sock.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #include <linux/capability.h>
  92. #include <linux/errno.h>
  93. #include <linux/types.h>
  94. #include <linux/socket.h>
  95. #include <linux/in.h>
  96. #include <linux/kernel.h>
  97. #include <linux/module.h>
  98. #include <linux/proc_fs.h>
  99. #include <linux/seq_file.h>
  100. #include <linux/sched.h>
  101. #include <linux/timer.h>
  102. #include <linux/string.h>
  103. #include <linux/sockios.h>
  104. #include <linux/net.h>
  105. #include <linux/mm.h>
  106. #include <linux/slab.h>
  107. #include <linux/interrupt.h>
  108. #include <linux/poll.h>
  109. #include <linux/tcp.h>
  110. #include <linux/init.h>
  111. #include <linux/highmem.h>
  112. #include <linux/user_namespace.h>
  113. #include <asm/uaccess.h>
  114. #include <asm/system.h>
  115. #include <linux/netdevice.h>
  116. #include <net/protocol.h>
  117. #include <linux/skbuff.h>
  118. #include <net/net_namespace.h>
  119. #include <net/request_sock.h>
  120. #include <net/sock.h>
  121. #include <linux/net_tstamp.h>
  122. #include <net/xfrm.h>
  123. #include <linux/ipsec.h>
  124. #include <net/cls_cgroup.h>
  125. #include <linux/filter.h>
  126. #include <trace/events/sock.h>
  127. #ifdef CONFIG_INET
  128. #include <net/tcp.h>
  129. #endif
  130. /*
  131. * Each address family might have different locking rules, so we have
  132. * one slock key per address family:
  133. */
  134. static struct lock_class_key af_family_keys[AF_MAX];
  135. static struct lock_class_key af_family_slock_keys[AF_MAX];
  136. /*
  137. * Make lock validator output more readable. (we pre-construct these
  138. * strings build-time, so that runtime initialization of socket
  139. * locks is fast):
  140. */
  141. static const char *const af_family_key_strings[AF_MAX+1] = {
  142. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  143. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  144. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  145. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  146. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  147. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  148. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  149. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  150. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  151. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  152. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  153. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  154. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  155. "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
  156. };
  157. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  158. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  159. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  160. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  161. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  162. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  163. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  164. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  165. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  166. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  167. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  168. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  169. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  170. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  171. "slock-AF_NFC" , "slock-AF_MAX"
  172. };
  173. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  174. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  175. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  176. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  177. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  178. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  179. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  180. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  181. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  182. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  183. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  184. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  185. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  186. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  187. "clock-AF_NFC" , "clock-AF_MAX"
  188. };
  189. /*
  190. * sk_callback_lock locking rules are per-address-family,
  191. * so split the lock classes by using a per-AF key:
  192. */
  193. static struct lock_class_key af_callback_keys[AF_MAX];
  194. /* Take into consideration the size of the struct sk_buff overhead in the
  195. * determination of these values, since that is non-constant across
  196. * platforms. This makes socket queueing behavior and performance
  197. * not depend upon such differences.
  198. */
  199. #define _SK_MEM_PACKETS 256
  200. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  201. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  202. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  203. /* Run time adjustable parameters. */
  204. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  205. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  206. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  207. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  208. /* Maximal space eaten by iovec or ancillary data plus some space */
  209. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  210. EXPORT_SYMBOL(sysctl_optmem_max);
  211. #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
  212. int net_cls_subsys_id = -1;
  213. EXPORT_SYMBOL_GPL(net_cls_subsys_id);
  214. #endif
  215. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  216. {
  217. struct timeval tv;
  218. if (optlen < sizeof(tv))
  219. return -EINVAL;
  220. if (copy_from_user(&tv, optval, sizeof(tv)))
  221. return -EFAULT;
  222. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  223. return -EDOM;
  224. if (tv.tv_sec < 0) {
  225. static int warned __read_mostly;
  226. *timeo_p = 0;
  227. if (warned < 10 && net_ratelimit()) {
  228. warned++;
  229. printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
  230. "tries to set negative timeout\n",
  231. current->comm, task_pid_nr(current));
  232. }
  233. return 0;
  234. }
  235. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  236. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  237. return 0;
  238. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  239. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  240. return 0;
  241. }
  242. static void sock_warn_obsolete_bsdism(const char *name)
  243. {
  244. static int warned;
  245. static char warncomm[TASK_COMM_LEN];
  246. if (strcmp(warncomm, current->comm) && warned < 5) {
  247. strcpy(warncomm, current->comm);
  248. printk(KERN_WARNING "process `%s' is using obsolete "
  249. "%s SO_BSDCOMPAT\n", warncomm, name);
  250. warned++;
  251. }
  252. }
  253. static void sock_disable_timestamp(struct sock *sk, int flag)
  254. {
  255. if (sock_flag(sk, flag)) {
  256. sock_reset_flag(sk, flag);
  257. if (!sock_flag(sk, SOCK_TIMESTAMP) &&
  258. !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
  259. net_disable_timestamp();
  260. }
  261. }
  262. }
  263. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  264. {
  265. int err;
  266. int skb_len;
  267. unsigned long flags;
  268. struct sk_buff_head *list = &sk->sk_receive_queue;
  269. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  270. atomic_inc(&sk->sk_drops);
  271. trace_sock_rcvqueue_full(sk, skb);
  272. return -ENOMEM;
  273. }
  274. err = sk_filter(sk, skb);
  275. if (err)
  276. return err;
  277. if (!sk_rmem_schedule(sk, skb->truesize)) {
  278. atomic_inc(&sk->sk_drops);
  279. return -ENOBUFS;
  280. }
  281. skb->dev = NULL;
  282. skb_set_owner_r(skb, sk);
  283. /* Cache the SKB length before we tack it onto the receive
  284. * queue. Once it is added it no longer belongs to us and
  285. * may be freed by other threads of control pulling packets
  286. * from the queue.
  287. */
  288. skb_len = skb->len;
  289. /* we escape from rcu protected region, make sure we dont leak
  290. * a norefcounted dst
  291. */
  292. skb_dst_force(skb);
  293. spin_lock_irqsave(&list->lock, flags);
  294. skb->dropcount = atomic_read(&sk->sk_drops);
  295. __skb_queue_tail(list, skb);
  296. spin_unlock_irqrestore(&list->lock, flags);
  297. if (!sock_flag(sk, SOCK_DEAD))
  298. sk->sk_data_ready(sk, skb_len);
  299. return 0;
  300. }
  301. EXPORT_SYMBOL(sock_queue_rcv_skb);
  302. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  303. {
  304. int rc = NET_RX_SUCCESS;
  305. if (sk_filter(sk, skb))
  306. goto discard_and_relse;
  307. skb->dev = NULL;
  308. if (sk_rcvqueues_full(sk, skb)) {
  309. atomic_inc(&sk->sk_drops);
  310. goto discard_and_relse;
  311. }
  312. if (nested)
  313. bh_lock_sock_nested(sk);
  314. else
  315. bh_lock_sock(sk);
  316. if (!sock_owned_by_user(sk)) {
  317. /*
  318. * trylock + unlock semantics:
  319. */
  320. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  321. rc = sk_backlog_rcv(sk, skb);
  322. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  323. } else if (sk_add_backlog(sk, skb)) {
  324. bh_unlock_sock(sk);
  325. atomic_inc(&sk->sk_drops);
  326. goto discard_and_relse;
  327. }
  328. bh_unlock_sock(sk);
  329. out:
  330. sock_put(sk);
  331. return rc;
  332. discard_and_relse:
  333. kfree_skb(skb);
  334. goto out;
  335. }
  336. EXPORT_SYMBOL(sk_receive_skb);
  337. void sk_reset_txq(struct sock *sk)
  338. {
  339. sk_tx_queue_clear(sk);
  340. }
  341. EXPORT_SYMBOL(sk_reset_txq);
  342. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  343. {
  344. struct dst_entry *dst = __sk_dst_get(sk);
  345. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  346. sk_tx_queue_clear(sk);
  347. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  348. dst_release(dst);
  349. return NULL;
  350. }
  351. return dst;
  352. }
  353. EXPORT_SYMBOL(__sk_dst_check);
  354. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  355. {
  356. struct dst_entry *dst = sk_dst_get(sk);
  357. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  358. sk_dst_reset(sk);
  359. dst_release(dst);
  360. return NULL;
  361. }
  362. return dst;
  363. }
  364. EXPORT_SYMBOL(sk_dst_check);
  365. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  366. {
  367. int ret = -ENOPROTOOPT;
  368. #ifdef CONFIG_NETDEVICES
  369. struct net *net = sock_net(sk);
  370. char devname[IFNAMSIZ];
  371. int index;
  372. /* Sorry... */
  373. ret = -EPERM;
  374. if (!capable(CAP_NET_RAW))
  375. goto out;
  376. ret = -EINVAL;
  377. if (optlen < 0)
  378. goto out;
  379. /* Bind this socket to a particular device like "eth0",
  380. * as specified in the passed interface name. If the
  381. * name is "" or the option length is zero the socket
  382. * is not bound.
  383. */
  384. if (optlen > IFNAMSIZ - 1)
  385. optlen = IFNAMSIZ - 1;
  386. memset(devname, 0, sizeof(devname));
  387. ret = -EFAULT;
  388. if (copy_from_user(devname, optval, optlen))
  389. goto out;
  390. index = 0;
  391. if (devname[0] != '\0') {
  392. struct net_device *dev;
  393. rcu_read_lock();
  394. dev = dev_get_by_name_rcu(net, devname);
  395. if (dev)
  396. index = dev->ifindex;
  397. rcu_read_unlock();
  398. ret = -ENODEV;
  399. if (!dev)
  400. goto out;
  401. }
  402. lock_sock(sk);
  403. sk->sk_bound_dev_if = index;
  404. sk_dst_reset(sk);
  405. release_sock(sk);
  406. ret = 0;
  407. out:
  408. #endif
  409. return ret;
  410. }
  411. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  412. {
  413. if (valbool)
  414. sock_set_flag(sk, bit);
  415. else
  416. sock_reset_flag(sk, bit);
  417. }
  418. /*
  419. * This is meant for all protocols to use and covers goings on
  420. * at the socket level. Everything here is generic.
  421. */
  422. int sock_setsockopt(struct socket *sock, int level, int optname,
  423. char __user *optval, unsigned int optlen)
  424. {
  425. struct sock *sk = sock->sk;
  426. int val;
  427. int valbool;
  428. struct linger ling;
  429. int ret = 0;
  430. /*
  431. * Options without arguments
  432. */
  433. if (optname == SO_BINDTODEVICE)
  434. return sock_bindtodevice(sk, optval, optlen);
  435. if (optlen < sizeof(int))
  436. return -EINVAL;
  437. if (get_user(val, (int __user *)optval))
  438. return -EFAULT;
  439. valbool = val ? 1 : 0;
  440. lock_sock(sk);
  441. switch (optname) {
  442. case SO_DEBUG:
  443. if (val && !capable(CAP_NET_ADMIN))
  444. ret = -EACCES;
  445. else
  446. sock_valbool_flag(sk, SOCK_DBG, valbool);
  447. break;
  448. case SO_REUSEADDR:
  449. sk->sk_reuse = valbool;
  450. break;
  451. case SO_TYPE:
  452. case SO_PROTOCOL:
  453. case SO_DOMAIN:
  454. case SO_ERROR:
  455. ret = -ENOPROTOOPT;
  456. break;
  457. case SO_DONTROUTE:
  458. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  459. break;
  460. case SO_BROADCAST:
  461. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  462. break;
  463. case SO_SNDBUF:
  464. /* Don't error on this BSD doesn't and if you think
  465. about it this is right. Otherwise apps have to
  466. play 'guess the biggest size' games. RCVBUF/SNDBUF
  467. are treated in BSD as hints */
  468. if (val > sysctl_wmem_max)
  469. val = sysctl_wmem_max;
  470. set_sndbuf:
  471. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  472. if ((val * 2) < SOCK_MIN_SNDBUF)
  473. sk->sk_sndbuf = SOCK_MIN_SNDBUF;
  474. else
  475. sk->sk_sndbuf = val * 2;
  476. /*
  477. * Wake up sending tasks if we
  478. * upped the value.
  479. */
  480. sk->sk_write_space(sk);
  481. break;
  482. case SO_SNDBUFFORCE:
  483. if (!capable(CAP_NET_ADMIN)) {
  484. ret = -EPERM;
  485. break;
  486. }
  487. goto set_sndbuf;
  488. case SO_RCVBUF:
  489. /* Don't error on this BSD doesn't and if you think
  490. about it this is right. Otherwise apps have to
  491. play 'guess the biggest size' games. RCVBUF/SNDBUF
  492. are treated in BSD as hints */
  493. if (val > sysctl_rmem_max)
  494. val = sysctl_rmem_max;
  495. set_rcvbuf:
  496. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  497. /*
  498. * We double it on the way in to account for
  499. * "struct sk_buff" etc. overhead. Applications
  500. * assume that the SO_RCVBUF setting they make will
  501. * allow that much actual data to be received on that
  502. * socket.
  503. *
  504. * Applications are unaware that "struct sk_buff" and
  505. * other overheads allocate from the receive buffer
  506. * during socket buffer allocation.
  507. *
  508. * And after considering the possible alternatives,
  509. * returning the value we actually used in getsockopt
  510. * is the most desirable behavior.
  511. */
  512. if ((val * 2) < SOCK_MIN_RCVBUF)
  513. sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
  514. else
  515. sk->sk_rcvbuf = val * 2;
  516. break;
  517. case SO_RCVBUFFORCE:
  518. if (!capable(CAP_NET_ADMIN)) {
  519. ret = -EPERM;
  520. break;
  521. }
  522. goto set_rcvbuf;
  523. case SO_KEEPALIVE:
  524. #ifdef CONFIG_INET
  525. if (sk->sk_protocol == IPPROTO_TCP)
  526. tcp_set_keepalive(sk, valbool);
  527. #endif
  528. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  529. break;
  530. case SO_OOBINLINE:
  531. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  532. break;
  533. case SO_NO_CHECK:
  534. sk->sk_no_check = valbool;
  535. break;
  536. case SO_PRIORITY:
  537. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  538. sk->sk_priority = val;
  539. else
  540. ret = -EPERM;
  541. break;
  542. case SO_LINGER:
  543. if (optlen < sizeof(ling)) {
  544. ret = -EINVAL; /* 1003.1g */
  545. break;
  546. }
  547. if (copy_from_user(&ling, optval, sizeof(ling))) {
  548. ret = -EFAULT;
  549. break;
  550. }
  551. if (!ling.l_onoff)
  552. sock_reset_flag(sk, SOCK_LINGER);
  553. else {
  554. #if (BITS_PER_LONG == 32)
  555. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  556. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  557. else
  558. #endif
  559. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  560. sock_set_flag(sk, SOCK_LINGER);
  561. }
  562. break;
  563. case SO_BSDCOMPAT:
  564. sock_warn_obsolete_bsdism("setsockopt");
  565. break;
  566. case SO_PASSCRED:
  567. if (valbool)
  568. set_bit(SOCK_PASSCRED, &sock->flags);
  569. else
  570. clear_bit(SOCK_PASSCRED, &sock->flags);
  571. break;
  572. case SO_TIMESTAMP:
  573. case SO_TIMESTAMPNS:
  574. if (valbool) {
  575. if (optname == SO_TIMESTAMP)
  576. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  577. else
  578. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  579. sock_set_flag(sk, SOCK_RCVTSTAMP);
  580. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  581. } else {
  582. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  583. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  584. }
  585. break;
  586. case SO_TIMESTAMPING:
  587. if (val & ~SOF_TIMESTAMPING_MASK) {
  588. ret = -EINVAL;
  589. break;
  590. }
  591. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  592. val & SOF_TIMESTAMPING_TX_HARDWARE);
  593. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  594. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  595. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  596. val & SOF_TIMESTAMPING_RX_HARDWARE);
  597. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  598. sock_enable_timestamp(sk,
  599. SOCK_TIMESTAMPING_RX_SOFTWARE);
  600. else
  601. sock_disable_timestamp(sk,
  602. SOCK_TIMESTAMPING_RX_SOFTWARE);
  603. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  604. val & SOF_TIMESTAMPING_SOFTWARE);
  605. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  606. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  607. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  608. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  609. break;
  610. case SO_RCVLOWAT:
  611. if (val < 0)
  612. val = INT_MAX;
  613. sk->sk_rcvlowat = val ? : 1;
  614. break;
  615. case SO_RCVTIMEO:
  616. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  617. break;
  618. case SO_SNDTIMEO:
  619. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  620. break;
  621. case SO_ATTACH_FILTER:
  622. ret = -EINVAL;
  623. if (optlen == sizeof(struct sock_fprog)) {
  624. struct sock_fprog fprog;
  625. ret = -EFAULT;
  626. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  627. break;
  628. ret = sk_attach_filter(&fprog, sk);
  629. }
  630. break;
  631. case SO_DETACH_FILTER:
  632. ret = sk_detach_filter(sk);
  633. break;
  634. case SO_PASSSEC:
  635. if (valbool)
  636. set_bit(SOCK_PASSSEC, &sock->flags);
  637. else
  638. clear_bit(SOCK_PASSSEC, &sock->flags);
  639. break;
  640. case SO_MARK:
  641. if (!capable(CAP_NET_ADMIN))
  642. ret = -EPERM;
  643. else
  644. sk->sk_mark = val;
  645. break;
  646. /* We implement the SO_SNDLOWAT etc to
  647. not be settable (1003.1g 5.3) */
  648. case SO_RXQ_OVFL:
  649. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  650. break;
  651. default:
  652. ret = -ENOPROTOOPT;
  653. break;
  654. }
  655. release_sock(sk);
  656. return ret;
  657. }
  658. EXPORT_SYMBOL(sock_setsockopt);
  659. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  660. struct ucred *ucred)
  661. {
  662. ucred->pid = pid_vnr(pid);
  663. ucred->uid = ucred->gid = -1;
  664. if (cred) {
  665. struct user_namespace *current_ns = current_user_ns();
  666. ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
  667. ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
  668. }
  669. }
  670. EXPORT_SYMBOL_GPL(cred_to_ucred);
  671. int sock_getsockopt(struct socket *sock, int level, int optname,
  672. char __user *optval, int __user *optlen)
  673. {
  674. struct sock *sk = sock->sk;
  675. union {
  676. int val;
  677. struct linger ling;
  678. struct timeval tm;
  679. } v;
  680. int lv = sizeof(int);
  681. int len;
  682. if (get_user(len, optlen))
  683. return -EFAULT;
  684. if (len < 0)
  685. return -EINVAL;
  686. memset(&v, 0, sizeof(v));
  687. switch (optname) {
  688. case SO_DEBUG:
  689. v.val = sock_flag(sk, SOCK_DBG);
  690. break;
  691. case SO_DONTROUTE:
  692. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  693. break;
  694. case SO_BROADCAST:
  695. v.val = !!sock_flag(sk, SOCK_BROADCAST);
  696. break;
  697. case SO_SNDBUF:
  698. v.val = sk->sk_sndbuf;
  699. break;
  700. case SO_RCVBUF:
  701. v.val = sk->sk_rcvbuf;
  702. break;
  703. case SO_REUSEADDR:
  704. v.val = sk->sk_reuse;
  705. break;
  706. case SO_KEEPALIVE:
  707. v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
  708. break;
  709. case SO_TYPE:
  710. v.val = sk->sk_type;
  711. break;
  712. case SO_PROTOCOL:
  713. v.val = sk->sk_protocol;
  714. break;
  715. case SO_DOMAIN:
  716. v.val = sk->sk_family;
  717. break;
  718. case SO_ERROR:
  719. v.val = -sock_error(sk);
  720. if (v.val == 0)
  721. v.val = xchg(&sk->sk_err_soft, 0);
  722. break;
  723. case SO_OOBINLINE:
  724. v.val = !!sock_flag(sk, SOCK_URGINLINE);
  725. break;
  726. case SO_NO_CHECK:
  727. v.val = sk->sk_no_check;
  728. break;
  729. case SO_PRIORITY:
  730. v.val = sk->sk_priority;
  731. break;
  732. case SO_LINGER:
  733. lv = sizeof(v.ling);
  734. v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
  735. v.ling.l_linger = sk->sk_lingertime / HZ;
  736. break;
  737. case SO_BSDCOMPAT:
  738. sock_warn_obsolete_bsdism("getsockopt");
  739. break;
  740. case SO_TIMESTAMP:
  741. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  742. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  743. break;
  744. case SO_TIMESTAMPNS:
  745. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  746. break;
  747. case SO_TIMESTAMPING:
  748. v.val = 0;
  749. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  750. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  751. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  752. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  753. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  754. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  755. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  756. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  757. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  758. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  759. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  760. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  761. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  762. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  763. break;
  764. case SO_RCVTIMEO:
  765. lv = sizeof(struct timeval);
  766. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  767. v.tm.tv_sec = 0;
  768. v.tm.tv_usec = 0;
  769. } else {
  770. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  771. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  772. }
  773. break;
  774. case SO_SNDTIMEO:
  775. lv = sizeof(struct timeval);
  776. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  777. v.tm.tv_sec = 0;
  778. v.tm.tv_usec = 0;
  779. } else {
  780. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  781. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  782. }
  783. break;
  784. case SO_RCVLOWAT:
  785. v.val = sk->sk_rcvlowat;
  786. break;
  787. case SO_SNDLOWAT:
  788. v.val = 1;
  789. break;
  790. case SO_PASSCRED:
  791. v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
  792. break;
  793. case SO_PEERCRED:
  794. {
  795. struct ucred peercred;
  796. if (len > sizeof(peercred))
  797. len = sizeof(peercred);
  798. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  799. if (copy_to_user(optval, &peercred, len))
  800. return -EFAULT;
  801. goto lenout;
  802. }
  803. case SO_PEERNAME:
  804. {
  805. char address[128];
  806. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  807. return -ENOTCONN;
  808. if (lv < len)
  809. return -EINVAL;
  810. if (copy_to_user(optval, address, len))
  811. return -EFAULT;
  812. goto lenout;
  813. }
  814. /* Dubious BSD thing... Probably nobody even uses it, but
  815. * the UNIX standard wants it for whatever reason... -DaveM
  816. */
  817. case SO_ACCEPTCONN:
  818. v.val = sk->sk_state == TCP_LISTEN;
  819. break;
  820. case SO_PASSSEC:
  821. v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
  822. break;
  823. case SO_PEERSEC:
  824. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  825. case SO_MARK:
  826. v.val = sk->sk_mark;
  827. break;
  828. case SO_RXQ_OVFL:
  829. v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
  830. break;
  831. default:
  832. return -ENOPROTOOPT;
  833. }
  834. if (len > lv)
  835. len = lv;
  836. if (copy_to_user(optval, &v, len))
  837. return -EFAULT;
  838. lenout:
  839. if (put_user(len, optlen))
  840. return -EFAULT;
  841. return 0;
  842. }
  843. /*
  844. * Initialize an sk_lock.
  845. *
  846. * (We also register the sk_lock with the lock validator.)
  847. */
  848. static inline void sock_lock_init(struct sock *sk)
  849. {
  850. sock_lock_init_class_and_name(sk,
  851. af_family_slock_key_strings[sk->sk_family],
  852. af_family_slock_keys + sk->sk_family,
  853. af_family_key_strings[sk->sk_family],
  854. af_family_keys + sk->sk_family);
  855. }
  856. /*
  857. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  858. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  859. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  860. */
  861. static void sock_copy(struct sock *nsk, const struct sock *osk)
  862. {
  863. #ifdef CONFIG_SECURITY_NETWORK
  864. void *sptr = nsk->sk_security;
  865. #endif
  866. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  867. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  868. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  869. #ifdef CONFIG_SECURITY_NETWORK
  870. nsk->sk_security = sptr;
  871. security_sk_clone(osk, nsk);
  872. #endif
  873. }
  874. /*
  875. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  876. * un-modified. Special care is taken when initializing object to zero.
  877. */
  878. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  879. {
  880. if (offsetof(struct sock, sk_node.next) != 0)
  881. memset(sk, 0, offsetof(struct sock, sk_node.next));
  882. memset(&sk->sk_node.pprev, 0,
  883. size - offsetof(struct sock, sk_node.pprev));
  884. }
  885. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  886. {
  887. unsigned long nulls1, nulls2;
  888. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  889. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  890. if (nulls1 > nulls2)
  891. swap(nulls1, nulls2);
  892. if (nulls1 != 0)
  893. memset((char *)sk, 0, nulls1);
  894. memset((char *)sk + nulls1 + sizeof(void *), 0,
  895. nulls2 - nulls1 - sizeof(void *));
  896. memset((char *)sk + nulls2 + sizeof(void *), 0,
  897. size - nulls2 - sizeof(void *));
  898. }
  899. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  900. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  901. int family)
  902. {
  903. struct sock *sk;
  904. struct kmem_cache *slab;
  905. slab = prot->slab;
  906. if (slab != NULL) {
  907. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  908. if (!sk)
  909. return sk;
  910. if (priority & __GFP_ZERO) {
  911. if (prot->clear_sk)
  912. prot->clear_sk(sk, prot->obj_size);
  913. else
  914. sk_prot_clear_nulls(sk, prot->obj_size);
  915. }
  916. } else
  917. sk = kmalloc(prot->obj_size, priority);
  918. if (sk != NULL) {
  919. kmemcheck_annotate_bitfield(sk, flags);
  920. if (security_sk_alloc(sk, family, priority))
  921. goto out_free;
  922. if (!try_module_get(prot->owner))
  923. goto out_free_sec;
  924. sk_tx_queue_clear(sk);
  925. }
  926. return sk;
  927. out_free_sec:
  928. security_sk_free(sk);
  929. out_free:
  930. if (slab != NULL)
  931. kmem_cache_free(slab, sk);
  932. else
  933. kfree(sk);
  934. return NULL;
  935. }
  936. static void sk_prot_free(struct proto *prot, struct sock *sk)
  937. {
  938. struct kmem_cache *slab;
  939. struct module *owner;
  940. owner = prot->owner;
  941. slab = prot->slab;
  942. security_sk_free(sk);
  943. if (slab != NULL)
  944. kmem_cache_free(slab, sk);
  945. else
  946. kfree(sk);
  947. module_put(owner);
  948. }
  949. #ifdef CONFIG_CGROUPS
  950. void sock_update_classid(struct sock *sk)
  951. {
  952. u32 classid;
  953. rcu_read_lock(); /* doing current task, which cannot vanish. */
  954. classid = task_cls_classid(current);
  955. rcu_read_unlock();
  956. if (classid && classid != sk->sk_classid)
  957. sk->sk_classid = classid;
  958. }
  959. EXPORT_SYMBOL(sock_update_classid);
  960. #endif
  961. /**
  962. * sk_alloc - All socket objects are allocated here
  963. * @net: the applicable net namespace
  964. * @family: protocol family
  965. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  966. * @prot: struct proto associated with this new sock instance
  967. */
  968. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  969. struct proto *prot)
  970. {
  971. struct sock *sk;
  972. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  973. if (sk) {
  974. sk->sk_family = family;
  975. /*
  976. * See comment in struct sock definition to understand
  977. * why we need sk_prot_creator -acme
  978. */
  979. sk->sk_prot = sk->sk_prot_creator = prot;
  980. sock_lock_init(sk);
  981. sock_net_set(sk, get_net(net));
  982. atomic_set(&sk->sk_wmem_alloc, 1);
  983. sock_update_classid(sk);
  984. }
  985. return sk;
  986. }
  987. EXPORT_SYMBOL(sk_alloc);
  988. static void __sk_free(struct sock *sk)
  989. {
  990. struct sk_filter *filter;
  991. if (sk->sk_destruct)
  992. sk->sk_destruct(sk);
  993. filter = rcu_dereference_check(sk->sk_filter,
  994. atomic_read(&sk->sk_wmem_alloc) == 0);
  995. if (filter) {
  996. sk_filter_uncharge(sk, filter);
  997. RCU_INIT_POINTER(sk->sk_filter, NULL);
  998. }
  999. sock_disable_timestamp(sk, SOCK_TIMESTAMP);
  1000. sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
  1001. if (atomic_read(&sk->sk_omem_alloc))
  1002. printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
  1003. __func__, atomic_read(&sk->sk_omem_alloc));
  1004. if (sk->sk_peer_cred)
  1005. put_cred(sk->sk_peer_cred);
  1006. put_pid(sk->sk_peer_pid);
  1007. put_net(sock_net(sk));
  1008. sk_prot_free(sk->sk_prot_creator, sk);
  1009. }
  1010. void sk_free(struct sock *sk)
  1011. {
  1012. /*
  1013. * We subtract one from sk_wmem_alloc and can know if
  1014. * some packets are still in some tx queue.
  1015. * If not null, sock_wfree() will call __sk_free(sk) later
  1016. */
  1017. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1018. __sk_free(sk);
  1019. }
  1020. EXPORT_SYMBOL(sk_free);
  1021. /*
  1022. * Last sock_put should drop reference to sk->sk_net. It has already
  1023. * been dropped in sk_change_net. Taking reference to stopping namespace
  1024. * is not an option.
  1025. * Take reference to a socket to remove it from hash _alive_ and after that
  1026. * destroy it in the context of init_net.
  1027. */
  1028. void sk_release_kernel(struct sock *sk)
  1029. {
  1030. if (sk == NULL || sk->sk_socket == NULL)
  1031. return;
  1032. sock_hold(sk);
  1033. sock_release(sk->sk_socket);
  1034. release_net(sock_net(sk));
  1035. sock_net_set(sk, get_net(&init_net));
  1036. sock_put(sk);
  1037. }
  1038. EXPORT_SYMBOL(sk_release_kernel);
  1039. struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
  1040. {
  1041. struct sock *newsk;
  1042. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1043. if (newsk != NULL) {
  1044. struct sk_filter *filter;
  1045. sock_copy(newsk, sk);
  1046. /* SANITY */
  1047. get_net(sock_net(newsk));
  1048. sk_node_init(&newsk->sk_node);
  1049. sock_lock_init(newsk);
  1050. bh_lock_sock(newsk);
  1051. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1052. newsk->sk_backlog.len = 0;
  1053. atomic_set(&newsk->sk_rmem_alloc, 0);
  1054. /*
  1055. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1056. */
  1057. atomic_set(&newsk->sk_wmem_alloc, 1);
  1058. atomic_set(&newsk->sk_omem_alloc, 0);
  1059. skb_queue_head_init(&newsk->sk_receive_queue);
  1060. skb_queue_head_init(&newsk->sk_write_queue);
  1061. #ifdef CONFIG_NET_DMA
  1062. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1063. #endif
  1064. spin_lock_init(&newsk->sk_dst_lock);
  1065. rwlock_init(&newsk->sk_callback_lock);
  1066. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1067. af_callback_keys + newsk->sk_family,
  1068. af_family_clock_key_strings[newsk->sk_family]);
  1069. newsk->sk_dst_cache = NULL;
  1070. newsk->sk_wmem_queued = 0;
  1071. newsk->sk_forward_alloc = 0;
  1072. newsk->sk_send_head = NULL;
  1073. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1074. sock_reset_flag(newsk, SOCK_DONE);
  1075. skb_queue_head_init(&newsk->sk_error_queue);
  1076. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1077. if (filter != NULL)
  1078. sk_filter_charge(newsk, filter);
  1079. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1080. /* It is still raw copy of parent, so invalidate
  1081. * destructor and make plain sk_free() */
  1082. newsk->sk_destruct = NULL;
  1083. bh_unlock_sock(newsk);
  1084. sk_free(newsk);
  1085. newsk = NULL;
  1086. goto out;
  1087. }
  1088. newsk->sk_err = 0;
  1089. newsk->sk_priority = 0;
  1090. /*
  1091. * Before updating sk_refcnt, we must commit prior changes to memory
  1092. * (Documentation/RCU/rculist_nulls.txt for details)
  1093. */
  1094. smp_wmb();
  1095. atomic_set(&newsk->sk_refcnt, 2);
  1096. /*
  1097. * Increment the counter in the same struct proto as the master
  1098. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1099. * is the same as sk->sk_prot->socks, as this field was copied
  1100. * with memcpy).
  1101. *
  1102. * This _changes_ the previous behaviour, where
  1103. * tcp_create_openreq_child always was incrementing the
  1104. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1105. * to be taken into account in all callers. -acme
  1106. */
  1107. sk_refcnt_debug_inc(newsk);
  1108. sk_set_socket(newsk, NULL);
  1109. newsk->sk_wq = NULL;
  1110. if (newsk->sk_prot->sockets_allocated)
  1111. percpu_counter_inc(newsk->sk_prot->sockets_allocated);
  1112. if (sock_flag(newsk, SOCK_TIMESTAMP) ||
  1113. sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  1114. net_enable_timestamp();
  1115. }
  1116. out:
  1117. return newsk;
  1118. }
  1119. EXPORT_SYMBOL_GPL(sk_clone);
  1120. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1121. {
  1122. __sk_dst_set(sk, dst);
  1123. sk->sk_route_caps = dst->dev->features;
  1124. if (sk->sk_route_caps & NETIF_F_GSO)
  1125. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1126. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1127. if (sk_can_gso(sk)) {
  1128. if (dst->header_len) {
  1129. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1130. } else {
  1131. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1132. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1133. }
  1134. }
  1135. }
  1136. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1137. void __init sk_init(void)
  1138. {
  1139. if (totalram_pages <= 4096) {
  1140. sysctl_wmem_max = 32767;
  1141. sysctl_rmem_max = 32767;
  1142. sysctl_wmem_default = 32767;
  1143. sysctl_rmem_default = 32767;
  1144. } else if (totalram_pages >= 131072) {
  1145. sysctl_wmem_max = 131071;
  1146. sysctl_rmem_max = 131071;
  1147. }
  1148. }
  1149. /*
  1150. * Simple resource managers for sockets.
  1151. */
  1152. /*
  1153. * Write buffer destructor automatically called from kfree_skb.
  1154. */
  1155. void sock_wfree(struct sk_buff *skb)
  1156. {
  1157. struct sock *sk = skb->sk;
  1158. unsigned int len = skb->truesize;
  1159. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1160. /*
  1161. * Keep a reference on sk_wmem_alloc, this will be released
  1162. * after sk_write_space() call
  1163. */
  1164. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1165. sk->sk_write_space(sk);
  1166. len = 1;
  1167. }
  1168. /*
  1169. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1170. * could not do because of in-flight packets
  1171. */
  1172. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1173. __sk_free(sk);
  1174. }
  1175. EXPORT_SYMBOL(sock_wfree);
  1176. /*
  1177. * Read buffer destructor automatically called from kfree_skb.
  1178. */
  1179. void sock_rfree(struct sk_buff *skb)
  1180. {
  1181. struct sock *sk = skb->sk;
  1182. unsigned int len = skb->truesize;
  1183. atomic_sub(len, &sk->sk_rmem_alloc);
  1184. sk_mem_uncharge(sk, len);
  1185. }
  1186. EXPORT_SYMBOL(sock_rfree);
  1187. int sock_i_uid(struct sock *sk)
  1188. {
  1189. int uid;
  1190. read_lock_bh(&sk->sk_callback_lock);
  1191. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
  1192. read_unlock_bh(&sk->sk_callback_lock);
  1193. return uid;
  1194. }
  1195. EXPORT_SYMBOL(sock_i_uid);
  1196. unsigned long sock_i_ino(struct sock *sk)
  1197. {
  1198. unsigned long ino;
  1199. read_lock_bh(&sk->sk_callback_lock);
  1200. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1201. read_unlock_bh(&sk->sk_callback_lock);
  1202. return ino;
  1203. }
  1204. EXPORT_SYMBOL(sock_i_ino);
  1205. /*
  1206. * Allocate a skb from the socket's send buffer.
  1207. */
  1208. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1209. gfp_t priority)
  1210. {
  1211. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1212. struct sk_buff *skb = alloc_skb(size, priority);
  1213. if (skb) {
  1214. skb_set_owner_w(skb, sk);
  1215. return skb;
  1216. }
  1217. }
  1218. return NULL;
  1219. }
  1220. EXPORT_SYMBOL(sock_wmalloc);
  1221. /*
  1222. * Allocate a skb from the socket's receive buffer.
  1223. */
  1224. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1225. gfp_t priority)
  1226. {
  1227. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1228. struct sk_buff *skb = alloc_skb(size, priority);
  1229. if (skb) {
  1230. skb_set_owner_r(skb, sk);
  1231. return skb;
  1232. }
  1233. }
  1234. return NULL;
  1235. }
  1236. /*
  1237. * Allocate a memory block from the socket's option memory buffer.
  1238. */
  1239. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1240. {
  1241. if ((unsigned)size <= sysctl_optmem_max &&
  1242. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1243. void *mem;
  1244. /* First do the add, to avoid the race if kmalloc
  1245. * might sleep.
  1246. */
  1247. atomic_add(size, &sk->sk_omem_alloc);
  1248. mem = kmalloc(size, priority);
  1249. if (mem)
  1250. return mem;
  1251. atomic_sub(size, &sk->sk_omem_alloc);
  1252. }
  1253. return NULL;
  1254. }
  1255. EXPORT_SYMBOL(sock_kmalloc);
  1256. /*
  1257. * Free an option memory block.
  1258. */
  1259. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1260. {
  1261. kfree(mem);
  1262. atomic_sub(size, &sk->sk_omem_alloc);
  1263. }
  1264. EXPORT_SYMBOL(sock_kfree_s);
  1265. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1266. I think, these locks should be removed for datagram sockets.
  1267. */
  1268. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1269. {
  1270. DEFINE_WAIT(wait);
  1271. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1272. for (;;) {
  1273. if (!timeo)
  1274. break;
  1275. if (signal_pending(current))
  1276. break;
  1277. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1278. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1279. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1280. break;
  1281. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1282. break;
  1283. if (sk->sk_err)
  1284. break;
  1285. timeo = schedule_timeout(timeo);
  1286. }
  1287. finish_wait(sk_sleep(sk), &wait);
  1288. return timeo;
  1289. }
  1290. /*
  1291. * Generic send/receive buffer handlers
  1292. */
  1293. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1294. unsigned long data_len, int noblock,
  1295. int *errcode)
  1296. {
  1297. struct sk_buff *skb;
  1298. gfp_t gfp_mask;
  1299. long timeo;
  1300. int err;
  1301. gfp_mask = sk->sk_allocation;
  1302. if (gfp_mask & __GFP_WAIT)
  1303. gfp_mask |= __GFP_REPEAT;
  1304. timeo = sock_sndtimeo(sk, noblock);
  1305. while (1) {
  1306. err = sock_error(sk);
  1307. if (err != 0)
  1308. goto failure;
  1309. err = -EPIPE;
  1310. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1311. goto failure;
  1312. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1313. skb = alloc_skb(header_len, gfp_mask);
  1314. if (skb) {
  1315. int npages;
  1316. int i;
  1317. /* No pages, we're done... */
  1318. if (!data_len)
  1319. break;
  1320. npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1321. skb->truesize += data_len;
  1322. skb_shinfo(skb)->nr_frags = npages;
  1323. for (i = 0; i < npages; i++) {
  1324. struct page *page;
  1325. page = alloc_pages(sk->sk_allocation, 0);
  1326. if (!page) {
  1327. err = -ENOBUFS;
  1328. skb_shinfo(skb)->nr_frags = i;
  1329. kfree_skb(skb);
  1330. goto failure;
  1331. }
  1332. __skb_fill_page_desc(skb, i,
  1333. page, 0,
  1334. (data_len >= PAGE_SIZE ?
  1335. PAGE_SIZE :
  1336. data_len));
  1337. data_len -= PAGE_SIZE;
  1338. }
  1339. /* Full success... */
  1340. break;
  1341. }
  1342. err = -ENOBUFS;
  1343. goto failure;
  1344. }
  1345. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1346. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1347. err = -EAGAIN;
  1348. if (!timeo)
  1349. goto failure;
  1350. if (signal_pending(current))
  1351. goto interrupted;
  1352. timeo = sock_wait_for_wmem(sk, timeo);
  1353. }
  1354. skb_set_owner_w(skb, sk);
  1355. return skb;
  1356. interrupted:
  1357. err = sock_intr_errno(timeo);
  1358. failure:
  1359. *errcode = err;
  1360. return NULL;
  1361. }
  1362. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1363. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1364. int noblock, int *errcode)
  1365. {
  1366. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1367. }
  1368. EXPORT_SYMBOL(sock_alloc_send_skb);
  1369. static void __lock_sock(struct sock *sk)
  1370. __releases(&sk->sk_lock.slock)
  1371. __acquires(&sk->sk_lock.slock)
  1372. {
  1373. DEFINE_WAIT(wait);
  1374. for (;;) {
  1375. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1376. TASK_UNINTERRUPTIBLE);
  1377. spin_unlock_bh(&sk->sk_lock.slock);
  1378. schedule();
  1379. spin_lock_bh(&sk->sk_lock.slock);
  1380. if (!sock_owned_by_user(sk))
  1381. break;
  1382. }
  1383. finish_wait(&sk->sk_lock.wq, &wait);
  1384. }
  1385. static void __release_sock(struct sock *sk)
  1386. __releases(&sk->sk_lock.slock)
  1387. __acquires(&sk->sk_lock.slock)
  1388. {
  1389. struct sk_buff *skb = sk->sk_backlog.head;
  1390. do {
  1391. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1392. bh_unlock_sock(sk);
  1393. do {
  1394. struct sk_buff *next = skb->next;
  1395. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1396. skb->next = NULL;
  1397. sk_backlog_rcv(sk, skb);
  1398. /*
  1399. * We are in process context here with softirqs
  1400. * disabled, use cond_resched_softirq() to preempt.
  1401. * This is safe to do because we've taken the backlog
  1402. * queue private:
  1403. */
  1404. cond_resched_softirq();
  1405. skb = next;
  1406. } while (skb != NULL);
  1407. bh_lock_sock(sk);
  1408. } while ((skb = sk->sk_backlog.head) != NULL);
  1409. /*
  1410. * Doing the zeroing here guarantee we can not loop forever
  1411. * while a wild producer attempts to flood us.
  1412. */
  1413. sk->sk_backlog.len = 0;
  1414. }
  1415. /**
  1416. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1417. * @sk: sock to wait on
  1418. * @timeo: for how long
  1419. *
  1420. * Now socket state including sk->sk_err is changed only under lock,
  1421. * hence we may omit checks after joining wait queue.
  1422. * We check receive queue before schedule() only as optimization;
  1423. * it is very likely that release_sock() added new data.
  1424. */
  1425. int sk_wait_data(struct sock *sk, long *timeo)
  1426. {
  1427. int rc;
  1428. DEFINE_WAIT(wait);
  1429. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1430. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1431. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1432. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1433. finish_wait(sk_sleep(sk), &wait);
  1434. return rc;
  1435. }
  1436. EXPORT_SYMBOL(sk_wait_data);
  1437. /**
  1438. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1439. * @sk: socket
  1440. * @size: memory size to allocate
  1441. * @kind: allocation type
  1442. *
  1443. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1444. * rmem allocation. This function assumes that protocols which have
  1445. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1446. */
  1447. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1448. {
  1449. struct proto *prot = sk->sk_prot;
  1450. int amt = sk_mem_pages(size);
  1451. long allocated;
  1452. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1453. allocated = atomic_long_add_return(amt, prot->memory_allocated);
  1454. /* Under limit. */
  1455. if (allocated <= prot->sysctl_mem[0]) {
  1456. if (prot->memory_pressure && *prot->memory_pressure)
  1457. *prot->memory_pressure = 0;
  1458. return 1;
  1459. }
  1460. /* Under pressure. */
  1461. if (allocated > prot->sysctl_mem[1])
  1462. if (prot->enter_memory_pressure)
  1463. prot->enter_memory_pressure(sk);
  1464. /* Over hard limit. */
  1465. if (allocated > prot->sysctl_mem[2])
  1466. goto suppress_allocation;
  1467. /* guarantee minimum buffer size under pressure */
  1468. if (kind == SK_MEM_RECV) {
  1469. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1470. return 1;
  1471. } else { /* SK_MEM_SEND */
  1472. if (sk->sk_type == SOCK_STREAM) {
  1473. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1474. return 1;
  1475. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1476. prot->sysctl_wmem[0])
  1477. return 1;
  1478. }
  1479. if (prot->memory_pressure) {
  1480. int alloc;
  1481. if (!*prot->memory_pressure)
  1482. return 1;
  1483. alloc = percpu_counter_read_positive(prot->sockets_allocated);
  1484. if (prot->sysctl_mem[2] > alloc *
  1485. sk_mem_pages(sk->sk_wmem_queued +
  1486. atomic_read(&sk->sk_rmem_alloc) +
  1487. sk->sk_forward_alloc))
  1488. return 1;
  1489. }
  1490. suppress_allocation:
  1491. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1492. sk_stream_moderate_sndbuf(sk);
  1493. /* Fail only if socket is _under_ its sndbuf.
  1494. * In this case we cannot block, so that we have to fail.
  1495. */
  1496. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1497. return 1;
  1498. }
  1499. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1500. /* Alas. Undo changes. */
  1501. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1502. atomic_long_sub(amt, prot->memory_allocated);
  1503. return 0;
  1504. }
  1505. EXPORT_SYMBOL(__sk_mem_schedule);
  1506. /**
  1507. * __sk_reclaim - reclaim memory_allocated
  1508. * @sk: socket
  1509. */
  1510. void __sk_mem_reclaim(struct sock *sk)
  1511. {
  1512. struct proto *prot = sk->sk_prot;
  1513. atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
  1514. prot->memory_allocated);
  1515. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1516. if (prot->memory_pressure && *prot->memory_pressure &&
  1517. (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
  1518. *prot->memory_pressure = 0;
  1519. }
  1520. EXPORT_SYMBOL(__sk_mem_reclaim);
  1521. /*
  1522. * Set of default routines for initialising struct proto_ops when
  1523. * the protocol does not support a particular function. In certain
  1524. * cases where it makes no sense for a protocol to have a "do nothing"
  1525. * function, some default processing is provided.
  1526. */
  1527. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1528. {
  1529. return -EOPNOTSUPP;
  1530. }
  1531. EXPORT_SYMBOL(sock_no_bind);
  1532. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1533. int len, int flags)
  1534. {
  1535. return -EOPNOTSUPP;
  1536. }
  1537. EXPORT_SYMBOL(sock_no_connect);
  1538. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1539. {
  1540. return -EOPNOTSUPP;
  1541. }
  1542. EXPORT_SYMBOL(sock_no_socketpair);
  1543. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1544. {
  1545. return -EOPNOTSUPP;
  1546. }
  1547. EXPORT_SYMBOL(sock_no_accept);
  1548. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1549. int *len, int peer)
  1550. {
  1551. return -EOPNOTSUPP;
  1552. }
  1553. EXPORT_SYMBOL(sock_no_getname);
  1554. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1555. {
  1556. return 0;
  1557. }
  1558. EXPORT_SYMBOL(sock_no_poll);
  1559. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1560. {
  1561. return -EOPNOTSUPP;
  1562. }
  1563. EXPORT_SYMBOL(sock_no_ioctl);
  1564. int sock_no_listen(struct socket *sock, int backlog)
  1565. {
  1566. return -EOPNOTSUPP;
  1567. }
  1568. EXPORT_SYMBOL(sock_no_listen);
  1569. int sock_no_shutdown(struct socket *sock, int how)
  1570. {
  1571. return -EOPNOTSUPP;
  1572. }
  1573. EXPORT_SYMBOL(sock_no_shutdown);
  1574. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1575. char __user *optval, unsigned int optlen)
  1576. {
  1577. return -EOPNOTSUPP;
  1578. }
  1579. EXPORT_SYMBOL(sock_no_setsockopt);
  1580. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1581. char __user *optval, int __user *optlen)
  1582. {
  1583. return -EOPNOTSUPP;
  1584. }
  1585. EXPORT_SYMBOL(sock_no_getsockopt);
  1586. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1587. size_t len)
  1588. {
  1589. return -EOPNOTSUPP;
  1590. }
  1591. EXPORT_SYMBOL(sock_no_sendmsg);
  1592. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1593. size_t len, int flags)
  1594. {
  1595. return -EOPNOTSUPP;
  1596. }
  1597. EXPORT_SYMBOL(sock_no_recvmsg);
  1598. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1599. {
  1600. /* Mirror missing mmap method error code */
  1601. return -ENODEV;
  1602. }
  1603. EXPORT_SYMBOL(sock_no_mmap);
  1604. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1605. {
  1606. ssize_t res;
  1607. struct msghdr msg = {.msg_flags = flags};
  1608. struct kvec iov;
  1609. char *kaddr = kmap(page);
  1610. iov.iov_base = kaddr + offset;
  1611. iov.iov_len = size;
  1612. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1613. kunmap(page);
  1614. return res;
  1615. }
  1616. EXPORT_SYMBOL(sock_no_sendpage);
  1617. /*
  1618. * Default Socket Callbacks
  1619. */
  1620. static void sock_def_wakeup(struct sock *sk)
  1621. {
  1622. struct socket_wq *wq;
  1623. rcu_read_lock();
  1624. wq = rcu_dereference(sk->sk_wq);
  1625. if (wq_has_sleeper(wq))
  1626. wake_up_interruptible_all(&wq->wait);
  1627. rcu_read_unlock();
  1628. }
  1629. static void sock_def_error_report(struct sock *sk)
  1630. {
  1631. struct socket_wq *wq;
  1632. rcu_read_lock();
  1633. wq = rcu_dereference(sk->sk_wq);
  1634. if (wq_has_sleeper(wq))
  1635. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1636. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1637. rcu_read_unlock();
  1638. }
  1639. static void sock_def_readable(struct sock *sk, int len)
  1640. {
  1641. struct socket_wq *wq;
  1642. rcu_read_lock();
  1643. wq = rcu_dereference(sk->sk_wq);
  1644. if (wq_has_sleeper(wq))
  1645. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1646. POLLRDNORM | POLLRDBAND);
  1647. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1648. rcu_read_unlock();
  1649. }
  1650. static void sock_def_write_space(struct sock *sk)
  1651. {
  1652. struct socket_wq *wq;
  1653. rcu_read_lock();
  1654. /* Do not wake up a writer until he can make "significant"
  1655. * progress. --DaveM
  1656. */
  1657. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1658. wq = rcu_dereference(sk->sk_wq);
  1659. if (wq_has_sleeper(wq))
  1660. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1661. POLLWRNORM | POLLWRBAND);
  1662. /* Should agree with poll, otherwise some programs break */
  1663. if (sock_writeable(sk))
  1664. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1665. }
  1666. rcu_read_unlock();
  1667. }
  1668. static void sock_def_destruct(struct sock *sk)
  1669. {
  1670. kfree(sk->sk_protinfo);
  1671. }
  1672. void sk_send_sigurg(struct sock *sk)
  1673. {
  1674. if (sk->sk_socket && sk->sk_socket->file)
  1675. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1676. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1677. }
  1678. EXPORT_SYMBOL(sk_send_sigurg);
  1679. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1680. unsigned long expires)
  1681. {
  1682. if (!mod_timer(timer, expires))
  1683. sock_hold(sk);
  1684. }
  1685. EXPORT_SYMBOL(sk_reset_timer);
  1686. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1687. {
  1688. if (timer_pending(timer) && del_timer(timer))
  1689. __sock_put(sk);
  1690. }
  1691. EXPORT_SYMBOL(sk_stop_timer);
  1692. void sock_init_data(struct socket *sock, struct sock *sk)
  1693. {
  1694. skb_queue_head_init(&sk->sk_receive_queue);
  1695. skb_queue_head_init(&sk->sk_write_queue);
  1696. skb_queue_head_init(&sk->sk_error_queue);
  1697. #ifdef CONFIG_NET_DMA
  1698. skb_queue_head_init(&sk->sk_async_wait_queue);
  1699. #endif
  1700. sk->sk_send_head = NULL;
  1701. init_timer(&sk->sk_timer);
  1702. sk->sk_allocation = GFP_KERNEL;
  1703. sk->sk_rcvbuf = sysctl_rmem_default;
  1704. sk->sk_sndbuf = sysctl_wmem_default;
  1705. sk->sk_state = TCP_CLOSE;
  1706. sk_set_socket(sk, sock);
  1707. sock_set_flag(sk, SOCK_ZAPPED);
  1708. if (sock) {
  1709. sk->sk_type = sock->type;
  1710. sk->sk_wq = sock->wq;
  1711. sock->sk = sk;
  1712. } else
  1713. sk->sk_wq = NULL;
  1714. spin_lock_init(&sk->sk_dst_lock);
  1715. rwlock_init(&sk->sk_callback_lock);
  1716. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1717. af_callback_keys + sk->sk_family,
  1718. af_family_clock_key_strings[sk->sk_family]);
  1719. sk->sk_state_change = sock_def_wakeup;
  1720. sk->sk_data_ready = sock_def_readable;
  1721. sk->sk_write_space = sock_def_write_space;
  1722. sk->sk_error_report = sock_def_error_report;
  1723. sk->sk_destruct = sock_def_destruct;
  1724. sk->sk_sndmsg_page = NULL;
  1725. sk->sk_sndmsg_off = 0;
  1726. sk->sk_peer_pid = NULL;
  1727. sk->sk_peer_cred = NULL;
  1728. sk->sk_write_pending = 0;
  1729. sk->sk_rcvlowat = 1;
  1730. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1731. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1732. sk->sk_stamp = ktime_set(-1L, 0);
  1733. /*
  1734. * Before updating sk_refcnt, we must commit prior changes to memory
  1735. * (Documentation/RCU/rculist_nulls.txt for details)
  1736. */
  1737. smp_wmb();
  1738. atomic_set(&sk->sk_refcnt, 1);
  1739. atomic_set(&sk->sk_drops, 0);
  1740. }
  1741. EXPORT_SYMBOL(sock_init_data);
  1742. void lock_sock_nested(struct sock *sk, int subclass)
  1743. {
  1744. might_sleep();
  1745. spin_lock_bh(&sk->sk_lock.slock);
  1746. if (sk->sk_lock.owned)
  1747. __lock_sock(sk);
  1748. sk->sk_lock.owned = 1;
  1749. spin_unlock(&sk->sk_lock.slock);
  1750. /*
  1751. * The sk_lock has mutex_lock() semantics here:
  1752. */
  1753. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1754. local_bh_enable();
  1755. }
  1756. EXPORT_SYMBOL(lock_sock_nested);
  1757. void release_sock(struct sock *sk)
  1758. {
  1759. /*
  1760. * The sk_lock has mutex_unlock() semantics:
  1761. */
  1762. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1763. spin_lock_bh(&sk->sk_lock.slock);
  1764. if (sk->sk_backlog.tail)
  1765. __release_sock(sk);
  1766. sk->sk_lock.owned = 0;
  1767. if (waitqueue_active(&sk->sk_lock.wq))
  1768. wake_up(&sk->sk_lock.wq);
  1769. spin_unlock_bh(&sk->sk_lock.slock);
  1770. }
  1771. EXPORT_SYMBOL(release_sock);
  1772. /**
  1773. * lock_sock_fast - fast version of lock_sock
  1774. * @sk: socket
  1775. *
  1776. * This version should be used for very small section, where process wont block
  1777. * return false if fast path is taken
  1778. * sk_lock.slock locked, owned = 0, BH disabled
  1779. * return true if slow path is taken
  1780. * sk_lock.slock unlocked, owned = 1, BH enabled
  1781. */
  1782. bool lock_sock_fast(struct sock *sk)
  1783. {
  1784. might_sleep();
  1785. spin_lock_bh(&sk->sk_lock.slock);
  1786. if (!sk->sk_lock.owned)
  1787. /*
  1788. * Note : We must disable BH
  1789. */
  1790. return false;
  1791. __lock_sock(sk);
  1792. sk->sk_lock.owned = 1;
  1793. spin_unlock(&sk->sk_lock.slock);
  1794. /*
  1795. * The sk_lock has mutex_lock() semantics here:
  1796. */
  1797. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  1798. local_bh_enable();
  1799. return true;
  1800. }
  1801. EXPORT_SYMBOL(lock_sock_fast);
  1802. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  1803. {
  1804. struct timeval tv;
  1805. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1806. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1807. tv = ktime_to_timeval(sk->sk_stamp);
  1808. if (tv.tv_sec == -1)
  1809. return -ENOENT;
  1810. if (tv.tv_sec == 0) {
  1811. sk->sk_stamp = ktime_get_real();
  1812. tv = ktime_to_timeval(sk->sk_stamp);
  1813. }
  1814. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  1815. }
  1816. EXPORT_SYMBOL(sock_get_timestamp);
  1817. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  1818. {
  1819. struct timespec ts;
  1820. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1821. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1822. ts = ktime_to_timespec(sk->sk_stamp);
  1823. if (ts.tv_sec == -1)
  1824. return -ENOENT;
  1825. if (ts.tv_sec == 0) {
  1826. sk->sk_stamp = ktime_get_real();
  1827. ts = ktime_to_timespec(sk->sk_stamp);
  1828. }
  1829. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  1830. }
  1831. EXPORT_SYMBOL(sock_get_timestampns);
  1832. void sock_enable_timestamp(struct sock *sk, int flag)
  1833. {
  1834. if (!sock_flag(sk, flag)) {
  1835. sock_set_flag(sk, flag);
  1836. /*
  1837. * we just set one of the two flags which require net
  1838. * time stamping, but time stamping might have been on
  1839. * already because of the other one
  1840. */
  1841. if (!sock_flag(sk,
  1842. flag == SOCK_TIMESTAMP ?
  1843. SOCK_TIMESTAMPING_RX_SOFTWARE :
  1844. SOCK_TIMESTAMP))
  1845. net_enable_timestamp();
  1846. }
  1847. }
  1848. /*
  1849. * Get a socket option on an socket.
  1850. *
  1851. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  1852. * asynchronous errors should be reported by getsockopt. We assume
  1853. * this means if you specify SO_ERROR (otherwise whats the point of it).
  1854. */
  1855. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  1856. char __user *optval, int __user *optlen)
  1857. {
  1858. struct sock *sk = sock->sk;
  1859. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1860. }
  1861. EXPORT_SYMBOL(sock_common_getsockopt);
  1862. #ifdef CONFIG_COMPAT
  1863. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  1864. char __user *optval, int __user *optlen)
  1865. {
  1866. struct sock *sk = sock->sk;
  1867. if (sk->sk_prot->compat_getsockopt != NULL)
  1868. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  1869. optval, optlen);
  1870. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1871. }
  1872. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  1873. #endif
  1874. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  1875. struct msghdr *msg, size_t size, int flags)
  1876. {
  1877. struct sock *sk = sock->sk;
  1878. int addr_len = 0;
  1879. int err;
  1880. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  1881. flags & ~MSG_DONTWAIT, &addr_len);
  1882. if (err >= 0)
  1883. msg->msg_namelen = addr_len;
  1884. return err;
  1885. }
  1886. EXPORT_SYMBOL(sock_common_recvmsg);
  1887. /*
  1888. * Set socket options on an inet socket.
  1889. */
  1890. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  1891. char __user *optval, unsigned int optlen)
  1892. {
  1893. struct sock *sk = sock->sk;
  1894. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1895. }
  1896. EXPORT_SYMBOL(sock_common_setsockopt);
  1897. #ifdef CONFIG_COMPAT
  1898. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  1899. char __user *optval, unsigned int optlen)
  1900. {
  1901. struct sock *sk = sock->sk;
  1902. if (sk->sk_prot->compat_setsockopt != NULL)
  1903. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  1904. optval, optlen);
  1905. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1906. }
  1907. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  1908. #endif
  1909. void sk_common_release(struct sock *sk)
  1910. {
  1911. if (sk->sk_prot->destroy)
  1912. sk->sk_prot->destroy(sk);
  1913. /*
  1914. * Observation: when sock_common_release is called, processes have
  1915. * no access to socket. But net still has.
  1916. * Step one, detach it from networking:
  1917. *
  1918. * A. Remove from hash tables.
  1919. */
  1920. sk->sk_prot->unhash(sk);
  1921. /*
  1922. * In this point socket cannot receive new packets, but it is possible
  1923. * that some packets are in flight because some CPU runs receiver and
  1924. * did hash table lookup before we unhashed socket. They will achieve
  1925. * receive queue and will be purged by socket destructor.
  1926. *
  1927. * Also we still have packets pending on receive queue and probably,
  1928. * our own packets waiting in device queues. sock_destroy will drain
  1929. * receive queue, but transmitted packets will delay socket destruction
  1930. * until the last reference will be released.
  1931. */
  1932. sock_orphan(sk);
  1933. xfrm_sk_free_policy(sk);
  1934. sk_refcnt_debug_release(sk);
  1935. sock_put(sk);
  1936. }
  1937. EXPORT_SYMBOL(sk_common_release);
  1938. static DEFINE_RWLOCK(proto_list_lock);
  1939. static LIST_HEAD(proto_list);
  1940. #ifdef CONFIG_PROC_FS
  1941. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  1942. struct prot_inuse {
  1943. int val[PROTO_INUSE_NR];
  1944. };
  1945. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  1946. #ifdef CONFIG_NET_NS
  1947. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  1948. {
  1949. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  1950. }
  1951. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  1952. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  1953. {
  1954. int cpu, idx = prot->inuse_idx;
  1955. int res = 0;
  1956. for_each_possible_cpu(cpu)
  1957. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  1958. return res >= 0 ? res : 0;
  1959. }
  1960. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  1961. static int __net_init sock_inuse_init_net(struct net *net)
  1962. {
  1963. net->core.inuse = alloc_percpu(struct prot_inuse);
  1964. return net->core.inuse ? 0 : -ENOMEM;
  1965. }
  1966. static void __net_exit sock_inuse_exit_net(struct net *net)
  1967. {
  1968. free_percpu(net->core.inuse);
  1969. }
  1970. static struct pernet_operations net_inuse_ops = {
  1971. .init = sock_inuse_init_net,
  1972. .exit = sock_inuse_exit_net,
  1973. };
  1974. static __init int net_inuse_init(void)
  1975. {
  1976. if (register_pernet_subsys(&net_inuse_ops))
  1977. panic("Cannot initialize net inuse counters");
  1978. return 0;
  1979. }
  1980. core_initcall(net_inuse_init);
  1981. #else
  1982. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  1983. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  1984. {
  1985. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  1986. }
  1987. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  1988. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  1989. {
  1990. int cpu, idx = prot->inuse_idx;
  1991. int res = 0;
  1992. for_each_possible_cpu(cpu)
  1993. res += per_cpu(prot_inuse, cpu).val[idx];
  1994. return res >= 0 ? res : 0;
  1995. }
  1996. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  1997. #endif
  1998. static void assign_proto_idx(struct proto *prot)
  1999. {
  2000. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2001. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2002. printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
  2003. return;
  2004. }
  2005. set_bit(prot->inuse_idx, proto_inuse_idx);
  2006. }
  2007. static void release_proto_idx(struct proto *prot)
  2008. {
  2009. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2010. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2011. }
  2012. #else
  2013. static inline void assign_proto_idx(struct proto *prot)
  2014. {
  2015. }
  2016. static inline void release_proto_idx(struct proto *prot)
  2017. {
  2018. }
  2019. #endif
  2020. int proto_register(struct proto *prot, int alloc_slab)
  2021. {
  2022. if (alloc_slab) {
  2023. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2024. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2025. NULL);
  2026. if (prot->slab == NULL) {
  2027. printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
  2028. prot->name);
  2029. goto out;
  2030. }
  2031. if (prot->rsk_prot != NULL) {
  2032. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2033. if (prot->rsk_prot->slab_name == NULL)
  2034. goto out_free_sock_slab;
  2035. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2036. prot->rsk_prot->obj_size, 0,
  2037. SLAB_HWCACHE_ALIGN, NULL);
  2038. if (prot->rsk_prot->slab == NULL) {
  2039. printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
  2040. prot->name);
  2041. goto out_free_request_sock_slab_name;
  2042. }
  2043. }
  2044. if (prot->twsk_prot != NULL) {
  2045. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2046. if (prot->twsk_prot->twsk_slab_name == NULL)
  2047. goto out_free_request_sock_slab;
  2048. prot->twsk_prot->twsk_slab =
  2049. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2050. prot->twsk_prot->twsk_obj_size,
  2051. 0,
  2052. SLAB_HWCACHE_ALIGN |
  2053. prot->slab_flags,
  2054. NULL);
  2055. if (prot->twsk_prot->twsk_slab == NULL)
  2056. goto out_free_timewait_sock_slab_name;
  2057. }
  2058. }
  2059. write_lock(&proto_list_lock);
  2060. list_add(&prot->node, &proto_list);
  2061. assign_proto_idx(prot);
  2062. write_unlock(&proto_list_lock);
  2063. return 0;
  2064. out_free_timewait_sock_slab_name:
  2065. kfree(prot->twsk_prot->twsk_slab_name);
  2066. out_free_request_sock_slab:
  2067. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2068. kmem_cache_destroy(prot->rsk_prot->slab);
  2069. prot->rsk_prot->slab = NULL;
  2070. }
  2071. out_free_request_sock_slab_name:
  2072. if (prot->rsk_prot)
  2073. kfree(prot->rsk_prot->slab_name);
  2074. out_free_sock_slab:
  2075. kmem_cache_destroy(prot->slab);
  2076. prot->slab = NULL;
  2077. out:
  2078. return -ENOBUFS;
  2079. }
  2080. EXPORT_SYMBOL(proto_register);
  2081. void proto_unregister(struct proto *prot)
  2082. {
  2083. write_lock(&proto_list_lock);
  2084. release_proto_idx(prot);
  2085. list_del(&prot->node);
  2086. write_unlock(&proto_list_lock);
  2087. if (prot->slab != NULL) {
  2088. kmem_cache_destroy(prot->slab);
  2089. prot->slab = NULL;
  2090. }
  2091. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2092. kmem_cache_destroy(prot->rsk_prot->slab);
  2093. kfree(prot->rsk_prot->slab_name);
  2094. prot->rsk_prot->slab = NULL;
  2095. }
  2096. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2097. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2098. kfree(prot->twsk_prot->twsk_slab_name);
  2099. prot->twsk_prot->twsk_slab = NULL;
  2100. }
  2101. }
  2102. EXPORT_SYMBOL(proto_unregister);
  2103. #ifdef CONFIG_PROC_FS
  2104. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2105. __acquires(proto_list_lock)
  2106. {
  2107. read_lock(&proto_list_lock);
  2108. return seq_list_start_head(&proto_list, *pos);
  2109. }
  2110. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2111. {
  2112. return seq_list_next(v, &proto_list, pos);
  2113. }
  2114. static void proto_seq_stop(struct seq_file *seq, void *v)
  2115. __releases(proto_list_lock)
  2116. {
  2117. read_unlock(&proto_list_lock);
  2118. }
  2119. static char proto_method_implemented(const void *method)
  2120. {
  2121. return method == NULL ? 'n' : 'y';
  2122. }
  2123. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2124. {
  2125. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2126. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2127. proto->name,
  2128. proto->obj_size,
  2129. sock_prot_inuse_get(seq_file_net(seq), proto),
  2130. proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
  2131. proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
  2132. proto->max_header,
  2133. proto->slab == NULL ? "no" : "yes",
  2134. module_name(proto->owner),
  2135. proto_method_implemented(proto->close),
  2136. proto_method_implemented(proto->connect),
  2137. proto_method_implemented(proto->disconnect),
  2138. proto_method_implemented(proto->accept),
  2139. proto_method_implemented(proto->ioctl),
  2140. proto_method_implemented(proto->init),
  2141. proto_method_implemented(proto->destroy),
  2142. proto_method_implemented(proto->shutdown),
  2143. proto_method_implemented(proto->setsockopt),
  2144. proto_method_implemented(proto->getsockopt),
  2145. proto_method_implemented(proto->sendmsg),
  2146. proto_method_implemented(proto->recvmsg),
  2147. proto_method_implemented(proto->sendpage),
  2148. proto_method_implemented(proto->bind),
  2149. proto_method_implemented(proto->backlog_rcv),
  2150. proto_method_implemented(proto->hash),
  2151. proto_method_implemented(proto->unhash),
  2152. proto_method_implemented(proto->get_port),
  2153. proto_method_implemented(proto->enter_memory_pressure));
  2154. }
  2155. static int proto_seq_show(struct seq_file *seq, void *v)
  2156. {
  2157. if (v == &proto_list)
  2158. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2159. "protocol",
  2160. "size",
  2161. "sockets",
  2162. "memory",
  2163. "press",
  2164. "maxhdr",
  2165. "slab",
  2166. "module",
  2167. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2168. else
  2169. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2170. return 0;
  2171. }
  2172. static const struct seq_operations proto_seq_ops = {
  2173. .start = proto_seq_start,
  2174. .next = proto_seq_next,
  2175. .stop = proto_seq_stop,
  2176. .show = proto_seq_show,
  2177. };
  2178. static int proto_seq_open(struct inode *inode, struct file *file)
  2179. {
  2180. return seq_open_net(inode, file, &proto_seq_ops,
  2181. sizeof(struct seq_net_private));
  2182. }
  2183. static const struct file_operations proto_seq_fops = {
  2184. .owner = THIS_MODULE,
  2185. .open = proto_seq_open,
  2186. .read = seq_read,
  2187. .llseek = seq_lseek,
  2188. .release = seq_release_net,
  2189. };
  2190. static __net_init int proto_init_net(struct net *net)
  2191. {
  2192. if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
  2193. return -ENOMEM;
  2194. return 0;
  2195. }
  2196. static __net_exit void proto_exit_net(struct net *net)
  2197. {
  2198. proc_net_remove(net, "protocols");
  2199. }
  2200. static __net_initdata struct pernet_operations proto_net_ops = {
  2201. .init = proto_init_net,
  2202. .exit = proto_exit_net,
  2203. };
  2204. static int __init proto_init(void)
  2205. {
  2206. return register_pernet_subsys(&proto_net_ops);
  2207. }
  2208. subsys_initcall(proto_init);
  2209. #endif /* PROC_FS */