acpi-cpufreq.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842
  1. /*
  2. * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
  8. *
  9. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or (at
  14. * your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  24. *
  25. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/init.h>
  30. #include <linux/smp.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpufreq.h>
  33. #include <linux/compiler.h>
  34. #include <linux/dmi.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/acpi.h>
  37. #include <acpi/processor.h>
  38. #include <asm/io.h>
  39. #include <asm/msr.h>
  40. #include <asm/processor.h>
  41. #include <asm/cpufeature.h>
  42. #include <asm/delay.h>
  43. #include <asm/uaccess.h>
  44. #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
  45. MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  46. MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  47. MODULE_LICENSE("GPL");
  48. enum {
  49. UNDEFINED_CAPABLE = 0,
  50. SYSTEM_INTEL_MSR_CAPABLE,
  51. SYSTEM_IO_CAPABLE,
  52. };
  53. #define INTEL_MSR_RANGE (0xffff)
  54. #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
  55. struct acpi_cpufreq_data {
  56. struct acpi_processor_performance *acpi_data;
  57. struct cpufreq_frequency_table *freq_table;
  58. unsigned int max_freq;
  59. unsigned int resume;
  60. unsigned int cpu_feature;
  61. };
  62. static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
  63. /* acpi_perf_data is a pointer to percpu data. */
  64. static struct acpi_processor_performance *acpi_perf_data;
  65. static struct cpufreq_driver acpi_cpufreq_driver;
  66. static unsigned int acpi_pstate_strict;
  67. static int check_est_cpu(unsigned int cpuid)
  68. {
  69. struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
  70. if (cpu->x86_vendor != X86_VENDOR_INTEL ||
  71. !cpu_has(cpu, X86_FEATURE_EST))
  72. return 0;
  73. return 1;
  74. }
  75. static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
  76. {
  77. struct acpi_processor_performance *perf;
  78. int i;
  79. perf = data->acpi_data;
  80. for (i=0; i<perf->state_count; i++) {
  81. if (value == perf->states[i].status)
  82. return data->freq_table[i].frequency;
  83. }
  84. return 0;
  85. }
  86. static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
  87. {
  88. int i;
  89. struct acpi_processor_performance *perf;
  90. msr &= INTEL_MSR_RANGE;
  91. perf = data->acpi_data;
  92. for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
  93. if (msr == perf->states[data->freq_table[i].index].status)
  94. return data->freq_table[i].frequency;
  95. }
  96. return data->freq_table[0].frequency;
  97. }
  98. static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
  99. {
  100. switch (data->cpu_feature) {
  101. case SYSTEM_INTEL_MSR_CAPABLE:
  102. return extract_msr(val, data);
  103. case SYSTEM_IO_CAPABLE:
  104. return extract_io(val, data);
  105. default:
  106. return 0;
  107. }
  108. }
  109. struct msr_addr {
  110. u32 reg;
  111. };
  112. struct io_addr {
  113. u16 port;
  114. u8 bit_width;
  115. };
  116. typedef union {
  117. struct msr_addr msr;
  118. struct io_addr io;
  119. } drv_addr_union;
  120. struct drv_cmd {
  121. unsigned int type;
  122. cpumask_t mask;
  123. drv_addr_union addr;
  124. u32 val;
  125. };
  126. static void do_drv_read(struct drv_cmd *cmd)
  127. {
  128. u32 h;
  129. switch (cmd->type) {
  130. case SYSTEM_INTEL_MSR_CAPABLE:
  131. rdmsr(cmd->addr.msr.reg, cmd->val, h);
  132. break;
  133. case SYSTEM_IO_CAPABLE:
  134. acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
  135. &cmd->val,
  136. (u32)cmd->addr.io.bit_width);
  137. break;
  138. default:
  139. break;
  140. }
  141. }
  142. static void do_drv_write(struct drv_cmd *cmd)
  143. {
  144. u32 lo, hi;
  145. switch (cmd->type) {
  146. case SYSTEM_INTEL_MSR_CAPABLE:
  147. rdmsr(cmd->addr.msr.reg, lo, hi);
  148. lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
  149. wrmsr(cmd->addr.msr.reg, lo, hi);
  150. break;
  151. case SYSTEM_IO_CAPABLE:
  152. acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
  153. cmd->val,
  154. (u32)cmd->addr.io.bit_width);
  155. break;
  156. default:
  157. break;
  158. }
  159. }
  160. static void drv_read(struct drv_cmd *cmd)
  161. {
  162. cpumask_t saved_mask = current->cpus_allowed;
  163. cmd->val = 0;
  164. set_cpus_allowed_ptr(current, &cmd->mask);
  165. do_drv_read(cmd);
  166. set_cpus_allowed_ptr(current, &saved_mask);
  167. }
  168. static void drv_write(struct drv_cmd *cmd)
  169. {
  170. cpumask_t saved_mask = current->cpus_allowed;
  171. unsigned int i;
  172. for_each_cpu_mask_nr(i, cmd->mask) {
  173. set_cpus_allowed_ptr(current, &cpumask_of_cpu(i));
  174. do_drv_write(cmd);
  175. }
  176. set_cpus_allowed_ptr(current, &saved_mask);
  177. return;
  178. }
  179. static u32 get_cur_val(const cpumask_t *mask)
  180. {
  181. struct acpi_processor_performance *perf;
  182. struct drv_cmd cmd;
  183. if (unlikely(cpus_empty(*mask)))
  184. return 0;
  185. switch (per_cpu(drv_data, first_cpu(*mask))->cpu_feature) {
  186. case SYSTEM_INTEL_MSR_CAPABLE:
  187. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  188. cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
  189. break;
  190. case SYSTEM_IO_CAPABLE:
  191. cmd.type = SYSTEM_IO_CAPABLE;
  192. perf = per_cpu(drv_data, first_cpu(*mask))->acpi_data;
  193. cmd.addr.io.port = perf->control_register.address;
  194. cmd.addr.io.bit_width = perf->control_register.bit_width;
  195. break;
  196. default:
  197. return 0;
  198. }
  199. cmd.mask = *mask;
  200. drv_read(&cmd);
  201. dprintk("get_cur_val = %u\n", cmd.val);
  202. return cmd.val;
  203. }
  204. /*
  205. * Return the measured active (C0) frequency on this CPU since last call
  206. * to this function.
  207. * Input: cpu number
  208. * Return: Average CPU frequency in terms of max frequency (zero on error)
  209. *
  210. * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
  211. * over a period of time, while CPU is in C0 state.
  212. * IA32_MPERF counts at the rate of max advertised frequency
  213. * IA32_APERF counts at the rate of actual CPU frequency
  214. * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
  215. * no meaning should be associated with absolute values of these MSRs.
  216. */
  217. static unsigned int get_measured_perf(struct cpufreq_policy *policy,
  218. unsigned int cpu)
  219. {
  220. union {
  221. struct {
  222. u32 lo;
  223. u32 hi;
  224. } split;
  225. u64 whole;
  226. } aperf_cur, mperf_cur;
  227. cpumask_t saved_mask;
  228. unsigned int perf_percent;
  229. unsigned int retval;
  230. saved_mask = current->cpus_allowed;
  231. set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
  232. if (get_cpu() != cpu) {
  233. /* We were not able to run on requested processor */
  234. put_cpu();
  235. return 0;
  236. }
  237. rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
  238. rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
  239. wrmsr(MSR_IA32_APERF, 0,0);
  240. wrmsr(MSR_IA32_MPERF, 0,0);
  241. #ifdef __i386__
  242. /*
  243. * We dont want to do 64 bit divide with 32 bit kernel
  244. * Get an approximate value. Return failure in case we cannot get
  245. * an approximate value.
  246. */
  247. if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
  248. int shift_count;
  249. u32 h;
  250. h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
  251. shift_count = fls(h);
  252. aperf_cur.whole >>= shift_count;
  253. mperf_cur.whole >>= shift_count;
  254. }
  255. if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
  256. int shift_count = 7;
  257. aperf_cur.split.lo >>= shift_count;
  258. mperf_cur.split.lo >>= shift_count;
  259. }
  260. if (aperf_cur.split.lo && mperf_cur.split.lo)
  261. perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
  262. else
  263. perf_percent = 0;
  264. #else
  265. if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
  266. int shift_count = 7;
  267. aperf_cur.whole >>= shift_count;
  268. mperf_cur.whole >>= shift_count;
  269. }
  270. if (aperf_cur.whole && mperf_cur.whole)
  271. perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
  272. else
  273. perf_percent = 0;
  274. #endif
  275. retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
  276. put_cpu();
  277. set_cpus_allowed_ptr(current, &saved_mask);
  278. dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
  279. return retval;
  280. }
  281. static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
  282. {
  283. struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
  284. unsigned int freq;
  285. unsigned int cached_freq;
  286. dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
  287. if (unlikely(data == NULL ||
  288. data->acpi_data == NULL || data->freq_table == NULL)) {
  289. return 0;
  290. }
  291. cached_freq = data->freq_table[data->acpi_data->state].frequency;
  292. freq = extract_freq(get_cur_val(&cpumask_of_cpu(cpu)), data);
  293. if (freq != cached_freq) {
  294. /*
  295. * The dreaded BIOS frequency change behind our back.
  296. * Force set the frequency on next target call.
  297. */
  298. data->resume = 1;
  299. }
  300. dprintk("cur freq = %u\n", freq);
  301. return freq;
  302. }
  303. static unsigned int check_freqs(const cpumask_t *mask, unsigned int freq,
  304. struct acpi_cpufreq_data *data)
  305. {
  306. unsigned int cur_freq;
  307. unsigned int i;
  308. for (i=0; i<100; i++) {
  309. cur_freq = extract_freq(get_cur_val(mask), data);
  310. if (cur_freq == freq)
  311. return 1;
  312. udelay(10);
  313. }
  314. return 0;
  315. }
  316. static int acpi_cpufreq_target(struct cpufreq_policy *policy,
  317. unsigned int target_freq, unsigned int relation)
  318. {
  319. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  320. struct acpi_processor_performance *perf;
  321. struct cpufreq_freqs freqs;
  322. cpumask_t online_policy_cpus;
  323. struct drv_cmd cmd;
  324. unsigned int next_state = 0; /* Index into freq_table */
  325. unsigned int next_perf_state = 0; /* Index into perf table */
  326. unsigned int i;
  327. int result = 0;
  328. struct power_trace it;
  329. dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
  330. if (unlikely(data == NULL ||
  331. data->acpi_data == NULL || data->freq_table == NULL)) {
  332. return -ENODEV;
  333. }
  334. perf = data->acpi_data;
  335. result = cpufreq_frequency_table_target(policy,
  336. data->freq_table,
  337. target_freq,
  338. relation, &next_state);
  339. if (unlikely(result))
  340. return -ENODEV;
  341. #ifdef CONFIG_HOTPLUG_CPU
  342. /* cpufreq holds the hotplug lock, so we are safe from here on */
  343. cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
  344. #else
  345. online_policy_cpus = policy->cpus;
  346. #endif
  347. next_perf_state = data->freq_table[next_state].index;
  348. if (perf->state == next_perf_state) {
  349. if (unlikely(data->resume)) {
  350. dprintk("Called after resume, resetting to P%d\n",
  351. next_perf_state);
  352. data->resume = 0;
  353. } else {
  354. dprintk("Already at target state (P%d)\n",
  355. next_perf_state);
  356. return 0;
  357. }
  358. }
  359. trace_power_mark(&it, POWER_PSTATE, next_perf_state);
  360. switch (data->cpu_feature) {
  361. case SYSTEM_INTEL_MSR_CAPABLE:
  362. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  363. cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
  364. cmd.val = (u32) perf->states[next_perf_state].control;
  365. break;
  366. case SYSTEM_IO_CAPABLE:
  367. cmd.type = SYSTEM_IO_CAPABLE;
  368. cmd.addr.io.port = perf->control_register.address;
  369. cmd.addr.io.bit_width = perf->control_register.bit_width;
  370. cmd.val = (u32) perf->states[next_perf_state].control;
  371. break;
  372. default:
  373. return -ENODEV;
  374. }
  375. cpus_clear(cmd.mask);
  376. if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
  377. cmd.mask = online_policy_cpus;
  378. else
  379. cpu_set(policy->cpu, cmd.mask);
  380. freqs.old = perf->states[perf->state].core_frequency * 1000;
  381. freqs.new = data->freq_table[next_state].frequency;
  382. for_each_cpu_mask_nr(i, cmd.mask) {
  383. freqs.cpu = i;
  384. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  385. }
  386. drv_write(&cmd);
  387. if (acpi_pstate_strict) {
  388. if (!check_freqs(&cmd.mask, freqs.new, data)) {
  389. dprintk("acpi_cpufreq_target failed (%d)\n",
  390. policy->cpu);
  391. return -EAGAIN;
  392. }
  393. }
  394. for_each_cpu_mask_nr(i, cmd.mask) {
  395. freqs.cpu = i;
  396. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  397. }
  398. perf->state = next_perf_state;
  399. return result;
  400. }
  401. static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
  402. {
  403. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  404. dprintk("acpi_cpufreq_verify\n");
  405. return cpufreq_frequency_table_verify(policy, data->freq_table);
  406. }
  407. static unsigned long
  408. acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
  409. {
  410. struct acpi_processor_performance *perf = data->acpi_data;
  411. if (cpu_khz) {
  412. /* search the closest match to cpu_khz */
  413. unsigned int i;
  414. unsigned long freq;
  415. unsigned long freqn = perf->states[0].core_frequency * 1000;
  416. for (i=0; i<(perf->state_count-1); i++) {
  417. freq = freqn;
  418. freqn = perf->states[i+1].core_frequency * 1000;
  419. if ((2 * cpu_khz) > (freqn + freq)) {
  420. perf->state = i;
  421. return freq;
  422. }
  423. }
  424. perf->state = perf->state_count-1;
  425. return freqn;
  426. } else {
  427. /* assume CPU is at P0... */
  428. perf->state = 0;
  429. return perf->states[0].core_frequency * 1000;
  430. }
  431. }
  432. static void free_acpi_perf_data(void)
  433. {
  434. unsigned int i;
  435. /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
  436. for_each_possible_cpu(i)
  437. free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
  438. ->shared_cpu_map);
  439. free_percpu(acpi_perf_data);
  440. }
  441. /*
  442. * acpi_cpufreq_early_init - initialize ACPI P-States library
  443. *
  444. * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
  445. * in order to determine correct frequency and voltage pairings. We can
  446. * do _PDC and _PSD and find out the processor dependency for the
  447. * actual init that will happen later...
  448. */
  449. static int __init acpi_cpufreq_early_init(void)
  450. {
  451. unsigned int i;
  452. dprintk("acpi_cpufreq_early_init\n");
  453. acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
  454. if (!acpi_perf_data) {
  455. dprintk("Memory allocation error for acpi_perf_data.\n");
  456. return -ENOMEM;
  457. }
  458. for_each_possible_cpu(i) {
  459. if (!alloc_cpumask_var_node(
  460. &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
  461. GFP_KERNEL, cpu_to_node(i))) {
  462. /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
  463. free_acpi_perf_data();
  464. return -ENOMEM;
  465. }
  466. }
  467. /* Do initialization in ACPI core */
  468. acpi_processor_preregister_performance(acpi_perf_data);
  469. return 0;
  470. }
  471. #ifdef CONFIG_SMP
  472. /*
  473. * Some BIOSes do SW_ANY coordination internally, either set it up in hw
  474. * or do it in BIOS firmware and won't inform about it to OS. If not
  475. * detected, this has a side effect of making CPU run at a different speed
  476. * than OS intended it to run at. Detect it and handle it cleanly.
  477. */
  478. static int bios_with_sw_any_bug;
  479. static int sw_any_bug_found(const struct dmi_system_id *d)
  480. {
  481. bios_with_sw_any_bug = 1;
  482. return 0;
  483. }
  484. static const struct dmi_system_id sw_any_bug_dmi_table[] = {
  485. {
  486. .callback = sw_any_bug_found,
  487. .ident = "Supermicro Server X6DLP",
  488. .matches = {
  489. DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
  490. DMI_MATCH(DMI_BIOS_VERSION, "080010"),
  491. DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
  492. },
  493. },
  494. { }
  495. };
  496. #endif
  497. static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
  498. {
  499. unsigned int i;
  500. unsigned int valid_states = 0;
  501. unsigned int cpu = policy->cpu;
  502. struct acpi_cpufreq_data *data;
  503. unsigned int result = 0;
  504. struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
  505. struct acpi_processor_performance *perf;
  506. dprintk("acpi_cpufreq_cpu_init\n");
  507. data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
  508. if (!data)
  509. return -ENOMEM;
  510. data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
  511. per_cpu(drv_data, cpu) = data;
  512. if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
  513. acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
  514. result = acpi_processor_register_performance(data->acpi_data, cpu);
  515. if (result)
  516. goto err_free;
  517. perf = data->acpi_data;
  518. policy->shared_type = perf->shared_type;
  519. /*
  520. * Will let policy->cpus know about dependency only when software
  521. * coordination is required.
  522. */
  523. if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
  524. policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
  525. cpumask_copy(&policy->cpus, perf->shared_cpu_map);
  526. }
  527. cpumask_copy(&policy->related_cpus, perf->shared_cpu_map);
  528. #ifdef CONFIG_SMP
  529. dmi_check_system(sw_any_bug_dmi_table);
  530. if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
  531. policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
  532. policy->cpus = per_cpu(cpu_core_map, cpu);
  533. }
  534. #endif
  535. /* capability check */
  536. if (perf->state_count <= 1) {
  537. dprintk("No P-States\n");
  538. result = -ENODEV;
  539. goto err_unreg;
  540. }
  541. if (perf->control_register.space_id != perf->status_register.space_id) {
  542. result = -ENODEV;
  543. goto err_unreg;
  544. }
  545. switch (perf->control_register.space_id) {
  546. case ACPI_ADR_SPACE_SYSTEM_IO:
  547. dprintk("SYSTEM IO addr space\n");
  548. data->cpu_feature = SYSTEM_IO_CAPABLE;
  549. break;
  550. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  551. dprintk("HARDWARE addr space\n");
  552. if (!check_est_cpu(cpu)) {
  553. result = -ENODEV;
  554. goto err_unreg;
  555. }
  556. data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
  557. break;
  558. default:
  559. dprintk("Unknown addr space %d\n",
  560. (u32) (perf->control_register.space_id));
  561. result = -ENODEV;
  562. goto err_unreg;
  563. }
  564. data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
  565. (perf->state_count+1), GFP_KERNEL);
  566. if (!data->freq_table) {
  567. result = -ENOMEM;
  568. goto err_unreg;
  569. }
  570. /* detect transition latency */
  571. policy->cpuinfo.transition_latency = 0;
  572. for (i=0; i<perf->state_count; i++) {
  573. if ((perf->states[i].transition_latency * 1000) >
  574. policy->cpuinfo.transition_latency)
  575. policy->cpuinfo.transition_latency =
  576. perf->states[i].transition_latency * 1000;
  577. }
  578. data->max_freq = perf->states[0].core_frequency * 1000;
  579. /* table init */
  580. for (i=0; i<perf->state_count; i++) {
  581. if (i>0 && perf->states[i].core_frequency >=
  582. data->freq_table[valid_states-1].frequency / 1000)
  583. continue;
  584. data->freq_table[valid_states].index = i;
  585. data->freq_table[valid_states].frequency =
  586. perf->states[i].core_frequency * 1000;
  587. valid_states++;
  588. }
  589. data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
  590. perf->state = 0;
  591. result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
  592. if (result)
  593. goto err_freqfree;
  594. switch (perf->control_register.space_id) {
  595. case ACPI_ADR_SPACE_SYSTEM_IO:
  596. /* Current speed is unknown and not detectable by IO port */
  597. policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
  598. break;
  599. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  600. acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
  601. policy->cur = get_cur_freq_on_cpu(cpu);
  602. break;
  603. default:
  604. break;
  605. }
  606. /* notify BIOS that we exist */
  607. acpi_processor_notify_smm(THIS_MODULE);
  608. /* Check for APERF/MPERF support in hardware */
  609. if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
  610. unsigned int ecx;
  611. ecx = cpuid_ecx(6);
  612. if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
  613. acpi_cpufreq_driver.getavg = get_measured_perf;
  614. }
  615. dprintk("CPU%u - ACPI performance management activated.\n", cpu);
  616. for (i = 0; i < perf->state_count; i++)
  617. dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
  618. (i == perf->state ? '*' : ' '), i,
  619. (u32) perf->states[i].core_frequency,
  620. (u32) perf->states[i].power,
  621. (u32) perf->states[i].transition_latency);
  622. cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
  623. /*
  624. * the first call to ->target() should result in us actually
  625. * writing something to the appropriate registers.
  626. */
  627. data->resume = 1;
  628. return result;
  629. err_freqfree:
  630. kfree(data->freq_table);
  631. err_unreg:
  632. acpi_processor_unregister_performance(perf, cpu);
  633. err_free:
  634. kfree(data);
  635. per_cpu(drv_data, cpu) = NULL;
  636. return result;
  637. }
  638. static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
  639. {
  640. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  641. dprintk("acpi_cpufreq_cpu_exit\n");
  642. if (data) {
  643. cpufreq_frequency_table_put_attr(policy->cpu);
  644. per_cpu(drv_data, policy->cpu) = NULL;
  645. acpi_processor_unregister_performance(data->acpi_data,
  646. policy->cpu);
  647. kfree(data);
  648. }
  649. return 0;
  650. }
  651. static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
  652. {
  653. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  654. dprintk("acpi_cpufreq_resume\n");
  655. data->resume = 1;
  656. return 0;
  657. }
  658. static struct freq_attr *acpi_cpufreq_attr[] = {
  659. &cpufreq_freq_attr_scaling_available_freqs,
  660. NULL,
  661. };
  662. static struct cpufreq_driver acpi_cpufreq_driver = {
  663. .verify = acpi_cpufreq_verify,
  664. .target = acpi_cpufreq_target,
  665. .init = acpi_cpufreq_cpu_init,
  666. .exit = acpi_cpufreq_cpu_exit,
  667. .resume = acpi_cpufreq_resume,
  668. .name = "acpi-cpufreq",
  669. .owner = THIS_MODULE,
  670. .attr = acpi_cpufreq_attr,
  671. };
  672. static int __init acpi_cpufreq_init(void)
  673. {
  674. int ret;
  675. if (acpi_disabled)
  676. return 0;
  677. dprintk("acpi_cpufreq_init\n");
  678. ret = acpi_cpufreq_early_init();
  679. if (ret)
  680. return ret;
  681. ret = cpufreq_register_driver(&acpi_cpufreq_driver);
  682. if (ret)
  683. free_acpi_perf_data();
  684. return ret;
  685. }
  686. static void __exit acpi_cpufreq_exit(void)
  687. {
  688. dprintk("acpi_cpufreq_exit\n");
  689. cpufreq_unregister_driver(&acpi_cpufreq_driver);
  690. free_percpu(acpi_perf_data);
  691. }
  692. module_param(acpi_pstate_strict, uint, 0644);
  693. MODULE_PARM_DESC(acpi_pstate_strict,
  694. "value 0 or non-zero. non-zero -> strict ACPI checks are "
  695. "performed during frequency changes.");
  696. late_initcall(acpi_cpufreq_init);
  697. module_exit(acpi_cpufreq_exit);
  698. MODULE_ALIAS("acpi");