genx2apic_uv_x.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV APIC functions (note: not an Intel compatible APIC)
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/threads.h>
  12. #include <linux/cpu.h>
  13. #include <linux/cpumask.h>
  14. #include <linux/string.h>
  15. #include <linux/ctype.h>
  16. #include <linux/init.h>
  17. #include <linux/sched.h>
  18. #include <linux/module.h>
  19. #include <linux/hardirq.h>
  20. #include <linux/timer.h>
  21. #include <linux/proc_fs.h>
  22. #include <asm/current.h>
  23. #include <asm/smp.h>
  24. #include <asm/ipi.h>
  25. #include <asm/genapic.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/uv/uv_mmrs.h>
  28. #include <asm/uv/uv_hub.h>
  29. #include <asm/uv/bios.h>
  30. DEFINE_PER_CPU(int, x2apic_extra_bits);
  31. static enum uv_system_type uv_system_type;
  32. static int uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
  33. {
  34. if (!strcmp(oem_id, "SGI")) {
  35. if (!strcmp(oem_table_id, "UVL"))
  36. uv_system_type = UV_LEGACY_APIC;
  37. else if (!strcmp(oem_table_id, "UVX"))
  38. uv_system_type = UV_X2APIC;
  39. else if (!strcmp(oem_table_id, "UVH")) {
  40. uv_system_type = UV_NON_UNIQUE_APIC;
  41. return 1;
  42. }
  43. }
  44. return 0;
  45. }
  46. enum uv_system_type get_uv_system_type(void)
  47. {
  48. return uv_system_type;
  49. }
  50. int is_uv_system(void)
  51. {
  52. return uv_system_type != UV_NONE;
  53. }
  54. EXPORT_SYMBOL_GPL(is_uv_system);
  55. DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  56. EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);
  57. struct uv_blade_info *uv_blade_info;
  58. EXPORT_SYMBOL_GPL(uv_blade_info);
  59. short *uv_node_to_blade;
  60. EXPORT_SYMBOL_GPL(uv_node_to_blade);
  61. short *uv_cpu_to_blade;
  62. EXPORT_SYMBOL_GPL(uv_cpu_to_blade);
  63. short uv_possible_blades;
  64. EXPORT_SYMBOL_GPL(uv_possible_blades);
  65. unsigned long sn_rtc_cycles_per_second;
  66. EXPORT_SYMBOL(sn_rtc_cycles_per_second);
  67. /* Start with all IRQs pointing to boot CPU. IRQ balancing will shift them. */
  68. static const struct cpumask *uv_target_cpus(void)
  69. {
  70. return cpumask_of(0);
  71. }
  72. static void uv_vector_allocation_domain(int cpu, struct cpumask *retmask)
  73. {
  74. cpumask_clear(retmask);
  75. cpumask_set_cpu(cpu, retmask);
  76. }
  77. int uv_wakeup_secondary(int phys_apicid, unsigned int start_rip)
  78. {
  79. unsigned long val;
  80. int pnode;
  81. pnode = uv_apicid_to_pnode(phys_apicid);
  82. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  83. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  84. (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  85. APIC_DM_INIT;
  86. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  87. mdelay(10);
  88. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  89. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  90. (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  91. APIC_DM_STARTUP;
  92. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  93. return 0;
  94. }
  95. static void uv_send_IPI_one(int cpu, int vector)
  96. {
  97. unsigned long val, apicid, lapicid;
  98. int pnode;
  99. apicid = per_cpu(x86_cpu_to_apicid, cpu);
  100. lapicid = apicid & 0x3f; /* ZZZ macro needed */
  101. pnode = uv_apicid_to_pnode(apicid);
  102. val =
  103. (1UL << UVH_IPI_INT_SEND_SHFT) | (lapicid <<
  104. UVH_IPI_INT_APIC_ID_SHFT) |
  105. (vector << UVH_IPI_INT_VECTOR_SHFT);
  106. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  107. }
  108. static void uv_send_IPI_mask(const struct cpumask *mask, int vector)
  109. {
  110. unsigned int cpu;
  111. for_each_cpu(cpu, mask)
  112. uv_send_IPI_one(cpu, vector);
  113. }
  114. static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector)
  115. {
  116. unsigned int cpu;
  117. unsigned int this_cpu = smp_processor_id();
  118. for_each_cpu(cpu, mask)
  119. if (cpu != this_cpu)
  120. uv_send_IPI_one(cpu, vector);
  121. }
  122. static void uv_send_IPI_allbutself(int vector)
  123. {
  124. unsigned int cpu;
  125. unsigned int this_cpu = smp_processor_id();
  126. for_each_online_cpu(cpu)
  127. if (cpu != this_cpu)
  128. uv_send_IPI_one(cpu, vector);
  129. }
  130. static void uv_send_IPI_all(int vector)
  131. {
  132. uv_send_IPI_mask(cpu_online_mask, vector);
  133. }
  134. static int uv_apic_id_registered(void)
  135. {
  136. return 1;
  137. }
  138. static void uv_init_apic_ldr(void)
  139. {
  140. }
  141. static unsigned int uv_cpu_mask_to_apicid(const struct cpumask *cpumask)
  142. {
  143. int cpu;
  144. /*
  145. * We're using fixed IRQ delivery, can only return one phys APIC ID.
  146. * May as well be the first.
  147. */
  148. cpu = cpumask_first(cpumask);
  149. if ((unsigned)cpu < nr_cpu_ids)
  150. return per_cpu(x86_cpu_to_apicid, cpu);
  151. else
  152. return BAD_APICID;
  153. }
  154. static unsigned int uv_cpu_mask_to_apicid_and(const struct cpumask *cpumask,
  155. const struct cpumask *andmask)
  156. {
  157. int cpu;
  158. /*
  159. * We're using fixed IRQ delivery, can only return one phys APIC ID.
  160. * May as well be the first.
  161. */
  162. for_each_cpu_and(cpu, cpumask, andmask)
  163. if (cpumask_test_cpu(cpu, cpu_online_mask))
  164. break;
  165. if (cpu < nr_cpu_ids)
  166. return per_cpu(x86_cpu_to_apicid, cpu);
  167. return BAD_APICID;
  168. }
  169. static unsigned int get_apic_id(unsigned long x)
  170. {
  171. unsigned int id;
  172. WARN_ON(preemptible() && num_online_cpus() > 1);
  173. id = x | __get_cpu_var(x2apic_extra_bits);
  174. return id;
  175. }
  176. static unsigned long set_apic_id(unsigned int id)
  177. {
  178. unsigned long x;
  179. /* maskout x2apic_extra_bits ? */
  180. x = id;
  181. return x;
  182. }
  183. static unsigned int uv_read_apic_id(void)
  184. {
  185. return get_apic_id(apic_read(APIC_ID));
  186. }
  187. static unsigned int phys_pkg_id(int index_msb)
  188. {
  189. return uv_read_apic_id() >> index_msb;
  190. }
  191. static void uv_send_IPI_self(int vector)
  192. {
  193. apic_write(APIC_SELF_IPI, vector);
  194. }
  195. struct genapic apic_x2apic_uv_x = {
  196. .name = "UV large system",
  197. .acpi_madt_oem_check = uv_acpi_madt_oem_check,
  198. .int_delivery_mode = dest_Fixed,
  199. .int_dest_mode = (APIC_DEST_PHYSICAL != 0),
  200. .target_cpus = uv_target_cpus,
  201. .vector_allocation_domain = uv_vector_allocation_domain,
  202. .apic_id_registered = uv_apic_id_registered,
  203. .init_apic_ldr = uv_init_apic_ldr,
  204. .send_IPI_all = uv_send_IPI_all,
  205. .send_IPI_allbutself = uv_send_IPI_allbutself,
  206. .send_IPI_mask = uv_send_IPI_mask,
  207. .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself,
  208. .send_IPI_self = uv_send_IPI_self,
  209. .cpu_mask_to_apicid = uv_cpu_mask_to_apicid,
  210. .cpu_mask_to_apicid_and = uv_cpu_mask_to_apicid_and,
  211. .phys_pkg_id = phys_pkg_id,
  212. .get_apic_id = get_apic_id,
  213. .set_apic_id = set_apic_id,
  214. .apic_id_mask = (0xFFFFFFFFu),
  215. };
  216. static __cpuinit void set_x2apic_extra_bits(int pnode)
  217. {
  218. __get_cpu_var(x2apic_extra_bits) = (pnode << 6);
  219. }
  220. /*
  221. * Called on boot cpu.
  222. */
  223. static __init int boot_pnode_to_blade(int pnode)
  224. {
  225. int blade;
  226. for (blade = 0; blade < uv_num_possible_blades(); blade++)
  227. if (pnode == uv_blade_info[blade].pnode)
  228. return blade;
  229. BUG();
  230. }
  231. struct redir_addr {
  232. unsigned long redirect;
  233. unsigned long alias;
  234. };
  235. #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
  236. static __initdata struct redir_addr redir_addrs[] = {
  237. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_SI_ALIAS0_OVERLAY_CONFIG},
  238. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_SI_ALIAS1_OVERLAY_CONFIG},
  239. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_SI_ALIAS2_OVERLAY_CONFIG},
  240. };
  241. static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
  242. {
  243. union uvh_si_alias0_overlay_config_u alias;
  244. union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
  245. int i;
  246. for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
  247. alias.v = uv_read_local_mmr(redir_addrs[i].alias);
  248. if (alias.s.base == 0) {
  249. *size = (1UL << alias.s.m_alias);
  250. redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
  251. *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
  252. return;
  253. }
  254. }
  255. BUG();
  256. }
  257. static __init void map_low_mmrs(void)
  258. {
  259. init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
  260. init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
  261. }
  262. enum map_type {map_wb, map_uc};
  263. static __init void map_high(char *id, unsigned long base, int shift,
  264. int max_pnode, enum map_type map_type)
  265. {
  266. unsigned long bytes, paddr;
  267. paddr = base << shift;
  268. bytes = (1UL << shift) * (max_pnode + 1);
  269. printk(KERN_INFO "UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr,
  270. paddr + bytes);
  271. if (map_type == map_uc)
  272. init_extra_mapping_uc(paddr, bytes);
  273. else
  274. init_extra_mapping_wb(paddr, bytes);
  275. }
  276. static __init void map_gru_high(int max_pnode)
  277. {
  278. union uvh_rh_gam_gru_overlay_config_mmr_u gru;
  279. int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
  280. gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
  281. if (gru.s.enable)
  282. map_high("GRU", gru.s.base, shift, max_pnode, map_wb);
  283. }
  284. static __init void map_config_high(int max_pnode)
  285. {
  286. union uvh_rh_gam_cfg_overlay_config_mmr_u cfg;
  287. int shift = UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR_BASE_SHFT;
  288. cfg.v = uv_read_local_mmr(UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR);
  289. if (cfg.s.enable)
  290. map_high("CONFIG", cfg.s.base, shift, max_pnode, map_uc);
  291. }
  292. static __init void map_mmr_high(int max_pnode)
  293. {
  294. union uvh_rh_gam_mmr_overlay_config_mmr_u mmr;
  295. int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT;
  296. mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR);
  297. if (mmr.s.enable)
  298. map_high("MMR", mmr.s.base, shift, max_pnode, map_uc);
  299. }
  300. static __init void map_mmioh_high(int max_pnode)
  301. {
  302. union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
  303. int shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
  304. mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
  305. if (mmioh.s.enable)
  306. map_high("MMIOH", mmioh.s.base, shift, max_pnode, map_uc);
  307. }
  308. static __init void uv_rtc_init(void)
  309. {
  310. long status;
  311. u64 ticks_per_sec;
  312. status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK,
  313. &ticks_per_sec);
  314. if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
  315. printk(KERN_WARNING
  316. "unable to determine platform RTC clock frequency, "
  317. "guessing.\n");
  318. /* BIOS gives wrong value for clock freq. so guess */
  319. sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
  320. } else
  321. sn_rtc_cycles_per_second = ticks_per_sec;
  322. }
  323. /*
  324. * percpu heartbeat timer
  325. */
  326. static void uv_heartbeat(unsigned long ignored)
  327. {
  328. struct timer_list *timer = &uv_hub_info->scir.timer;
  329. unsigned char bits = uv_hub_info->scir.state;
  330. /* flip heartbeat bit */
  331. bits ^= SCIR_CPU_HEARTBEAT;
  332. /* is this cpu idle? */
  333. if (idle_cpu(raw_smp_processor_id()))
  334. bits &= ~SCIR_CPU_ACTIVITY;
  335. else
  336. bits |= SCIR_CPU_ACTIVITY;
  337. /* update system controller interface reg */
  338. uv_set_scir_bits(bits);
  339. /* enable next timer period */
  340. mod_timer(timer, jiffies + SCIR_CPU_HB_INTERVAL);
  341. }
  342. static void __cpuinit uv_heartbeat_enable(int cpu)
  343. {
  344. if (!uv_cpu_hub_info(cpu)->scir.enabled) {
  345. struct timer_list *timer = &uv_cpu_hub_info(cpu)->scir.timer;
  346. uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY);
  347. setup_timer(timer, uv_heartbeat, cpu);
  348. timer->expires = jiffies + SCIR_CPU_HB_INTERVAL;
  349. add_timer_on(timer, cpu);
  350. uv_cpu_hub_info(cpu)->scir.enabled = 1;
  351. }
  352. /* check boot cpu */
  353. if (!uv_cpu_hub_info(0)->scir.enabled)
  354. uv_heartbeat_enable(0);
  355. }
  356. #ifdef CONFIG_HOTPLUG_CPU
  357. static void __cpuinit uv_heartbeat_disable(int cpu)
  358. {
  359. if (uv_cpu_hub_info(cpu)->scir.enabled) {
  360. uv_cpu_hub_info(cpu)->scir.enabled = 0;
  361. del_timer(&uv_cpu_hub_info(cpu)->scir.timer);
  362. }
  363. uv_set_cpu_scir_bits(cpu, 0xff);
  364. }
  365. /*
  366. * cpu hotplug notifier
  367. */
  368. static __cpuinit int uv_scir_cpu_notify(struct notifier_block *self,
  369. unsigned long action, void *hcpu)
  370. {
  371. long cpu = (long)hcpu;
  372. switch (action) {
  373. case CPU_ONLINE:
  374. uv_heartbeat_enable(cpu);
  375. break;
  376. case CPU_DOWN_PREPARE:
  377. uv_heartbeat_disable(cpu);
  378. break;
  379. default:
  380. break;
  381. }
  382. return NOTIFY_OK;
  383. }
  384. static __init void uv_scir_register_cpu_notifier(void)
  385. {
  386. hotcpu_notifier(uv_scir_cpu_notify, 0);
  387. }
  388. #else /* !CONFIG_HOTPLUG_CPU */
  389. static __init void uv_scir_register_cpu_notifier(void)
  390. {
  391. }
  392. static __init int uv_init_heartbeat(void)
  393. {
  394. int cpu;
  395. if (is_uv_system())
  396. for_each_online_cpu(cpu)
  397. uv_heartbeat_enable(cpu);
  398. return 0;
  399. }
  400. late_initcall(uv_init_heartbeat);
  401. #endif /* !CONFIG_HOTPLUG_CPU */
  402. /*
  403. * Called on each cpu to initialize the per_cpu UV data area.
  404. * ZZZ hotplug not supported yet
  405. */
  406. void __cpuinit uv_cpu_init(void)
  407. {
  408. /* CPU 0 initilization will be done via uv_system_init. */
  409. if (!uv_blade_info)
  410. return;
  411. uv_blade_info[uv_numa_blade_id()].nr_online_cpus++;
  412. if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
  413. set_x2apic_extra_bits(uv_hub_info->pnode);
  414. }
  415. void __init uv_system_init(void)
  416. {
  417. union uvh_si_addr_map_config_u m_n_config;
  418. union uvh_node_id_u node_id;
  419. unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
  420. int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
  421. int max_pnode = 0;
  422. unsigned long mmr_base, present;
  423. map_low_mmrs();
  424. m_n_config.v = uv_read_local_mmr(UVH_SI_ADDR_MAP_CONFIG);
  425. m_val = m_n_config.s.m_skt;
  426. n_val = m_n_config.s.n_skt;
  427. mmr_base =
  428. uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
  429. ~UV_MMR_ENABLE;
  430. printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base);
  431. for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++)
  432. uv_possible_blades +=
  433. hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
  434. printk(KERN_DEBUG "UV: Found %d blades\n", uv_num_possible_blades());
  435. bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades();
  436. uv_blade_info = kmalloc(bytes, GFP_KERNEL);
  437. get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);
  438. bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes();
  439. uv_node_to_blade = kmalloc(bytes, GFP_KERNEL);
  440. memset(uv_node_to_blade, 255, bytes);
  441. bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus();
  442. uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL);
  443. memset(uv_cpu_to_blade, 255, bytes);
  444. blade = 0;
  445. for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
  446. present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
  447. for (j = 0; j < 64; j++) {
  448. if (!test_bit(j, &present))
  449. continue;
  450. uv_blade_info[blade].pnode = (i * 64 + j);
  451. uv_blade_info[blade].nr_possible_cpus = 0;
  452. uv_blade_info[blade].nr_online_cpus = 0;
  453. blade++;
  454. }
  455. }
  456. node_id.v = uv_read_local_mmr(UVH_NODE_ID);
  457. gnode_upper = (((unsigned long)node_id.s.node_id) &
  458. ~((1 << n_val) - 1)) << m_val;
  459. uv_bios_init();
  460. uv_bios_get_sn_info(0, &uv_type, &sn_partition_id,
  461. &sn_coherency_id, &sn_region_size);
  462. uv_rtc_init();
  463. for_each_present_cpu(cpu) {
  464. nid = cpu_to_node(cpu);
  465. pnode = uv_apicid_to_pnode(per_cpu(x86_cpu_to_apicid, cpu));
  466. blade = boot_pnode_to_blade(pnode);
  467. lcpu = uv_blade_info[blade].nr_possible_cpus;
  468. uv_blade_info[blade].nr_possible_cpus++;
  469. uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
  470. uv_cpu_hub_info(cpu)->lowmem_remap_top = lowmem_redir_size;
  471. uv_cpu_hub_info(cpu)->m_val = m_val;
  472. uv_cpu_hub_info(cpu)->n_val = m_val;
  473. uv_cpu_hub_info(cpu)->numa_blade_id = blade;
  474. uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
  475. uv_cpu_hub_info(cpu)->pnode = pnode;
  476. uv_cpu_hub_info(cpu)->pnode_mask = (1 << n_val) - 1;
  477. uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
  478. uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
  479. uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
  480. uv_cpu_hub_info(cpu)->coherency_domain_number = sn_coherency_id;
  481. uv_cpu_hub_info(cpu)->scir.offset = SCIR_LOCAL_MMR_BASE + lcpu;
  482. uv_node_to_blade[nid] = blade;
  483. uv_cpu_to_blade[cpu] = blade;
  484. max_pnode = max(pnode, max_pnode);
  485. printk(KERN_DEBUG "UV: cpu %d, apicid 0x%x, pnode %d, nid %d, "
  486. "lcpu %d, blade %d\n",
  487. cpu, per_cpu(x86_cpu_to_apicid, cpu), pnode, nid,
  488. lcpu, blade);
  489. }
  490. map_gru_high(max_pnode);
  491. map_mmr_high(max_pnode);
  492. map_config_high(max_pnode);
  493. map_mmioh_high(max_pnode);
  494. uv_cpu_init();
  495. uv_scir_register_cpu_notifier();
  496. proc_mkdir("sgi_uv", NULL);
  497. }