tsc.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. #include <linux/kernel.h>
  2. #include <linux/sched.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/timer.h>
  6. #include <linux/acpi_pmtmr.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/dmi.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <asm/hpet.h>
  13. #include <asm/timer.h>
  14. #include <asm/vgtod.h>
  15. #include <asm/time.h>
  16. #include <asm/delay.h>
  17. #include <asm/hypervisor.h>
  18. unsigned int cpu_khz; /* TSC clocks / usec, not used here */
  19. EXPORT_SYMBOL(cpu_khz);
  20. unsigned int tsc_khz;
  21. EXPORT_SYMBOL(tsc_khz);
  22. /*
  23. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  24. */
  25. static int tsc_unstable;
  26. /* native_sched_clock() is called before tsc_init(), so
  27. we must start with the TSC soft disabled to prevent
  28. erroneous rdtsc usage on !cpu_has_tsc processors */
  29. static int tsc_disabled = -1;
  30. static int tsc_clocksource_reliable;
  31. /*
  32. * Scheduler clock - returns current time in nanosec units.
  33. */
  34. u64 native_sched_clock(void)
  35. {
  36. u64 this_offset;
  37. /*
  38. * Fall back to jiffies if there's no TSC available:
  39. * ( But note that we still use it if the TSC is marked
  40. * unstable. We do this because unlike Time Of Day,
  41. * the scheduler clock tolerates small errors and it's
  42. * very important for it to be as fast as the platform
  43. * can achive it. )
  44. */
  45. if (unlikely(tsc_disabled)) {
  46. /* No locking but a rare wrong value is not a big deal: */
  47. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  48. }
  49. /* read the Time Stamp Counter: */
  50. rdtscll(this_offset);
  51. /* return the value in ns */
  52. return __cycles_2_ns(this_offset);
  53. }
  54. /* We need to define a real function for sched_clock, to override the
  55. weak default version */
  56. #ifdef CONFIG_PARAVIRT
  57. unsigned long long sched_clock(void)
  58. {
  59. return paravirt_sched_clock();
  60. }
  61. #else
  62. unsigned long long
  63. sched_clock(void) __attribute__((alias("native_sched_clock")));
  64. #endif
  65. int check_tsc_unstable(void)
  66. {
  67. return tsc_unstable;
  68. }
  69. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  70. #ifdef CONFIG_X86_TSC
  71. int __init notsc_setup(char *str)
  72. {
  73. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  74. "cannot disable TSC completely.\n");
  75. tsc_disabled = 1;
  76. return 1;
  77. }
  78. #else
  79. /*
  80. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  81. * in cpu/common.c
  82. */
  83. int __init notsc_setup(char *str)
  84. {
  85. setup_clear_cpu_cap(X86_FEATURE_TSC);
  86. return 1;
  87. }
  88. #endif
  89. __setup("notsc", notsc_setup);
  90. static int __init tsc_setup(char *str)
  91. {
  92. if (!strcmp(str, "reliable"))
  93. tsc_clocksource_reliable = 1;
  94. return 1;
  95. }
  96. __setup("tsc=", tsc_setup);
  97. #define MAX_RETRIES 5
  98. #define SMI_TRESHOLD 50000
  99. /*
  100. * Read TSC and the reference counters. Take care of SMI disturbance
  101. */
  102. static u64 tsc_read_refs(u64 *p, int hpet)
  103. {
  104. u64 t1, t2;
  105. int i;
  106. for (i = 0; i < MAX_RETRIES; i++) {
  107. t1 = get_cycles();
  108. if (hpet)
  109. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  110. else
  111. *p = acpi_pm_read_early();
  112. t2 = get_cycles();
  113. if ((t2 - t1) < SMI_TRESHOLD)
  114. return t2;
  115. }
  116. return ULLONG_MAX;
  117. }
  118. /*
  119. * Calculate the TSC frequency from HPET reference
  120. */
  121. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  122. {
  123. u64 tmp;
  124. if (hpet2 < hpet1)
  125. hpet2 += 0x100000000ULL;
  126. hpet2 -= hpet1;
  127. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  128. do_div(tmp, 1000000);
  129. do_div(deltatsc, tmp);
  130. return (unsigned long) deltatsc;
  131. }
  132. /*
  133. * Calculate the TSC frequency from PMTimer reference
  134. */
  135. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  136. {
  137. u64 tmp;
  138. if (!pm1 && !pm2)
  139. return ULONG_MAX;
  140. if (pm2 < pm1)
  141. pm2 += (u64)ACPI_PM_OVRRUN;
  142. pm2 -= pm1;
  143. tmp = pm2 * 1000000000LL;
  144. do_div(tmp, PMTMR_TICKS_PER_SEC);
  145. do_div(deltatsc, tmp);
  146. return (unsigned long) deltatsc;
  147. }
  148. #define CAL_MS 10
  149. #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
  150. #define CAL_PIT_LOOPS 1000
  151. #define CAL2_MS 50
  152. #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
  153. #define CAL2_PIT_LOOPS 5000
  154. /*
  155. * Try to calibrate the TSC against the Programmable
  156. * Interrupt Timer and return the frequency of the TSC
  157. * in kHz.
  158. *
  159. * Return ULONG_MAX on failure to calibrate.
  160. */
  161. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  162. {
  163. u64 tsc, t1, t2, delta;
  164. unsigned long tscmin, tscmax;
  165. int pitcnt;
  166. /* Set the Gate high, disable speaker */
  167. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  168. /*
  169. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  170. * count mode), binary count. Set the latch register to 50ms
  171. * (LSB then MSB) to begin countdown.
  172. */
  173. outb(0xb0, 0x43);
  174. outb(latch & 0xff, 0x42);
  175. outb(latch >> 8, 0x42);
  176. tsc = t1 = t2 = get_cycles();
  177. pitcnt = 0;
  178. tscmax = 0;
  179. tscmin = ULONG_MAX;
  180. while ((inb(0x61) & 0x20) == 0) {
  181. t2 = get_cycles();
  182. delta = t2 - tsc;
  183. tsc = t2;
  184. if ((unsigned long) delta < tscmin)
  185. tscmin = (unsigned int) delta;
  186. if ((unsigned long) delta > tscmax)
  187. tscmax = (unsigned int) delta;
  188. pitcnt++;
  189. }
  190. /*
  191. * Sanity checks:
  192. *
  193. * If we were not able to read the PIT more than loopmin
  194. * times, then we have been hit by a massive SMI
  195. *
  196. * If the maximum is 10 times larger than the minimum,
  197. * then we got hit by an SMI as well.
  198. */
  199. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  200. return ULONG_MAX;
  201. /* Calculate the PIT value */
  202. delta = t2 - t1;
  203. do_div(delta, ms);
  204. return delta;
  205. }
  206. /*
  207. * This reads the current MSB of the PIT counter, and
  208. * checks if we are running on sufficiently fast and
  209. * non-virtualized hardware.
  210. *
  211. * Our expectations are:
  212. *
  213. * - the PIT is running at roughly 1.19MHz
  214. *
  215. * - each IO is going to take about 1us on real hardware,
  216. * but we allow it to be much faster (by a factor of 10) or
  217. * _slightly_ slower (ie we allow up to a 2us read+counter
  218. * update - anything else implies a unacceptably slow CPU
  219. * or PIT for the fast calibration to work.
  220. *
  221. * - with 256 PIT ticks to read the value, we have 214us to
  222. * see the same MSB (and overhead like doing a single TSC
  223. * read per MSB value etc).
  224. *
  225. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  226. * them each to take about a microsecond on real hardware.
  227. * So we expect a count value of around 100. But we'll be
  228. * generous, and accept anything over 50.
  229. *
  230. * - if the PIT is stuck, and we see *many* more reads, we
  231. * return early (and the next caller of pit_expect_msb()
  232. * then consider it a failure when they don't see the
  233. * next expected value).
  234. *
  235. * These expectations mean that we know that we have seen the
  236. * transition from one expected value to another with a fairly
  237. * high accuracy, and we didn't miss any events. We can thus
  238. * use the TSC value at the transitions to calculate a pretty
  239. * good value for the TSC frequencty.
  240. */
  241. static inline int pit_expect_msb(unsigned char val)
  242. {
  243. int count = 0;
  244. for (count = 0; count < 50000; count++) {
  245. /* Ignore LSB */
  246. inb(0x42);
  247. if (inb(0x42) != val)
  248. break;
  249. }
  250. return count > 50;
  251. }
  252. /*
  253. * How many MSB values do we want to see? We aim for a
  254. * 15ms calibration, which assuming a 2us counter read
  255. * error should give us roughly 150 ppm precision for
  256. * the calibration.
  257. */
  258. #define QUICK_PIT_MS 15
  259. #define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  260. static unsigned long quick_pit_calibrate(void)
  261. {
  262. /* Set the Gate high, disable speaker */
  263. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  264. /*
  265. * Counter 2, mode 0 (one-shot), binary count
  266. *
  267. * NOTE! Mode 2 decrements by two (and then the
  268. * output is flipped each time, giving the same
  269. * final output frequency as a decrement-by-one),
  270. * so mode 0 is much better when looking at the
  271. * individual counts.
  272. */
  273. outb(0xb0, 0x43);
  274. /* Start at 0xffff */
  275. outb(0xff, 0x42);
  276. outb(0xff, 0x42);
  277. if (pit_expect_msb(0xff)) {
  278. int i;
  279. u64 t1, t2, delta;
  280. unsigned char expect = 0xfe;
  281. t1 = get_cycles();
  282. for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
  283. if (!pit_expect_msb(expect))
  284. goto failed;
  285. }
  286. t2 = get_cycles();
  287. /*
  288. * Make sure we can rely on the second TSC timestamp:
  289. */
  290. if (!pit_expect_msb(expect))
  291. goto failed;
  292. /*
  293. * Ok, if we get here, then we've seen the
  294. * MSB of the PIT decrement QUICK_PIT_ITERATIONS
  295. * times, and each MSB had many hits, so we never
  296. * had any sudden jumps.
  297. *
  298. * As a result, we can depend on there not being
  299. * any odd delays anywhere, and the TSC reads are
  300. * reliable.
  301. *
  302. * kHz = ticks / time-in-seconds / 1000;
  303. * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
  304. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
  305. */
  306. delta = (t2 - t1)*PIT_TICK_RATE;
  307. do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
  308. printk("Fast TSC calibration using PIT\n");
  309. return delta;
  310. }
  311. failed:
  312. return 0;
  313. }
  314. /**
  315. * native_calibrate_tsc - calibrate the tsc on boot
  316. */
  317. unsigned long native_calibrate_tsc(void)
  318. {
  319. u64 tsc1, tsc2, delta, ref1, ref2;
  320. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  321. unsigned long flags, latch, ms, fast_calibrate, tsc_khz;
  322. int hpet = is_hpet_enabled(), i, loopmin;
  323. tsc_khz = get_hypervisor_tsc_freq();
  324. if (tsc_khz) {
  325. printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
  326. return tsc_khz;
  327. }
  328. local_irq_save(flags);
  329. fast_calibrate = quick_pit_calibrate();
  330. local_irq_restore(flags);
  331. if (fast_calibrate)
  332. return fast_calibrate;
  333. /*
  334. * Run 5 calibration loops to get the lowest frequency value
  335. * (the best estimate). We use two different calibration modes
  336. * here:
  337. *
  338. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  339. * load a timeout of 50ms. We read the time right after we
  340. * started the timer and wait until the PIT count down reaches
  341. * zero. In each wait loop iteration we read the TSC and check
  342. * the delta to the previous read. We keep track of the min
  343. * and max values of that delta. The delta is mostly defined
  344. * by the IO time of the PIT access, so we can detect when a
  345. * SMI/SMM disturbance happend between the two reads. If the
  346. * maximum time is significantly larger than the minimum time,
  347. * then we discard the result and have another try.
  348. *
  349. * 2) Reference counter. If available we use the HPET or the
  350. * PMTIMER as a reference to check the sanity of that value.
  351. * We use separate TSC readouts and check inside of the
  352. * reference read for a SMI/SMM disturbance. We dicard
  353. * disturbed values here as well. We do that around the PIT
  354. * calibration delay loop as we have to wait for a certain
  355. * amount of time anyway.
  356. */
  357. /* Preset PIT loop values */
  358. latch = CAL_LATCH;
  359. ms = CAL_MS;
  360. loopmin = CAL_PIT_LOOPS;
  361. for (i = 0; i < 3; i++) {
  362. unsigned long tsc_pit_khz;
  363. /*
  364. * Read the start value and the reference count of
  365. * hpet/pmtimer when available. Then do the PIT
  366. * calibration, which will take at least 50ms, and
  367. * read the end value.
  368. */
  369. local_irq_save(flags);
  370. tsc1 = tsc_read_refs(&ref1, hpet);
  371. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  372. tsc2 = tsc_read_refs(&ref2, hpet);
  373. local_irq_restore(flags);
  374. /* Pick the lowest PIT TSC calibration so far */
  375. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  376. /* hpet or pmtimer available ? */
  377. if (!hpet && !ref1 && !ref2)
  378. continue;
  379. /* Check, whether the sampling was disturbed by an SMI */
  380. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  381. continue;
  382. tsc2 = (tsc2 - tsc1) * 1000000LL;
  383. if (hpet)
  384. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  385. else
  386. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  387. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  388. /* Check the reference deviation */
  389. delta = ((u64) tsc_pit_min) * 100;
  390. do_div(delta, tsc_ref_min);
  391. /*
  392. * If both calibration results are inside a 10% window
  393. * then we can be sure, that the calibration
  394. * succeeded. We break out of the loop right away. We
  395. * use the reference value, as it is more precise.
  396. */
  397. if (delta >= 90 && delta <= 110) {
  398. printk(KERN_INFO
  399. "TSC: PIT calibration matches %s. %d loops\n",
  400. hpet ? "HPET" : "PMTIMER", i + 1);
  401. return tsc_ref_min;
  402. }
  403. /*
  404. * Check whether PIT failed more than once. This
  405. * happens in virtualized environments. We need to
  406. * give the virtual PC a slightly longer timeframe for
  407. * the HPET/PMTIMER to make the result precise.
  408. */
  409. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  410. latch = CAL2_LATCH;
  411. ms = CAL2_MS;
  412. loopmin = CAL2_PIT_LOOPS;
  413. }
  414. }
  415. /*
  416. * Now check the results.
  417. */
  418. if (tsc_pit_min == ULONG_MAX) {
  419. /* PIT gave no useful value */
  420. printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
  421. /* We don't have an alternative source, disable TSC */
  422. if (!hpet && !ref1 && !ref2) {
  423. printk("TSC: No reference (HPET/PMTIMER) available\n");
  424. return 0;
  425. }
  426. /* The alternative source failed as well, disable TSC */
  427. if (tsc_ref_min == ULONG_MAX) {
  428. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
  429. "failed.\n");
  430. return 0;
  431. }
  432. /* Use the alternative source */
  433. printk(KERN_INFO "TSC: using %s reference calibration\n",
  434. hpet ? "HPET" : "PMTIMER");
  435. return tsc_ref_min;
  436. }
  437. /* We don't have an alternative source, use the PIT calibration value */
  438. if (!hpet && !ref1 && !ref2) {
  439. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  440. return tsc_pit_min;
  441. }
  442. /* The alternative source failed, use the PIT calibration value */
  443. if (tsc_ref_min == ULONG_MAX) {
  444. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
  445. "Using PIT calibration\n");
  446. return tsc_pit_min;
  447. }
  448. /*
  449. * The calibration values differ too much. In doubt, we use
  450. * the PIT value as we know that there are PMTIMERs around
  451. * running at double speed. At least we let the user know:
  452. */
  453. printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
  454. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  455. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  456. return tsc_pit_min;
  457. }
  458. #ifdef CONFIG_X86_32
  459. /* Only called from the Powernow K7 cpu freq driver */
  460. int recalibrate_cpu_khz(void)
  461. {
  462. #ifndef CONFIG_SMP
  463. unsigned long cpu_khz_old = cpu_khz;
  464. if (cpu_has_tsc) {
  465. tsc_khz = calibrate_tsc();
  466. cpu_khz = tsc_khz;
  467. cpu_data(0).loops_per_jiffy =
  468. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  469. cpu_khz_old, cpu_khz);
  470. return 0;
  471. } else
  472. return -ENODEV;
  473. #else
  474. return -ENODEV;
  475. #endif
  476. }
  477. EXPORT_SYMBOL(recalibrate_cpu_khz);
  478. #endif /* CONFIG_X86_32 */
  479. /* Accelerators for sched_clock()
  480. * convert from cycles(64bits) => nanoseconds (64bits)
  481. * basic equation:
  482. * ns = cycles / (freq / ns_per_sec)
  483. * ns = cycles * (ns_per_sec / freq)
  484. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  485. * ns = cycles * (10^6 / cpu_khz)
  486. *
  487. * Then we use scaling math (suggested by george@mvista.com) to get:
  488. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  489. * ns = cycles * cyc2ns_scale / SC
  490. *
  491. * And since SC is a constant power of two, we can convert the div
  492. * into a shift.
  493. *
  494. * We can use khz divisor instead of mhz to keep a better precision, since
  495. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  496. * (mathieu.desnoyers@polymtl.ca)
  497. *
  498. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  499. */
  500. DEFINE_PER_CPU(unsigned long, cyc2ns);
  501. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  502. {
  503. unsigned long long tsc_now, ns_now;
  504. unsigned long flags, *scale;
  505. local_irq_save(flags);
  506. sched_clock_idle_sleep_event();
  507. scale = &per_cpu(cyc2ns, cpu);
  508. rdtscll(tsc_now);
  509. ns_now = __cycles_2_ns(tsc_now);
  510. if (cpu_khz)
  511. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  512. sched_clock_idle_wakeup_event(0);
  513. local_irq_restore(flags);
  514. }
  515. #ifdef CONFIG_CPU_FREQ
  516. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  517. * changes.
  518. *
  519. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  520. * not that important because current Opteron setups do not support
  521. * scaling on SMP anyroads.
  522. *
  523. * Should fix up last_tsc too. Currently gettimeofday in the
  524. * first tick after the change will be slightly wrong.
  525. */
  526. static unsigned int ref_freq;
  527. static unsigned long loops_per_jiffy_ref;
  528. static unsigned long tsc_khz_ref;
  529. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  530. void *data)
  531. {
  532. struct cpufreq_freqs *freq = data;
  533. unsigned long *lpj, dummy;
  534. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  535. return 0;
  536. lpj = &dummy;
  537. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  538. #ifdef CONFIG_SMP
  539. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  540. #else
  541. lpj = &boot_cpu_data.loops_per_jiffy;
  542. #endif
  543. if (!ref_freq) {
  544. ref_freq = freq->old;
  545. loops_per_jiffy_ref = *lpj;
  546. tsc_khz_ref = tsc_khz;
  547. }
  548. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  549. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  550. (val == CPUFREQ_RESUMECHANGE)) {
  551. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  552. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  553. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  554. mark_tsc_unstable("cpufreq changes");
  555. }
  556. set_cyc2ns_scale(tsc_khz, freq->cpu);
  557. return 0;
  558. }
  559. static struct notifier_block time_cpufreq_notifier_block = {
  560. .notifier_call = time_cpufreq_notifier
  561. };
  562. static int __init cpufreq_tsc(void)
  563. {
  564. if (!cpu_has_tsc)
  565. return 0;
  566. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  567. return 0;
  568. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  569. CPUFREQ_TRANSITION_NOTIFIER);
  570. return 0;
  571. }
  572. core_initcall(cpufreq_tsc);
  573. #endif /* CONFIG_CPU_FREQ */
  574. /* clocksource code */
  575. static struct clocksource clocksource_tsc;
  576. /*
  577. * We compare the TSC to the cycle_last value in the clocksource
  578. * structure to avoid a nasty time-warp. This can be observed in a
  579. * very small window right after one CPU updated cycle_last under
  580. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  581. * is smaller than the cycle_last reference value due to a TSC which
  582. * is slighty behind. This delta is nowhere else observable, but in
  583. * that case it results in a forward time jump in the range of hours
  584. * due to the unsigned delta calculation of the time keeping core
  585. * code, which is necessary to support wrapping clocksources like pm
  586. * timer.
  587. */
  588. static cycle_t read_tsc(void)
  589. {
  590. cycle_t ret = (cycle_t)get_cycles();
  591. return ret >= clocksource_tsc.cycle_last ?
  592. ret : clocksource_tsc.cycle_last;
  593. }
  594. #ifdef CONFIG_X86_64
  595. static cycle_t __vsyscall_fn vread_tsc(void)
  596. {
  597. cycle_t ret = (cycle_t)vget_cycles();
  598. return ret >= __vsyscall_gtod_data.clock.cycle_last ?
  599. ret : __vsyscall_gtod_data.clock.cycle_last;
  600. }
  601. #endif
  602. static struct clocksource clocksource_tsc = {
  603. .name = "tsc",
  604. .rating = 300,
  605. .read = read_tsc,
  606. .mask = CLOCKSOURCE_MASK(64),
  607. .shift = 22,
  608. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  609. CLOCK_SOURCE_MUST_VERIFY,
  610. #ifdef CONFIG_X86_64
  611. .vread = vread_tsc,
  612. #endif
  613. };
  614. void mark_tsc_unstable(char *reason)
  615. {
  616. if (!tsc_unstable) {
  617. tsc_unstable = 1;
  618. printk("Marking TSC unstable due to %s\n", reason);
  619. /* Change only the rating, when not registered */
  620. if (clocksource_tsc.mult)
  621. clocksource_change_rating(&clocksource_tsc, 0);
  622. else
  623. clocksource_tsc.rating = 0;
  624. }
  625. }
  626. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  627. static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
  628. {
  629. printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
  630. d->ident);
  631. tsc_unstable = 1;
  632. return 0;
  633. }
  634. /* List of systems that have known TSC problems */
  635. static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
  636. {
  637. .callback = dmi_mark_tsc_unstable,
  638. .ident = "IBM Thinkpad 380XD",
  639. .matches = {
  640. DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
  641. DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
  642. },
  643. },
  644. {}
  645. };
  646. static void __init check_system_tsc_reliable(void)
  647. {
  648. #ifdef CONFIG_MGEODE_LX
  649. /* RTSC counts during suspend */
  650. #define RTSC_SUSP 0x100
  651. unsigned long res_low, res_high;
  652. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  653. /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
  654. if (res_low & RTSC_SUSP)
  655. tsc_clocksource_reliable = 1;
  656. #endif
  657. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  658. tsc_clocksource_reliable = 1;
  659. }
  660. /*
  661. * Make an educated guess if the TSC is trustworthy and synchronized
  662. * over all CPUs.
  663. */
  664. __cpuinit int unsynchronized_tsc(void)
  665. {
  666. if (!cpu_has_tsc || tsc_unstable)
  667. return 1;
  668. #ifdef CONFIG_X86_SMP
  669. if (apic_is_clustered_box())
  670. return 1;
  671. #endif
  672. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  673. return 0;
  674. /*
  675. * Intel systems are normally all synchronized.
  676. * Exceptions must mark TSC as unstable:
  677. */
  678. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  679. /* assume multi socket systems are not synchronized: */
  680. if (num_possible_cpus() > 1)
  681. tsc_unstable = 1;
  682. }
  683. return tsc_unstable;
  684. }
  685. static void __init init_tsc_clocksource(void)
  686. {
  687. clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
  688. clocksource_tsc.shift);
  689. if (tsc_clocksource_reliable)
  690. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  691. /* lower the rating if we already know its unstable: */
  692. if (check_tsc_unstable()) {
  693. clocksource_tsc.rating = 0;
  694. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  695. }
  696. clocksource_register(&clocksource_tsc);
  697. }
  698. void __init tsc_init(void)
  699. {
  700. u64 lpj;
  701. int cpu;
  702. if (!cpu_has_tsc)
  703. return;
  704. tsc_khz = calibrate_tsc();
  705. cpu_khz = tsc_khz;
  706. if (!tsc_khz) {
  707. mark_tsc_unstable("could not calculate TSC khz");
  708. return;
  709. }
  710. #ifdef CONFIG_X86_64
  711. if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
  712. (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
  713. cpu_khz = calibrate_cpu();
  714. #endif
  715. printk("Detected %lu.%03lu MHz processor.\n",
  716. (unsigned long)cpu_khz / 1000,
  717. (unsigned long)cpu_khz % 1000);
  718. /*
  719. * Secondary CPUs do not run through tsc_init(), so set up
  720. * all the scale factors for all CPUs, assuming the same
  721. * speed as the bootup CPU. (cpufreq notifiers will fix this
  722. * up if their speed diverges)
  723. */
  724. for_each_possible_cpu(cpu)
  725. set_cyc2ns_scale(cpu_khz, cpu);
  726. if (tsc_disabled > 0)
  727. return;
  728. /* now allow native_sched_clock() to use rdtsc */
  729. tsc_disabled = 0;
  730. lpj = ((u64)tsc_khz * 1000);
  731. do_div(lpj, HZ);
  732. lpj_fine = lpj;
  733. use_tsc_delay();
  734. /* Check and install the TSC clocksource */
  735. dmi_check_system(bad_tsc_dmi_table);
  736. if (unsynchronized_tsc())
  737. mark_tsc_unstable("TSCs unsynchronized");
  738. check_system_tsc_reliable();
  739. init_tsc_clocksource();
  740. }