pci-gart_64.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900
  1. /*
  2. * Dynamic DMA mapping support for AMD Hammer.
  3. *
  4. * Use the integrated AGP GART in the Hammer northbridge as an IOMMU for PCI.
  5. * This allows to use PCI devices that only support 32bit addresses on systems
  6. * with more than 4GB.
  7. *
  8. * See Documentation/DMA-mapping.txt for the interface specification.
  9. *
  10. * Copyright 2002 Andi Kleen, SuSE Labs.
  11. * Subject to the GNU General Public License v2 only.
  12. */
  13. #include <linux/types.h>
  14. #include <linux/ctype.h>
  15. #include <linux/agp_backend.h>
  16. #include <linux/init.h>
  17. #include <linux/mm.h>
  18. #include <linux/string.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/pci.h>
  21. #include <linux/module.h>
  22. #include <linux/topology.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/bitops.h>
  25. #include <linux/kdebug.h>
  26. #include <linux/scatterlist.h>
  27. #include <linux/iommu-helper.h>
  28. #include <linux/sysdev.h>
  29. #include <linux/io.h>
  30. #include <asm/atomic.h>
  31. #include <asm/mtrr.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/proto.h>
  34. #include <asm/iommu.h>
  35. #include <asm/gart.h>
  36. #include <asm/cacheflush.h>
  37. #include <asm/swiotlb.h>
  38. #include <asm/dma.h>
  39. #include <asm/k8.h>
  40. static unsigned long iommu_bus_base; /* GART remapping area (physical) */
  41. static unsigned long iommu_size; /* size of remapping area bytes */
  42. static unsigned long iommu_pages; /* .. and in pages */
  43. static u32 *iommu_gatt_base; /* Remapping table */
  44. /*
  45. * If this is disabled the IOMMU will use an optimized flushing strategy
  46. * of only flushing when an mapping is reused. With it true the GART is
  47. * flushed for every mapping. Problem is that doing the lazy flush seems
  48. * to trigger bugs with some popular PCI cards, in particular 3ware (but
  49. * has been also also seen with Qlogic at least).
  50. */
  51. static int iommu_fullflush = 1;
  52. /* Allocation bitmap for the remapping area: */
  53. static DEFINE_SPINLOCK(iommu_bitmap_lock);
  54. /* Guarded by iommu_bitmap_lock: */
  55. static unsigned long *iommu_gart_bitmap;
  56. static u32 gart_unmapped_entry;
  57. #define GPTE_VALID 1
  58. #define GPTE_COHERENT 2
  59. #define GPTE_ENCODE(x) \
  60. (((x) & 0xfffff000) | (((x) >> 32) << 4) | GPTE_VALID | GPTE_COHERENT)
  61. #define GPTE_DECODE(x) (((x) & 0xfffff000) | (((u64)(x) & 0xff0) << 28))
  62. #define EMERGENCY_PAGES 32 /* = 128KB */
  63. #ifdef CONFIG_AGP
  64. #define AGPEXTERN extern
  65. #else
  66. #define AGPEXTERN
  67. #endif
  68. /* backdoor interface to AGP driver */
  69. AGPEXTERN int agp_memory_reserved;
  70. AGPEXTERN __u32 *agp_gatt_table;
  71. static unsigned long next_bit; /* protected by iommu_bitmap_lock */
  72. static bool need_flush; /* global flush state. set for each gart wrap */
  73. static unsigned long alloc_iommu(struct device *dev, int size,
  74. unsigned long align_mask)
  75. {
  76. unsigned long offset, flags;
  77. unsigned long boundary_size;
  78. unsigned long base_index;
  79. base_index = ALIGN(iommu_bus_base & dma_get_seg_boundary(dev),
  80. PAGE_SIZE) >> PAGE_SHIFT;
  81. boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
  82. PAGE_SIZE) >> PAGE_SHIFT;
  83. spin_lock_irqsave(&iommu_bitmap_lock, flags);
  84. offset = iommu_area_alloc(iommu_gart_bitmap, iommu_pages, next_bit,
  85. size, base_index, boundary_size, align_mask);
  86. if (offset == -1) {
  87. need_flush = true;
  88. offset = iommu_area_alloc(iommu_gart_bitmap, iommu_pages, 0,
  89. size, base_index, boundary_size,
  90. align_mask);
  91. }
  92. if (offset != -1) {
  93. next_bit = offset+size;
  94. if (next_bit >= iommu_pages) {
  95. next_bit = 0;
  96. need_flush = true;
  97. }
  98. }
  99. if (iommu_fullflush)
  100. need_flush = true;
  101. spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
  102. return offset;
  103. }
  104. static void free_iommu(unsigned long offset, int size)
  105. {
  106. unsigned long flags;
  107. spin_lock_irqsave(&iommu_bitmap_lock, flags);
  108. iommu_area_free(iommu_gart_bitmap, offset, size);
  109. if (offset >= next_bit)
  110. next_bit = offset + size;
  111. spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
  112. }
  113. /*
  114. * Use global flush state to avoid races with multiple flushers.
  115. */
  116. static void flush_gart(void)
  117. {
  118. unsigned long flags;
  119. spin_lock_irqsave(&iommu_bitmap_lock, flags);
  120. if (need_flush) {
  121. k8_flush_garts();
  122. need_flush = false;
  123. }
  124. spin_unlock_irqrestore(&iommu_bitmap_lock, flags);
  125. }
  126. #ifdef CONFIG_IOMMU_LEAK
  127. #define SET_LEAK(x) \
  128. do { \
  129. if (iommu_leak_tab) \
  130. iommu_leak_tab[x] = __builtin_return_address(0);\
  131. } while (0)
  132. #define CLEAR_LEAK(x) \
  133. do { \
  134. if (iommu_leak_tab) \
  135. iommu_leak_tab[x] = NULL; \
  136. } while (0)
  137. /* Debugging aid for drivers that don't free their IOMMU tables */
  138. static void **iommu_leak_tab;
  139. static int leak_trace;
  140. static int iommu_leak_pages = 20;
  141. static void dump_leak(void)
  142. {
  143. int i;
  144. static int dump;
  145. if (dump || !iommu_leak_tab)
  146. return;
  147. dump = 1;
  148. show_stack(NULL, NULL);
  149. /* Very crude. dump some from the end of the table too */
  150. printk(KERN_DEBUG "Dumping %d pages from end of IOMMU:\n",
  151. iommu_leak_pages);
  152. for (i = 0; i < iommu_leak_pages; i += 2) {
  153. printk(KERN_DEBUG "%lu: ", iommu_pages-i);
  154. printk_address((unsigned long) iommu_leak_tab[iommu_pages-i],
  155. 0);
  156. printk(KERN_CONT "%c", (i+1)%2 == 0 ? '\n' : ' ');
  157. }
  158. printk(KERN_DEBUG "\n");
  159. }
  160. #else
  161. # define SET_LEAK(x)
  162. # define CLEAR_LEAK(x)
  163. #endif
  164. static void iommu_full(struct device *dev, size_t size, int dir)
  165. {
  166. /*
  167. * Ran out of IOMMU space for this operation. This is very bad.
  168. * Unfortunately the drivers cannot handle this operation properly.
  169. * Return some non mapped prereserved space in the aperture and
  170. * let the Northbridge deal with it. This will result in garbage
  171. * in the IO operation. When the size exceeds the prereserved space
  172. * memory corruption will occur or random memory will be DMAed
  173. * out. Hopefully no network devices use single mappings that big.
  174. */
  175. dev_err(dev, "PCI-DMA: Out of IOMMU space for %lu bytes\n", size);
  176. if (size > PAGE_SIZE*EMERGENCY_PAGES) {
  177. if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL)
  178. panic("PCI-DMA: Memory would be corrupted\n");
  179. if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL)
  180. panic(KERN_ERR
  181. "PCI-DMA: Random memory would be DMAed\n");
  182. }
  183. #ifdef CONFIG_IOMMU_LEAK
  184. dump_leak();
  185. #endif
  186. }
  187. static inline int
  188. need_iommu(struct device *dev, unsigned long addr, size_t size)
  189. {
  190. return force_iommu ||
  191. !is_buffer_dma_capable(*dev->dma_mask, addr, size);
  192. }
  193. static inline int
  194. nonforced_iommu(struct device *dev, unsigned long addr, size_t size)
  195. {
  196. return !is_buffer_dma_capable(*dev->dma_mask, addr, size);
  197. }
  198. /* Map a single continuous physical area into the IOMMU.
  199. * Caller needs to check if the iommu is needed and flush.
  200. */
  201. static dma_addr_t dma_map_area(struct device *dev, dma_addr_t phys_mem,
  202. size_t size, int dir, unsigned long align_mask)
  203. {
  204. unsigned long npages = iommu_num_pages(phys_mem, size, PAGE_SIZE);
  205. unsigned long iommu_page = alloc_iommu(dev, npages, align_mask);
  206. int i;
  207. if (iommu_page == -1) {
  208. if (!nonforced_iommu(dev, phys_mem, size))
  209. return phys_mem;
  210. if (panic_on_overflow)
  211. panic("dma_map_area overflow %lu bytes\n", size);
  212. iommu_full(dev, size, dir);
  213. return bad_dma_address;
  214. }
  215. for (i = 0; i < npages; i++) {
  216. iommu_gatt_base[iommu_page + i] = GPTE_ENCODE(phys_mem);
  217. SET_LEAK(iommu_page + i);
  218. phys_mem += PAGE_SIZE;
  219. }
  220. return iommu_bus_base + iommu_page*PAGE_SIZE + (phys_mem & ~PAGE_MASK);
  221. }
  222. /* Map a single area into the IOMMU */
  223. static dma_addr_t
  224. gart_map_single(struct device *dev, phys_addr_t paddr, size_t size, int dir)
  225. {
  226. unsigned long bus;
  227. if (!dev)
  228. dev = &x86_dma_fallback_dev;
  229. if (!need_iommu(dev, paddr, size))
  230. return paddr;
  231. bus = dma_map_area(dev, paddr, size, dir, 0);
  232. flush_gart();
  233. return bus;
  234. }
  235. /*
  236. * Free a DMA mapping.
  237. */
  238. static void gart_unmap_single(struct device *dev, dma_addr_t dma_addr,
  239. size_t size, int direction)
  240. {
  241. unsigned long iommu_page;
  242. int npages;
  243. int i;
  244. if (dma_addr < iommu_bus_base + EMERGENCY_PAGES*PAGE_SIZE ||
  245. dma_addr >= iommu_bus_base + iommu_size)
  246. return;
  247. iommu_page = (dma_addr - iommu_bus_base)>>PAGE_SHIFT;
  248. npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  249. for (i = 0; i < npages; i++) {
  250. iommu_gatt_base[iommu_page + i] = gart_unmapped_entry;
  251. CLEAR_LEAK(iommu_page + i);
  252. }
  253. free_iommu(iommu_page, npages);
  254. }
  255. /*
  256. * Wrapper for pci_unmap_single working with scatterlists.
  257. */
  258. static void
  259. gart_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, int dir)
  260. {
  261. struct scatterlist *s;
  262. int i;
  263. for_each_sg(sg, s, nents, i) {
  264. if (!s->dma_length || !s->length)
  265. break;
  266. gart_unmap_single(dev, s->dma_address, s->dma_length, dir);
  267. }
  268. }
  269. /* Fallback for dma_map_sg in case of overflow */
  270. static int dma_map_sg_nonforce(struct device *dev, struct scatterlist *sg,
  271. int nents, int dir)
  272. {
  273. struct scatterlist *s;
  274. int i;
  275. #ifdef CONFIG_IOMMU_DEBUG
  276. printk(KERN_DEBUG "dma_map_sg overflow\n");
  277. #endif
  278. for_each_sg(sg, s, nents, i) {
  279. unsigned long addr = sg_phys(s);
  280. if (nonforced_iommu(dev, addr, s->length)) {
  281. addr = dma_map_area(dev, addr, s->length, dir, 0);
  282. if (addr == bad_dma_address) {
  283. if (i > 0)
  284. gart_unmap_sg(dev, sg, i, dir);
  285. nents = 0;
  286. sg[0].dma_length = 0;
  287. break;
  288. }
  289. }
  290. s->dma_address = addr;
  291. s->dma_length = s->length;
  292. }
  293. flush_gart();
  294. return nents;
  295. }
  296. /* Map multiple scatterlist entries continuous into the first. */
  297. static int __dma_map_cont(struct device *dev, struct scatterlist *start,
  298. int nelems, struct scatterlist *sout,
  299. unsigned long pages)
  300. {
  301. unsigned long iommu_start = alloc_iommu(dev, pages, 0);
  302. unsigned long iommu_page = iommu_start;
  303. struct scatterlist *s;
  304. int i;
  305. if (iommu_start == -1)
  306. return -1;
  307. for_each_sg(start, s, nelems, i) {
  308. unsigned long pages, addr;
  309. unsigned long phys_addr = s->dma_address;
  310. BUG_ON(s != start && s->offset);
  311. if (s == start) {
  312. sout->dma_address = iommu_bus_base;
  313. sout->dma_address += iommu_page*PAGE_SIZE + s->offset;
  314. sout->dma_length = s->length;
  315. } else {
  316. sout->dma_length += s->length;
  317. }
  318. addr = phys_addr;
  319. pages = iommu_num_pages(s->offset, s->length, PAGE_SIZE);
  320. while (pages--) {
  321. iommu_gatt_base[iommu_page] = GPTE_ENCODE(addr);
  322. SET_LEAK(iommu_page);
  323. addr += PAGE_SIZE;
  324. iommu_page++;
  325. }
  326. }
  327. BUG_ON(iommu_page - iommu_start != pages);
  328. return 0;
  329. }
  330. static inline int
  331. dma_map_cont(struct device *dev, struct scatterlist *start, int nelems,
  332. struct scatterlist *sout, unsigned long pages, int need)
  333. {
  334. if (!need) {
  335. BUG_ON(nelems != 1);
  336. sout->dma_address = start->dma_address;
  337. sout->dma_length = start->length;
  338. return 0;
  339. }
  340. return __dma_map_cont(dev, start, nelems, sout, pages);
  341. }
  342. /*
  343. * DMA map all entries in a scatterlist.
  344. * Merge chunks that have page aligned sizes into a continuous mapping.
  345. */
  346. static int
  347. gart_map_sg(struct device *dev, struct scatterlist *sg, int nents, int dir)
  348. {
  349. struct scatterlist *s, *ps, *start_sg, *sgmap;
  350. int need = 0, nextneed, i, out, start;
  351. unsigned long pages = 0;
  352. unsigned int seg_size;
  353. unsigned int max_seg_size;
  354. if (nents == 0)
  355. return 0;
  356. if (!dev)
  357. dev = &x86_dma_fallback_dev;
  358. out = 0;
  359. start = 0;
  360. start_sg = sgmap = sg;
  361. seg_size = 0;
  362. max_seg_size = dma_get_max_seg_size(dev);
  363. ps = NULL; /* shut up gcc */
  364. for_each_sg(sg, s, nents, i) {
  365. dma_addr_t addr = sg_phys(s);
  366. s->dma_address = addr;
  367. BUG_ON(s->length == 0);
  368. nextneed = need_iommu(dev, addr, s->length);
  369. /* Handle the previous not yet processed entries */
  370. if (i > start) {
  371. /*
  372. * Can only merge when the last chunk ends on a
  373. * page boundary and the new one doesn't have an
  374. * offset.
  375. */
  376. if (!iommu_merge || !nextneed || !need || s->offset ||
  377. (s->length + seg_size > max_seg_size) ||
  378. (ps->offset + ps->length) % PAGE_SIZE) {
  379. if (dma_map_cont(dev, start_sg, i - start,
  380. sgmap, pages, need) < 0)
  381. goto error;
  382. out++;
  383. seg_size = 0;
  384. sgmap = sg_next(sgmap);
  385. pages = 0;
  386. start = i;
  387. start_sg = s;
  388. }
  389. }
  390. seg_size += s->length;
  391. need = nextneed;
  392. pages += iommu_num_pages(s->offset, s->length, PAGE_SIZE);
  393. ps = s;
  394. }
  395. if (dma_map_cont(dev, start_sg, i - start, sgmap, pages, need) < 0)
  396. goto error;
  397. out++;
  398. flush_gart();
  399. if (out < nents) {
  400. sgmap = sg_next(sgmap);
  401. sgmap->dma_length = 0;
  402. }
  403. return out;
  404. error:
  405. flush_gart();
  406. gart_unmap_sg(dev, sg, out, dir);
  407. /* When it was forced or merged try again in a dumb way */
  408. if (force_iommu || iommu_merge) {
  409. out = dma_map_sg_nonforce(dev, sg, nents, dir);
  410. if (out > 0)
  411. return out;
  412. }
  413. if (panic_on_overflow)
  414. panic("dma_map_sg: overflow on %lu pages\n", pages);
  415. iommu_full(dev, pages << PAGE_SHIFT, dir);
  416. for_each_sg(sg, s, nents, i)
  417. s->dma_address = bad_dma_address;
  418. return 0;
  419. }
  420. /* allocate and map a coherent mapping */
  421. static void *
  422. gart_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr,
  423. gfp_t flag)
  424. {
  425. dma_addr_t paddr;
  426. unsigned long align_mask;
  427. struct page *page;
  428. if (force_iommu && !(flag & GFP_DMA)) {
  429. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  430. page = alloc_pages(flag | __GFP_ZERO, get_order(size));
  431. if (!page)
  432. return NULL;
  433. align_mask = (1UL << get_order(size)) - 1;
  434. paddr = dma_map_area(dev, page_to_phys(page), size,
  435. DMA_BIDIRECTIONAL, align_mask);
  436. flush_gart();
  437. if (paddr != bad_dma_address) {
  438. *dma_addr = paddr;
  439. return page_address(page);
  440. }
  441. __free_pages(page, get_order(size));
  442. } else
  443. return dma_generic_alloc_coherent(dev, size, dma_addr, flag);
  444. return NULL;
  445. }
  446. /* free a coherent mapping */
  447. static void
  448. gart_free_coherent(struct device *dev, size_t size, void *vaddr,
  449. dma_addr_t dma_addr)
  450. {
  451. gart_unmap_single(dev, dma_addr, size, DMA_BIDIRECTIONAL);
  452. free_pages((unsigned long)vaddr, get_order(size));
  453. }
  454. static int no_agp;
  455. static __init unsigned long check_iommu_size(unsigned long aper, u64 aper_size)
  456. {
  457. unsigned long a;
  458. if (!iommu_size) {
  459. iommu_size = aper_size;
  460. if (!no_agp)
  461. iommu_size /= 2;
  462. }
  463. a = aper + iommu_size;
  464. iommu_size -= round_up(a, PMD_PAGE_SIZE) - a;
  465. if (iommu_size < 64*1024*1024) {
  466. printk(KERN_WARNING
  467. "PCI-DMA: Warning: Small IOMMU %luMB."
  468. " Consider increasing the AGP aperture in BIOS\n",
  469. iommu_size >> 20);
  470. }
  471. return iommu_size;
  472. }
  473. static __init unsigned read_aperture(struct pci_dev *dev, u32 *size)
  474. {
  475. unsigned aper_size = 0, aper_base_32, aper_order;
  476. u64 aper_base;
  477. pci_read_config_dword(dev, AMD64_GARTAPERTUREBASE, &aper_base_32);
  478. pci_read_config_dword(dev, AMD64_GARTAPERTURECTL, &aper_order);
  479. aper_order = (aper_order >> 1) & 7;
  480. aper_base = aper_base_32 & 0x7fff;
  481. aper_base <<= 25;
  482. aper_size = (32 * 1024 * 1024) << aper_order;
  483. if (aper_base + aper_size > 0x100000000UL || !aper_size)
  484. aper_base = 0;
  485. *size = aper_size;
  486. return aper_base;
  487. }
  488. static void enable_gart_translations(void)
  489. {
  490. int i;
  491. for (i = 0; i < num_k8_northbridges; i++) {
  492. struct pci_dev *dev = k8_northbridges[i];
  493. enable_gart_translation(dev, __pa(agp_gatt_table));
  494. }
  495. }
  496. /*
  497. * If fix_up_north_bridges is set, the north bridges have to be fixed up on
  498. * resume in the same way as they are handled in gart_iommu_hole_init().
  499. */
  500. static bool fix_up_north_bridges;
  501. static u32 aperture_order;
  502. static u32 aperture_alloc;
  503. void set_up_gart_resume(u32 aper_order, u32 aper_alloc)
  504. {
  505. fix_up_north_bridges = true;
  506. aperture_order = aper_order;
  507. aperture_alloc = aper_alloc;
  508. }
  509. static int gart_resume(struct sys_device *dev)
  510. {
  511. printk(KERN_INFO "PCI-DMA: Resuming GART IOMMU\n");
  512. if (fix_up_north_bridges) {
  513. int i;
  514. printk(KERN_INFO "PCI-DMA: Restoring GART aperture settings\n");
  515. for (i = 0; i < num_k8_northbridges; i++) {
  516. struct pci_dev *dev = k8_northbridges[i];
  517. /*
  518. * Don't enable translations just yet. That is the next
  519. * step. Restore the pre-suspend aperture settings.
  520. */
  521. pci_write_config_dword(dev, AMD64_GARTAPERTURECTL,
  522. aperture_order << 1);
  523. pci_write_config_dword(dev, AMD64_GARTAPERTUREBASE,
  524. aperture_alloc >> 25);
  525. }
  526. }
  527. enable_gart_translations();
  528. return 0;
  529. }
  530. static int gart_suspend(struct sys_device *dev, pm_message_t state)
  531. {
  532. return 0;
  533. }
  534. static struct sysdev_class gart_sysdev_class = {
  535. .name = "gart",
  536. .suspend = gart_suspend,
  537. .resume = gart_resume,
  538. };
  539. static struct sys_device device_gart = {
  540. .id = 0,
  541. .cls = &gart_sysdev_class,
  542. };
  543. /*
  544. * Private Northbridge GATT initialization in case we cannot use the
  545. * AGP driver for some reason.
  546. */
  547. static __init int init_k8_gatt(struct agp_kern_info *info)
  548. {
  549. unsigned aper_size, gatt_size, new_aper_size;
  550. unsigned aper_base, new_aper_base;
  551. struct pci_dev *dev;
  552. void *gatt;
  553. int i, error;
  554. printk(KERN_INFO "PCI-DMA: Disabling AGP.\n");
  555. aper_size = aper_base = info->aper_size = 0;
  556. dev = NULL;
  557. for (i = 0; i < num_k8_northbridges; i++) {
  558. dev = k8_northbridges[i];
  559. new_aper_base = read_aperture(dev, &new_aper_size);
  560. if (!new_aper_base)
  561. goto nommu;
  562. if (!aper_base) {
  563. aper_size = new_aper_size;
  564. aper_base = new_aper_base;
  565. }
  566. if (aper_size != new_aper_size || aper_base != new_aper_base)
  567. goto nommu;
  568. }
  569. if (!aper_base)
  570. goto nommu;
  571. info->aper_base = aper_base;
  572. info->aper_size = aper_size >> 20;
  573. gatt_size = (aper_size >> PAGE_SHIFT) * sizeof(u32);
  574. gatt = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
  575. get_order(gatt_size));
  576. if (!gatt)
  577. panic("Cannot allocate GATT table");
  578. if (set_memory_uc((unsigned long)gatt, gatt_size >> PAGE_SHIFT))
  579. panic("Could not set GART PTEs to uncacheable pages");
  580. agp_gatt_table = gatt;
  581. enable_gart_translations();
  582. error = sysdev_class_register(&gart_sysdev_class);
  583. if (!error)
  584. error = sysdev_register(&device_gart);
  585. if (error)
  586. panic("Could not register gart_sysdev -- "
  587. "would corrupt data on next suspend");
  588. flush_gart();
  589. printk(KERN_INFO "PCI-DMA: aperture base @ %x size %u KB\n",
  590. aper_base, aper_size>>10);
  591. return 0;
  592. nommu:
  593. /* Should not happen anymore */
  594. printk(KERN_WARNING "PCI-DMA: More than 4GB of RAM and no IOMMU\n"
  595. KERN_WARNING "falling back to iommu=soft.\n");
  596. return -1;
  597. }
  598. static struct dma_mapping_ops gart_dma_ops = {
  599. .map_single = gart_map_single,
  600. .unmap_single = gart_unmap_single,
  601. .map_sg = gart_map_sg,
  602. .unmap_sg = gart_unmap_sg,
  603. .alloc_coherent = gart_alloc_coherent,
  604. .free_coherent = gart_free_coherent,
  605. };
  606. void gart_iommu_shutdown(void)
  607. {
  608. struct pci_dev *dev;
  609. int i;
  610. if (no_agp && (dma_ops != &gart_dma_ops))
  611. return;
  612. for (i = 0; i < num_k8_northbridges; i++) {
  613. u32 ctl;
  614. dev = k8_northbridges[i];
  615. pci_read_config_dword(dev, AMD64_GARTAPERTURECTL, &ctl);
  616. ctl &= ~GARTEN;
  617. pci_write_config_dword(dev, AMD64_GARTAPERTURECTL, ctl);
  618. }
  619. }
  620. void __init gart_iommu_init(void)
  621. {
  622. struct agp_kern_info info;
  623. unsigned long iommu_start;
  624. unsigned long aper_base, aper_size;
  625. unsigned long start_pfn, end_pfn;
  626. unsigned long scratch;
  627. long i;
  628. if (cache_k8_northbridges() < 0 || num_k8_northbridges == 0)
  629. return;
  630. #ifndef CONFIG_AGP_AMD64
  631. no_agp = 1;
  632. #else
  633. /* Makefile puts PCI initialization via subsys_initcall first. */
  634. /* Add other K8 AGP bridge drivers here */
  635. no_agp = no_agp ||
  636. (agp_amd64_init() < 0) ||
  637. (agp_copy_info(agp_bridge, &info) < 0);
  638. #endif
  639. if (swiotlb)
  640. return;
  641. /* Did we detect a different HW IOMMU? */
  642. if (iommu_detected && !gart_iommu_aperture)
  643. return;
  644. if (no_iommu ||
  645. (!force_iommu && max_pfn <= MAX_DMA32_PFN) ||
  646. !gart_iommu_aperture ||
  647. (no_agp && init_k8_gatt(&info) < 0)) {
  648. if (max_pfn > MAX_DMA32_PFN) {
  649. printk(KERN_WARNING "More than 4GB of memory "
  650. "but GART IOMMU not available.\n");
  651. printk(KERN_WARNING "falling back to iommu=soft.\n");
  652. }
  653. return;
  654. }
  655. /* need to map that range */
  656. aper_size = info.aper_size << 20;
  657. aper_base = info.aper_base;
  658. end_pfn = (aper_base>>PAGE_SHIFT) + (aper_size>>PAGE_SHIFT);
  659. if (end_pfn > max_low_pfn_mapped) {
  660. start_pfn = (aper_base>>PAGE_SHIFT);
  661. init_memory_mapping(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
  662. }
  663. printk(KERN_INFO "PCI-DMA: using GART IOMMU.\n");
  664. iommu_size = check_iommu_size(info.aper_base, aper_size);
  665. iommu_pages = iommu_size >> PAGE_SHIFT;
  666. iommu_gart_bitmap = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO,
  667. get_order(iommu_pages/8));
  668. if (!iommu_gart_bitmap)
  669. panic("Cannot allocate iommu bitmap\n");
  670. #ifdef CONFIG_IOMMU_LEAK
  671. if (leak_trace) {
  672. iommu_leak_tab = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO,
  673. get_order(iommu_pages*sizeof(void *)));
  674. if (!iommu_leak_tab)
  675. printk(KERN_DEBUG
  676. "PCI-DMA: Cannot allocate leak trace area\n");
  677. }
  678. #endif
  679. /*
  680. * Out of IOMMU space handling.
  681. * Reserve some invalid pages at the beginning of the GART.
  682. */
  683. iommu_area_reserve(iommu_gart_bitmap, 0, EMERGENCY_PAGES);
  684. agp_memory_reserved = iommu_size;
  685. printk(KERN_INFO
  686. "PCI-DMA: Reserving %luMB of IOMMU area in the AGP aperture\n",
  687. iommu_size >> 20);
  688. iommu_start = aper_size - iommu_size;
  689. iommu_bus_base = info.aper_base + iommu_start;
  690. bad_dma_address = iommu_bus_base;
  691. iommu_gatt_base = agp_gatt_table + (iommu_start>>PAGE_SHIFT);
  692. /*
  693. * Unmap the IOMMU part of the GART. The alias of the page is
  694. * always mapped with cache enabled and there is no full cache
  695. * coherency across the GART remapping. The unmapping avoids
  696. * automatic prefetches from the CPU allocating cache lines in
  697. * there. All CPU accesses are done via the direct mapping to
  698. * the backing memory. The GART address is only used by PCI
  699. * devices.
  700. */
  701. set_memory_np((unsigned long)__va(iommu_bus_base),
  702. iommu_size >> PAGE_SHIFT);
  703. /*
  704. * Tricky. The GART table remaps the physical memory range,
  705. * so the CPU wont notice potential aliases and if the memory
  706. * is remapped to UC later on, we might surprise the PCI devices
  707. * with a stray writeout of a cacheline. So play it sure and
  708. * do an explicit, full-scale wbinvd() _after_ having marked all
  709. * the pages as Not-Present:
  710. */
  711. wbinvd();
  712. /*
  713. * Try to workaround a bug (thanks to BenH):
  714. * Set unmapped entries to a scratch page instead of 0.
  715. * Any prefetches that hit unmapped entries won't get an bus abort
  716. * then. (P2P bridge may be prefetching on DMA reads).
  717. */
  718. scratch = get_zeroed_page(GFP_KERNEL);
  719. if (!scratch)
  720. panic("Cannot allocate iommu scratch page");
  721. gart_unmapped_entry = GPTE_ENCODE(__pa(scratch));
  722. for (i = EMERGENCY_PAGES; i < iommu_pages; i++)
  723. iommu_gatt_base[i] = gart_unmapped_entry;
  724. flush_gart();
  725. dma_ops = &gart_dma_ops;
  726. }
  727. void __init gart_parse_options(char *p)
  728. {
  729. int arg;
  730. #ifdef CONFIG_IOMMU_LEAK
  731. if (!strncmp(p, "leak", 4)) {
  732. leak_trace = 1;
  733. p += 4;
  734. if (*p == '=')
  735. ++p;
  736. if (isdigit(*p) && get_option(&p, &arg))
  737. iommu_leak_pages = arg;
  738. }
  739. #endif
  740. if (isdigit(*p) && get_option(&p, &arg))
  741. iommu_size = arg;
  742. if (!strncmp(p, "fullflush", 8))
  743. iommu_fullflush = 1;
  744. if (!strncmp(p, "nofullflush", 11))
  745. iommu_fullflush = 0;
  746. if (!strncmp(p, "noagp", 5))
  747. no_agp = 1;
  748. if (!strncmp(p, "noaperture", 10))
  749. fix_aperture = 0;
  750. /* duplicated from pci-dma.c */
  751. if (!strncmp(p, "force", 5))
  752. gart_iommu_aperture_allowed = 1;
  753. if (!strncmp(p, "allowed", 7))
  754. gart_iommu_aperture_allowed = 1;
  755. if (!strncmp(p, "memaper", 7)) {
  756. fallback_aper_force = 1;
  757. p += 7;
  758. if (*p == '=') {
  759. ++p;
  760. if (get_option(&p, &arg))
  761. fallback_aper_order = arg;
  762. }
  763. }
  764. }