {
  1111. if (!is_large_pte(ent)) {
  1112. ent &= PT64_BASE_ADDR_MASK;
  1113. mmu_page_remove_parent_pte(page_header(ent),
  1114. &pt[i]);
  1115. } else {
  1116. --kvm->stat.lpages;
  1117. rmap_remove(kvm, &pt[i]);
  1118. }
  1119. }
  1120. pt[i] = shadow_trap_nonpresent_pte;
  1121. }
  1122. }
  1123. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1124. {
  1125. mmu_page_remove_parent_pte(sp, parent_pte);
  1126. }
  1127. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1128. {
  1129. int i;
  1130. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  1131. if (kvm->vcpus[i])
  1132. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  1133. }
  1134. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1135. {
  1136. u64 *parent_pte;
  1137. while (sp->multimapped || sp->parent_pte) {
  1138. if (!sp->multimapped)
  1139. parent_pte = sp->parent_pte;
  1140. else {
  1141. struct kvm_pte_chain *chain;
  1142. chain = container_of(sp->parent_ptes.first,
  1143. struct kvm_pte_chain, link);
  1144. parent_pte = chain->parent_ptes[0];
  1145. }
  1146. BUG_ON(!parent_pte);
  1147. kvm_mmu_put_page(sp, parent_pte);
  1148. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  1149. }
  1150. }
  1151. static int mmu_zap_unsync_children(struct kvm *kvm,
  1152. struct kvm_mmu_page *parent)
  1153. {
  1154. int i, zapped = 0;
  1155. struct mmu_page_path parents;
  1156. struct kvm_mmu_pages pages;
  1157. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1158. return 0;
  1159. kvm_mmu_pages_init(parent, &parents, &pages);
  1160. while (mmu_unsync_walk(parent, &pages)) {
  1161. struct kvm_mmu_page *sp;
  1162. for_each_sp(pages, sp, parents, i) {
  1163. kvm_mmu_zap_page(kvm, sp);
  1164. mmu_pages_clear_parents(&parents);
  1165. }
  1166. zapped += pages.nr;
  1167. kvm_mmu_pages_init(parent, &parents, &pages);
  1168. }
  1169. return zapped;
  1170. }
  1171. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1172. {
  1173. int ret;
  1174. ++kvm->stat.mmu_shadow_zapped;
  1175. ret = mmu_zap_unsync_children(kvm, sp);
  1176. kvm_mmu_page_unlink_children(kvm, sp);
  1177. kvm_mmu_unlink_parents(kvm, sp);
  1178. kvm_flush_remote_tlbs(kvm);
  1179. if (!sp->role.invalid && !sp->role.metaphysical)
  1180. unaccount_shadowed(kvm, sp->gfn);
  1181. if (sp->unsync)
  1182. kvm_unlink_unsync_page(kvm, sp);
  1183. if (!sp->root_count) {
  1184. hlist_del(&sp->hash_link);
  1185. kvm_mmu_free_page(kvm, sp);
  1186. } else {
  1187. sp->role.invalid = 1;
  1188. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1189. kvm_reload_remote_mmus(kvm);
  1190. }
  1191. kvm_mmu_reset_last_pte_updated(kvm);
  1192. return ret;
  1193. }
  1194. /*
  1195. * Changing the number of mmu pages allocated to the vm
  1196. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1197. */
  1198. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1199. {
  1200. /*
  1201. * If we set the number of mmu pages to be smaller be than the
  1202. * number of actived pages , we must to free some mmu pages before we
  1203. * change the value
  1204. */
  1205. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  1206. kvm_nr_mmu_pages) {
  1207. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  1208. - kvm->arch.n_free_mmu_pages;
  1209. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  1210. struct kvm_mmu_page *page;
  1211. page = container_of(kvm->arch.active_mmu_pages.prev,
  1212. struct kvm_mmu_page, link);
  1213. kvm_mmu_zap_page(kvm, page);
  1214. n_used_mmu_pages--;
  1215. }
  1216. kvm->arch.n_free_mmu_pages = 0;
  1217. }
  1218. else
  1219. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1220. - kvm->arch.n_alloc_mmu_pages;
  1221. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1222. }
  1223. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1224. {
  1225. unsigned index;
  1226. struct hlist_head *bucket;
  1227. struct kvm_mmu_page *sp;
  1228. struct hlist_node *node, *n;
  1229. int r;
  1230. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1231. r = 0;
  1232. index = kvm_page_table_hashfn(gfn);
  1233. bucket = &kvm->arch.mmu_page_hash[index];
  1234. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1235. if (sp->gfn == gfn && !sp->role.metaphysical) {
  1236. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1237. sp->role.word);
  1238. r = 1;
  1239. if (kvm_mmu_zap_page(kvm, sp))
  1240. n = bucket->first;
  1241. }
  1242. return r;
  1243. }
  1244. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1245. {
  1246. struct kvm_mmu_page *sp;
  1247. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  1248. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  1249. kvm_mmu_zap_page(kvm, sp);
  1250. }
  1251. }
  1252. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1253. {
  1254. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1255. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1256. __set_bit(slot, sp->slot_bitmap);
  1257. }
  1258. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1259. {
  1260. int i;
  1261. u64 *pt = sp->spt;
  1262. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1263. return;
  1264. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1265. if (pt[i] == shadow_notrap_nonpresent_pte)
  1266. set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
  1267. }
  1268. }
  1269. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1270. {
  1271. struct page *page;
  1272. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1273. if (gpa == UNMAPPED_GVA)
  1274. return NULL;
  1275. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1276. return page;
  1277. }
  1278. /*
  1279. * The function is based on mtrr_type_lookup() in
  1280. * arch/x86/kernel/cpu/mtrr/generic.c
  1281. */
  1282. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1283. u64 start, u64 end)
  1284. {
  1285. int i;
  1286. u64 base, mask;
  1287. u8 prev_match, curr_match;
  1288. int num_var_ranges = KVM_NR_VAR_MTRR;
  1289. if (!mtrr_state->enabled)
  1290. return 0xFF;
  1291. /* Make end inclusive end, instead of exclusive */
  1292. end--;
  1293. /* Look in fixed ranges. Just return the type as per start */
  1294. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1295. int idx;
  1296. if (start < 0x80000) {
  1297. idx = 0;
  1298. idx += (start >> 16);
  1299. return mtrr_state->fixed_ranges[idx];
  1300. } else if (start < 0xC0000) {
  1301. idx = 1 * 8;
  1302. idx += ((start - 0x80000) >> 14);
  1303. return mtrr_state->fixed_ranges[idx];
  1304. } else if (start < 0x1000000) {
  1305. idx = 3 * 8;
  1306. idx += ((start - 0xC0000) >> 12);
  1307. return mtrr_state->fixed_ranges[idx];
  1308. }
  1309. }
  1310. /*
  1311. * Look in variable ranges
  1312. * Look of multiple ranges matching this address and pick type
  1313. * as per MTRR precedence
  1314. */
  1315. if (!(mtrr_state->enabled & 2))
  1316. return mtrr_state->def_type;
  1317. prev_match = 0xFF;
  1318. for (i = 0; i < num_var_ranges; ++i) {
  1319. unsigned short start_state, end_state;
  1320. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1321. continue;
  1322. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1323. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1324. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1325. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1326. start_state = ((start & mask) == (base & mask));
  1327. end_state = ((end & mask) == (base & mask));
  1328. if (start_state != end_state)
  1329. return 0xFE;
  1330. if ((start & mask) != (base & mask))
  1331. continue;
  1332. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1333. if (prev_match == 0xFF) {
  1334. prev_match = curr_match;
  1335. continue;
  1336. }
  1337. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1338. curr_match == MTRR_TYPE_UNCACHABLE)
  1339. return MTRR_TYPE_UNCACHABLE;
  1340. if ((prev_match == MTRR_TYPE_WRBACK &&
  1341. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1342. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1343. curr_match == MTRR_TYPE_WRBACK)) {
  1344. prev_match = MTRR_TYPE_WRTHROUGH;
  1345. curr_match = MTRR_TYPE_WRTHROUGH;
  1346. }
  1347. if (prev_match != curr_match)
  1348. return MTRR_TYPE_UNCACHABLE;
  1349. }
  1350. if (prev_match != 0xFF)
  1351. return prev_match;
  1352. return mtrr_state->def_type;
  1353. }
  1354. static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1355. {
  1356. u8 mtrr;
  1357. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1358. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1359. if (mtrr == 0xfe || mtrr == 0xff)
  1360. mtrr = MTRR_TYPE_WRBACK;
  1361. return mtrr;
  1362. }
  1363. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1364. {
  1365. unsigned index;
  1366. struct hlist_head *bucket;
  1367. struct kvm_mmu_page *s;
  1368. struct hlist_node *node, *n;
  1369. index = kvm_page_table_hashfn(sp->gfn);
  1370. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1371. /* don't unsync if pagetable is shadowed with multiple roles */
  1372. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1373. if (s->gfn != sp->gfn || s->role.metaphysical)
  1374. continue;
  1375. if (s->role.word != sp->role.word)
  1376. return 1;
  1377. }
  1378. ++vcpu->kvm->stat.mmu_unsync;
  1379. sp->unsync = 1;
  1380. if (sp->global) {
  1381. list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
  1382. ++vcpu->kvm->stat.mmu_unsync_global;
  1383. } else
  1384. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1385. mmu_convert_notrap(sp);
  1386. return 0;
  1387. }
  1388. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1389. bool can_unsync)
  1390. {
  1391. struct kvm_mmu_page *shadow;
  1392. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1393. if (shadow) {
  1394. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1395. return 1;
  1396. if (shadow->unsync)
  1397. return 0;
  1398. if (can_unsync && oos_shadow)
  1399. return kvm_unsync_page(vcpu, shadow);
  1400. return 1;
  1401. }
  1402. return 0;
  1403. }
  1404. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1405. unsigned pte_access, int user_fault,
  1406. int write_fault, int dirty, int largepage,
  1407. int global, gfn_t gfn, pfn_t pfn, bool speculative,
  1408. bool can_unsync)
  1409. {
  1410. u64 spte;
  1411. int ret = 0;
  1412. u64 mt_mask = shadow_mt_mask;
  1413. struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
  1414. if (!(vcpu->arch.cr4 & X86_CR4_PGE))
  1415. global = 0;
  1416. if (!global && sp->global) {
  1417. sp->global = 0;
  1418. if (sp->unsync) {
  1419. kvm_unlink_unsync_global(vcpu->kvm, sp);
  1420. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1421. }
  1422. }
  1423. /*
  1424. * We don't set the accessed bit, since we sometimes want to see
  1425. * whether the guest actually used the pte (in order to detect
  1426. * demand paging).
  1427. */
  1428. spte = shadow_base_present_pte | shadow_dirty_mask;
  1429. if (!speculative)
  1430. spte |= shadow_accessed_mask;
  1431. if (!dirty)
  1432. pte_access &= ~ACC_WRITE_MASK;
  1433. if (pte_access & ACC_EXEC_MASK)
  1434. spte |= shadow_x_mask;
  1435. else
  1436. spte |= shadow_nx_mask;
  1437. if (pte_access & ACC_USER_MASK)
  1438. spte |= shadow_user_mask;
  1439. if (largepage)
  1440. spte |= PT_PAGE_SIZE_MASK;
  1441. if (mt_mask) {
  1442. mt_mask = get_memory_type(vcpu, gfn) <<
  1443. kvm_x86_ops->get_mt_mask_shift();
  1444. spte |= mt_mask;
  1445. }
  1446. spte |= (u64)pfn << PAGE_SHIFT;
  1447. if ((pte_access & ACC_WRITE_MASK)
  1448. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1449. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1450. ret = 1;
  1451. spte = shadow_trap_nonpresent_pte;
  1452. goto set_pte;
  1453. }
  1454. spte |= PT_WRITABLE_MASK;
  1455. /*
  1456. * Optimization: for pte sync, if spte was writable the hash
  1457. * lookup is unnecessary (and expensive). Write protection
  1458. * is responsibility of mmu_get_page / kvm_sync_page.
  1459. * Same reasoning can be applied to dirty page accounting.
  1460. */
  1461. if (!can_unsync && is_writeble_pte(*shadow_pte))
  1462. goto set_pte;
  1463. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1464. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1465. __func__, gfn);
  1466. ret = 1;
  1467. pte_access &= ~ACC_WRITE_MASK;
  1468. if (is_writeble_pte(spte))
  1469. spte &= ~PT_WRITABLE_MASK;
  1470. }
  1471. }
  1472. if (pte_access & ACC_WRITE_MASK)
  1473. mark_page_dirty(vcpu->kvm, gfn);
  1474. set_pte:
  1475. set_shadow_pte(shadow_pte, spte);
  1476. return ret;
  1477. }
  1478. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1479. unsigned pt_access, unsigned pte_access,
  1480. int user_fault, int write_fault, int dirty,
  1481. int *ptwrite, int largepage, int global,
  1482. gfn_t gfn, pfn_t pfn, bool speculative)
  1483. {
  1484. int was_rmapped = 0;
  1485. int was_writeble = is_writeble_pte(*shadow_pte);
  1486. pgprintk("%s: spte %llx access %x write_fault %d"
  1487. " user_fault %d gfn %lx\n",
  1488. __func__, *shadow_pte, pt_access,
  1489. write_fault, user_fault, gfn);
  1490. if (is_rmap_pte(*shadow_pte)) {
  1491. /*
  1492. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1493. * the parent of the now unreachable PTE.
  1494. */
  1495. if (largepage && !is_large_pte(*shadow_pte)) {
  1496. struct kvm_mmu_page *child;
  1497. u64 pte = *shadow_pte;
  1498. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1499. mmu_page_remove_parent_pte(child, shadow_pte);
  1500. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1501. pgprintk("hfn old %lx new %lx\n",
  1502. spte_to_pfn(*shadow_pte), pfn);
  1503. rmap_remove(vcpu->kvm, shadow_pte);
  1504. } else {
  1505. if (largepage)
  1506. was_rmapped = is_large_pte(*shadow_pte);
  1507. else
  1508. was_rmapped = 1;
  1509. }
  1510. }
  1511. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1512. dirty, largepage, global, gfn, pfn, speculative, true)) {
  1513. if (write_fault)
  1514. *ptwrite = 1;
  1515. kvm_x86_ops->tlb_flush(vcpu);
  1516. }
  1517. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1518. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1519. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1520. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1521. *shadow_pte, shadow_pte);
  1522. if (!was_rmapped && is_large_pte(*shadow_pte))
  1523. ++vcpu->kvm->stat.lpages;
  1524. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1525. if (!was_rmapped) {
  1526. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1527. if (!is_rmap_pte(*shadow_pte))
  1528. kvm_release_pfn_clean(pfn);
  1529. } else {
  1530. if (was_writeble)
  1531. kvm_release_pfn_dirty(pfn);
  1532. else
  1533. kvm_release_pfn_clean(pfn);
  1534. }
  1535. if (speculative) {
  1536. vcpu->arch.last_pte_updated = shadow_pte;
  1537. vcpu->arch.last_pte_gfn = gfn;
  1538. }
  1539. }
  1540. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1541. {
  1542. }
  1543. struct direct_shadow_walk {
  1544. struct kvm_shadow_walk walker;
  1545. pfn_t pfn;
  1546. int write;
  1547. int largepage;
  1548. int pt_write;
  1549. };
  1550. static int direct_map_entry(struct kvm_shadow_walk *_walk,
  1551. struct kvm_vcpu *vcpu,
  1552. u64 addr, u64 *sptep, int level)
  1553. {
  1554. struct direct_shadow_walk *walk =
  1555. container_of(_walk, struct direct_shadow_walk, walker);
  1556. struct kvm_mmu_page *sp;
  1557. gfn_t pseudo_gfn;
  1558. gfn_t gfn = addr >> PAGE_SHIFT;
  1559. if (level == PT_PAGE_TABLE_LEVEL
  1560. || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
  1561. mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
  1562. 0, walk->write, 1, &walk->pt_write,
  1563. walk->largepage, 0, gfn, walk->pfn, false);
  1564. ++vcpu->stat.pf_fixed;
  1565. return 1;
  1566. }
  1567. if (*sptep == shadow_trap_nonpresent_pte) {
  1568. pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1569. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
  1570. 1, ACC_ALL, sptep);
  1571. if (!sp) {
  1572. pgprintk("nonpaging_map: ENOMEM\n");
  1573. kvm_release_pfn_clean(walk->pfn);
  1574. return -ENOMEM;
  1575. }
  1576. set_shadow_pte(sptep,
  1577. __pa(sp->spt)
  1578. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1579. | shadow_user_mask | shadow_x_mask);
  1580. }
  1581. return 0;
  1582. }
  1583. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1584. int largepage, gfn_t gfn, pfn_t pfn)
  1585. {
  1586. int r;
  1587. struct direct_shadow_walk walker = {
  1588. .walker = { .entry = direct_map_entry, },
  1589. .pfn = pfn,
  1590. .largepage = largepage,
  1591. .write = write,
  1592. .pt_write = 0,
  1593. };
  1594. r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
  1595. if (r < 0)
  1596. return r;
  1597. return walker.pt_write;
  1598. }
  1599. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1600. {
  1601. int r;
  1602. int largepage = 0;
  1603. pfn_t pfn;
  1604. unsigned long mmu_seq;
  1605. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1606. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1607. largepage = 1;
  1608. }
  1609. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1610. smp_rmb();
  1611. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1612. /* mmio */
  1613. if (is_error_pfn(pfn)) {
  1614. kvm_release_pfn_clean(pfn);
  1615. return 1;
  1616. }
  1617. spin_lock(&vcpu->kvm->mmu_lock);
  1618. if (mmu_notifier_retry(vcpu, mmu_seq))
  1619. goto out_unlock;
  1620. kvm_mmu_free_some_pages(vcpu);
  1621. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1622. spin_unlock(&vcpu->kvm->mmu_lock);
  1623. return r;
  1624. out_unlock:
  1625. spin_unlock(&vcpu->kvm->mmu_lock);
  1626. kvm_release_pfn_clean(pfn);
  1627. return 0;
  1628. }
  1629. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1630. {
  1631. int i;
  1632. struct kvm_mmu_page *sp;
  1633. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1634. return;
  1635. spin_lock(&vcpu->kvm->mmu_lock);
  1636. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1637. hpa_t root = vcpu->arch.mmu.root_hpa;
  1638. sp = page_header(root);
  1639. --sp->root_count;
  1640. if (!sp->root_count && sp->role.invalid)
  1641. kvm_mmu_zap_page(vcpu->kvm, sp);
  1642. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1643. spin_unlock(&vcpu->kvm->mmu_lock);
  1644. return;
  1645. }
  1646. for (i = 0; i < 4; ++i) {
  1647. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1648. if (root) {
  1649. root &= PT64_BASE_ADDR_MASK;
  1650. sp = page_header(root);
  1651. --sp->root_count;
  1652. if (!sp->root_count && sp->role.invalid)
  1653. kvm_mmu_zap_page(vcpu->kvm, sp);
  1654. }
  1655. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1656. }
  1657. spin_unlock(&vcpu->kvm->mmu_lock);
  1658. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1659. }
  1660. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1661. {
  1662. int i;
  1663. gfn_t root_gfn;
  1664. struct kvm_mmu_page *sp;
  1665. int metaphysical = 0;
  1666. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1667. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1668. hpa_t root = vcpu->arch.mmu.root_hpa;
  1669. ASSERT(!VALID_PAGE(root));
  1670. if (tdp_enabled)
  1671. metaphysical = 1;
  1672. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1673. PT64_ROOT_LEVEL, metaphysical,
  1674. ACC_ALL, NULL);
  1675. root = __pa(sp->spt);
  1676. ++sp->root_count;
  1677. vcpu->arch.mmu.root_hpa = root;
  1678. return;
  1679. }
  1680. metaphysical = !is_paging(vcpu);
  1681. if (tdp_enabled)
  1682. metaphysical = 1;
  1683. for (i = 0; i < 4; ++i) {
  1684. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1685. ASSERT(!VALID_PAGE(root));
  1686. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1687. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1688. vcpu->arch.mmu.pae_root[i] = 0;
  1689. continue;
  1690. }
  1691. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1692. } else if (vcpu->arch.mmu.root_level == 0)
  1693. root_gfn = 0;
  1694. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1695. PT32_ROOT_LEVEL, metaphysical,
  1696. ACC_ALL, NULL);
  1697. root = __pa(sp->spt);
  1698. ++sp->root_count;
  1699. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1700. }
  1701. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1702. }
  1703. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1704. {
  1705. int i;
  1706. struct kvm_mmu_page *sp;
  1707. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1708. return;
  1709. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1710. hpa_t root = vcpu->arch.mmu.root_hpa;
  1711. sp = page_header(root);
  1712. mmu_sync_children(vcpu, sp);
  1713. return;
  1714. }
  1715. for (i = 0; i < 4; ++i) {
  1716. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1717. if (root) {
  1718. root &= PT64_BASE_ADDR_MASK;
  1719. sp = page_header(root);
  1720. mmu_sync_children(vcpu, sp);
  1721. }
  1722. }
  1723. }
  1724. static void mmu_sync_global(struct kvm_vcpu *vcpu)
  1725. {
  1726. struct kvm *kvm = vcpu->kvm;
  1727. struct kvm_mmu_page *sp, *n;
  1728. list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
  1729. kvm_sync_page(vcpu, sp);
  1730. }
  1731. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1732. {
  1733. spin_lock(&vcpu->kvm->mmu_lock);
  1734. mmu_sync_roots(vcpu);
  1735. spin_unlock(&vcpu->kvm->mmu_lock);
  1736. }
  1737. void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
  1738. {
  1739. spin_lock(&vcpu->kvm->mmu_lock);
  1740. mmu_sync_global(vcpu);
  1741. spin_unlock(&vcpu->kvm->mmu_lock);
  1742. }
  1743. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1744. {
  1745. return vaddr;
  1746. }
  1747. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1748. u32 error_code)
  1749. {
  1750. gfn_t gfn;
  1751. int r;
  1752. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1753. r = mmu_topup_memory_caches(vcpu);
  1754. if (r)
  1755. return r;
  1756. ASSERT(vcpu);
  1757. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1758. gfn = gva >> PAGE_SHIFT;
  1759. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1760. error_code & PFERR_WRITE_MASK, gfn);
  1761. }
  1762. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1763. u32 error_code)
  1764. {
  1765. pfn_t pfn;
  1766. int r;
  1767. int largepage = 0;
  1768. gfn_t gfn = gpa >> PAGE_SHIFT;
  1769. unsigned long mmu_seq;
  1770. ASSERT(vcpu);
  1771. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1772. r = mmu_topup_memory_caches(vcpu);
  1773. if (r)
  1774. return r;
  1775. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1776. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1777. largepage = 1;
  1778. }
  1779. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1780. smp_rmb();
  1781. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1782. if (is_error_pfn(pfn)) {
  1783. kvm_release_pfn_clean(pfn);
  1784. return 1;
  1785. }
  1786. spin_lock(&vcpu->kvm->mmu_lock);
  1787. if (mmu_notifier_retry(vcpu, mmu_seq))
  1788. goto out_unlock;
  1789. kvm_mmu_free_some_pages(vcpu);
  1790. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1791. largepage, gfn, pfn);
  1792. spin_unlock(&vcpu->kvm->mmu_lock);
  1793. return r;
  1794. out_unlock:
  1795. spin_unlock(&vcpu->kvm->mmu_lock);
  1796. kvm_release_pfn_clean(pfn);
  1797. return 0;
  1798. }
  1799. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1800. {
  1801. mmu_free_roots(vcpu);
  1802. }
  1803. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1804. {
  1805. struct kvm_mmu *context = &vcpu->arch.mmu;
  1806. context->new_cr3 = nonpaging_new_cr3;
  1807. context->page_fault = nonpaging_page_fault;
  1808. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1809. context->free = nonpaging_free;
  1810. context->prefetch_page = nonpaging_prefetch_page;
  1811. context->sync_page = nonpaging_sync_page;
  1812. context->invlpg = nonpaging_invlpg;
  1813. context->root_level = 0;
  1814. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1815. context->root_hpa = INVALID_PAGE;
  1816. return 0;
  1817. }
  1818. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1819. {
  1820. ++vcpu->stat.tlb_flush;
  1821. kvm_x86_ops->tlb_flush(vcpu);
  1822. }
  1823. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1824. {
  1825. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1826. mmu_free_roots(vcpu);
  1827. }
  1828. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1829. u64 addr,
  1830. u32 err_code)
  1831. {
  1832. kvm_inject_page_fault(vcpu, addr, err_code);
  1833. }
  1834. static void paging_free(struct kvm_vcpu *vcpu)
  1835. {
  1836. nonpaging_free(vcpu);
  1837. }
  1838. #define PTTYPE 64
  1839. #include "paging_tmpl.h"
  1840. #undef PTTYPE
  1841. #define PTTYPE 32
  1842. #include "paging_tmpl.h"
  1843. #undef PTTYPE
  1844. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1845. {
  1846. struct kvm_mmu *context = &vcpu->arch.mmu;
  1847. ASSERT(is_pae(vcpu));
  1848. context->new_cr3 = paging_new_cr3;
  1849. context->page_fault = paging64_page_fault;
  1850. context->gva_to_gpa = paging64_gva_to_gpa;
  1851. context->prefetch_page = paging64_prefetch_page;
  1852. context->sync_page = paging64_sync_page;
  1853. context->invlpg = paging64_invlpg;
  1854. context->free = paging_free;
  1855. context->root_level = level;
  1856. context->shadow_root_level = level;
  1857. context->root_hpa = INVALID_PAGE;
  1858. return 0;
  1859. }
  1860. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1861. {
  1862. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1863. }
  1864. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1865. {
  1866. struct kvm_mmu *context = &vcpu->arch.mmu;
  1867. context->new_cr3 = paging_new_cr3;
  1868. context->page_fault = paging32_page_fault;
  1869. context->gva_to_gpa = paging32_gva_to_gpa;
  1870. context->free = paging_free;
  1871. context->prefetch_page = paging32_prefetch_page;
  1872. context->sync_page = paging32_sync_page;
  1873. context->invlpg = paging32_invlpg;
  1874. context->root_level = PT32_ROOT_LEVEL;
  1875. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1876. context->root_hpa = INVALID_PAGE;
  1877. return 0;
  1878. }
  1879. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1880. {
  1881. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1882. }
  1883. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1884. {
  1885. struct kvm_mmu *context = &vcpu->arch.mmu;
  1886. context->new_cr3 = nonpaging_new_cr3;
  1887. context->page_fault = tdp_page_fault;
  1888. context->free = nonpaging_free;
  1889. context->prefetch_page = nonpaging_prefetch_page;
  1890. context->sync_page = nonpaging_sync_page;
  1891. context->invlpg = nonpaging_invlpg;
  1892. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1893. context->root_hpa = INVALID_PAGE;
  1894. if (!is_paging(vcpu)) {
  1895. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1896. context->root_level = 0;
  1897. } else if (is_long_mode(vcpu)) {
  1898. context->gva_to_gpa = paging64_gva_to_gpa;
  1899. context->root_level = PT64_ROOT_LEVEL;
  1900. } else if (is_pae(vcpu)) {
  1901. context->gva_to_gpa = paging64_gva_to_gpa;
  1902. context->root_level = PT32E_ROOT_LEVEL;
  1903. } else {
  1904. context->gva_to_gpa = paging32_gva_to_gpa;
  1905. context->root_level = PT32_ROOT_LEVEL;
  1906. }
  1907. return 0;
  1908. }
  1909. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1910. {
  1911. ASSERT(vcpu);
  1912. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1913. if (!is_paging(vcpu))
  1914. return nonpaging_init_context(vcpu);
  1915. else if (is_long_mode(vcpu))
  1916. return paging64_init_context(vcpu);
  1917. else if (is_pae(vcpu))
  1918. return paging32E_init_context(vcpu);
  1919. else
  1920. return paging32_init_context(vcpu);
  1921. }
  1922. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1923. {
  1924. vcpu->arch.update_pte.pfn = bad_pfn;
  1925. if (tdp_enabled)
  1926. return init_kvm_tdp_mmu(vcpu);
  1927. else
  1928. return init_kvm_softmmu(vcpu);
  1929. }
  1930. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1931. {
  1932. ASSERT(vcpu);
  1933. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1934. vcpu->arch.mmu.free(vcpu);
  1935. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1936. }
  1937. }
  1938. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1939. {
  1940. destroy_kvm_mmu(vcpu);
  1941. return init_kvm_mmu(vcpu);
  1942. }
  1943. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1944. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1945. {
  1946. int r;
  1947. r = mmu_topup_memory_caches(vcpu);
  1948. if (r)
  1949. goto out;
  1950. spin_lock(&vcpu->kvm->mmu_lock);
  1951. kvm_mmu_free_some_pages(vcpu);
  1952. mmu_alloc_roots(vcpu);
  1953. mmu_sync_roots(vcpu);
  1954. spin_unlock(&vcpu->kvm->mmu_lock);
  1955. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1956. kvm_mmu_flush_tlb(vcpu);
  1957. out:
  1958. return r;
  1959. }
  1960. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1961. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1962. {
  1963. mmu_free_roots(vcpu);
  1964. }
  1965. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1966. struct kvm_mmu_page *sp,
  1967. u64 *spte)
  1968. {
  1969. u64 pte;
  1970. struct kvm_mmu_page *child;
  1971. pte = *spte;
  1972. if (is_shadow_present_pte(pte)) {
  1973. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1974. is_large_pte(pte))
  1975. rmap_remove(vcpu->kvm, spte);
  1976. else {
  1977. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1978. mmu_page_remove_parent_pte(child, spte);
  1979. }
  1980. }
  1981. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1982. if (is_large_pte(pte))
  1983. --vcpu->kvm->stat.lpages;
  1984. }
  1985. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1986. struct kvm_mmu_page *sp,
  1987. u64 *spte,
  1988. const void *new)
  1989. {
  1990. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1991. if (!vcpu->arch.update_pte.largepage ||
  1992. sp->role.glevels == PT32_ROOT_LEVEL) {
  1993. ++vcpu->kvm->stat.mmu_pde_zapped;
  1994. return;
  1995. }
  1996. }
  1997. ++vcpu->kvm->stat.mmu_pte_updated;
  1998. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1999. paging32_update_pte(vcpu, sp, spte, new);
  2000. else
  2001. paging64_update_pte(vcpu, sp, spte, new);
  2002. }
  2003. static bool need_remote_flush(u64 old, u64 new)
  2004. {
  2005. if (!is_shadow_present_pte(old))
  2006. return false;
  2007. if (!is_shadow_present_pte(new))
  2008. return true;
  2009. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2010. return true;
  2011. old ^= PT64_NX_MASK;
  2012. new ^= PT64_NX_MASK;
  2013. return (old & ~new & PT64_PERM_MASK) != 0;
  2014. }
  2015. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2016. {
  2017. if (need_remote_flush(old, new))
  2018. kvm_flush_remote_tlbs(vcpu->kvm);
  2019. else
  2020. kvm_mmu_flush_tlb(vcpu);
  2021. }
  2022. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2023. {
  2024. u64 *spte = vcpu->arch.last_pte_updated;
  2025. return !!(spte && (*spte & shadow_accessed_mask));
  2026. }
  2027. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2028. const u8 *new, int bytes)
  2029. {
  2030. gfn_t gfn;
  2031. int r;
  2032. u64 gpte = 0;
  2033. pfn_t pfn;
  2034. vcpu->arch.update_pte.largepage = 0;
  2035. if (bytes != 4 && bytes != 8)
  2036. return;
  2037. /*
  2038. * Assume that the pte write on a page table of the same type
  2039. * as the current vcpu paging mode. This is nearly always true
  2040. * (might be false while changing modes). Note it is verified later
  2041. * by update_pte().
  2042. */
  2043. if (is_pae(vcpu)) {
  2044. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2045. if ((bytes == 4) && (gpa % 4 == 0)) {
  2046. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2047. if (r)
  2048. return;
  2049. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2050. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2051. memcpy((void *)&gpte, new, 8);
  2052. }
  2053. } else {
  2054. if ((bytes == 4) && (gpa % 4 == 0))
  2055. memcpy((void *)&gpte, new, 4);
  2056. }
  2057. if (!is_present_pte(gpte))
  2058. return;
  2059. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2060. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  2061. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  2062. vcpu->arch.update_pte.largepage = 1;
  2063. }
  2064. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2065. smp_rmb();
  2066. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2067. if (is_error_pfn(pfn)) {
  2068. kvm_release_pfn_clean(pfn);
  2069. return;
  2070. }
  2071. vcpu->arch.update_pte.gfn = gfn;
  2072. vcpu->arch.update_pte.pfn = pfn;
  2073. }
  2074. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2075. {
  2076. u64 *spte = vcpu->arch.last_pte_updated;
  2077. if (spte
  2078. && vcpu->arch.last_pte_gfn == gfn
  2079. && shadow_accessed_mask
  2080. && !(*spte & shadow_accessed_mask)
  2081. && is_shadow_present_pte(*spte))
  2082. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2083. }
  2084. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2085. const u8 *new, int bytes,
  2086. bool guest_initiated)
  2087. {
  2088. gfn_t gfn = gpa >> PAGE_SHIFT;
  2089. struct kvm_mmu_page *sp;
  2090. struct hlist_node *node, *n;
  2091. struct hlist_head *bucket;
  2092. unsigned index;
  2093. u64 entry, gentry;
  2094. u64 *spte;
  2095. unsigned offset = offset_in_page(gpa);
  2096. unsigned pte_size;
  2097. unsigned page_offset;
  2098. unsigned misaligned;
  2099. unsigned quadrant;
  2100. int level;
  2101. int flooded = 0;
  2102. int npte;
  2103. int r;
  2104. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2105. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2106. spin_lock(&vcpu->kvm->mmu_lock);
  2107. kvm_mmu_access_page(vcpu, gfn);
  2108. kvm_mmu_free_some_pages(vcpu);
  2109. ++vcpu->kvm->stat.mmu_pte_write;
  2110. kvm_mmu_audit(vcpu, "pre pte write");
  2111. if (guest_initiated) {
  2112. if (gfn == vcpu->arch.last_pt_write_gfn
  2113. && !last_updated_pte_accessed(vcpu)) {
  2114. ++vcpu->arch.last_pt_write_count;
  2115. if (vcpu->arch.last_pt_write_count >= 3)
  2116. flooded = 1;
  2117. } else {
  2118. vcpu->arch.last_pt_write_gfn = gfn;
  2119. vcpu->arch.last_pt_write_count = 1;
  2120. vcpu->arch.last_pte_updated = NULL;
  2121. }
  2122. }
  2123. index = kvm_page_table_hashfn(gfn);
  2124. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2125. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2126. if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
  2127. continue;
  2128. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2129. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2130. misaligned |= bytes < 4;
  2131. if (misaligned || flooded) {
  2132. /*
  2133. * Misaligned accesses are too much trouble to fix
  2134. * up; also, they usually indicate a page is not used
  2135. * as a page table.
  2136. *
  2137. * If we're seeing too many writes to a page,
  2138. * it may no longer be a page table, or we may be
  2139. * forking, in which case it is better to unmap the
  2140. * page.
  2141. */
  2142. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2143. gpa, bytes, sp->role.word);
  2144. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2145. n = bucket->first;
  2146. ++vcpu->kvm->stat.mmu_flooded;
  2147. continue;
  2148. }
  2149. page_offset = offset;
  2150. level = sp->role.level;
  2151. npte = 1;
  2152. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2153. page_offset <<= 1; /* 32->64 */
  2154. /*
  2155. * A 32-bit pde maps 4MB while the shadow pdes map
  2156. * only 2MB. So we need to double the offset again
  2157. * and zap two pdes instead of one.
  2158. */
  2159. if (level == PT32_ROOT_LEVEL) {
  2160. page_offset &= ~7; /* kill rounding error */
  2161. page_offset <<= 1;
  2162. npte = 2;
  2163. }
  2164. quadrant = page_offset >> PAGE_SHIFT;
  2165. page_offset &= ~PAGE_MASK;
  2166. if (quadrant != sp->role.quadrant)
  2167. continue;
  2168. }
  2169. spte = &sp->spt[page_offset / sizeof(*spte)];
  2170. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2171. gentry = 0;
  2172. r = kvm_read_guest_atomic(vcpu->kvm,
  2173. gpa & ~(u64)(pte_size - 1),
  2174. &gentry, pte_size);
  2175. new = (const void *)&gentry;
  2176. if (r < 0)
  2177. new = NULL;
  2178. }
  2179. while (npte--) {
  2180. entry = *spte;
  2181. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2182. if (new)
  2183. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2184. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2185. ++spte;
  2186. }
  2187. }
  2188. kvm_mmu_audit(vcpu, "post pte write");
  2189. spin_unlock(&vcpu->kvm->mmu_lock);
  2190. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2191. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2192. vcpu->arch.update_pte.pfn = bad_pfn;
  2193. }
  2194. }
  2195. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2196. {
  2197. gpa_t gpa;
  2198. int r;
  2199. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2200. spin_lock(&vcpu->kvm->mmu_lock);
  2201. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2202. spin_unlock(&vcpu->kvm->mmu_lock);
  2203. return r;
  2204. }
  2205. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2206. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2207. {
  2208. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  2209. struct kvm_mmu_page *sp;
  2210. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2211. struct kvm_mmu_page, link);
  2212. kvm_mmu_zap_page(vcpu->kvm, sp);
  2213. ++vcpu->kvm->stat.mmu_recycled;
  2214. }
  2215. }
  2216. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2217. {
  2218. int r;
  2219. enum emulation_result er;
  2220. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2221. if (r < 0)
  2222. goto out;
  2223. if (!r) {
  2224. r = 1;
  2225. goto out;
  2226. }
  2227. r = mmu_topup_memory_caches(vcpu);
  2228. if (r)
  2229. goto out;
  2230. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2231. switch (er) {
  2232. case EMULATE_DONE:
  2233. return 1;
  2234. case EMULATE_DO_MMIO:
  2235. ++vcpu->stat.mmio_exits;
  2236. return 0;
  2237. case EMULATE_FAIL:
  2238. kvm_report_emulation_failure(vcpu, "pagetable");
  2239. return 1;
  2240. default:
  2241. BUG();
  2242. }
  2243. out:
  2244. return r;
  2245. }
  2246. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2247. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2248. {
  2249. vcpu->arch.mmu.invlpg(vcpu, gva);
  2250. kvm_mmu_flush_tlb(vcpu);
  2251. ++vcpu->stat.invlpg;
  2252. }
  2253. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2254. void kvm_enable_tdp(void)
  2255. {
  2256. tdp_enabled = true;
  2257. }
  2258. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2259. void kvm_disable_tdp(void)
  2260. {
  2261. tdp_enabled = false;
  2262. }
  2263. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2264. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2265. {
  2266. struct kvm_mmu_page *sp;
  2267. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2268. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  2269. struct kvm_mmu_page, link);
  2270. kvm_mmu_zap_page(vcpu->kvm, sp);
  2271. cond_resched();
  2272. }
  2273. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2274. }
  2275. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2276. {
  2277. struct page *page;
  2278. int i;
  2279. ASSERT(vcpu);
  2280. if (vcpu->kvm->arch.n_requested_mmu_pages)
  2281. vcpu->kvm->arch.n_free_mmu_pages =
  2282. vcpu->kvm->arch.n_requested_mmu_pages;
  2283. else
  2284. vcpu->kvm->arch.n_free_mmu_pages =
  2285. vcpu->kvm->arch.n_alloc_mmu_pages;
  2286. /*
  2287. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2288. * Therefore we need to allocate shadow page tables in the first
  2289. * 4GB of memory, which happens to fit the DMA32 zone.
  2290. */
  2291. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2292. if (!page)
  2293. goto error_1;
  2294. vcpu->arch.mmu.pae_root = page_address(page);
  2295. for (i = 0; i < 4; ++i)
  2296. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2297. return 0;
  2298. error_1:
  2299. free_mmu_pages(vcpu);
  2300. return -ENOMEM;
  2301. }
  2302. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2303. {
  2304. ASSERT(vcpu);
  2305. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2306. return alloc_mmu_pages(vcpu);
  2307. }
  2308. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2309. {
  2310. ASSERT(vcpu);
  2311. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2312. return init_kvm_mmu(vcpu);
  2313. }
  2314. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2315. {
  2316. ASSERT(vcpu);
  2317. destroy_kvm_mmu(vcpu);
  2318. free_mmu_pages(vcpu);
  2319. mmu_free_memory_caches(vcpu);
  2320. }
  2321. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2322. {
  2323. struct kvm_mmu_page *sp;
  2324. spin_lock(&kvm->mmu_lock);
  2325. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2326. int i;
  2327. u64 *pt;
  2328. if (!test_bit(slot, sp->slot_bitmap))
  2329. continue;
  2330. pt = sp->spt;
  2331. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2332. /* avoid RMW */
  2333. if (pt[i] & PT_WRITABLE_MASK)
  2334. pt[i] &= ~PT_WRITABLE_MASK;
  2335. }
  2336. kvm_flush_remote_tlbs(kvm);
  2337. spin_unlock(&kvm->mmu_lock);
  2338. }
  2339. void kvm_mmu_zap_all(struct kvm *kvm)
  2340. {
  2341. struct kvm_mmu_page *sp, *node;
  2342. spin_lock(&kvm->mmu_lock);
  2343. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2344. if (kvm_mmu_zap_page(kvm, sp))
  2345. node = container_of(kvm->arch.active_mmu_pages.next,
  2346. struct kvm_mmu_page, link);
  2347. spin_unlock(&kvm->mmu_lock);
  2348. kvm_flush_remote_tlbs(kvm);
  2349. }
  2350. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2351. {
  2352. struct kvm_mmu_page *page;
  2353. page = container_of(kvm->arch.active_mmu_pages.prev,
  2354. struct kvm_mmu_page, link);
  2355. kvm_mmu_zap_page(kvm, page);
  2356. }
  2357. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2358. {
  2359. struct kvm *kvm;
  2360. struct kvm *kvm_freed = NULL;
  2361. int cache_count = 0;
  2362. spin_lock(&kvm_lock);
  2363. list_for_each_entry(kvm, &vm_list, vm_list) {
  2364. int npages;
  2365. if (!down_read_trylock(&kvm->slots_lock))
  2366. continue;
  2367. spin_lock(&kvm->mmu_lock);
  2368. npages = kvm->arch.n_alloc_mmu_pages -
  2369. kvm->arch.n_free_mmu_pages;
  2370. cache_count += npages;
  2371. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2372. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2373. cache_count--;
  2374. kvm_freed = kvm;
  2375. }
  2376. nr_to_scan--;
  2377. spin_unlock(&kvm->mmu_lock);
  2378. up_read(&kvm->slots_lock);
  2379. }
  2380. if (kvm_freed)
  2381. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2382. spin_unlock(&kvm_lock);
  2383. return cache_count;
  2384. }
  2385. static struct shrinker mmu_shrinker = {
  2386. .shrink = mmu_shrink,
  2387. .seeks = DEFAULT_SEEKS * 10,
  2388. };
  2389. static void mmu_destroy_caches(void)
  2390. {
  2391. if (pte_chain_cache)
  2392. kmem_cache_destroy(pte_chain_cache);
  2393. if (rmap_desc_cache)
  2394. kmem_cache_destroy(rmap_desc_cache);
  2395. if (mmu_page_header_cache)
  2396. kmem_cache_destroy(mmu_page_header_cache);
  2397. }
  2398. void kvm_mmu_module_exit(void)
  2399. {
  2400. mmu_destroy_caches();
  2401. unregister_shrinker(&mmu_shrinker);
  2402. }
  2403. int kvm_mmu_module_init(void)
  2404. {
  2405. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2406. sizeof(struct kvm_pte_chain),
  2407. 0, 0, NULL);
  2408. if (!pte_chain_cache)
  2409. goto nomem;
  2410. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2411. sizeof(struct kvm_rmap_desc),
  2412. 0, 0, NULL);
  2413. if (!rmap_desc_cache)
  2414. goto nomem;
  2415. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2416. sizeof(struct kvm_mmu_page),
  2417. 0, 0, NULL);
  2418. if (!mmu_page_header_cache)
  2419. goto nomem;
  2420. register_shrinker(&mmu_shrinker);
  2421. return 0;
  2422. nomem:
  2423. mmu_destroy_caches();
  2424. return -ENOMEM;
  2425. }
  2426. /*
  2427. * Caculate mmu pages needed for kvm.
  2428. */
  2429. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2430. {
  2431. int i;
  2432. unsigned int nr_mmu_pages;
  2433. unsigned int nr_pages = 0;
  2434. for (i = 0; i < kvm->nmemslots; i++)
  2435. nr_pages += kvm->memslots[i].npages;
  2436. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2437. nr_mmu_pages = max(nr_mmu_pages,
  2438. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2439. return nr_mmu_pages;
  2440. }
  2441. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2442. unsigned len)
  2443. {
  2444. if (len > buffer->len)
  2445. return NULL;
  2446. return buffer->ptr;
  2447. }
  2448. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2449. unsigned len)
  2450. {
  2451. void *ret;
  2452. ret = pv_mmu_peek_buffer(buffer, len);
  2453. if (!ret)
  2454. return ret;
  2455. buffer->ptr += len;
  2456. buffer->len -= len;
  2457. buffer->processed += len;
  2458. return ret;
  2459. }
  2460. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2461. gpa_t addr, gpa_t value)
  2462. {
  2463. int bytes = 8;
  2464. int r;
  2465. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2466. bytes = 4;
  2467. r = mmu_topup_memory_caches(vcpu);
  2468. if (r)
  2469. return r;
  2470. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2471. return -EFAULT;
  2472. return 1;
  2473. }
  2474. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2475. {
  2476. kvm_x86_ops->tlb_flush(vcpu);
  2477. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  2478. return 1;
  2479. }
  2480. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2481. {
  2482. spin_lock(&vcpu->kvm->mmu_lock);
  2483. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2484. spin_unlock(&vcpu->kvm->mmu_lock);
  2485. return 1;
  2486. }
  2487. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2488. struct kvm_pv_mmu_op_buffer *buffer)
  2489. {
  2490. struct kvm_mmu_op_header *header;
  2491. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2492. if (!header)
  2493. return 0;
  2494. switch (header->op) {
  2495. case KVM_MMU_OP_WRITE_PTE: {
  2496. struct kvm_mmu_op_write_pte *wpte;
  2497. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2498. if (!wpte)
  2499. return 0;
  2500. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2501. wpte->pte_val);
  2502. }
  2503. case KVM_MMU_OP_FLUSH_TLB: {
  2504. struct kvm_mmu_op_flush_tlb *ftlb;
  2505. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2506. if (!ftlb)
  2507. return 0;
  2508. return kvm_pv_mmu_flush_tlb(vcpu);
  2509. }
  2510. case KVM_MMU_OP_RELEASE_PT: {
  2511. struct kvm_mmu_op_release_pt *rpt;
  2512. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2513. if (!rpt)
  2514. return 0;
  2515. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2516. }
  2517. default: return 0;
  2518. }
  2519. }
  2520. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2521. gpa_t addr, unsigned long *ret)
  2522. {
  2523. int r;
  2524. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2525. buffer->ptr = buffer->buf;
  2526. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2527. buffer->processed = 0;
  2528. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2529. if (r)
  2530. goto out;
  2531. while (buffer->len) {
  2532. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2533. if (r < 0)
  2534. goto out;
  2535. if (r == 0)
  2536. break;
  2537. }
  2538. r = 1;
  2539. out:
  2540. *ret = buffer->processed;
  2541. return r;
  2542. }
  2543. #ifdef AUDIT
  2544. static const char *audit_msg;
  2545. static gva_t canonicalize(gva_t gva)
  2546. {
  2547. #ifdef CONFIG_X86_64
  2548. gva = (long long)(gva << 16) >> 16;
  2549. #endif
  2550. return gva;
  2551. }
  2552. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2553. gva_t va, int level)
  2554. {
  2555. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2556. int i;
  2557. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2558. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2559. u64 ent = pt[i];
  2560. if (ent == shadow_trap_nonpresent_pte)
  2561. continue;
  2562. va = canonicalize(va);
  2563. if (level > 1) {
  2564. if (ent == shadow_notrap_nonpresent_pte)
  2565. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2566. " in nonleaf level: levels %d gva %lx"
  2567. " level %d pte %llx\n", audit_msg,
  2568. vcpu->arch.mmu.root_level, va, level, ent);
  2569. audit_mappings_page(vcpu, ent, va, level - 1);
  2570. } else {
  2571. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2572. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2573. if (is_shadow_present_pte(ent)
  2574. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2575. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2576. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2577. audit_msg, vcpu->arch.mmu.root_level,
  2578. va, gpa, hpa, ent,
  2579. is_shadow_present_pte(ent));
  2580. else if (ent == shadow_notrap_nonpresent_pte
  2581. && !is_error_hpa(hpa))
  2582. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2583. " valid guest gva %lx\n", audit_msg, va);
  2584. kvm_release_pfn_clean(pfn);
  2585. }
  2586. }
  2587. }
  2588. static void audit_mappings(struct kvm_vcpu *vcpu)
  2589. {
  2590. unsigned i;
  2591. if (vcpu->arch.mmu.root_level == 4)
  2592. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2593. else
  2594. for (i = 0; i < 4; ++i)
  2595. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2596. audit_mappings_page(vcpu,
  2597. vcpu->arch.mmu.pae_root[i],
  2598. i << 30,
  2599. 2);
  2600. }
  2601. static int count_rmaps(struct kvm_vcpu *vcpu)
  2602. {
  2603. int nmaps = 0;
  2604. int i, j, k;
  2605. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2606. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2607. struct kvm_rmap_desc *d;
  2608. for (j = 0; j < m->npages; ++j) {
  2609. unsigned long *rmapp = &m->rmap[j];
  2610. if (!*rmapp)
  2611. continue;
  2612. if (!(*rmapp & 1)) {
  2613. ++nmaps;
  2614. continue;
  2615. }
  2616. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2617. while (d) {
  2618. for (k = 0; k < RMAP_EXT; ++k)
  2619. if (d->shadow_ptes[k])
  2620. ++nmaps;
  2621. else
  2622. break;
  2623. d = d->more;
  2624. }
  2625. }
  2626. }
  2627. return nmaps;
  2628. }
  2629. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2630. {
  2631. int nmaps = 0;
  2632. struct kvm_mmu_page *sp;
  2633. int i;
  2634. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2635. u64 *pt = sp->spt;
  2636. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2637. continue;
  2638. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2639. u64 ent = pt[i];
  2640. if (!(ent & PT_PRESENT_MASK))
  2641. continue;
  2642. if (!(ent & PT_WRITABLE_MASK))
  2643. continue;
  2644. ++nmaps;
  2645. }
  2646. }
  2647. return nmaps;
  2648. }
  2649. static void audit_rmap(struct kvm_vcpu *vcpu)
  2650. {
  2651. int n_rmap = count_rmaps(vcpu);
  2652. int n_actual = count_writable_mappings(vcpu);
  2653. if (n_rmap != n_actual)
  2654. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2655. __func__, audit_msg, n_rmap, n_actual);
  2656. }
  2657. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2658. {
  2659. struct kvm_mmu_page *sp;
  2660. struct kvm_memory_slot *slot;
  2661. unsigned long *rmapp;
  2662. gfn_t gfn;
  2663. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2664. if (sp->role.metaphysical)
  2665. continue;
  2666. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2667. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2668. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2669. if (*rmapp)
  2670. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2671. " mappings: gfn %lx role %x\n",
  2672. __func__, audit_msg, sp->gfn,
  2673. sp->role.word);
  2674. }
  2675. }
  2676. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2677. {
  2678. int olddbg = dbg;
  2679. dbg = 0;
  2680. audit_msg = msg;
  2681. audit_rmap(vcpu);
  2682. audit_write_protection(vcpu);
  2683. audit_mappings(vcpu);
  2684. dbg = olddbg;
  2685. }
  2686. #endif