kvm-ia64.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/fs.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/gcc_intrin.h>
  37. #include <asm/pal.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/div64.h>
  40. #include <asm/tlb.h>
  41. #include <asm/elf.h>
  42. #include "misc.h"
  43. #include "vti.h"
  44. #include "iodev.h"
  45. #include "ioapic.h"
  46. #include "lapic.h"
  47. #include "irq.h"
  48. static unsigned long kvm_vmm_base;
  49. static unsigned long kvm_vsa_base;
  50. static unsigned long kvm_vm_buffer;
  51. static unsigned long kvm_vm_buffer_size;
  52. unsigned long kvm_vmm_gp;
  53. static long vp_env_info;
  54. static struct kvm_vmm_info *kvm_vmm_info;
  55. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  56. struct kvm_stats_debugfs_item debugfs_entries[] = {
  57. { NULL }
  58. };
  59. static void kvm_flush_icache(unsigned long start, unsigned long len)
  60. {
  61. int l;
  62. for (l = 0; l < (len + 32); l += 32)
  63. ia64_fc(start + l);
  64. ia64_sync_i();
  65. ia64_srlz_i();
  66. }
  67. static void kvm_flush_tlb_all(void)
  68. {
  69. unsigned long i, j, count0, count1, stride0, stride1, addr;
  70. long flags;
  71. addr = local_cpu_data->ptce_base;
  72. count0 = local_cpu_data->ptce_count[0];
  73. count1 = local_cpu_data->ptce_count[1];
  74. stride0 = local_cpu_data->ptce_stride[0];
  75. stride1 = local_cpu_data->ptce_stride[1];
  76. local_irq_save(flags);
  77. for (i = 0; i < count0; ++i) {
  78. for (j = 0; j < count1; ++j) {
  79. ia64_ptce(addr);
  80. addr += stride1;
  81. }
  82. addr += stride0;
  83. }
  84. local_irq_restore(flags);
  85. ia64_srlz_i(); /* srlz.i implies srlz.d */
  86. }
  87. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  88. {
  89. struct ia64_pal_retval iprv;
  90. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  91. (u64)opt_handler);
  92. return iprv.status;
  93. }
  94. static DEFINE_SPINLOCK(vp_lock);
  95. void kvm_arch_hardware_enable(void *garbage)
  96. {
  97. long status;
  98. long tmp_base;
  99. unsigned long pte;
  100. unsigned long saved_psr;
  101. int slot;
  102. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  103. PAGE_KERNEL));
  104. local_irq_save(saved_psr);
  105. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  106. local_irq_restore(saved_psr);
  107. if (slot < 0)
  108. return;
  109. spin_lock(&vp_lock);
  110. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  111. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  112. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  113. if (status != 0) {
  114. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  115. return ;
  116. }
  117. if (!kvm_vsa_base) {
  118. kvm_vsa_base = tmp_base;
  119. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  120. }
  121. spin_unlock(&vp_lock);
  122. ia64_ptr_entry(0x3, slot);
  123. }
  124. void kvm_arch_hardware_disable(void *garbage)
  125. {
  126. long status;
  127. int slot;
  128. unsigned long pte;
  129. unsigned long saved_psr;
  130. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  131. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  132. PAGE_KERNEL));
  133. local_irq_save(saved_psr);
  134. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  135. local_irq_restore(saved_psr);
  136. if (slot < 0)
  137. return;
  138. status = ia64_pal_vp_exit_env(host_iva);
  139. if (status)
  140. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  141. status);
  142. ia64_ptr_entry(0x3, slot);
  143. }
  144. void kvm_arch_check_processor_compat(void *rtn)
  145. {
  146. *(int *)rtn = 0;
  147. }
  148. int kvm_dev_ioctl_check_extension(long ext)
  149. {
  150. int r;
  151. switch (ext) {
  152. case KVM_CAP_IRQCHIP:
  153. case KVM_CAP_MP_STATE:
  154. r = 1;
  155. break;
  156. case KVM_CAP_COALESCED_MMIO:
  157. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  158. break;
  159. case KVM_CAP_IOMMU:
  160. r = iommu_found();
  161. break;
  162. default:
  163. r = 0;
  164. }
  165. return r;
  166. }
  167. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  168. gpa_t addr, int len, int is_write)
  169. {
  170. struct kvm_io_device *dev;
  171. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
  172. return dev;
  173. }
  174. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  175. {
  176. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  177. kvm_run->hw.hardware_exit_reason = 1;
  178. return 0;
  179. }
  180. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  181. {
  182. struct kvm_mmio_req *p;
  183. struct kvm_io_device *mmio_dev;
  184. p = kvm_get_vcpu_ioreq(vcpu);
  185. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  186. goto mmio;
  187. vcpu->mmio_needed = 1;
  188. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  189. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  190. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  191. if (vcpu->mmio_is_write)
  192. memcpy(vcpu->mmio_data, &p->data, p->size);
  193. memcpy(kvm_run->mmio.data, &p->data, p->size);
  194. kvm_run->exit_reason = KVM_EXIT_MMIO;
  195. return 0;
  196. mmio:
  197. mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
  198. if (mmio_dev) {
  199. if (!p->dir)
  200. kvm_iodevice_write(mmio_dev, p->addr, p->size,
  201. &p->data);
  202. else
  203. kvm_iodevice_read(mmio_dev, p->addr, p->size,
  204. &p->data);
  205. } else
  206. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  207. p->state = STATE_IORESP_READY;
  208. return 1;
  209. }
  210. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  211. {
  212. struct exit_ctl_data *p;
  213. p = kvm_get_exit_data(vcpu);
  214. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  215. return kvm_pal_emul(vcpu, kvm_run);
  216. else {
  217. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  218. kvm_run->hw.hardware_exit_reason = 2;
  219. return 0;
  220. }
  221. }
  222. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  223. {
  224. struct exit_ctl_data *p;
  225. p = kvm_get_exit_data(vcpu);
  226. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  227. kvm_sal_emul(vcpu);
  228. return 1;
  229. } else {
  230. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  231. kvm_run->hw.hardware_exit_reason = 3;
  232. return 0;
  233. }
  234. }
  235. /*
  236. * offset: address offset to IPI space.
  237. * value: deliver value.
  238. */
  239. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  240. uint64_t vector)
  241. {
  242. switch (dm) {
  243. case SAPIC_FIXED:
  244. kvm_apic_set_irq(vcpu, vector, 0);
  245. break;
  246. case SAPIC_NMI:
  247. kvm_apic_set_irq(vcpu, 2, 0);
  248. break;
  249. case SAPIC_EXTINT:
  250. kvm_apic_set_irq(vcpu, 0, 0);
  251. break;
  252. case SAPIC_INIT:
  253. case SAPIC_PMI:
  254. default:
  255. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  256. break;
  257. }
  258. }
  259. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  260. unsigned long eid)
  261. {
  262. union ia64_lid lid;
  263. int i;
  264. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  265. if (kvm->vcpus[i]) {
  266. lid.val = VCPU_LID(kvm->vcpus[i]);
  267. if (lid.id == id && lid.eid == eid)
  268. return kvm->vcpus[i];
  269. }
  270. }
  271. return NULL;
  272. }
  273. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  274. {
  275. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  276. struct kvm_vcpu *target_vcpu;
  277. struct kvm_pt_regs *regs;
  278. union ia64_ipi_a addr = p->u.ipi_data.addr;
  279. union ia64_ipi_d data = p->u.ipi_data.data;
  280. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  281. if (!target_vcpu)
  282. return handle_vm_error(vcpu, kvm_run);
  283. if (!target_vcpu->arch.launched) {
  284. regs = vcpu_regs(target_vcpu);
  285. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  286. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  287. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  288. if (waitqueue_active(&target_vcpu->wq))
  289. wake_up_interruptible(&target_vcpu->wq);
  290. } else {
  291. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  292. if (target_vcpu != vcpu)
  293. kvm_vcpu_kick(target_vcpu);
  294. }
  295. return 1;
  296. }
  297. struct call_data {
  298. struct kvm_ptc_g ptc_g_data;
  299. struct kvm_vcpu *vcpu;
  300. };
  301. static void vcpu_global_purge(void *info)
  302. {
  303. struct call_data *p = (struct call_data *)info;
  304. struct kvm_vcpu *vcpu = p->vcpu;
  305. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  306. return;
  307. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  308. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  309. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  310. p->ptc_g_data;
  311. } else {
  312. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  313. vcpu->arch.ptc_g_count = 0;
  314. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  315. }
  316. }
  317. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  318. {
  319. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  320. struct kvm *kvm = vcpu->kvm;
  321. struct call_data call_data;
  322. int i;
  323. call_data.ptc_g_data = p->u.ptc_g_data;
  324. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  325. if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
  326. KVM_MP_STATE_UNINITIALIZED ||
  327. vcpu == kvm->vcpus[i])
  328. continue;
  329. if (waitqueue_active(&kvm->vcpus[i]->wq))
  330. wake_up_interruptible(&kvm->vcpus[i]->wq);
  331. if (kvm->vcpus[i]->cpu != -1) {
  332. call_data.vcpu = kvm->vcpus[i];
  333. smp_call_function_single(kvm->vcpus[i]->cpu,
  334. vcpu_global_purge, &call_data, 1);
  335. } else
  336. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  337. }
  338. return 1;
  339. }
  340. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  341. {
  342. return 1;
  343. }
  344. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  345. {
  346. ktime_t kt;
  347. long itc_diff;
  348. unsigned long vcpu_now_itc;
  349. unsigned long expires;
  350. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  351. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  352. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  353. if (irqchip_in_kernel(vcpu->kvm)) {
  354. vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
  355. if (time_after(vcpu_now_itc, vpd->itm)) {
  356. vcpu->arch.timer_check = 1;
  357. return 1;
  358. }
  359. itc_diff = vpd->itm - vcpu_now_itc;
  360. if (itc_diff < 0)
  361. itc_diff = -itc_diff;
  362. expires = div64_u64(itc_diff, cyc_per_usec);
  363. kt = ktime_set(0, 1000 * expires);
  364. vcpu->arch.ht_active = 1;
  365. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  366. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  367. kvm_vcpu_block(vcpu);
  368. hrtimer_cancel(p_ht);
  369. vcpu->arch.ht_active = 0;
  370. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  371. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  372. vcpu->arch.mp_state =
  373. KVM_MP_STATE_RUNNABLE;
  374. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  375. return -EINTR;
  376. return 1;
  377. } else {
  378. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  379. return 0;
  380. }
  381. }
  382. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  383. struct kvm_run *kvm_run)
  384. {
  385. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  386. return 0;
  387. }
  388. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  389. struct kvm_run *kvm_run)
  390. {
  391. return 1;
  392. }
  393. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  394. struct kvm_run *kvm_run)
  395. {
  396. printk("VMM: %s", vcpu->arch.log_buf);
  397. return 1;
  398. }
  399. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  400. struct kvm_run *kvm_run) = {
  401. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  402. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  403. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  404. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  405. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  406. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  407. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  408. [EXIT_REASON_IPI] = handle_ipi,
  409. [EXIT_REASON_PTC_G] = handle_global_purge,
  410. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  411. };
  412. static const int kvm_vti_max_exit_handlers =
  413. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  414. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  415. {
  416. struct exit_ctl_data *p_exit_data;
  417. p_exit_data = kvm_get_exit_data(vcpu);
  418. return p_exit_data->exit_reason;
  419. }
  420. /*
  421. * The guest has exited. See if we can fix it or if we need userspace
  422. * assistance.
  423. */
  424. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  425. {
  426. u32 exit_reason = kvm_get_exit_reason(vcpu);
  427. vcpu->arch.last_exit = exit_reason;
  428. if (exit_reason < kvm_vti_max_exit_handlers
  429. && kvm_vti_exit_handlers[exit_reason])
  430. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  431. else {
  432. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  433. kvm_run->hw.hardware_exit_reason = exit_reason;
  434. }
  435. return 0;
  436. }
  437. static inline void vti_set_rr6(unsigned long rr6)
  438. {
  439. ia64_set_rr(RR6, rr6);
  440. ia64_srlz_i();
  441. }
  442. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  443. {
  444. unsigned long pte;
  445. struct kvm *kvm = vcpu->kvm;
  446. int r;
  447. /*Insert a pair of tr to map vmm*/
  448. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  449. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  450. if (r < 0)
  451. goto out;
  452. vcpu->arch.vmm_tr_slot = r;
  453. /*Insert a pairt of tr to map data of vm*/
  454. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  455. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  456. pte, KVM_VM_DATA_SHIFT);
  457. if (r < 0)
  458. goto out;
  459. vcpu->arch.vm_tr_slot = r;
  460. r = 0;
  461. out:
  462. return r;
  463. }
  464. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  465. {
  466. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  467. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  468. }
  469. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  470. {
  471. int cpu = smp_processor_id();
  472. if (vcpu->arch.last_run_cpu != cpu ||
  473. per_cpu(last_vcpu, cpu) != vcpu) {
  474. per_cpu(last_vcpu, cpu) = vcpu;
  475. vcpu->arch.last_run_cpu = cpu;
  476. kvm_flush_tlb_all();
  477. }
  478. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  479. vti_set_rr6(vcpu->arch.vmm_rr);
  480. return kvm_insert_vmm_mapping(vcpu);
  481. }
  482. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  483. {
  484. kvm_purge_vmm_mapping(vcpu);
  485. vti_set_rr6(vcpu->arch.host_rr6);
  486. }
  487. static int vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  488. {
  489. union context *host_ctx, *guest_ctx;
  490. int r;
  491. /*Get host and guest context with guest address space.*/
  492. host_ctx = kvm_get_host_context(vcpu);
  493. guest_ctx = kvm_get_guest_context(vcpu);
  494. r = kvm_vcpu_pre_transition(vcpu);
  495. if (r < 0)
  496. goto out;
  497. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  498. kvm_vcpu_post_transition(vcpu);
  499. r = 0;
  500. out:
  501. return r;
  502. }
  503. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  504. {
  505. int r;
  506. again:
  507. preempt_disable();
  508. local_irq_disable();
  509. if (signal_pending(current)) {
  510. local_irq_enable();
  511. preempt_enable();
  512. r = -EINTR;
  513. kvm_run->exit_reason = KVM_EXIT_INTR;
  514. goto out;
  515. }
  516. vcpu->guest_mode = 1;
  517. kvm_guest_enter();
  518. down_read(&vcpu->kvm->slots_lock);
  519. r = vti_vcpu_run(vcpu, kvm_run);
  520. if (r < 0) {
  521. local_irq_enable();
  522. preempt_enable();
  523. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  524. goto out;
  525. }
  526. vcpu->arch.launched = 1;
  527. vcpu->guest_mode = 0;
  528. local_irq_enable();
  529. /*
  530. * We must have an instruction between local_irq_enable() and
  531. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  532. * the interrupt shadow. The stat.exits increment will do nicely.
  533. * But we need to prevent reordering, hence this barrier():
  534. */
  535. barrier();
  536. kvm_guest_exit();
  537. up_read(&vcpu->kvm->slots_lock);
  538. preempt_enable();
  539. r = kvm_handle_exit(kvm_run, vcpu);
  540. if (r > 0) {
  541. if (!need_resched())
  542. goto again;
  543. }
  544. out:
  545. if (r > 0) {
  546. kvm_resched(vcpu);
  547. goto again;
  548. }
  549. return r;
  550. }
  551. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  552. {
  553. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  554. if (!vcpu->mmio_is_write)
  555. memcpy(&p->data, vcpu->mmio_data, 8);
  556. p->state = STATE_IORESP_READY;
  557. }
  558. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  559. {
  560. int r;
  561. sigset_t sigsaved;
  562. vcpu_load(vcpu);
  563. if (vcpu->sigset_active)
  564. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  565. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  566. kvm_vcpu_block(vcpu);
  567. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  568. r = -EAGAIN;
  569. goto out;
  570. }
  571. if (vcpu->mmio_needed) {
  572. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  573. kvm_set_mmio_data(vcpu);
  574. vcpu->mmio_read_completed = 1;
  575. vcpu->mmio_needed = 0;
  576. }
  577. r = __vcpu_run(vcpu, kvm_run);
  578. out:
  579. if (vcpu->sigset_active)
  580. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  581. vcpu_put(vcpu);
  582. return r;
  583. }
  584. static struct kvm *kvm_alloc_kvm(void)
  585. {
  586. struct kvm *kvm;
  587. uint64_t vm_base;
  588. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  589. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  590. if (!vm_base)
  591. return ERR_PTR(-ENOMEM);
  592. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  593. kvm = (struct kvm *)(vm_base +
  594. offsetof(struct kvm_vm_data, kvm_vm_struct));
  595. kvm->arch.vm_base = vm_base;
  596. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  597. return kvm;
  598. }
  599. struct kvm_io_range {
  600. unsigned long start;
  601. unsigned long size;
  602. unsigned long type;
  603. };
  604. static const struct kvm_io_range io_ranges[] = {
  605. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  606. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  607. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  608. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  609. {PIB_START, PIB_SIZE, GPFN_PIB},
  610. };
  611. static void kvm_build_io_pmt(struct kvm *kvm)
  612. {
  613. unsigned long i, j;
  614. /* Mark I/O ranges */
  615. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  616. i++) {
  617. for (j = io_ranges[i].start;
  618. j < io_ranges[i].start + io_ranges[i].size;
  619. j += PAGE_SIZE)
  620. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  621. io_ranges[i].type, 0);
  622. }
  623. }
  624. /*Use unused rids to virtualize guest rid.*/
  625. #define GUEST_PHYSICAL_RR0 0x1739
  626. #define GUEST_PHYSICAL_RR4 0x2739
  627. #define VMM_INIT_RR 0x1660
  628. static void kvm_init_vm(struct kvm *kvm)
  629. {
  630. BUG_ON(!kvm);
  631. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  632. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  633. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  634. /*
  635. *Fill P2M entries for MMIO/IO ranges
  636. */
  637. kvm_build_io_pmt(kvm);
  638. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  639. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  640. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  641. }
  642. struct kvm *kvm_arch_create_vm(void)
  643. {
  644. struct kvm *kvm = kvm_alloc_kvm();
  645. if (IS_ERR(kvm))
  646. return ERR_PTR(-ENOMEM);
  647. kvm_init_vm(kvm);
  648. return kvm;
  649. }
  650. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  651. struct kvm_irqchip *chip)
  652. {
  653. int r;
  654. r = 0;
  655. switch (chip->chip_id) {
  656. case KVM_IRQCHIP_IOAPIC:
  657. memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
  658. sizeof(struct kvm_ioapic_state));
  659. break;
  660. default:
  661. r = -EINVAL;
  662. break;
  663. }
  664. return r;
  665. }
  666. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  667. {
  668. int r;
  669. r = 0;
  670. switch (chip->chip_id) {
  671. case KVM_IRQCHIP_IOAPIC:
  672. memcpy(ioapic_irqchip(kvm),
  673. &chip->chip.ioapic,
  674. sizeof(struct kvm_ioapic_state));
  675. break;
  676. default:
  677. r = -EINVAL;
  678. break;
  679. }
  680. return r;
  681. }
  682. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  683. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  684. {
  685. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  686. int i;
  687. vcpu_load(vcpu);
  688. for (i = 0; i < 16; i++) {
  689. vpd->vgr[i] = regs->vpd.vgr[i];
  690. vpd->vbgr[i] = regs->vpd.vbgr[i];
  691. }
  692. for (i = 0; i < 128; i++)
  693. vpd->vcr[i] = regs->vpd.vcr[i];
  694. vpd->vhpi = regs->vpd.vhpi;
  695. vpd->vnat = regs->vpd.vnat;
  696. vpd->vbnat = regs->vpd.vbnat;
  697. vpd->vpsr = regs->vpd.vpsr;
  698. vpd->vpr = regs->vpd.vpr;
  699. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  700. RESTORE_REGS(mp_state);
  701. RESTORE_REGS(vmm_rr);
  702. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  703. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  704. RESTORE_REGS(itr_regions);
  705. RESTORE_REGS(dtr_regions);
  706. RESTORE_REGS(tc_regions);
  707. RESTORE_REGS(irq_check);
  708. RESTORE_REGS(itc_check);
  709. RESTORE_REGS(timer_check);
  710. RESTORE_REGS(timer_pending);
  711. RESTORE_REGS(last_itc);
  712. for (i = 0; i < 8; i++) {
  713. vcpu->arch.vrr[i] = regs->vrr[i];
  714. vcpu->arch.ibr[i] = regs->ibr[i];
  715. vcpu->arch.dbr[i] = regs->dbr[i];
  716. }
  717. for (i = 0; i < 4; i++)
  718. vcpu->arch.insvc[i] = regs->insvc[i];
  719. RESTORE_REGS(xtp);
  720. RESTORE_REGS(metaphysical_rr0);
  721. RESTORE_REGS(metaphysical_rr4);
  722. RESTORE_REGS(metaphysical_saved_rr0);
  723. RESTORE_REGS(metaphysical_saved_rr4);
  724. RESTORE_REGS(fp_psr);
  725. RESTORE_REGS(saved_gp);
  726. vcpu->arch.irq_new_pending = 1;
  727. vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
  728. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  729. vcpu_put(vcpu);
  730. return 0;
  731. }
  732. long kvm_arch_vm_ioctl(struct file *filp,
  733. unsigned int ioctl, unsigned long arg)
  734. {
  735. struct kvm *kvm = filp->private_data;
  736. void __user *argp = (void __user *)arg;
  737. int r = -EINVAL;
  738. switch (ioctl) {
  739. case KVM_SET_MEMORY_REGION: {
  740. struct kvm_memory_region kvm_mem;
  741. struct kvm_userspace_memory_region kvm_userspace_mem;
  742. r = -EFAULT;
  743. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  744. goto out;
  745. kvm_userspace_mem.slot = kvm_mem.slot;
  746. kvm_userspace_mem.flags = kvm_mem.flags;
  747. kvm_userspace_mem.guest_phys_addr =
  748. kvm_mem.guest_phys_addr;
  749. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  750. r = kvm_vm_ioctl_set_memory_region(kvm,
  751. &kvm_userspace_mem, 0);
  752. if (r)
  753. goto out;
  754. break;
  755. }
  756. case KVM_CREATE_IRQCHIP:
  757. r = -EFAULT;
  758. r = kvm_ioapic_init(kvm);
  759. if (r)
  760. goto out;
  761. break;
  762. case KVM_IRQ_LINE: {
  763. struct kvm_irq_level irq_event;
  764. r = -EFAULT;
  765. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  766. goto out;
  767. if (irqchip_in_kernel(kvm)) {
  768. mutex_lock(&kvm->lock);
  769. kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  770. irq_event.irq, irq_event.level);
  771. mutex_unlock(&kvm->lock);
  772. r = 0;
  773. }
  774. break;
  775. }
  776. case KVM_GET_IRQCHIP: {
  777. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  778. struct kvm_irqchip chip;
  779. r = -EFAULT;
  780. if (copy_from_user(&chip, argp, sizeof chip))
  781. goto out;
  782. r = -ENXIO;
  783. if (!irqchip_in_kernel(kvm))
  784. goto out;
  785. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  786. if (r)
  787. goto out;
  788. r = -EFAULT;
  789. if (copy_to_user(argp, &chip, sizeof chip))
  790. goto out;
  791. r = 0;
  792. break;
  793. }
  794. case KVM_SET_IRQCHIP: {
  795. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  796. struct kvm_irqchip chip;
  797. r = -EFAULT;
  798. if (copy_from_user(&chip, argp, sizeof chip))
  799. goto out;
  800. r = -ENXIO;
  801. if (!irqchip_in_kernel(kvm))
  802. goto out;
  803. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  804. if (r)
  805. goto out;
  806. r = 0;
  807. break;
  808. }
  809. default:
  810. ;
  811. }
  812. out:
  813. return r;
  814. }
  815. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  816. struct kvm_sregs *sregs)
  817. {
  818. return -EINVAL;
  819. }
  820. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  821. struct kvm_sregs *sregs)
  822. {
  823. return -EINVAL;
  824. }
  825. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  826. struct kvm_translation *tr)
  827. {
  828. return -EINVAL;
  829. }
  830. static int kvm_alloc_vmm_area(void)
  831. {
  832. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  833. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  834. get_order(KVM_VMM_SIZE));
  835. if (!kvm_vmm_base)
  836. return -ENOMEM;
  837. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  838. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  839. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  840. kvm_vmm_base, kvm_vm_buffer);
  841. }
  842. return 0;
  843. }
  844. static void kvm_free_vmm_area(void)
  845. {
  846. if (kvm_vmm_base) {
  847. /*Zero this area before free to avoid bits leak!!*/
  848. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  849. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  850. kvm_vmm_base = 0;
  851. kvm_vm_buffer = 0;
  852. kvm_vsa_base = 0;
  853. }
  854. }
  855. static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  856. {
  857. }
  858. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  859. {
  860. int i;
  861. union cpuid3_t cpuid3;
  862. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  863. if (IS_ERR(vpd))
  864. return PTR_ERR(vpd);
  865. /* CPUID init */
  866. for (i = 0; i < 5; i++)
  867. vpd->vcpuid[i] = ia64_get_cpuid(i);
  868. /* Limit the CPUID number to 5 */
  869. cpuid3.value = vpd->vcpuid[3];
  870. cpuid3.number = 4; /* 5 - 1 */
  871. vpd->vcpuid[3] = cpuid3.value;
  872. /*Set vac and vdc fields*/
  873. vpd->vac.a_from_int_cr = 1;
  874. vpd->vac.a_to_int_cr = 1;
  875. vpd->vac.a_from_psr = 1;
  876. vpd->vac.a_from_cpuid = 1;
  877. vpd->vac.a_cover = 1;
  878. vpd->vac.a_bsw = 1;
  879. vpd->vac.a_int = 1;
  880. vpd->vdc.d_vmsw = 1;
  881. /*Set virtual buffer*/
  882. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  883. return 0;
  884. }
  885. static int vti_create_vp(struct kvm_vcpu *vcpu)
  886. {
  887. long ret;
  888. struct vpd *vpd = vcpu->arch.vpd;
  889. unsigned long vmm_ivt;
  890. vmm_ivt = kvm_vmm_info->vmm_ivt;
  891. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  892. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  893. if (ret) {
  894. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  895. return -EINVAL;
  896. }
  897. return 0;
  898. }
  899. static void init_ptce_info(struct kvm_vcpu *vcpu)
  900. {
  901. ia64_ptce_info_t ptce = {0};
  902. ia64_get_ptce(&ptce);
  903. vcpu->arch.ptce_base = ptce.base;
  904. vcpu->arch.ptce_count[0] = ptce.count[0];
  905. vcpu->arch.ptce_count[1] = ptce.count[1];
  906. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  907. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  908. }
  909. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  910. {
  911. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  912. if (hrtimer_cancel(p_ht))
  913. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  914. }
  915. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  916. {
  917. struct kvm_vcpu *vcpu;
  918. wait_queue_head_t *q;
  919. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  920. q = &vcpu->wq;
  921. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  922. goto out;
  923. if (waitqueue_active(q))
  924. wake_up_interruptible(q);
  925. out:
  926. vcpu->arch.timer_fired = 1;
  927. vcpu->arch.timer_check = 1;
  928. return HRTIMER_NORESTART;
  929. }
  930. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  931. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  932. {
  933. struct kvm_vcpu *v;
  934. int r;
  935. int i;
  936. long itc_offset;
  937. struct kvm *kvm = vcpu->kvm;
  938. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  939. union context *p_ctx = &vcpu->arch.guest;
  940. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  941. /*Init vcpu context for first run.*/
  942. if (IS_ERR(vmm_vcpu))
  943. return PTR_ERR(vmm_vcpu);
  944. if (vcpu->vcpu_id == 0) {
  945. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  946. /*Set entry address for first run.*/
  947. regs->cr_iip = PALE_RESET_ENTRY;
  948. /*Initialize itc offset for vcpus*/
  949. itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
  950. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  951. v = (struct kvm_vcpu *)((char *)vcpu +
  952. sizeof(struct kvm_vcpu_data) * i);
  953. v->arch.itc_offset = itc_offset;
  954. v->arch.last_itc = 0;
  955. }
  956. } else
  957. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  958. r = -ENOMEM;
  959. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  960. if (!vcpu->arch.apic)
  961. goto out;
  962. vcpu->arch.apic->vcpu = vcpu;
  963. p_ctx->gr[1] = 0;
  964. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  965. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  966. p_ctx->psr = 0x1008522000UL;
  967. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  968. p_ctx->caller_unat = 0;
  969. p_ctx->pr = 0x0;
  970. p_ctx->ar[36] = 0x0; /*unat*/
  971. p_ctx->ar[19] = 0x0; /*rnat*/
  972. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  973. ((sizeof(struct kvm_vcpu)+15) & ~15);
  974. p_ctx->ar[64] = 0x0; /*pfs*/
  975. p_ctx->cr[0] = 0x7e04UL;
  976. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  977. p_ctx->cr[8] = 0x3c;
  978. /*Initilize region register*/
  979. p_ctx->rr[0] = 0x30;
  980. p_ctx->rr[1] = 0x30;
  981. p_ctx->rr[2] = 0x30;
  982. p_ctx->rr[3] = 0x30;
  983. p_ctx->rr[4] = 0x30;
  984. p_ctx->rr[5] = 0x30;
  985. p_ctx->rr[7] = 0x30;
  986. /*Initilize branch register 0*/
  987. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  988. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  989. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  990. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  991. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  992. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  993. vcpu->arch.last_run_cpu = -1;
  994. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  995. vcpu->arch.vsa_base = kvm_vsa_base;
  996. vcpu->arch.__gp = kvm_vmm_gp;
  997. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  998. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  999. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1000. init_ptce_info(vcpu);
  1001. r = 0;
  1002. out:
  1003. return r;
  1004. }
  1005. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1006. {
  1007. unsigned long psr;
  1008. int r;
  1009. local_irq_save(psr);
  1010. r = kvm_insert_vmm_mapping(vcpu);
  1011. if (r)
  1012. goto fail;
  1013. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1014. if (r)
  1015. goto fail;
  1016. r = vti_init_vpd(vcpu);
  1017. if (r) {
  1018. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1019. goto uninit;
  1020. }
  1021. r = vti_create_vp(vcpu);
  1022. if (r)
  1023. goto uninit;
  1024. kvm_purge_vmm_mapping(vcpu);
  1025. local_irq_restore(psr);
  1026. return 0;
  1027. uninit:
  1028. kvm_vcpu_uninit(vcpu);
  1029. fail:
  1030. local_irq_restore(psr);
  1031. return r;
  1032. }
  1033. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1034. unsigned int id)
  1035. {
  1036. struct kvm_vcpu *vcpu;
  1037. unsigned long vm_base = kvm->arch.vm_base;
  1038. int r;
  1039. int cpu;
  1040. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1041. r = -EINVAL;
  1042. if (id >= KVM_MAX_VCPUS) {
  1043. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1044. KVM_MAX_VCPUS);
  1045. goto fail;
  1046. }
  1047. r = -ENOMEM;
  1048. if (!vm_base) {
  1049. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1050. goto fail;
  1051. }
  1052. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1053. vcpu_data[id].vcpu_struct));
  1054. vcpu->kvm = kvm;
  1055. cpu = get_cpu();
  1056. vti_vcpu_load(vcpu, cpu);
  1057. r = vti_vcpu_setup(vcpu, id);
  1058. put_cpu();
  1059. if (r) {
  1060. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1061. goto fail;
  1062. }
  1063. return vcpu;
  1064. fail:
  1065. return ERR_PTR(r);
  1066. }
  1067. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1068. {
  1069. return 0;
  1070. }
  1071. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1072. {
  1073. return -EINVAL;
  1074. }
  1075. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1076. {
  1077. return -EINVAL;
  1078. }
  1079. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1080. struct kvm_debug_guest *dbg)
  1081. {
  1082. return -EINVAL;
  1083. }
  1084. static void free_kvm(struct kvm *kvm)
  1085. {
  1086. unsigned long vm_base = kvm->arch.vm_base;
  1087. if (vm_base) {
  1088. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1089. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1090. }
  1091. }
  1092. static void kvm_release_vm_pages(struct kvm *kvm)
  1093. {
  1094. struct kvm_memory_slot *memslot;
  1095. int i, j;
  1096. unsigned long base_gfn;
  1097. for (i = 0; i < kvm->nmemslots; i++) {
  1098. memslot = &kvm->memslots[i];
  1099. base_gfn = memslot->base_gfn;
  1100. for (j = 0; j < memslot->npages; j++) {
  1101. if (memslot->rmap[j])
  1102. put_page((struct page *)memslot->rmap[j]);
  1103. }
  1104. }
  1105. }
  1106. void kvm_arch_destroy_vm(struct kvm *kvm)
  1107. {
  1108. kvm_iommu_unmap_guest(kvm);
  1109. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1110. kvm_free_all_assigned_devices(kvm);
  1111. #endif
  1112. kfree(kvm->arch.vioapic);
  1113. kvm_release_vm_pages(kvm);
  1114. kvm_free_physmem(kvm);
  1115. free_kvm(kvm);
  1116. }
  1117. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1118. {
  1119. }
  1120. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1121. {
  1122. if (cpu != vcpu->cpu) {
  1123. vcpu->cpu = cpu;
  1124. if (vcpu->arch.ht_active)
  1125. kvm_migrate_hlt_timer(vcpu);
  1126. }
  1127. }
  1128. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1129. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1130. {
  1131. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1132. int i;
  1133. vcpu_load(vcpu);
  1134. for (i = 0; i < 16; i++) {
  1135. regs->vpd.vgr[i] = vpd->vgr[i];
  1136. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1137. }
  1138. for (i = 0; i < 128; i++)
  1139. regs->vpd.vcr[i] = vpd->vcr[i];
  1140. regs->vpd.vhpi = vpd->vhpi;
  1141. regs->vpd.vnat = vpd->vnat;
  1142. regs->vpd.vbnat = vpd->vbnat;
  1143. regs->vpd.vpsr = vpd->vpsr;
  1144. regs->vpd.vpr = vpd->vpr;
  1145. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1146. SAVE_REGS(mp_state);
  1147. SAVE_REGS(vmm_rr);
  1148. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1149. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1150. SAVE_REGS(itr_regions);
  1151. SAVE_REGS(dtr_regions);
  1152. SAVE_REGS(tc_regions);
  1153. SAVE_REGS(irq_check);
  1154. SAVE_REGS(itc_check);
  1155. SAVE_REGS(timer_check);
  1156. SAVE_REGS(timer_pending);
  1157. SAVE_REGS(last_itc);
  1158. for (i = 0; i < 8; i++) {
  1159. regs->vrr[i] = vcpu->arch.vrr[i];
  1160. regs->ibr[i] = vcpu->arch.ibr[i];
  1161. regs->dbr[i] = vcpu->arch.dbr[i];
  1162. }
  1163. for (i = 0; i < 4; i++)
  1164. regs->insvc[i] = vcpu->arch.insvc[i];
  1165. regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
  1166. SAVE_REGS(xtp);
  1167. SAVE_REGS(metaphysical_rr0);
  1168. SAVE_REGS(metaphysical_rr4);
  1169. SAVE_REGS(metaphysical_saved_rr0);
  1170. SAVE_REGS(metaphysical_saved_rr4);
  1171. SAVE_REGS(fp_psr);
  1172. SAVE_REGS(saved_gp);
  1173. vcpu_put(vcpu);
  1174. return 0;
  1175. }
  1176. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1177. {
  1178. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1179. kfree(vcpu->arch.apic);
  1180. }
  1181. long kvm_arch_vcpu_ioctl(struct file *filp,
  1182. unsigned int ioctl, unsigned long arg)
  1183. {
  1184. return -EINVAL;
  1185. }
  1186. int kvm_arch_set_memory_region(struct kvm *kvm,
  1187. struct kvm_userspace_memory_region *mem,
  1188. struct kvm_memory_slot old,
  1189. int user_alloc)
  1190. {
  1191. unsigned long i;
  1192. unsigned long pfn;
  1193. int npages = mem->memory_size >> PAGE_SHIFT;
  1194. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  1195. unsigned long base_gfn = memslot->base_gfn;
  1196. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1197. return -ENOMEM;
  1198. for (i = 0; i < npages; i++) {
  1199. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1200. if (!kvm_is_mmio_pfn(pfn)) {
  1201. kvm_set_pmt_entry(kvm, base_gfn + i,
  1202. pfn << PAGE_SHIFT,
  1203. _PAGE_AR_RWX | _PAGE_MA_WB);
  1204. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1205. } else {
  1206. kvm_set_pmt_entry(kvm, base_gfn + i,
  1207. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1208. _PAGE_MA_UC);
  1209. memslot->rmap[i] = 0;
  1210. }
  1211. }
  1212. return 0;
  1213. }
  1214. void kvm_arch_flush_shadow(struct kvm *kvm)
  1215. {
  1216. }
  1217. long kvm_arch_dev_ioctl(struct file *filp,
  1218. unsigned int ioctl, unsigned long arg)
  1219. {
  1220. return -EINVAL;
  1221. }
  1222. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1223. {
  1224. kvm_vcpu_uninit(vcpu);
  1225. }
  1226. static int vti_cpu_has_kvm_support(void)
  1227. {
  1228. long avail = 1, status = 1, control = 1;
  1229. long ret;
  1230. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1231. if (ret)
  1232. goto out;
  1233. if (!(avail & PAL_PROC_VM_BIT))
  1234. goto out;
  1235. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1236. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1237. if (ret)
  1238. goto out;
  1239. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1240. if (!(vp_env_info & VP_OPCODE)) {
  1241. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1242. "vm_env_info:0x%lx\n", vp_env_info);
  1243. }
  1244. return 1;
  1245. out:
  1246. return 0;
  1247. }
  1248. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1249. struct module *module)
  1250. {
  1251. unsigned long module_base;
  1252. unsigned long vmm_size;
  1253. unsigned long vmm_offset, func_offset, fdesc_offset;
  1254. struct fdesc *p_fdesc;
  1255. BUG_ON(!module);
  1256. if (!kvm_vmm_base) {
  1257. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1258. return -EFAULT;
  1259. }
  1260. /*Calculate new position of relocated vmm module.*/
  1261. module_base = (unsigned long)module->module_core;
  1262. vmm_size = module->core_size;
  1263. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1264. return -EFAULT;
  1265. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1266. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1267. /*Recalculate kvm_vmm_info based on new VMM*/
  1268. vmm_offset = vmm_info->vmm_ivt - module_base;
  1269. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1270. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1271. kvm_vmm_info->vmm_ivt);
  1272. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1273. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1274. fdesc_offset);
  1275. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1276. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1277. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1278. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1279. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1280. KVM_VMM_BASE+func_offset);
  1281. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1282. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1283. fdesc_offset);
  1284. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1285. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1286. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1287. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1288. kvm_vmm_gp = p_fdesc->gp;
  1289. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1290. kvm_vmm_info->vmm_entry);
  1291. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1292. KVM_VMM_BASE + func_offset);
  1293. return 0;
  1294. }
  1295. int kvm_arch_init(void *opaque)
  1296. {
  1297. int r;
  1298. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1299. if (!vti_cpu_has_kvm_support()) {
  1300. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1301. r = -EOPNOTSUPP;
  1302. goto out;
  1303. }
  1304. if (kvm_vmm_info) {
  1305. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1306. r = -EEXIST;
  1307. goto out;
  1308. }
  1309. r = -ENOMEM;
  1310. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1311. if (!kvm_vmm_info)
  1312. goto out;
  1313. if (kvm_alloc_vmm_area())
  1314. goto out_free0;
  1315. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1316. if (r)
  1317. goto out_free1;
  1318. return 0;
  1319. out_free1:
  1320. kvm_free_vmm_area();
  1321. out_free0:
  1322. kfree(kvm_vmm_info);
  1323. out:
  1324. return r;
  1325. }
  1326. void kvm_arch_exit(void)
  1327. {
  1328. kvm_free_vmm_area();
  1329. kfree(kvm_vmm_info);
  1330. kvm_vmm_info = NULL;
  1331. }
  1332. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1333. struct kvm_dirty_log *log)
  1334. {
  1335. struct kvm_memory_slot *memslot;
  1336. int r, i;
  1337. long n, base;
  1338. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1339. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1340. r = -EINVAL;
  1341. if (log->slot >= KVM_MEMORY_SLOTS)
  1342. goto out;
  1343. memslot = &kvm->memslots[log->slot];
  1344. r = -ENOENT;
  1345. if (!memslot->dirty_bitmap)
  1346. goto out;
  1347. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1348. base = memslot->base_gfn / BITS_PER_LONG;
  1349. for (i = 0; i < n/sizeof(long); ++i) {
  1350. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1351. dirty_bitmap[base + i] = 0;
  1352. }
  1353. r = 0;
  1354. out:
  1355. return r;
  1356. }
  1357. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1358. struct kvm_dirty_log *log)
  1359. {
  1360. int r;
  1361. int n;
  1362. struct kvm_memory_slot *memslot;
  1363. int is_dirty = 0;
  1364. spin_lock(&kvm->arch.dirty_log_lock);
  1365. r = kvm_ia64_sync_dirty_log(kvm, log);
  1366. if (r)
  1367. goto out;
  1368. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1369. if (r)
  1370. goto out;
  1371. /* If nothing is dirty, don't bother messing with page tables. */
  1372. if (is_dirty) {
  1373. kvm_flush_remote_tlbs(kvm);
  1374. memslot = &kvm->memslots[log->slot];
  1375. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1376. memset(memslot->dirty_bitmap, 0, n);
  1377. }
  1378. r = 0;
  1379. out:
  1380. spin_unlock(&kvm->arch.dirty_log_lock);
  1381. return r;
  1382. }
  1383. int kvm_arch_hardware_setup(void)
  1384. {
  1385. return 0;
  1386. }
  1387. void kvm_arch_hardware_unsetup(void)
  1388. {
  1389. }
  1390. static void vcpu_kick_intr(void *info)
  1391. {
  1392. #ifdef DEBUG
  1393. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  1394. printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
  1395. #endif
  1396. }
  1397. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1398. {
  1399. int ipi_pcpu = vcpu->cpu;
  1400. int cpu = get_cpu();
  1401. if (waitqueue_active(&vcpu->wq))
  1402. wake_up_interruptible(&vcpu->wq);
  1403. if (vcpu->guest_mode && cpu != ipi_pcpu)
  1404. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  1405. put_cpu();
  1406. }
  1407. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
  1408. {
  1409. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1410. if (!test_and_set_bit(vec, &vpd->irr[0])) {
  1411. vcpu->arch.irq_new_pending = 1;
  1412. kvm_vcpu_kick(vcpu);
  1413. return 1;
  1414. }
  1415. return 0;
  1416. }
  1417. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1418. {
  1419. return apic->vcpu->vcpu_id == dest;
  1420. }
  1421. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1422. {
  1423. return 0;
  1424. }
  1425. struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
  1426. unsigned long bitmap)
  1427. {
  1428. struct kvm_vcpu *lvcpu = kvm->vcpus[0];
  1429. int i;
  1430. for (i = 1; i < KVM_MAX_VCPUS; i++) {
  1431. if (!kvm->vcpus[i])
  1432. continue;
  1433. if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
  1434. lvcpu = kvm->vcpus[i];
  1435. }
  1436. return lvcpu;
  1437. }
  1438. static int find_highest_bits(int *dat)
  1439. {
  1440. u32 bits, bitnum;
  1441. int i;
  1442. /* loop for all 256 bits */
  1443. for (i = 7; i >= 0 ; i--) {
  1444. bits = dat[i];
  1445. if (bits) {
  1446. bitnum = fls(bits);
  1447. return i * 32 + bitnum - 1;
  1448. }
  1449. }
  1450. return -1;
  1451. }
  1452. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1453. {
  1454. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1455. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1456. return NMI_VECTOR;
  1457. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1458. return ExtINT_VECTOR;
  1459. return find_highest_bits((int *)&vpd->irr[0]);
  1460. }
  1461. int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
  1462. {
  1463. if (kvm_highest_pending_irq(vcpu) != -1)
  1464. return 1;
  1465. return 0;
  1466. }
  1467. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1468. {
  1469. return vcpu->arch.timer_fired;
  1470. }
  1471. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1472. {
  1473. return gfn;
  1474. }
  1475. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1476. {
  1477. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
  1478. }
  1479. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1480. struct kvm_mp_state *mp_state)
  1481. {
  1482. vcpu_load(vcpu);
  1483. mp_state->mp_state = vcpu->arch.mp_state;
  1484. vcpu_put(vcpu);
  1485. return 0;
  1486. }
  1487. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1488. {
  1489. int r;
  1490. long psr;
  1491. local_irq_save(psr);
  1492. r = kvm_insert_vmm_mapping(vcpu);
  1493. if (r)
  1494. goto fail;
  1495. vcpu->arch.launched = 0;
  1496. kvm_arch_vcpu_uninit(vcpu);
  1497. r = kvm_arch_vcpu_init(vcpu);
  1498. if (r)
  1499. goto fail;
  1500. kvm_purge_vmm_mapping(vcpu);
  1501. r = 0;
  1502. fail:
  1503. local_irq_restore(psr);
  1504. return r;
  1505. }
  1506. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1507. struct kvm_mp_state *mp_state)
  1508. {
  1509. int r = 0;
  1510. vcpu_load(vcpu);
  1511. vcpu->arch.mp_state = mp_state->mp_state;
  1512. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1513. r = vcpu_reset(vcpu);
  1514. vcpu_put(vcpu);
  1515. return r;
  1516. }