numa.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157
  1. /*
  2. * pSeries NUMA support
  3. *
  4. * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/threads.h>
  12. #include <linux/bootmem.h>
  13. #include <linux/init.h>
  14. #include <linux/mm.h>
  15. #include <linux/mmzone.h>
  16. #include <linux/module.h>
  17. #include <linux/nodemask.h>
  18. #include <linux/cpu.h>
  19. #include <linux/notifier.h>
  20. #include <linux/lmb.h>
  21. #include <linux/of.h>
  22. #include <asm/sparsemem.h>
  23. #include <asm/prom.h>
  24. #include <asm/system.h>
  25. #include <asm/smp.h>
  26. static int numa_enabled = 1;
  27. static char *cmdline __initdata;
  28. static int numa_debug;
  29. #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  30. int numa_cpu_lookup_table[NR_CPUS];
  31. cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
  32. struct pglist_data *node_data[MAX_NUMNODES];
  33. EXPORT_SYMBOL(numa_cpu_lookup_table);
  34. EXPORT_SYMBOL(numa_cpumask_lookup_table);
  35. EXPORT_SYMBOL(node_data);
  36. static int min_common_depth;
  37. static int n_mem_addr_cells, n_mem_size_cells;
  38. static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
  39. unsigned int *nid)
  40. {
  41. unsigned long long mem;
  42. char *p = cmdline;
  43. static unsigned int fake_nid;
  44. static unsigned long long curr_boundary;
  45. /*
  46. * Modify node id, iff we started creating NUMA nodes
  47. * We want to continue from where we left of the last time
  48. */
  49. if (fake_nid)
  50. *nid = fake_nid;
  51. /*
  52. * In case there are no more arguments to parse, the
  53. * node_id should be the same as the last fake node id
  54. * (we've handled this above).
  55. */
  56. if (!p)
  57. return 0;
  58. mem = memparse(p, &p);
  59. if (!mem)
  60. return 0;
  61. if (mem < curr_boundary)
  62. return 0;
  63. curr_boundary = mem;
  64. if ((end_pfn << PAGE_SHIFT) > mem) {
  65. /*
  66. * Skip commas and spaces
  67. */
  68. while (*p == ',' || *p == ' ' || *p == '\t')
  69. p++;
  70. cmdline = p;
  71. fake_nid++;
  72. *nid = fake_nid;
  73. dbg("created new fake_node with id %d\n", fake_nid);
  74. return 1;
  75. }
  76. return 0;
  77. }
  78. /*
  79. * get_active_region_work_fn - A helper function for get_node_active_region
  80. * Returns datax set to the start_pfn and end_pfn if they contain
  81. * the initial value of datax->start_pfn between them
  82. * @start_pfn: start page(inclusive) of region to check
  83. * @end_pfn: end page(exclusive) of region to check
  84. * @datax: comes in with ->start_pfn set to value to search for and
  85. * goes out with active range if it contains it
  86. * Returns 1 if search value is in range else 0
  87. */
  88. static int __init get_active_region_work_fn(unsigned long start_pfn,
  89. unsigned long end_pfn, void *datax)
  90. {
  91. struct node_active_region *data;
  92. data = (struct node_active_region *)datax;
  93. if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
  94. data->start_pfn = start_pfn;
  95. data->end_pfn = end_pfn;
  96. return 1;
  97. }
  98. return 0;
  99. }
  100. /*
  101. * get_node_active_region - Return active region containing start_pfn
  102. * Active range returned is empty if none found.
  103. * @start_pfn: The page to return the region for.
  104. * @node_ar: Returned set to the active region containing start_pfn
  105. */
  106. static void __init get_node_active_region(unsigned long start_pfn,
  107. struct node_active_region *node_ar)
  108. {
  109. int nid = early_pfn_to_nid(start_pfn);
  110. node_ar->nid = nid;
  111. node_ar->start_pfn = start_pfn;
  112. node_ar->end_pfn = start_pfn;
  113. work_with_active_regions(nid, get_active_region_work_fn, node_ar);
  114. }
  115. static void __cpuinit map_cpu_to_node(int cpu, int node)
  116. {
  117. numa_cpu_lookup_table[cpu] = node;
  118. dbg("adding cpu %d to node %d\n", cpu, node);
  119. if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
  120. cpu_set(cpu, numa_cpumask_lookup_table[node]);
  121. }
  122. #ifdef CONFIG_HOTPLUG_CPU
  123. static void unmap_cpu_from_node(unsigned long cpu)
  124. {
  125. int node = numa_cpu_lookup_table[cpu];
  126. dbg("removing cpu %lu from node %d\n", cpu, node);
  127. if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
  128. cpu_clear(cpu, numa_cpumask_lookup_table[node]);
  129. } else {
  130. printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
  131. cpu, node);
  132. }
  133. }
  134. #endif /* CONFIG_HOTPLUG_CPU */
  135. static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
  136. {
  137. unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
  138. struct device_node *cpu_node = NULL;
  139. const unsigned int *interrupt_server, *reg;
  140. int len;
  141. while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
  142. /* Try interrupt server first */
  143. interrupt_server = of_get_property(cpu_node,
  144. "ibm,ppc-interrupt-server#s", &len);
  145. len = len / sizeof(u32);
  146. if (interrupt_server && (len > 0)) {
  147. while (len--) {
  148. if (interrupt_server[len] == hw_cpuid)
  149. return cpu_node;
  150. }
  151. } else {
  152. reg = of_get_property(cpu_node, "reg", &len);
  153. if (reg && (len > 0) && (reg[0] == hw_cpuid))
  154. return cpu_node;
  155. }
  156. }
  157. return NULL;
  158. }
  159. /* must hold reference to node during call */
  160. static const int *of_get_associativity(struct device_node *dev)
  161. {
  162. return of_get_property(dev, "ibm,associativity", NULL);
  163. }
  164. /*
  165. * Returns the property linux,drconf-usable-memory if
  166. * it exists (the property exists only in kexec/kdump kernels,
  167. * added by kexec-tools)
  168. */
  169. static const u32 *of_get_usable_memory(struct device_node *memory)
  170. {
  171. const u32 *prop;
  172. u32 len;
  173. prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
  174. if (!prop || len < sizeof(unsigned int))
  175. return 0;
  176. return prop;
  177. }
  178. /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
  179. * info is found.
  180. */
  181. static int of_node_to_nid_single(struct device_node *device)
  182. {
  183. int nid = -1;
  184. const unsigned int *tmp;
  185. if (min_common_depth == -1)
  186. goto out;
  187. tmp = of_get_associativity(device);
  188. if (!tmp)
  189. goto out;
  190. if (tmp[0] >= min_common_depth)
  191. nid = tmp[min_common_depth];
  192. /* POWER4 LPAR uses 0xffff as invalid node */
  193. if (nid == 0xffff || nid >= MAX_NUMNODES)
  194. nid = -1;
  195. out:
  196. return nid;
  197. }
  198. /* Walk the device tree upwards, looking for an associativity id */
  199. int of_node_to_nid(struct device_node *device)
  200. {
  201. struct device_node *tmp;
  202. int nid = -1;
  203. of_node_get(device);
  204. while (device) {
  205. nid = of_node_to_nid_single(device);
  206. if (nid != -1)
  207. break;
  208. tmp = device;
  209. device = of_get_parent(tmp);
  210. of_node_put(tmp);
  211. }
  212. of_node_put(device);
  213. return nid;
  214. }
  215. EXPORT_SYMBOL_GPL(of_node_to_nid);
  216. /*
  217. * In theory, the "ibm,associativity" property may contain multiple
  218. * associativity lists because a resource may be multiply connected
  219. * into the machine. This resource then has different associativity
  220. * characteristics relative to its multiple connections. We ignore
  221. * this for now. We also assume that all cpu and memory sets have
  222. * their distances represented at a common level. This won't be
  223. * true for hierarchical NUMA.
  224. *
  225. * In any case the ibm,associativity-reference-points should give
  226. * the correct depth for a normal NUMA system.
  227. *
  228. * - Dave Hansen <haveblue@us.ibm.com>
  229. */
  230. static int __init find_min_common_depth(void)
  231. {
  232. int depth;
  233. const unsigned int *ref_points;
  234. struct device_node *rtas_root;
  235. unsigned int len;
  236. rtas_root = of_find_node_by_path("/rtas");
  237. if (!rtas_root)
  238. return -1;
  239. /*
  240. * this property is 2 32-bit integers, each representing a level of
  241. * depth in the associativity nodes. The first is for an SMP
  242. * configuration (should be all 0's) and the second is for a normal
  243. * NUMA configuration.
  244. */
  245. ref_points = of_get_property(rtas_root,
  246. "ibm,associativity-reference-points", &len);
  247. if ((len >= 1) && ref_points) {
  248. depth = ref_points[1];
  249. } else {
  250. dbg("NUMA: ibm,associativity-reference-points not found.\n");
  251. depth = -1;
  252. }
  253. of_node_put(rtas_root);
  254. return depth;
  255. }
  256. static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
  257. {
  258. struct device_node *memory = NULL;
  259. memory = of_find_node_by_type(memory, "memory");
  260. if (!memory)
  261. panic("numa.c: No memory nodes found!");
  262. *n_addr_cells = of_n_addr_cells(memory);
  263. *n_size_cells = of_n_size_cells(memory);
  264. of_node_put(memory);
  265. }
  266. static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
  267. {
  268. unsigned long result = 0;
  269. while (n--) {
  270. result = (result << 32) | **buf;
  271. (*buf)++;
  272. }
  273. return result;
  274. }
  275. struct of_drconf_cell {
  276. u64 base_addr;
  277. u32 drc_index;
  278. u32 reserved;
  279. u32 aa_index;
  280. u32 flags;
  281. };
  282. #define DRCONF_MEM_ASSIGNED 0x00000008
  283. #define DRCONF_MEM_AI_INVALID 0x00000040
  284. #define DRCONF_MEM_RESERVED 0x00000080
  285. /*
  286. * Read the next lmb list entry from the ibm,dynamic-memory property
  287. * and return the information in the provided of_drconf_cell structure.
  288. */
  289. static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
  290. {
  291. const u32 *cp;
  292. drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
  293. cp = *cellp;
  294. drmem->drc_index = cp[0];
  295. drmem->reserved = cp[1];
  296. drmem->aa_index = cp[2];
  297. drmem->flags = cp[3];
  298. *cellp = cp + 4;
  299. }
  300. /*
  301. * Retreive and validate the ibm,dynamic-memory property of the device tree.
  302. *
  303. * The layout of the ibm,dynamic-memory property is a number N of lmb
  304. * list entries followed by N lmb list entries. Each lmb list entry
  305. * contains information as layed out in the of_drconf_cell struct above.
  306. */
  307. static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
  308. {
  309. const u32 *prop;
  310. u32 len, entries;
  311. prop = of_get_property(memory, "ibm,dynamic-memory", &len);
  312. if (!prop || len < sizeof(unsigned int))
  313. return 0;
  314. entries = *prop++;
  315. /* Now that we know the number of entries, revalidate the size
  316. * of the property read in to ensure we have everything
  317. */
  318. if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
  319. return 0;
  320. *dm = prop;
  321. return entries;
  322. }
  323. /*
  324. * Retreive and validate the ibm,lmb-size property for drconf memory
  325. * from the device tree.
  326. */
  327. static u64 of_get_lmb_size(struct device_node *memory)
  328. {
  329. const u32 *prop;
  330. u32 len;
  331. prop = of_get_property(memory, "ibm,lmb-size", &len);
  332. if (!prop || len < sizeof(unsigned int))
  333. return 0;
  334. return read_n_cells(n_mem_size_cells, &prop);
  335. }
  336. struct assoc_arrays {
  337. u32 n_arrays;
  338. u32 array_sz;
  339. const u32 *arrays;
  340. };
  341. /*
  342. * Retreive and validate the list of associativity arrays for drconf
  343. * memory from the ibm,associativity-lookup-arrays property of the
  344. * device tree..
  345. *
  346. * The layout of the ibm,associativity-lookup-arrays property is a number N
  347. * indicating the number of associativity arrays, followed by a number M
  348. * indicating the size of each associativity array, followed by a list
  349. * of N associativity arrays.
  350. */
  351. static int of_get_assoc_arrays(struct device_node *memory,
  352. struct assoc_arrays *aa)
  353. {
  354. const u32 *prop;
  355. u32 len;
  356. prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
  357. if (!prop || len < 2 * sizeof(unsigned int))
  358. return -1;
  359. aa->n_arrays = *prop++;
  360. aa->array_sz = *prop++;
  361. /* Now that we know the number of arrrays and size of each array,
  362. * revalidate the size of the property read in.
  363. */
  364. if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
  365. return -1;
  366. aa->arrays = prop;
  367. return 0;
  368. }
  369. /*
  370. * This is like of_node_to_nid_single() for memory represented in the
  371. * ibm,dynamic-reconfiguration-memory node.
  372. */
  373. static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
  374. struct assoc_arrays *aa)
  375. {
  376. int default_nid = 0;
  377. int nid = default_nid;
  378. int index;
  379. if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
  380. !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
  381. drmem->aa_index < aa->n_arrays) {
  382. index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
  383. nid = aa->arrays[index];
  384. if (nid == 0xffff || nid >= MAX_NUMNODES)
  385. nid = default_nid;
  386. }
  387. return nid;
  388. }
  389. /*
  390. * Figure out to which domain a cpu belongs and stick it there.
  391. * Return the id of the domain used.
  392. */
  393. static int __cpuinit numa_setup_cpu(unsigned long lcpu)
  394. {
  395. int nid = 0;
  396. struct device_node *cpu = find_cpu_node(lcpu);
  397. if (!cpu) {
  398. WARN_ON(1);
  399. goto out;
  400. }
  401. nid = of_node_to_nid_single(cpu);
  402. if (nid < 0 || !node_online(nid))
  403. nid = any_online_node(NODE_MASK_ALL);
  404. out:
  405. map_cpu_to_node(lcpu, nid);
  406. of_node_put(cpu);
  407. return nid;
  408. }
  409. static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
  410. unsigned long action,
  411. void *hcpu)
  412. {
  413. unsigned long lcpu = (unsigned long)hcpu;
  414. int ret = NOTIFY_DONE;
  415. switch (action) {
  416. case CPU_UP_PREPARE:
  417. case CPU_UP_PREPARE_FROZEN:
  418. numa_setup_cpu(lcpu);
  419. ret = NOTIFY_OK;
  420. break;
  421. #ifdef CONFIG_HOTPLUG_CPU
  422. case CPU_DEAD:
  423. case CPU_DEAD_FROZEN:
  424. case CPU_UP_CANCELED:
  425. case CPU_UP_CANCELED_FROZEN:
  426. unmap_cpu_from_node(lcpu);
  427. break;
  428. ret = NOTIFY_OK;
  429. #endif
  430. }
  431. return ret;
  432. }
  433. /*
  434. * Check and possibly modify a memory region to enforce the memory limit.
  435. *
  436. * Returns the size the region should have to enforce the memory limit.
  437. * This will either be the original value of size, a truncated value,
  438. * or zero. If the returned value of size is 0 the region should be
  439. * discarded as it lies wholy above the memory limit.
  440. */
  441. static unsigned long __init numa_enforce_memory_limit(unsigned long start,
  442. unsigned long size)
  443. {
  444. /*
  445. * We use lmb_end_of_DRAM() in here instead of memory_limit because
  446. * we've already adjusted it for the limit and it takes care of
  447. * having memory holes below the limit. Also, in the case of
  448. * iommu_is_off, memory_limit is not set but is implicitly enforced.
  449. */
  450. if (start + size <= lmb_end_of_DRAM())
  451. return size;
  452. if (start >= lmb_end_of_DRAM())
  453. return 0;
  454. return lmb_end_of_DRAM() - start;
  455. }
  456. /*
  457. * Reads the counter for a given entry in
  458. * linux,drconf-usable-memory property
  459. */
  460. static inline int __init read_usm_ranges(const u32 **usm)
  461. {
  462. /*
  463. * For each lmb in ibm,dynamic-memory a corresponding
  464. * entry in linux,drconf-usable-memory property contains
  465. * a counter followed by that many (base, size) duple.
  466. * read the counter from linux,drconf-usable-memory
  467. */
  468. return read_n_cells(n_mem_size_cells, usm);
  469. }
  470. /*
  471. * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
  472. * node. This assumes n_mem_{addr,size}_cells have been set.
  473. */
  474. static void __init parse_drconf_memory(struct device_node *memory)
  475. {
  476. const u32 *dm, *usm;
  477. unsigned int n, rc, ranges, is_kexec_kdump = 0;
  478. unsigned long lmb_size, base, size, sz;
  479. int nid;
  480. struct assoc_arrays aa;
  481. n = of_get_drconf_memory(memory, &dm);
  482. if (!n)
  483. return;
  484. lmb_size = of_get_lmb_size(memory);
  485. if (!lmb_size)
  486. return;
  487. rc = of_get_assoc_arrays(memory, &aa);
  488. if (rc)
  489. return;
  490. /* check if this is a kexec/kdump kernel */
  491. usm = of_get_usable_memory(memory);
  492. if (usm != NULL)
  493. is_kexec_kdump = 1;
  494. for (; n != 0; --n) {
  495. struct of_drconf_cell drmem;
  496. read_drconf_cell(&drmem, &dm);
  497. /* skip this block if the reserved bit is set in flags (0x80)
  498. or if the block is not assigned to this partition (0x8) */
  499. if ((drmem.flags & DRCONF_MEM_RESERVED)
  500. || !(drmem.flags & DRCONF_MEM_ASSIGNED))
  501. continue;
  502. base = drmem.base_addr;
  503. size = lmb_size;
  504. ranges = 1;
  505. if (is_kexec_kdump) {
  506. ranges = read_usm_ranges(&usm);
  507. if (!ranges) /* there are no (base, size) duple */
  508. continue;
  509. }
  510. do {
  511. if (is_kexec_kdump) {
  512. base = read_n_cells(n_mem_addr_cells, &usm);
  513. size = read_n_cells(n_mem_size_cells, &usm);
  514. }
  515. nid = of_drconf_to_nid_single(&drmem, &aa);
  516. fake_numa_create_new_node(
  517. ((base + size) >> PAGE_SHIFT),
  518. &nid);
  519. node_set_online(nid);
  520. sz = numa_enforce_memory_limit(base, size);
  521. if (sz)
  522. add_active_range(nid, base >> PAGE_SHIFT,
  523. (base >> PAGE_SHIFT)
  524. + (sz >> PAGE_SHIFT));
  525. } while (--ranges);
  526. }
  527. }
  528. static int __init parse_numa_properties(void)
  529. {
  530. struct device_node *cpu = NULL;
  531. struct device_node *memory = NULL;
  532. int default_nid = 0;
  533. unsigned long i;
  534. if (numa_enabled == 0) {
  535. printk(KERN_WARNING "NUMA disabled by user\n");
  536. return -1;
  537. }
  538. min_common_depth = find_min_common_depth();
  539. if (min_common_depth < 0)
  540. return min_common_depth;
  541. dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
  542. /*
  543. * Even though we connect cpus to numa domains later in SMP
  544. * init, we need to know the node ids now. This is because
  545. * each node to be onlined must have NODE_DATA etc backing it.
  546. */
  547. for_each_present_cpu(i) {
  548. int nid;
  549. cpu = find_cpu_node(i);
  550. BUG_ON(!cpu);
  551. nid = of_node_to_nid_single(cpu);
  552. of_node_put(cpu);
  553. /*
  554. * Don't fall back to default_nid yet -- we will plug
  555. * cpus into nodes once the memory scan has discovered
  556. * the topology.
  557. */
  558. if (nid < 0)
  559. continue;
  560. node_set_online(nid);
  561. }
  562. get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
  563. memory = NULL;
  564. while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
  565. unsigned long start;
  566. unsigned long size;
  567. int nid;
  568. int ranges;
  569. const unsigned int *memcell_buf;
  570. unsigned int len;
  571. memcell_buf = of_get_property(memory,
  572. "linux,usable-memory", &len);
  573. if (!memcell_buf || len <= 0)
  574. memcell_buf = of_get_property(memory, "reg", &len);
  575. if (!memcell_buf || len <= 0)
  576. continue;
  577. /* ranges in cell */
  578. ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
  579. new_range:
  580. /* these are order-sensitive, and modify the buffer pointer */
  581. start = read_n_cells(n_mem_addr_cells, &memcell_buf);
  582. size = read_n_cells(n_mem_size_cells, &memcell_buf);
  583. /*
  584. * Assumption: either all memory nodes or none will
  585. * have associativity properties. If none, then
  586. * everything goes to default_nid.
  587. */
  588. nid = of_node_to_nid_single(memory);
  589. if (nid < 0)
  590. nid = default_nid;
  591. fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
  592. node_set_online(nid);
  593. if (!(size = numa_enforce_memory_limit(start, size))) {
  594. if (--ranges)
  595. goto new_range;
  596. else
  597. continue;
  598. }
  599. add_active_range(nid, start >> PAGE_SHIFT,
  600. (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
  601. if (--ranges)
  602. goto new_range;
  603. }
  604. /*
  605. * Now do the same thing for each LMB listed in the ibm,dynamic-memory
  606. * property in the ibm,dynamic-reconfiguration-memory node.
  607. */
  608. memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
  609. if (memory)
  610. parse_drconf_memory(memory);
  611. return 0;
  612. }
  613. static void __init setup_nonnuma(void)
  614. {
  615. unsigned long top_of_ram = lmb_end_of_DRAM();
  616. unsigned long total_ram = lmb_phys_mem_size();
  617. unsigned long start_pfn, end_pfn;
  618. unsigned int i, nid = 0;
  619. printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  620. top_of_ram, total_ram);
  621. printk(KERN_DEBUG "Memory hole size: %ldMB\n",
  622. (top_of_ram - total_ram) >> 20);
  623. for (i = 0; i < lmb.memory.cnt; ++i) {
  624. start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
  625. end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
  626. fake_numa_create_new_node(end_pfn, &nid);
  627. add_active_range(nid, start_pfn, end_pfn);
  628. node_set_online(nid);
  629. }
  630. }
  631. void __init dump_numa_cpu_topology(void)
  632. {
  633. unsigned int node;
  634. unsigned int cpu, count;
  635. if (min_common_depth == -1 || !numa_enabled)
  636. return;
  637. for_each_online_node(node) {
  638. printk(KERN_DEBUG "Node %d CPUs:", node);
  639. count = 0;
  640. /*
  641. * If we used a CPU iterator here we would miss printing
  642. * the holes in the cpumap.
  643. */
  644. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  645. if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
  646. if (count == 0)
  647. printk(" %u", cpu);
  648. ++count;
  649. } else {
  650. if (count > 1)
  651. printk("-%u", cpu - 1);
  652. count = 0;
  653. }
  654. }
  655. if (count > 1)
  656. printk("-%u", NR_CPUS - 1);
  657. printk("\n");
  658. }
  659. }
  660. static void __init dump_numa_memory_topology(void)
  661. {
  662. unsigned int node;
  663. unsigned int count;
  664. if (min_common_depth == -1 || !numa_enabled)
  665. return;
  666. for_each_online_node(node) {
  667. unsigned long i;
  668. printk(KERN_DEBUG "Node %d Memory:", node);
  669. count = 0;
  670. for (i = 0; i < lmb_end_of_DRAM();
  671. i += (1 << SECTION_SIZE_BITS)) {
  672. if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
  673. if (count == 0)
  674. printk(" 0x%lx", i);
  675. ++count;
  676. } else {
  677. if (count > 0)
  678. printk("-0x%lx", i);
  679. count = 0;
  680. }
  681. }
  682. if (count > 0)
  683. printk("-0x%lx", i);
  684. printk("\n");
  685. }
  686. }
  687. /*
  688. * Allocate some memory, satisfying the lmb or bootmem allocator where
  689. * required. nid is the preferred node and end is the physical address of
  690. * the highest address in the node.
  691. *
  692. * Returns the physical address of the memory.
  693. */
  694. static void __init *careful_allocation(int nid, unsigned long size,
  695. unsigned long align,
  696. unsigned long end_pfn)
  697. {
  698. int new_nid;
  699. unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
  700. /* retry over all memory */
  701. if (!ret)
  702. ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
  703. if (!ret)
  704. panic("numa.c: cannot allocate %lu bytes on node %d",
  705. size, nid);
  706. /*
  707. * If the memory came from a previously allocated node, we must
  708. * retry with the bootmem allocator.
  709. */
  710. new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
  711. if (new_nid < nid) {
  712. ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
  713. size, align, 0);
  714. if (!ret)
  715. panic("numa.c: cannot allocate %lu bytes on node %d",
  716. size, new_nid);
  717. ret = __pa(ret);
  718. dbg("alloc_bootmem %lx %lx\n", ret, size);
  719. }
  720. return (void *)ret;
  721. }
  722. static struct notifier_block __cpuinitdata ppc64_numa_nb = {
  723. .notifier_call = cpu_numa_callback,
  724. .priority = 1 /* Must run before sched domains notifier. */
  725. };
  726. static void mark_reserved_regions_for_nid(int nid)
  727. {
  728. struct pglist_data *node = NODE_DATA(nid);
  729. int i;
  730. for (i = 0; i < lmb.reserved.cnt; i++) {
  731. unsigned long physbase = lmb.reserved.region[i].base;
  732. unsigned long size = lmb.reserved.region[i].size;
  733. unsigned long start_pfn = physbase >> PAGE_SHIFT;
  734. unsigned long end_pfn = ((physbase + size) >> PAGE_SHIFT);
  735. struct node_active_region node_ar;
  736. unsigned long node_end_pfn = node->node_start_pfn +
  737. node->node_spanned_pages;
  738. /*
  739. * Check to make sure that this lmb.reserved area is
  740. * within the bounds of the node that we care about.
  741. * Checking the nid of the start and end points is not
  742. * sufficient because the reserved area could span the
  743. * entire node.
  744. */
  745. if (end_pfn <= node->node_start_pfn ||
  746. start_pfn >= node_end_pfn)
  747. continue;
  748. get_node_active_region(start_pfn, &node_ar);
  749. while (start_pfn < end_pfn &&
  750. node_ar.start_pfn < node_ar.end_pfn) {
  751. unsigned long reserve_size = size;
  752. /*
  753. * if reserved region extends past active region
  754. * then trim size to active region
  755. */
  756. if (end_pfn > node_ar.end_pfn)
  757. reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
  758. - (start_pfn << PAGE_SHIFT);
  759. /*
  760. * Only worry about *this* node, others may not
  761. * yet have valid NODE_DATA().
  762. */
  763. if (node_ar.nid == nid) {
  764. dbg("reserve_bootmem %lx %lx nid=%d\n",
  765. physbase, reserve_size, node_ar.nid);
  766. reserve_bootmem_node(NODE_DATA(node_ar.nid),
  767. physbase, reserve_size,
  768. BOOTMEM_DEFAULT);
  769. }
  770. /*
  771. * if reserved region is contained in the active region
  772. * then done.
  773. */
  774. if (end_pfn <= node_ar.end_pfn)
  775. break;
  776. /*
  777. * reserved region extends past the active region
  778. * get next active region that contains this
  779. * reserved region
  780. */
  781. start_pfn = node_ar.end_pfn;
  782. physbase = start_pfn << PAGE_SHIFT;
  783. size = size - reserve_size;
  784. get_node_active_region(start_pfn, &node_ar);
  785. }
  786. }
  787. }
  788. void __init do_init_bootmem(void)
  789. {
  790. int nid;
  791. min_low_pfn = 0;
  792. max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
  793. max_pfn = max_low_pfn;
  794. if (parse_numa_properties())
  795. setup_nonnuma();
  796. else
  797. dump_numa_memory_topology();
  798. register_cpu_notifier(&ppc64_numa_nb);
  799. cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
  800. (void *)(unsigned long)boot_cpuid);
  801. for_each_online_node(nid) {
  802. unsigned long start_pfn, end_pfn;
  803. unsigned long bootmem_paddr;
  804. unsigned long bootmap_pages;
  805. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  806. /*
  807. * Allocate the node structure node local if possible
  808. *
  809. * Be careful moving this around, as it relies on all
  810. * previous nodes' bootmem to be initialized and have
  811. * all reserved areas marked.
  812. */
  813. NODE_DATA(nid) = careful_allocation(nid,
  814. sizeof(struct pglist_data),
  815. SMP_CACHE_BYTES, end_pfn);
  816. NODE_DATA(nid) = __va(NODE_DATA(nid));
  817. memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
  818. dbg("node %d\n", nid);
  819. dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
  820. NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
  821. NODE_DATA(nid)->node_start_pfn = start_pfn;
  822. NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
  823. if (NODE_DATA(nid)->node_spanned_pages == 0)
  824. continue;
  825. dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  826. dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
  827. bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
  828. bootmem_paddr = (unsigned long)careful_allocation(nid,
  829. bootmap_pages << PAGE_SHIFT,
  830. PAGE_SIZE, end_pfn);
  831. memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
  832. dbg("bootmap_paddr = %lx\n", bootmem_paddr);
  833. init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
  834. start_pfn, end_pfn);
  835. free_bootmem_with_active_regions(nid, end_pfn);
  836. /*
  837. * Be very careful about moving this around. Future
  838. * calls to careful_allocation() depend on this getting
  839. * done correctly.
  840. */
  841. mark_reserved_regions_for_nid(nid);
  842. sparse_memory_present_with_active_regions(nid);
  843. }
  844. }
  845. void __init paging_init(void)
  846. {
  847. unsigned long max_zone_pfns[MAX_NR_ZONES];
  848. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  849. max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
  850. free_area_init_nodes(max_zone_pfns);
  851. }
  852. static int __init early_numa(char *p)
  853. {
  854. if (!p)
  855. return 0;
  856. if (strstr(p, "off"))
  857. numa_enabled = 0;
  858. if (strstr(p, "debug"))
  859. numa_debug = 1;
  860. p = strstr(p, "fake=");
  861. if (p)
  862. cmdline = p + strlen("fake=");
  863. return 0;
  864. }
  865. early_param("numa", early_numa);
  866. #ifdef CONFIG_MEMORY_HOTPLUG
  867. /*
  868. * Validate the node associated with the memory section we are
  869. * trying to add.
  870. */
  871. int valid_hot_add_scn(int *nid, unsigned long start, u32 lmb_size,
  872. unsigned long scn_addr)
  873. {
  874. nodemask_t nodes;
  875. if (*nid < 0 || !node_online(*nid))
  876. *nid = any_online_node(NODE_MASK_ALL);
  877. if ((scn_addr >= start) && (scn_addr < (start + lmb_size))) {
  878. nodes_setall(nodes);
  879. while (NODE_DATA(*nid)->node_spanned_pages == 0) {
  880. node_clear(*nid, nodes);
  881. *nid = any_online_node(nodes);
  882. }
  883. return 1;
  884. }
  885. return 0;
  886. }
  887. /*
  888. * Find the node associated with a hot added memory section represented
  889. * by the ibm,dynamic-reconfiguration-memory node.
  890. */
  891. static int hot_add_drconf_scn_to_nid(struct device_node *memory,
  892. unsigned long scn_addr)
  893. {
  894. const u32 *dm;
  895. unsigned int n, rc;
  896. unsigned long lmb_size;
  897. int default_nid = any_online_node(NODE_MASK_ALL);
  898. int nid;
  899. struct assoc_arrays aa;
  900. n = of_get_drconf_memory(memory, &dm);
  901. if (!n)
  902. return default_nid;;
  903. lmb_size = of_get_lmb_size(memory);
  904. if (!lmb_size)
  905. return default_nid;
  906. rc = of_get_assoc_arrays(memory, &aa);
  907. if (rc)
  908. return default_nid;
  909. for (; n != 0; --n) {
  910. struct of_drconf_cell drmem;
  911. read_drconf_cell(&drmem, &dm);
  912. /* skip this block if it is reserved or not assigned to
  913. * this partition */
  914. if ((drmem.flags & DRCONF_MEM_RESERVED)
  915. || !(drmem.flags & DRCONF_MEM_ASSIGNED))
  916. continue;
  917. nid = of_drconf_to_nid_single(&drmem, &aa);
  918. if (valid_hot_add_scn(&nid, drmem.base_addr, lmb_size,
  919. scn_addr))
  920. return nid;
  921. }
  922. BUG(); /* section address should be found above */
  923. return 0;
  924. }
  925. /*
  926. * Find the node associated with a hot added memory section. Section
  927. * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
  928. * sections are fully contained within a single LMB.
  929. */
  930. int hot_add_scn_to_nid(unsigned long scn_addr)
  931. {
  932. struct device_node *memory = NULL;
  933. int nid;
  934. if (!numa_enabled || (min_common_depth < 0))
  935. return any_online_node(NODE_MASK_ALL);
  936. memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
  937. if (memory) {
  938. nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
  939. of_node_put(memory);
  940. return nid;
  941. }
  942. while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
  943. unsigned long start, size;
  944. int ranges;
  945. const unsigned int *memcell_buf;
  946. unsigned int len;
  947. memcell_buf = of_get_property(memory, "reg", &len);
  948. if (!memcell_buf || len <= 0)
  949. continue;
  950. /* ranges in cell */
  951. ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
  952. ha_new_range:
  953. start = read_n_cells(n_mem_addr_cells, &memcell_buf);
  954. size = read_n_cells(n_mem_size_cells, &memcell_buf);
  955. nid = of_node_to_nid_single(memory);
  956. if (valid_hot_add_scn(&nid, start, size, scn_addr)) {
  957. of_node_put(memory);
  958. return nid;
  959. }
  960. if (--ranges) /* process all ranges in cell */
  961. goto ha_new_range;
  962. }
  963. BUG(); /* section address should be found above */
  964. return 0;
  965. }
  966. #endif /* CONFIG_MEMORY_HOTPLUG */