hugetlb.c 76 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/list.h>
  6. #include <linux/init.h>
  7. #include <linux/module.h>
  8. #include <linux/mm.h>
  9. #include <linux/seq_file.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/nodemask.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/mempolicy.h>
  16. #include <linux/cpuset.h>
  17. #include <linux/mutex.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/slab.h>
  21. #include <linux/rmap.h>
  22. #include <linux/swap.h>
  23. #include <linux/swapops.h>
  24. #include <asm/page.h>
  25. #include <asm/pgtable.h>
  26. #include <linux/io.h>
  27. #include <linux/hugetlb.h>
  28. #include <linux/node.h>
  29. #include "internal.h"
  30. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  31. static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
  32. unsigned long hugepages_treat_as_movable;
  33. static int max_hstate;
  34. unsigned int default_hstate_idx;
  35. struct hstate hstates[HUGE_MAX_HSTATE];
  36. __initdata LIST_HEAD(huge_boot_pages);
  37. /* for command line parsing */
  38. static struct hstate * __initdata parsed_hstate;
  39. static unsigned long __initdata default_hstate_max_huge_pages;
  40. static unsigned long __initdata default_hstate_size;
  41. #define for_each_hstate(h) \
  42. for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
  43. /*
  44. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  45. */
  46. static DEFINE_SPINLOCK(hugetlb_lock);
  47. /*
  48. * Region tracking -- allows tracking of reservations and instantiated pages
  49. * across the pages in a mapping.
  50. *
  51. * The region data structures are protected by a combination of the mmap_sem
  52. * and the hugetlb_instantion_mutex. To access or modify a region the caller
  53. * must either hold the mmap_sem for write, or the mmap_sem for read and
  54. * the hugetlb_instantiation mutex:
  55. *
  56. * down_write(&mm->mmap_sem);
  57. * or
  58. * down_read(&mm->mmap_sem);
  59. * mutex_lock(&hugetlb_instantiation_mutex);
  60. */
  61. struct file_region {
  62. struct list_head link;
  63. long from;
  64. long to;
  65. };
  66. static long region_add(struct list_head *head, long f, long t)
  67. {
  68. struct file_region *rg, *nrg, *trg;
  69. /* Locate the region we are either in or before. */
  70. list_for_each_entry(rg, head, link)
  71. if (f <= rg->to)
  72. break;
  73. /* Round our left edge to the current segment if it encloses us. */
  74. if (f > rg->from)
  75. f = rg->from;
  76. /* Check for and consume any regions we now overlap with. */
  77. nrg = rg;
  78. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  79. if (&rg->link == head)
  80. break;
  81. if (rg->from > t)
  82. break;
  83. /* If this area reaches higher then extend our area to
  84. * include it completely. If this is not the first area
  85. * which we intend to reuse, free it. */
  86. if (rg->to > t)
  87. t = rg->to;
  88. if (rg != nrg) {
  89. list_del(&rg->link);
  90. kfree(rg);
  91. }
  92. }
  93. nrg->from = f;
  94. nrg->to = t;
  95. return 0;
  96. }
  97. static long region_chg(struct list_head *head, long f, long t)
  98. {
  99. struct file_region *rg, *nrg;
  100. long chg = 0;
  101. /* Locate the region we are before or in. */
  102. list_for_each_entry(rg, head, link)
  103. if (f <= rg->to)
  104. break;
  105. /* If we are below the current region then a new region is required.
  106. * Subtle, allocate a new region at the position but make it zero
  107. * size such that we can guarantee to record the reservation. */
  108. if (&rg->link == head || t < rg->from) {
  109. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  110. if (!nrg)
  111. return -ENOMEM;
  112. nrg->from = f;
  113. nrg->to = f;
  114. INIT_LIST_HEAD(&nrg->link);
  115. list_add(&nrg->link, rg->link.prev);
  116. return t - f;
  117. }
  118. /* Round our left edge to the current segment if it encloses us. */
  119. if (f > rg->from)
  120. f = rg->from;
  121. chg = t - f;
  122. /* Check for and consume any regions we now overlap with. */
  123. list_for_each_entry(rg, rg->link.prev, link) {
  124. if (&rg->link == head)
  125. break;
  126. if (rg->from > t)
  127. return chg;
  128. /* We overlap with this area, if it extends further than
  129. * us then we must extend ourselves. Account for its
  130. * existing reservation. */
  131. if (rg->to > t) {
  132. chg += rg->to - t;
  133. t = rg->to;
  134. }
  135. chg -= rg->to - rg->from;
  136. }
  137. return chg;
  138. }
  139. static long region_truncate(struct list_head *head, long end)
  140. {
  141. struct file_region *rg, *trg;
  142. long chg = 0;
  143. /* Locate the region we are either in or before. */
  144. list_for_each_entry(rg, head, link)
  145. if (end <= rg->to)
  146. break;
  147. if (&rg->link == head)
  148. return 0;
  149. /* If we are in the middle of a region then adjust it. */
  150. if (end > rg->from) {
  151. chg = rg->to - end;
  152. rg->to = end;
  153. rg = list_entry(rg->link.next, typeof(*rg), link);
  154. }
  155. /* Drop any remaining regions. */
  156. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  157. if (&rg->link == head)
  158. break;
  159. chg += rg->to - rg->from;
  160. list_del(&rg->link);
  161. kfree(rg);
  162. }
  163. return chg;
  164. }
  165. static long region_count(struct list_head *head, long f, long t)
  166. {
  167. struct file_region *rg;
  168. long chg = 0;
  169. /* Locate each segment we overlap with, and count that overlap. */
  170. list_for_each_entry(rg, head, link) {
  171. int seg_from;
  172. int seg_to;
  173. if (rg->to <= f)
  174. continue;
  175. if (rg->from >= t)
  176. break;
  177. seg_from = max(rg->from, f);
  178. seg_to = min(rg->to, t);
  179. chg += seg_to - seg_from;
  180. }
  181. return chg;
  182. }
  183. /*
  184. * Convert the address within this vma to the page offset within
  185. * the mapping, in pagecache page units; huge pages here.
  186. */
  187. static pgoff_t vma_hugecache_offset(struct hstate *h,
  188. struct vm_area_struct *vma, unsigned long address)
  189. {
  190. return ((address - vma->vm_start) >> huge_page_shift(h)) +
  191. (vma->vm_pgoff >> huge_page_order(h));
  192. }
  193. pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
  194. unsigned long address)
  195. {
  196. return vma_hugecache_offset(hstate_vma(vma), vma, address);
  197. }
  198. /*
  199. * Return the size of the pages allocated when backing a VMA. In the majority
  200. * cases this will be same size as used by the page table entries.
  201. */
  202. unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
  203. {
  204. struct hstate *hstate;
  205. if (!is_vm_hugetlb_page(vma))
  206. return PAGE_SIZE;
  207. hstate = hstate_vma(vma);
  208. return 1UL << (hstate->order + PAGE_SHIFT);
  209. }
  210. EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
  211. /*
  212. * Return the page size being used by the MMU to back a VMA. In the majority
  213. * of cases, the page size used by the kernel matches the MMU size. On
  214. * architectures where it differs, an architecture-specific version of this
  215. * function is required.
  216. */
  217. #ifndef vma_mmu_pagesize
  218. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  219. {
  220. return vma_kernel_pagesize(vma);
  221. }
  222. #endif
  223. /*
  224. * Flags for MAP_PRIVATE reservations. These are stored in the bottom
  225. * bits of the reservation map pointer, which are always clear due to
  226. * alignment.
  227. */
  228. #define HPAGE_RESV_OWNER (1UL << 0)
  229. #define HPAGE_RESV_UNMAPPED (1UL << 1)
  230. #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
  231. /*
  232. * These helpers are used to track how many pages are reserved for
  233. * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
  234. * is guaranteed to have their future faults succeed.
  235. *
  236. * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
  237. * the reserve counters are updated with the hugetlb_lock held. It is safe
  238. * to reset the VMA at fork() time as it is not in use yet and there is no
  239. * chance of the global counters getting corrupted as a result of the values.
  240. *
  241. * The private mapping reservation is represented in a subtly different
  242. * manner to a shared mapping. A shared mapping has a region map associated
  243. * with the underlying file, this region map represents the backing file
  244. * pages which have ever had a reservation assigned which this persists even
  245. * after the page is instantiated. A private mapping has a region map
  246. * associated with the original mmap which is attached to all VMAs which
  247. * reference it, this region map represents those offsets which have consumed
  248. * reservation ie. where pages have been instantiated.
  249. */
  250. static unsigned long get_vma_private_data(struct vm_area_struct *vma)
  251. {
  252. return (unsigned long)vma->vm_private_data;
  253. }
  254. static void set_vma_private_data(struct vm_area_struct *vma,
  255. unsigned long value)
  256. {
  257. vma->vm_private_data = (void *)value;
  258. }
  259. struct resv_map {
  260. struct kref refs;
  261. struct list_head regions;
  262. };
  263. static struct resv_map *resv_map_alloc(void)
  264. {
  265. struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
  266. if (!resv_map)
  267. return NULL;
  268. kref_init(&resv_map->refs);
  269. INIT_LIST_HEAD(&resv_map->regions);
  270. return resv_map;
  271. }
  272. static void resv_map_release(struct kref *ref)
  273. {
  274. struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
  275. /* Clear out any active regions before we release the map. */
  276. region_truncate(&resv_map->regions, 0);
  277. kfree(resv_map);
  278. }
  279. static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
  280. {
  281. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  282. if (!(vma->vm_flags & VM_MAYSHARE))
  283. return (struct resv_map *)(get_vma_private_data(vma) &
  284. ~HPAGE_RESV_MASK);
  285. return NULL;
  286. }
  287. static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
  288. {
  289. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  290. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  291. set_vma_private_data(vma, (get_vma_private_data(vma) &
  292. HPAGE_RESV_MASK) | (unsigned long)map);
  293. }
  294. static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
  295. {
  296. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  297. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  298. set_vma_private_data(vma, get_vma_private_data(vma) | flags);
  299. }
  300. static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
  301. {
  302. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  303. return (get_vma_private_data(vma) & flag) != 0;
  304. }
  305. /* Decrement the reserved pages in the hugepage pool by one */
  306. static void decrement_hugepage_resv_vma(struct hstate *h,
  307. struct vm_area_struct *vma)
  308. {
  309. if (vma->vm_flags & VM_NORESERVE)
  310. return;
  311. if (vma->vm_flags & VM_MAYSHARE) {
  312. /* Shared mappings always use reserves */
  313. h->resv_huge_pages--;
  314. } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  315. /*
  316. * Only the process that called mmap() has reserves for
  317. * private mappings.
  318. */
  319. h->resv_huge_pages--;
  320. }
  321. }
  322. /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
  323. void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
  324. {
  325. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  326. if (!(vma->vm_flags & VM_MAYSHARE))
  327. vma->vm_private_data = (void *)0;
  328. }
  329. /* Returns true if the VMA has associated reserve pages */
  330. static int vma_has_reserves(struct vm_area_struct *vma)
  331. {
  332. if (vma->vm_flags & VM_MAYSHARE)
  333. return 1;
  334. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  335. return 1;
  336. return 0;
  337. }
  338. static void copy_gigantic_page(struct page *dst, struct page *src)
  339. {
  340. int i;
  341. struct hstate *h = page_hstate(src);
  342. struct page *dst_base = dst;
  343. struct page *src_base = src;
  344. for (i = 0; i < pages_per_huge_page(h); ) {
  345. cond_resched();
  346. copy_highpage(dst, src);
  347. i++;
  348. dst = mem_map_next(dst, dst_base, i);
  349. src = mem_map_next(src, src_base, i);
  350. }
  351. }
  352. void copy_huge_page(struct page *dst, struct page *src)
  353. {
  354. int i;
  355. struct hstate *h = page_hstate(src);
  356. if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
  357. copy_gigantic_page(dst, src);
  358. return;
  359. }
  360. might_sleep();
  361. for (i = 0; i < pages_per_huge_page(h); i++) {
  362. cond_resched();
  363. copy_highpage(dst + i, src + i);
  364. }
  365. }
  366. static void enqueue_huge_page(struct hstate *h, struct page *page)
  367. {
  368. int nid = page_to_nid(page);
  369. list_add(&page->lru, &h->hugepage_freelists[nid]);
  370. h->free_huge_pages++;
  371. h->free_huge_pages_node[nid]++;
  372. }
  373. static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
  374. {
  375. struct page *page;
  376. if (list_empty(&h->hugepage_freelists[nid]))
  377. return NULL;
  378. page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
  379. list_del(&page->lru);
  380. set_page_refcounted(page);
  381. h->free_huge_pages--;
  382. h->free_huge_pages_node[nid]--;
  383. return page;
  384. }
  385. static struct page *dequeue_huge_page_vma(struct hstate *h,
  386. struct vm_area_struct *vma,
  387. unsigned long address, int avoid_reserve)
  388. {
  389. struct page *page = NULL;
  390. struct mempolicy *mpol;
  391. nodemask_t *nodemask;
  392. struct zonelist *zonelist;
  393. struct zone *zone;
  394. struct zoneref *z;
  395. get_mems_allowed();
  396. zonelist = huge_zonelist(vma, address,
  397. htlb_alloc_mask, &mpol, &nodemask);
  398. /*
  399. * A child process with MAP_PRIVATE mappings created by their parent
  400. * have no page reserves. This check ensures that reservations are
  401. * not "stolen". The child may still get SIGKILLed
  402. */
  403. if (!vma_has_reserves(vma) &&
  404. h->free_huge_pages - h->resv_huge_pages == 0)
  405. goto err;
  406. /* If reserves cannot be used, ensure enough pages are in the pool */
  407. if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
  408. goto err;
  409. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  410. MAX_NR_ZONES - 1, nodemask) {
  411. if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
  412. page = dequeue_huge_page_node(h, zone_to_nid(zone));
  413. if (page) {
  414. if (!avoid_reserve)
  415. decrement_hugepage_resv_vma(h, vma);
  416. break;
  417. }
  418. }
  419. }
  420. err:
  421. mpol_cond_put(mpol);
  422. put_mems_allowed();
  423. return page;
  424. }
  425. static void update_and_free_page(struct hstate *h, struct page *page)
  426. {
  427. int i;
  428. VM_BUG_ON(h->order >= MAX_ORDER);
  429. h->nr_huge_pages--;
  430. h->nr_huge_pages_node[page_to_nid(page)]--;
  431. for (i = 0; i < pages_per_huge_page(h); i++) {
  432. page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
  433. 1 << PG_referenced | 1 << PG_dirty |
  434. 1 << PG_active | 1 << PG_reserved |
  435. 1 << PG_private | 1 << PG_writeback);
  436. }
  437. set_compound_page_dtor(page, NULL);
  438. set_page_refcounted(page);
  439. arch_release_hugepage(page);
  440. __free_pages(page, huge_page_order(h));
  441. }
  442. struct hstate *size_to_hstate(unsigned long size)
  443. {
  444. struct hstate *h;
  445. for_each_hstate(h) {
  446. if (huge_page_size(h) == size)
  447. return h;
  448. }
  449. return NULL;
  450. }
  451. static void free_huge_page(struct page *page)
  452. {
  453. /*
  454. * Can't pass hstate in here because it is called from the
  455. * compound page destructor.
  456. */
  457. struct hstate *h = page_hstate(page);
  458. int nid = page_to_nid(page);
  459. struct address_space *mapping;
  460. mapping = (struct address_space *) page_private(page);
  461. set_page_private(page, 0);
  462. page->mapping = NULL;
  463. BUG_ON(page_count(page));
  464. BUG_ON(page_mapcount(page));
  465. INIT_LIST_HEAD(&page->lru);
  466. spin_lock(&hugetlb_lock);
  467. if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
  468. update_and_free_page(h, page);
  469. h->surplus_huge_pages--;
  470. h->surplus_huge_pages_node[nid]--;
  471. } else {
  472. enqueue_huge_page(h, page);
  473. }
  474. spin_unlock(&hugetlb_lock);
  475. if (mapping)
  476. hugetlb_put_quota(mapping, 1);
  477. }
  478. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
  479. {
  480. set_compound_page_dtor(page, free_huge_page);
  481. spin_lock(&hugetlb_lock);
  482. h->nr_huge_pages++;
  483. h->nr_huge_pages_node[nid]++;
  484. spin_unlock(&hugetlb_lock);
  485. put_page(page); /* free it into the hugepage allocator */
  486. }
  487. static void prep_compound_gigantic_page(struct page *page, unsigned long order)
  488. {
  489. int i;
  490. int nr_pages = 1 << order;
  491. struct page *p = page + 1;
  492. /* we rely on prep_new_huge_page to set the destructor */
  493. set_compound_order(page, order);
  494. __SetPageHead(page);
  495. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  496. __SetPageTail(p);
  497. set_page_count(p, 0);
  498. p->first_page = page;
  499. }
  500. }
  501. int PageHuge(struct page *page)
  502. {
  503. compound_page_dtor *dtor;
  504. if (!PageCompound(page))
  505. return 0;
  506. page = compound_head(page);
  507. dtor = get_compound_page_dtor(page);
  508. return dtor == free_huge_page;
  509. }
  510. EXPORT_SYMBOL_GPL(PageHuge);
  511. static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
  512. {
  513. struct page *page;
  514. if (h->order >= MAX_ORDER)
  515. return NULL;
  516. page = alloc_pages_exact_node(nid,
  517. htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
  518. __GFP_REPEAT|__GFP_NOWARN,
  519. huge_page_order(h));
  520. if (page) {
  521. if (arch_prepare_hugepage(page)) {
  522. __free_pages(page, huge_page_order(h));
  523. return NULL;
  524. }
  525. prep_new_huge_page(h, page, nid);
  526. }
  527. return page;
  528. }
  529. /*
  530. * common helper functions for hstate_next_node_to_{alloc|free}.
  531. * We may have allocated or freed a huge page based on a different
  532. * nodes_allowed previously, so h->next_node_to_{alloc|free} might
  533. * be outside of *nodes_allowed. Ensure that we use an allowed
  534. * node for alloc or free.
  535. */
  536. static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
  537. {
  538. nid = next_node(nid, *nodes_allowed);
  539. if (nid == MAX_NUMNODES)
  540. nid = first_node(*nodes_allowed);
  541. VM_BUG_ON(nid >= MAX_NUMNODES);
  542. return nid;
  543. }
  544. static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
  545. {
  546. if (!node_isset(nid, *nodes_allowed))
  547. nid = next_node_allowed(nid, nodes_allowed);
  548. return nid;
  549. }
  550. /*
  551. * returns the previously saved node ["this node"] from which to
  552. * allocate a persistent huge page for the pool and advance the
  553. * next node from which to allocate, handling wrap at end of node
  554. * mask.
  555. */
  556. static int hstate_next_node_to_alloc(struct hstate *h,
  557. nodemask_t *nodes_allowed)
  558. {
  559. int nid;
  560. VM_BUG_ON(!nodes_allowed);
  561. nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
  562. h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
  563. return nid;
  564. }
  565. static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
  566. {
  567. struct page *page;
  568. int start_nid;
  569. int next_nid;
  570. int ret = 0;
  571. start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  572. next_nid = start_nid;
  573. do {
  574. page = alloc_fresh_huge_page_node(h, next_nid);
  575. if (page) {
  576. ret = 1;
  577. break;
  578. }
  579. next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  580. } while (next_nid != start_nid);
  581. if (ret)
  582. count_vm_event(HTLB_BUDDY_PGALLOC);
  583. else
  584. count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  585. return ret;
  586. }
  587. /*
  588. * helper for free_pool_huge_page() - return the previously saved
  589. * node ["this node"] from which to free a huge page. Advance the
  590. * next node id whether or not we find a free huge page to free so
  591. * that the next attempt to free addresses the next node.
  592. */
  593. static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
  594. {
  595. int nid;
  596. VM_BUG_ON(!nodes_allowed);
  597. nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
  598. h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
  599. return nid;
  600. }
  601. /*
  602. * Free huge page from pool from next node to free.
  603. * Attempt to keep persistent huge pages more or less
  604. * balanced over allowed nodes.
  605. * Called with hugetlb_lock locked.
  606. */
  607. static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
  608. bool acct_surplus)
  609. {
  610. int start_nid;
  611. int next_nid;
  612. int ret = 0;
  613. start_nid = hstate_next_node_to_free(h, nodes_allowed);
  614. next_nid = start_nid;
  615. do {
  616. /*
  617. * If we're returning unused surplus pages, only examine
  618. * nodes with surplus pages.
  619. */
  620. if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
  621. !list_empty(&h->hugepage_freelists[next_nid])) {
  622. struct page *page =
  623. list_entry(h->hugepage_freelists[next_nid].next,
  624. struct page, lru);
  625. list_del(&page->lru);
  626. h->free_huge_pages--;
  627. h->free_huge_pages_node[next_nid]--;
  628. if (acct_surplus) {
  629. h->surplus_huge_pages--;
  630. h->surplus_huge_pages_node[next_nid]--;
  631. }
  632. update_and_free_page(h, page);
  633. ret = 1;
  634. break;
  635. }
  636. next_nid = hstate_next_node_to_free(h, nodes_allowed);
  637. } while (next_nid != start_nid);
  638. return ret;
  639. }
  640. static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
  641. {
  642. struct page *page;
  643. unsigned int r_nid;
  644. if (h->order >= MAX_ORDER)
  645. return NULL;
  646. /*
  647. * Assume we will successfully allocate the surplus page to
  648. * prevent racing processes from causing the surplus to exceed
  649. * overcommit
  650. *
  651. * This however introduces a different race, where a process B
  652. * tries to grow the static hugepage pool while alloc_pages() is
  653. * called by process A. B will only examine the per-node
  654. * counters in determining if surplus huge pages can be
  655. * converted to normal huge pages in adjust_pool_surplus(). A
  656. * won't be able to increment the per-node counter, until the
  657. * lock is dropped by B, but B doesn't drop hugetlb_lock until
  658. * no more huge pages can be converted from surplus to normal
  659. * state (and doesn't try to convert again). Thus, we have a
  660. * case where a surplus huge page exists, the pool is grown, and
  661. * the surplus huge page still exists after, even though it
  662. * should just have been converted to a normal huge page. This
  663. * does not leak memory, though, as the hugepage will be freed
  664. * once it is out of use. It also does not allow the counters to
  665. * go out of whack in adjust_pool_surplus() as we don't modify
  666. * the node values until we've gotten the hugepage and only the
  667. * per-node value is checked there.
  668. */
  669. spin_lock(&hugetlb_lock);
  670. if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
  671. spin_unlock(&hugetlb_lock);
  672. return NULL;
  673. } else {
  674. h->nr_huge_pages++;
  675. h->surplus_huge_pages++;
  676. }
  677. spin_unlock(&hugetlb_lock);
  678. if (nid == NUMA_NO_NODE)
  679. page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
  680. __GFP_REPEAT|__GFP_NOWARN,
  681. huge_page_order(h));
  682. else
  683. page = alloc_pages_exact_node(nid,
  684. htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
  685. __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
  686. if (page && arch_prepare_hugepage(page)) {
  687. __free_pages(page, huge_page_order(h));
  688. return NULL;
  689. }
  690. spin_lock(&hugetlb_lock);
  691. if (page) {
  692. r_nid = page_to_nid(page);
  693. set_compound_page_dtor(page, free_huge_page);
  694. /*
  695. * We incremented the global counters already
  696. */
  697. h->nr_huge_pages_node[r_nid]++;
  698. h->surplus_huge_pages_node[r_nid]++;
  699. __count_vm_event(HTLB_BUDDY_PGALLOC);
  700. } else {
  701. h->nr_huge_pages--;
  702. h->surplus_huge_pages--;
  703. __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  704. }
  705. spin_unlock(&hugetlb_lock);
  706. return page;
  707. }
  708. /*
  709. * This allocation function is useful in the context where vma is irrelevant.
  710. * E.g. soft-offlining uses this function because it only cares physical
  711. * address of error page.
  712. */
  713. struct page *alloc_huge_page_node(struct hstate *h, int nid)
  714. {
  715. struct page *page;
  716. spin_lock(&hugetlb_lock);
  717. page = dequeue_huge_page_node(h, nid);
  718. spin_unlock(&hugetlb_lock);
  719. if (!page)
  720. page = alloc_buddy_huge_page(h, nid);
  721. return page;
  722. }
  723. /*
  724. * Increase the hugetlb pool such that it can accommodate a reservation
  725. * of size 'delta'.
  726. */
  727. static int gather_surplus_pages(struct hstate *h, int delta)
  728. {
  729. struct list_head surplus_list;
  730. struct page *page, *tmp;
  731. int ret, i;
  732. int needed, allocated;
  733. needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
  734. if (needed <= 0) {
  735. h->resv_huge_pages += delta;
  736. return 0;
  737. }
  738. allocated = 0;
  739. INIT_LIST_HEAD(&surplus_list);
  740. ret = -ENOMEM;
  741. retry:
  742. spin_unlock(&hugetlb_lock);
  743. for (i = 0; i < needed; i++) {
  744. page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
  745. if (!page)
  746. /*
  747. * We were not able to allocate enough pages to
  748. * satisfy the entire reservation so we free what
  749. * we've allocated so far.
  750. */
  751. goto free;
  752. list_add(&page->lru, &surplus_list);
  753. }
  754. allocated += needed;
  755. /*
  756. * After retaking hugetlb_lock, we need to recalculate 'needed'
  757. * because either resv_huge_pages or free_huge_pages may have changed.
  758. */
  759. spin_lock(&hugetlb_lock);
  760. needed = (h->resv_huge_pages + delta) -
  761. (h->free_huge_pages + allocated);
  762. if (needed > 0)
  763. goto retry;
  764. /*
  765. * The surplus_list now contains _at_least_ the number of extra pages
  766. * needed to accommodate the reservation. Add the appropriate number
  767. * of pages to the hugetlb pool and free the extras back to the buddy
  768. * allocator. Commit the entire reservation here to prevent another
  769. * process from stealing the pages as they are added to the pool but
  770. * before they are reserved.
  771. */
  772. needed += allocated;
  773. h->resv_huge_pages += delta;
  774. ret = 0;
  775. spin_unlock(&hugetlb_lock);
  776. /* Free the needed pages to the hugetlb pool */
  777. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  778. if ((--needed) < 0)
  779. break;
  780. list_del(&page->lru);
  781. /*
  782. * This page is now managed by the hugetlb allocator and has
  783. * no users -- drop the buddy allocator's reference.
  784. */
  785. put_page_testzero(page);
  786. VM_BUG_ON(page_count(page));
  787. enqueue_huge_page(h, page);
  788. }
  789. /* Free unnecessary surplus pages to the buddy allocator */
  790. free:
  791. if (!list_empty(&surplus_list)) {
  792. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  793. list_del(&page->lru);
  794. put_page(page);
  795. }
  796. }
  797. spin_lock(&hugetlb_lock);
  798. return ret;
  799. }
  800. /*
  801. * When releasing a hugetlb pool reservation, any surplus pages that were
  802. * allocated to satisfy the reservation must be explicitly freed if they were
  803. * never used.
  804. * Called with hugetlb_lock held.
  805. */
  806. static void return_unused_surplus_pages(struct hstate *h,
  807. unsigned long unused_resv_pages)
  808. {
  809. unsigned long nr_pages;
  810. /* Uncommit the reservation */
  811. h->resv_huge_pages -= unused_resv_pages;
  812. /* Cannot return gigantic pages currently */
  813. if (h->order >= MAX_ORDER)
  814. return;
  815. nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
  816. /*
  817. * We want to release as many surplus pages as possible, spread
  818. * evenly across all nodes with memory. Iterate across these nodes
  819. * until we can no longer free unreserved surplus pages. This occurs
  820. * when the nodes with surplus pages have no free pages.
  821. * free_pool_huge_page() will balance the the freed pages across the
  822. * on-line nodes with memory and will handle the hstate accounting.
  823. */
  824. while (nr_pages--) {
  825. if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
  826. break;
  827. }
  828. }
  829. /*
  830. * Determine if the huge page at addr within the vma has an associated
  831. * reservation. Where it does not we will need to logically increase
  832. * reservation and actually increase quota before an allocation can occur.
  833. * Where any new reservation would be required the reservation change is
  834. * prepared, but not committed. Once the page has been quota'd allocated
  835. * an instantiated the change should be committed via vma_commit_reservation.
  836. * No action is required on failure.
  837. */
  838. static long vma_needs_reservation(struct hstate *h,
  839. struct vm_area_struct *vma, unsigned long addr)
  840. {
  841. struct address_space *mapping = vma->vm_file->f_mapping;
  842. struct inode *inode = mapping->host;
  843. if (vma->vm_flags & VM_MAYSHARE) {
  844. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  845. return region_chg(&inode->i_mapping->private_list,
  846. idx, idx + 1);
  847. } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  848. return 1;
  849. } else {
  850. long err;
  851. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  852. struct resv_map *reservations = vma_resv_map(vma);
  853. err = region_chg(&reservations->regions, idx, idx + 1);
  854. if (err < 0)
  855. return err;
  856. return 0;
  857. }
  858. }
  859. static void vma_commit_reservation(struct hstate *h,
  860. struct vm_area_struct *vma, unsigned long addr)
  861. {
  862. struct address_space *mapping = vma->vm_file->f_mapping;
  863. struct inode *inode = mapping->host;
  864. if (vma->vm_flags & VM_MAYSHARE) {
  865. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  866. region_add(&inode->i_mapping->private_list, idx, idx + 1);
  867. } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  868. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  869. struct resv_map *reservations = vma_resv_map(vma);
  870. /* Mark this page used in the map. */
  871. region_add(&reservations->regions, idx, idx + 1);
  872. }
  873. }
  874. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  875. unsigned long addr, int avoid_reserve)
  876. {
  877. struct hstate *h = hstate_vma(vma);
  878. struct page *page;
  879. struct address_space *mapping = vma->vm_file->f_mapping;
  880. struct inode *inode = mapping->host;
  881. long chg;
  882. /*
  883. * Processes that did not create the mapping will have no reserves and
  884. * will not have accounted against quota. Check that the quota can be
  885. * made before satisfying the allocation
  886. * MAP_NORESERVE mappings may also need pages and quota allocated
  887. * if no reserve mapping overlaps.
  888. */
  889. chg = vma_needs_reservation(h, vma, addr);
  890. if (chg < 0)
  891. return ERR_PTR(-VM_FAULT_OOM);
  892. if (chg)
  893. if (hugetlb_get_quota(inode->i_mapping, chg))
  894. return ERR_PTR(-VM_FAULT_SIGBUS);
  895. spin_lock(&hugetlb_lock);
  896. page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
  897. spin_unlock(&hugetlb_lock);
  898. if (!page) {
  899. page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
  900. if (!page) {
  901. hugetlb_put_quota(inode->i_mapping, chg);
  902. return ERR_PTR(-VM_FAULT_SIGBUS);
  903. }
  904. }
  905. set_page_private(page, (unsigned long) mapping);
  906. vma_commit_reservation(h, vma, addr);
  907. return page;
  908. }
  909. int __weak alloc_bootmem_huge_page(struct hstate *h)
  910. {
  911. struct huge_bootmem_page *m;
  912. int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  913. while (nr_nodes) {
  914. void *addr;
  915. addr = __alloc_bootmem_node_nopanic(
  916. NODE_DATA(hstate_next_node_to_alloc(h,
  917. &node_states[N_HIGH_MEMORY])),
  918. huge_page_size(h), huge_page_size(h), 0);
  919. if (addr) {
  920. /*
  921. * Use the beginning of the huge page to store the
  922. * huge_bootmem_page struct (until gather_bootmem
  923. * puts them into the mem_map).
  924. */
  925. m = addr;
  926. goto found;
  927. }
  928. nr_nodes--;
  929. }
  930. return 0;
  931. found:
  932. BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
  933. /* Put them into a private list first because mem_map is not up yet */
  934. list_add(&m->list, &huge_boot_pages);
  935. m->hstate = h;
  936. return 1;
  937. }
  938. static void prep_compound_huge_page(struct page *page, int order)
  939. {
  940. if (unlikely(order > (MAX_ORDER - 1)))
  941. prep_compound_gigantic_page(page, order);
  942. else
  943. prep_compound_page(page, order);
  944. }
  945. /* Put bootmem huge pages into the standard lists after mem_map is up */
  946. static void __init gather_bootmem_prealloc(void)
  947. {
  948. struct huge_bootmem_page *m;
  949. list_for_each_entry(m, &huge_boot_pages, list) {
  950. struct hstate *h = m->hstate;
  951. struct page *page;
  952. #ifdef CONFIG_HIGHMEM
  953. page = pfn_to_page(m->phys >> PAGE_SHIFT);
  954. free_bootmem_late((unsigned long)m,
  955. sizeof(struct huge_bootmem_page));
  956. #else
  957. page = virt_to_page(m);
  958. #endif
  959. __ClearPageReserved(page);
  960. WARN_ON(page_count(page) != 1);
  961. prep_compound_huge_page(page, h->order);
  962. prep_new_huge_page(h, page, page_to_nid(page));
  963. /*
  964. * If we had gigantic hugepages allocated at boot time, we need
  965. * to restore the 'stolen' pages to totalram_pages in order to
  966. * fix confusing memory reports from free(1) and another
  967. * side-effects, like CommitLimit going negative.
  968. */
  969. if (h->order > (MAX_ORDER - 1))
  970. totalram_pages += 1 << h->order;
  971. }
  972. }
  973. static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
  974. {
  975. unsigned long i;
  976. for (i = 0; i < h->max_huge_pages; ++i) {
  977. if (h->order >= MAX_ORDER) {
  978. if (!alloc_bootmem_huge_page(h))
  979. break;
  980. } else if (!alloc_fresh_huge_page(h,
  981. &node_states[N_HIGH_MEMORY]))
  982. break;
  983. }
  984. h->max_huge_pages = i;
  985. }
  986. static void __init hugetlb_init_hstates(void)
  987. {
  988. struct hstate *h;
  989. for_each_hstate(h) {
  990. /* oversize hugepages were init'ed in early boot */
  991. if (h->order < MAX_ORDER)
  992. hugetlb_hstate_alloc_pages(h);
  993. }
  994. }
  995. static char * __init memfmt(char *buf, unsigned long n)
  996. {
  997. if (n >= (1UL << 30))
  998. sprintf(buf, "%lu GB", n >> 30);
  999. else if (n >= (1UL << 20))
  1000. sprintf(buf, "%lu MB", n >> 20);
  1001. else
  1002. sprintf(buf, "%lu KB", n >> 10);
  1003. return buf;
  1004. }
  1005. static void __init report_hugepages(void)
  1006. {
  1007. struct hstate *h;
  1008. for_each_hstate(h) {
  1009. char buf[32];
  1010. printk(KERN_INFO "HugeTLB registered %s page size, "
  1011. "pre-allocated %ld pages\n",
  1012. memfmt(buf, huge_page_size(h)),
  1013. h->free_huge_pages);
  1014. }
  1015. }
  1016. #ifdef CONFIG_HIGHMEM
  1017. static void try_to_free_low(struct hstate *h, unsigned long count,
  1018. nodemask_t *nodes_allowed)
  1019. {
  1020. int i;
  1021. if (h->order >= MAX_ORDER)
  1022. return;
  1023. for_each_node_mask(i, *nodes_allowed) {
  1024. struct page *page, *next;
  1025. struct list_head *freel = &h->hugepage_freelists[i];
  1026. list_for_each_entry_safe(page, next, freel, lru) {
  1027. if (count >= h->nr_huge_pages)
  1028. return;
  1029. if (PageHighMem(page))
  1030. continue;
  1031. list_del(&page->lru);
  1032. update_and_free_page(h, page);
  1033. h->free_huge_pages--;
  1034. h->free_huge_pages_node[page_to_nid(page)]--;
  1035. }
  1036. }
  1037. }
  1038. #else
  1039. static inline void try_to_free_low(struct hstate *h, unsigned long count,
  1040. nodemask_t *nodes_allowed)
  1041. {
  1042. }
  1043. #endif
  1044. /*
  1045. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  1046. * balanced by operating on them in a round-robin fashion.
  1047. * Returns 1 if an adjustment was made.
  1048. */
  1049. static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
  1050. int delta)
  1051. {
  1052. int start_nid, next_nid;
  1053. int ret = 0;
  1054. VM_BUG_ON(delta != -1 && delta != 1);
  1055. if (delta < 0)
  1056. start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  1057. else
  1058. start_nid = hstate_next_node_to_free(h, nodes_allowed);
  1059. next_nid = start_nid;
  1060. do {
  1061. int nid = next_nid;
  1062. if (delta < 0) {
  1063. /*
  1064. * To shrink on this node, there must be a surplus page
  1065. */
  1066. if (!h->surplus_huge_pages_node[nid]) {
  1067. next_nid = hstate_next_node_to_alloc(h,
  1068. nodes_allowed);
  1069. continue;
  1070. }
  1071. }
  1072. if (delta > 0) {
  1073. /*
  1074. * Surplus cannot exceed the total number of pages
  1075. */
  1076. if (h->surplus_huge_pages_node[nid] >=
  1077. h->nr_huge_pages_node[nid]) {
  1078. next_nid = hstate_next_node_to_free(h,
  1079. nodes_allowed);
  1080. continue;
  1081. }
  1082. }
  1083. h->surplus_huge_pages += delta;
  1084. h->surplus_huge_pages_node[nid] += delta;
  1085. ret = 1;
  1086. break;
  1087. } while (next_nid != start_nid);
  1088. return ret;
  1089. }
  1090. #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
  1091. static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
  1092. nodemask_t *nodes_allowed)
  1093. {
  1094. unsigned long min_count, ret;
  1095. if (h->order >= MAX_ORDER)
  1096. return h->max_huge_pages;
  1097. /*
  1098. * Increase the pool size
  1099. * First take pages out of surplus state. Then make up the
  1100. * remaining difference by allocating fresh huge pages.
  1101. *
  1102. * We might race with alloc_buddy_huge_page() here and be unable
  1103. * to convert a surplus huge page to a normal huge page. That is
  1104. * not critical, though, it just means the overall size of the
  1105. * pool might be one hugepage larger than it needs to be, but
  1106. * within all the constraints specified by the sysctls.
  1107. */
  1108. spin_lock(&hugetlb_lock);
  1109. while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
  1110. if (!adjust_pool_surplus(h, nodes_allowed, -1))
  1111. break;
  1112. }
  1113. while (count > persistent_huge_pages(h)) {
  1114. /*
  1115. * If this allocation races such that we no longer need the
  1116. * page, free_huge_page will handle it by freeing the page
  1117. * and reducing the surplus.
  1118. */
  1119. spin_unlock(&hugetlb_lock);
  1120. ret = alloc_fresh_huge_page(h, nodes_allowed);
  1121. spin_lock(&hugetlb_lock);
  1122. if (!ret)
  1123. goto out;
  1124. /* Bail for signals. Probably ctrl-c from user */
  1125. if (signal_pending(current))
  1126. goto out;
  1127. }
  1128. /*
  1129. * Decrease the pool size
  1130. * First return free pages to the buddy allocator (being careful
  1131. * to keep enough around to satisfy reservations). Then place
  1132. * pages into surplus state as needed so the pool will shrink
  1133. * to the desired size as pages become free.
  1134. *
  1135. * By placing pages into the surplus state independent of the
  1136. * overcommit value, we are allowing the surplus pool size to
  1137. * exceed overcommit. There are few sane options here. Since
  1138. * alloc_buddy_huge_page() is checking the global counter,
  1139. * though, we'll note that we're not allowed to exceed surplus
  1140. * and won't grow the pool anywhere else. Not until one of the
  1141. * sysctls are changed, or the surplus pages go out of use.
  1142. */
  1143. min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
  1144. min_count = max(count, min_count);
  1145. try_to_free_low(h, min_count, nodes_allowed);
  1146. while (min_count < persistent_huge_pages(h)) {
  1147. if (!free_pool_huge_page(h, nodes_allowed, 0))
  1148. break;
  1149. }
  1150. while (count < persistent_huge_pages(h)) {
  1151. if (!adjust_pool_surplus(h, nodes_allowed, 1))
  1152. break;
  1153. }
  1154. out:
  1155. ret = persistent_huge_pages(h);
  1156. spin_unlock(&hugetlb_lock);
  1157. return ret;
  1158. }
  1159. #define HSTATE_ATTR_RO(_name) \
  1160. static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
  1161. #define HSTATE_ATTR(_name) \
  1162. static struct kobj_attribute _name##_attr = \
  1163. __ATTR(_name, 0644, _name##_show, _name##_store)
  1164. static struct kobject *hugepages_kobj;
  1165. static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1166. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
  1167. static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
  1168. {
  1169. int i;
  1170. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1171. if (hstate_kobjs[i] == kobj) {
  1172. if (nidp)
  1173. *nidp = NUMA_NO_NODE;
  1174. return &hstates[i];
  1175. }
  1176. return kobj_to_node_hstate(kobj, nidp);
  1177. }
  1178. static ssize_t nr_hugepages_show_common(struct kobject *kobj,
  1179. struct kobj_attribute *attr, char *buf)
  1180. {
  1181. struct hstate *h;
  1182. unsigned long nr_huge_pages;
  1183. int nid;
  1184. h = kobj_to_hstate(kobj, &nid);
  1185. if (nid == NUMA_NO_NODE)
  1186. nr_huge_pages = h->nr_huge_pages;
  1187. else
  1188. nr_huge_pages = h->nr_huge_pages_node[nid];
  1189. return sprintf(buf, "%lu\n", nr_huge_pages);
  1190. }
  1191. static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
  1192. struct kobject *kobj, struct kobj_attribute *attr,
  1193. const char *buf, size_t len)
  1194. {
  1195. int err;
  1196. int nid;
  1197. unsigned long count;
  1198. struct hstate *h;
  1199. NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
  1200. err = strict_strtoul(buf, 10, &count);
  1201. if (err)
  1202. goto out;
  1203. h = kobj_to_hstate(kobj, &nid);
  1204. if (h->order >= MAX_ORDER) {
  1205. err = -EINVAL;
  1206. goto out;
  1207. }
  1208. if (nid == NUMA_NO_NODE) {
  1209. /*
  1210. * global hstate attribute
  1211. */
  1212. if (!(obey_mempolicy &&
  1213. init_nodemask_of_mempolicy(nodes_allowed))) {
  1214. NODEMASK_FREE(nodes_allowed);
  1215. nodes_allowed = &node_states[N_HIGH_MEMORY];
  1216. }
  1217. } else if (nodes_allowed) {
  1218. /*
  1219. * per node hstate attribute: adjust count to global,
  1220. * but restrict alloc/free to the specified node.
  1221. */
  1222. count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
  1223. init_nodemask_of_node(nodes_allowed, nid);
  1224. } else
  1225. nodes_allowed = &node_states[N_HIGH_MEMORY];
  1226. h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
  1227. if (nodes_allowed != &node_states[N_HIGH_MEMORY])
  1228. NODEMASK_FREE(nodes_allowed);
  1229. return len;
  1230. out:
  1231. NODEMASK_FREE(nodes_allowed);
  1232. return err;
  1233. }
  1234. static ssize_t nr_hugepages_show(struct kobject *kobj,
  1235. struct kobj_attribute *attr, char *buf)
  1236. {
  1237. return nr_hugepages_show_common(kobj, attr, buf);
  1238. }
  1239. static ssize_t nr_hugepages_store(struct kobject *kobj,
  1240. struct kobj_attribute *attr, const char *buf, size_t len)
  1241. {
  1242. return nr_hugepages_store_common(false, kobj, attr, buf, len);
  1243. }
  1244. HSTATE_ATTR(nr_hugepages);
  1245. #ifdef CONFIG_NUMA
  1246. /*
  1247. * hstate attribute for optionally mempolicy-based constraint on persistent
  1248. * huge page alloc/free.
  1249. */
  1250. static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
  1251. struct kobj_attribute *attr, char *buf)
  1252. {
  1253. return nr_hugepages_show_common(kobj, attr, buf);
  1254. }
  1255. static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
  1256. struct kobj_attribute *attr, const char *buf, size_t len)
  1257. {
  1258. return nr_hugepages_store_common(true, kobj, attr, buf, len);
  1259. }
  1260. HSTATE_ATTR(nr_hugepages_mempolicy);
  1261. #endif
  1262. static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
  1263. struct kobj_attribute *attr, char *buf)
  1264. {
  1265. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1266. return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
  1267. }
  1268. static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
  1269. struct kobj_attribute *attr, const char *buf, size_t count)
  1270. {
  1271. int err;
  1272. unsigned long input;
  1273. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1274. if (h->order >= MAX_ORDER)
  1275. return -EINVAL;
  1276. err = strict_strtoul(buf, 10, &input);
  1277. if (err)
  1278. return err;
  1279. spin_lock(&hugetlb_lock);
  1280. h->nr_overcommit_huge_pages = input;
  1281. spin_unlock(&hugetlb_lock);
  1282. return count;
  1283. }
  1284. HSTATE_ATTR(nr_overcommit_hugepages);
  1285. static ssize_t free_hugepages_show(struct kobject *kobj,
  1286. struct kobj_attribute *attr, char *buf)
  1287. {
  1288. struct hstate *h;
  1289. unsigned long free_huge_pages;
  1290. int nid;
  1291. h = kobj_to_hstate(kobj, &nid);
  1292. if (nid == NUMA_NO_NODE)
  1293. free_huge_pages = h->free_huge_pages;
  1294. else
  1295. free_huge_pages = h->free_huge_pages_node[nid];
  1296. return sprintf(buf, "%lu\n", free_huge_pages);
  1297. }
  1298. HSTATE_ATTR_RO(free_hugepages);
  1299. static ssize_t resv_hugepages_show(struct kobject *kobj,
  1300. struct kobj_attribute *attr, char *buf)
  1301. {
  1302. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1303. return sprintf(buf, "%lu\n", h->resv_huge_pages);
  1304. }
  1305. HSTATE_ATTR_RO(resv_hugepages);
  1306. static ssize_t surplus_hugepages_show(struct kobject *kobj,
  1307. struct kobj_attribute *attr, char *buf)
  1308. {
  1309. struct hstate *h;
  1310. unsigned long surplus_huge_pages;
  1311. int nid;
  1312. h = kobj_to_hstate(kobj, &nid);
  1313. if (nid == NUMA_NO_NODE)
  1314. surplus_huge_pages = h->surplus_huge_pages;
  1315. else
  1316. surplus_huge_pages = h->surplus_huge_pages_node[nid];
  1317. return sprintf(buf, "%lu\n", surplus_huge_pages);
  1318. }
  1319. HSTATE_ATTR_RO(surplus_hugepages);
  1320. static struct attribute *hstate_attrs[] = {
  1321. &nr_hugepages_attr.attr,
  1322. &nr_overcommit_hugepages_attr.attr,
  1323. &free_hugepages_attr.attr,
  1324. &resv_hugepages_attr.attr,
  1325. &surplus_hugepages_attr.attr,
  1326. #ifdef CONFIG_NUMA
  1327. &nr_hugepages_mempolicy_attr.attr,
  1328. #endif
  1329. NULL,
  1330. };
  1331. static struct attribute_group hstate_attr_group = {
  1332. .attrs = hstate_attrs,
  1333. };
  1334. static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
  1335. struct kobject **hstate_kobjs,
  1336. struct attribute_group *hstate_attr_group)
  1337. {
  1338. int retval;
  1339. int hi = h - hstates;
  1340. hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
  1341. if (!hstate_kobjs[hi])
  1342. return -ENOMEM;
  1343. retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
  1344. if (retval)
  1345. kobject_put(hstate_kobjs[hi]);
  1346. return retval;
  1347. }
  1348. static void __init hugetlb_sysfs_init(void)
  1349. {
  1350. struct hstate *h;
  1351. int err;
  1352. hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
  1353. if (!hugepages_kobj)
  1354. return;
  1355. for_each_hstate(h) {
  1356. err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
  1357. hstate_kobjs, &hstate_attr_group);
  1358. if (err)
  1359. printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
  1360. h->name);
  1361. }
  1362. }
  1363. #ifdef CONFIG_NUMA
  1364. /*
  1365. * node_hstate/s - associate per node hstate attributes, via their kobjects,
  1366. * with node sysdevs in node_devices[] using a parallel array. The array
  1367. * index of a node sysdev or _hstate == node id.
  1368. * This is here to avoid any static dependency of the node sysdev driver, in
  1369. * the base kernel, on the hugetlb module.
  1370. */
  1371. struct node_hstate {
  1372. struct kobject *hugepages_kobj;
  1373. struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1374. };
  1375. struct node_hstate node_hstates[MAX_NUMNODES];
  1376. /*
  1377. * A subset of global hstate attributes for node sysdevs
  1378. */
  1379. static struct attribute *per_node_hstate_attrs[] = {
  1380. &nr_hugepages_attr.attr,
  1381. &free_hugepages_attr.attr,
  1382. &surplus_hugepages_attr.attr,
  1383. NULL,
  1384. };
  1385. static struct attribute_group per_node_hstate_attr_group = {
  1386. .attrs = per_node_hstate_attrs,
  1387. };
  1388. /*
  1389. * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
  1390. * Returns node id via non-NULL nidp.
  1391. */
  1392. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1393. {
  1394. int nid;
  1395. for (nid = 0; nid < nr_node_ids; nid++) {
  1396. struct node_hstate *nhs = &node_hstates[nid];
  1397. int i;
  1398. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1399. if (nhs->hstate_kobjs[i] == kobj) {
  1400. if (nidp)
  1401. *nidp = nid;
  1402. return &hstates[i];
  1403. }
  1404. }
  1405. BUG();
  1406. return NULL;
  1407. }
  1408. /*
  1409. * Unregister hstate attributes from a single node sysdev.
  1410. * No-op if no hstate attributes attached.
  1411. */
  1412. void hugetlb_unregister_node(struct node *node)
  1413. {
  1414. struct hstate *h;
  1415. struct node_hstate *nhs = &node_hstates[node->sysdev.id];
  1416. if (!nhs->hugepages_kobj)
  1417. return; /* no hstate attributes */
  1418. for_each_hstate(h)
  1419. if (nhs->hstate_kobjs[h - hstates]) {
  1420. kobject_put(nhs->hstate_kobjs[h - hstates]);
  1421. nhs->hstate_kobjs[h - hstates] = NULL;
  1422. }
  1423. kobject_put(nhs->hugepages_kobj);
  1424. nhs->hugepages_kobj = NULL;
  1425. }
  1426. /*
  1427. * hugetlb module exit: unregister hstate attributes from node sysdevs
  1428. * that have them.
  1429. */
  1430. static void hugetlb_unregister_all_nodes(void)
  1431. {
  1432. int nid;
  1433. /*
  1434. * disable node sysdev registrations.
  1435. */
  1436. register_hugetlbfs_with_node(NULL, NULL);
  1437. /*
  1438. * remove hstate attributes from any nodes that have them.
  1439. */
  1440. for (nid = 0; nid < nr_node_ids; nid++)
  1441. hugetlb_unregister_node(&node_devices[nid]);
  1442. }
  1443. /*
  1444. * Register hstate attributes for a single node sysdev.
  1445. * No-op if attributes already registered.
  1446. */
  1447. void hugetlb_register_node(struct node *node)
  1448. {
  1449. struct hstate *h;
  1450. struct node_hstate *nhs = &node_hstates[node->sysdev.id];
  1451. int err;
  1452. if (nhs->hugepages_kobj)
  1453. return; /* already allocated */
  1454. nhs->hugepages_kobj = kobject_create_and_add("hugepages",
  1455. &node->sysdev.kobj);
  1456. if (!nhs->hugepages_kobj)
  1457. return;
  1458. for_each_hstate(h) {
  1459. err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
  1460. nhs->hstate_kobjs,
  1461. &per_node_hstate_attr_group);
  1462. if (err) {
  1463. printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
  1464. " for node %d\n",
  1465. h->name, node->sysdev.id);
  1466. hugetlb_unregister_node(node);
  1467. break;
  1468. }
  1469. }
  1470. }
  1471. /*
  1472. * hugetlb init time: register hstate attributes for all registered node
  1473. * sysdevs of nodes that have memory. All on-line nodes should have
  1474. * registered their associated sysdev by this time.
  1475. */
  1476. static void hugetlb_register_all_nodes(void)
  1477. {
  1478. int nid;
  1479. for_each_node_state(nid, N_HIGH_MEMORY) {
  1480. struct node *node = &node_devices[nid];
  1481. if (node->sysdev.id == nid)
  1482. hugetlb_register_node(node);
  1483. }
  1484. /*
  1485. * Let the node sysdev driver know we're here so it can
  1486. * [un]register hstate attributes on node hotplug.
  1487. */
  1488. register_hugetlbfs_with_node(hugetlb_register_node,
  1489. hugetlb_unregister_node);
  1490. }
  1491. #else /* !CONFIG_NUMA */
  1492. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1493. {
  1494. BUG();
  1495. if (nidp)
  1496. *nidp = -1;
  1497. return NULL;
  1498. }
  1499. static void hugetlb_unregister_all_nodes(void) { }
  1500. static void hugetlb_register_all_nodes(void) { }
  1501. #endif
  1502. static void __exit hugetlb_exit(void)
  1503. {
  1504. struct hstate *h;
  1505. hugetlb_unregister_all_nodes();
  1506. for_each_hstate(h) {
  1507. kobject_put(hstate_kobjs[h - hstates]);
  1508. }
  1509. kobject_put(hugepages_kobj);
  1510. }
  1511. module_exit(hugetlb_exit);
  1512. static int __init hugetlb_init(void)
  1513. {
  1514. /* Some platform decide whether they support huge pages at boot
  1515. * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
  1516. * there is no such support
  1517. */
  1518. if (HPAGE_SHIFT == 0)
  1519. return 0;
  1520. if (!size_to_hstate(default_hstate_size)) {
  1521. default_hstate_size = HPAGE_SIZE;
  1522. if (!size_to_hstate(default_hstate_size))
  1523. hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
  1524. }
  1525. default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
  1526. if (default_hstate_max_huge_pages)
  1527. default_hstate.max_huge_pages = default_hstate_max_huge_pages;
  1528. hugetlb_init_hstates();
  1529. gather_bootmem_prealloc();
  1530. report_hugepages();
  1531. hugetlb_sysfs_init();
  1532. hugetlb_register_all_nodes();
  1533. return 0;
  1534. }
  1535. module_init(hugetlb_init);
  1536. /* Should be called on processing a hugepagesz=... option */
  1537. void __init hugetlb_add_hstate(unsigned order)
  1538. {
  1539. struct hstate *h;
  1540. unsigned long i;
  1541. if (size_to_hstate(PAGE_SIZE << order)) {
  1542. printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
  1543. return;
  1544. }
  1545. BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
  1546. BUG_ON(order == 0);
  1547. h = &hstates[max_hstate++];
  1548. h->order = order;
  1549. h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
  1550. h->nr_huge_pages = 0;
  1551. h->free_huge_pages = 0;
  1552. for (i = 0; i < MAX_NUMNODES; ++i)
  1553. INIT_LIST_HEAD(&h->hugepage_freelists[i]);
  1554. h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
  1555. h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
  1556. snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
  1557. huge_page_size(h)/1024);
  1558. parsed_hstate = h;
  1559. }
  1560. static int __init hugetlb_nrpages_setup(char *s)
  1561. {
  1562. unsigned long *mhp;
  1563. static unsigned long *last_mhp;
  1564. /*
  1565. * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
  1566. * so this hugepages= parameter goes to the "default hstate".
  1567. */
  1568. if (!max_hstate)
  1569. mhp = &default_hstate_max_huge_pages;
  1570. else
  1571. mhp = &parsed_hstate->max_huge_pages;
  1572. if (mhp == last_mhp) {
  1573. printk(KERN_WARNING "hugepages= specified twice without "
  1574. "interleaving hugepagesz=, ignoring\n");
  1575. return 1;
  1576. }
  1577. if (sscanf(s, "%lu", mhp) <= 0)
  1578. *mhp = 0;
  1579. /*
  1580. * Global state is always initialized later in hugetlb_init.
  1581. * But we need to allocate >= MAX_ORDER hstates here early to still
  1582. * use the bootmem allocator.
  1583. */
  1584. if (max_hstate && parsed_hstate->order >= MAX_ORDER)
  1585. hugetlb_hstate_alloc_pages(parsed_hstate);
  1586. last_mhp = mhp;
  1587. return 1;
  1588. }
  1589. __setup("hugepages=", hugetlb_nrpages_setup);
  1590. static int __init hugetlb_default_setup(char *s)
  1591. {
  1592. default_hstate_size = memparse(s, &s);
  1593. return 1;
  1594. }
  1595. __setup("default_hugepagesz=", hugetlb_default_setup);
  1596. static unsigned int cpuset_mems_nr(unsigned int *array)
  1597. {
  1598. int node;
  1599. unsigned int nr = 0;
  1600. for_each_node_mask(node, cpuset_current_mems_allowed)
  1601. nr += array[node];
  1602. return nr;
  1603. }
  1604. #ifdef CONFIG_SYSCTL
  1605. static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
  1606. struct ctl_table *table, int write,
  1607. void __user *buffer, size_t *length, loff_t *ppos)
  1608. {
  1609. struct hstate *h = &default_hstate;
  1610. unsigned long tmp;
  1611. int ret;
  1612. tmp = h->max_huge_pages;
  1613. if (write && h->order >= MAX_ORDER)
  1614. return -EINVAL;
  1615. table->data = &tmp;
  1616. table->maxlen = sizeof(unsigned long);
  1617. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1618. if (ret)
  1619. goto out;
  1620. if (write) {
  1621. NODEMASK_ALLOC(nodemask_t, nodes_allowed,
  1622. GFP_KERNEL | __GFP_NORETRY);
  1623. if (!(obey_mempolicy &&
  1624. init_nodemask_of_mempolicy(nodes_allowed))) {
  1625. NODEMASK_FREE(nodes_allowed);
  1626. nodes_allowed = &node_states[N_HIGH_MEMORY];
  1627. }
  1628. h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
  1629. if (nodes_allowed != &node_states[N_HIGH_MEMORY])
  1630. NODEMASK_FREE(nodes_allowed);
  1631. }
  1632. out:
  1633. return ret;
  1634. }
  1635. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  1636. void __user *buffer, size_t *length, loff_t *ppos)
  1637. {
  1638. return hugetlb_sysctl_handler_common(false, table, write,
  1639. buffer, length, ppos);
  1640. }
  1641. #ifdef CONFIG_NUMA
  1642. int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
  1643. void __user *buffer, size_t *length, loff_t *ppos)
  1644. {
  1645. return hugetlb_sysctl_handler_common(true, table, write,
  1646. buffer, length, ppos);
  1647. }
  1648. #endif /* CONFIG_NUMA */
  1649. int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
  1650. void __user *buffer,
  1651. size_t *length, loff_t *ppos)
  1652. {
  1653. proc_dointvec(table, write, buffer, length, ppos);
  1654. if (hugepages_treat_as_movable)
  1655. htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
  1656. else
  1657. htlb_alloc_mask = GFP_HIGHUSER;
  1658. return 0;
  1659. }
  1660. int hugetlb_overcommit_handler(struct ctl_table *table, int write,
  1661. void __user *buffer,
  1662. size_t *length, loff_t *ppos)
  1663. {
  1664. struct hstate *h = &default_hstate;
  1665. unsigned long tmp;
  1666. int ret;
  1667. tmp = h->nr_overcommit_huge_pages;
  1668. if (write && h->order >= MAX_ORDER)
  1669. return -EINVAL;
  1670. table->data = &tmp;
  1671. table->maxlen = sizeof(unsigned long);
  1672. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1673. if (ret)
  1674. goto out;
  1675. if (write) {
  1676. spin_lock(&hugetlb_lock);
  1677. h->nr_overcommit_huge_pages = tmp;
  1678. spin_unlock(&hugetlb_lock);
  1679. }
  1680. out:
  1681. return ret;
  1682. }
  1683. #endif /* CONFIG_SYSCTL */
  1684. void hugetlb_report_meminfo(struct seq_file *m)
  1685. {
  1686. struct hstate *h = &default_hstate;
  1687. seq_printf(m,
  1688. "HugePages_Total: %5lu\n"
  1689. "HugePages_Free: %5lu\n"
  1690. "HugePages_Rsvd: %5lu\n"
  1691. "HugePages_Surp: %5lu\n"
  1692. "Hugepagesize: %8lu kB\n",
  1693. h->nr_huge_pages,
  1694. h->free_huge_pages,
  1695. h->resv_huge_pages,
  1696. h->surplus_huge_pages,
  1697. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  1698. }
  1699. int hugetlb_report_node_meminfo(int nid, char *buf)
  1700. {
  1701. struct hstate *h = &default_hstate;
  1702. return sprintf(buf,
  1703. "Node %d HugePages_Total: %5u\n"
  1704. "Node %d HugePages_Free: %5u\n"
  1705. "Node %d HugePages_Surp: %5u\n",
  1706. nid, h->nr_huge_pages_node[nid],
  1707. nid, h->free_huge_pages_node[nid],
  1708. nid, h->surplus_huge_pages_node[nid]);
  1709. }
  1710. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  1711. unsigned long hugetlb_total_pages(void)
  1712. {
  1713. struct hstate *h = &default_hstate;
  1714. return h->nr_huge_pages * pages_per_huge_page(h);
  1715. }
  1716. static int hugetlb_acct_memory(struct hstate *h, long delta)
  1717. {
  1718. int ret = -ENOMEM;
  1719. spin_lock(&hugetlb_lock);
  1720. /*
  1721. * When cpuset is configured, it breaks the strict hugetlb page
  1722. * reservation as the accounting is done on a global variable. Such
  1723. * reservation is completely rubbish in the presence of cpuset because
  1724. * the reservation is not checked against page availability for the
  1725. * current cpuset. Application can still potentially OOM'ed by kernel
  1726. * with lack of free htlb page in cpuset that the task is in.
  1727. * Attempt to enforce strict accounting with cpuset is almost
  1728. * impossible (or too ugly) because cpuset is too fluid that
  1729. * task or memory node can be dynamically moved between cpusets.
  1730. *
  1731. * The change of semantics for shared hugetlb mapping with cpuset is
  1732. * undesirable. However, in order to preserve some of the semantics,
  1733. * we fall back to check against current free page availability as
  1734. * a best attempt and hopefully to minimize the impact of changing
  1735. * semantics that cpuset has.
  1736. */
  1737. if (delta > 0) {
  1738. if (gather_surplus_pages(h, delta) < 0)
  1739. goto out;
  1740. if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
  1741. return_unused_surplus_pages(h, delta);
  1742. goto out;
  1743. }
  1744. }
  1745. ret = 0;
  1746. if (delta < 0)
  1747. return_unused_surplus_pages(h, (unsigned long) -delta);
  1748. out:
  1749. spin_unlock(&hugetlb_lock);
  1750. return ret;
  1751. }
  1752. static void hugetlb_vm_op_open(struct vm_area_struct *vma)
  1753. {
  1754. struct resv_map *reservations = vma_resv_map(vma);
  1755. /*
  1756. * This new VMA should share its siblings reservation map if present.
  1757. * The VMA will only ever have a valid reservation map pointer where
  1758. * it is being copied for another still existing VMA. As that VMA
  1759. * has a reference to the reservation map it cannot disappear until
  1760. * after this open call completes. It is therefore safe to take a
  1761. * new reference here without additional locking.
  1762. */
  1763. if (reservations)
  1764. kref_get(&reservations->refs);
  1765. }
  1766. static void hugetlb_vm_op_close(struct vm_area_struct *vma)
  1767. {
  1768. struct hstate *h = hstate_vma(vma);
  1769. struct resv_map *reservations = vma_resv_map(vma);
  1770. unsigned long reserve;
  1771. unsigned long start;
  1772. unsigned long end;
  1773. if (reservations) {
  1774. start = vma_hugecache_offset(h, vma, vma->vm_start);
  1775. end = vma_hugecache_offset(h, vma, vma->vm_end);
  1776. reserve = (end - start) -
  1777. region_count(&reservations->regions, start, end);
  1778. kref_put(&reservations->refs, resv_map_release);
  1779. if (reserve) {
  1780. hugetlb_acct_memory(h, -reserve);
  1781. hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
  1782. }
  1783. }
  1784. }
  1785. /*
  1786. * We cannot handle pagefaults against hugetlb pages at all. They cause
  1787. * handle_mm_fault() to try to instantiate regular-sized pages in the
  1788. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  1789. * this far.
  1790. */
  1791. static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1792. {
  1793. BUG();
  1794. return 0;
  1795. }
  1796. const struct vm_operations_struct hugetlb_vm_ops = {
  1797. .fault = hugetlb_vm_op_fault,
  1798. .open = hugetlb_vm_op_open,
  1799. .close = hugetlb_vm_op_close,
  1800. };
  1801. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  1802. int writable)
  1803. {
  1804. pte_t entry;
  1805. if (writable) {
  1806. entry =
  1807. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  1808. } else {
  1809. entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  1810. }
  1811. entry = pte_mkyoung(entry);
  1812. entry = pte_mkhuge(entry);
  1813. return entry;
  1814. }
  1815. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  1816. unsigned long address, pte_t *ptep)
  1817. {
  1818. pte_t entry;
  1819. entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
  1820. if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
  1821. update_mmu_cache(vma, address, ptep);
  1822. }
  1823. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  1824. struct vm_area_struct *vma)
  1825. {
  1826. pte_t *src_pte, *dst_pte, entry;
  1827. struct page *ptepage;
  1828. unsigned long addr;
  1829. int cow;
  1830. struct hstate *h = hstate_vma(vma);
  1831. unsigned long sz = huge_page_size(h);
  1832. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  1833. for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
  1834. src_pte = huge_pte_offset(src, addr);
  1835. if (!src_pte)
  1836. continue;
  1837. dst_pte = huge_pte_alloc(dst, addr, sz);
  1838. if (!dst_pte)
  1839. goto nomem;
  1840. /* If the pagetables are shared don't copy or take references */
  1841. if (dst_pte == src_pte)
  1842. continue;
  1843. spin_lock(&dst->page_table_lock);
  1844. spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
  1845. if (!huge_pte_none(huge_ptep_get(src_pte))) {
  1846. if (cow)
  1847. huge_ptep_set_wrprotect(src, addr, src_pte);
  1848. entry = huge_ptep_get(src_pte);
  1849. ptepage = pte_page(entry);
  1850. get_page(ptepage);
  1851. page_dup_rmap(ptepage);
  1852. set_huge_pte_at(dst, addr, dst_pte, entry);
  1853. }
  1854. spin_unlock(&src->page_table_lock);
  1855. spin_unlock(&dst->page_table_lock);
  1856. }
  1857. return 0;
  1858. nomem:
  1859. return -ENOMEM;
  1860. }
  1861. static int is_hugetlb_entry_migration(pte_t pte)
  1862. {
  1863. swp_entry_t swp;
  1864. if (huge_pte_none(pte) || pte_present(pte))
  1865. return 0;
  1866. swp = pte_to_swp_entry(pte);
  1867. if (non_swap_entry(swp) && is_migration_entry(swp))
  1868. return 1;
  1869. else
  1870. return 0;
  1871. }
  1872. static int is_hugetlb_entry_hwpoisoned(pte_t pte)
  1873. {
  1874. swp_entry_t swp;
  1875. if (huge_pte_none(pte) || pte_present(pte))
  1876. return 0;
  1877. swp = pte_to_swp_entry(pte);
  1878. if (non_swap_entry(swp) && is_hwpoison_entry(swp))
  1879. return 1;
  1880. else
  1881. return 0;
  1882. }
  1883. void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  1884. unsigned long end, struct page *ref_page)
  1885. {
  1886. struct mm_struct *mm = vma->vm_mm;
  1887. unsigned long address;
  1888. pte_t *ptep;
  1889. pte_t pte;
  1890. struct page *page;
  1891. struct page *tmp;
  1892. struct hstate *h = hstate_vma(vma);
  1893. unsigned long sz = huge_page_size(h);
  1894. /*
  1895. * A page gathering list, protected by per file i_mmap_mutex. The
  1896. * lock is used to avoid list corruption from multiple unmapping
  1897. * of the same page since we are using page->lru.
  1898. */
  1899. LIST_HEAD(page_list);
  1900. WARN_ON(!is_vm_hugetlb_page(vma));
  1901. BUG_ON(start & ~huge_page_mask(h));
  1902. BUG_ON(end & ~huge_page_mask(h));
  1903. mmu_notifier_invalidate_range_start(mm, start, end);
  1904. spin_lock(&mm->page_table_lock);
  1905. for (address = start; address < end; address += sz) {
  1906. ptep = huge_pte_offset(mm, address);
  1907. if (!ptep)
  1908. continue;
  1909. if (huge_pmd_unshare(mm, &address, ptep))
  1910. continue;
  1911. /*
  1912. * If a reference page is supplied, it is because a specific
  1913. * page is being unmapped, not a range. Ensure the page we
  1914. * are about to unmap is the actual page of interest.
  1915. */
  1916. if (ref_page) {
  1917. pte = huge_ptep_get(ptep);
  1918. if (huge_pte_none(pte))
  1919. continue;
  1920. page = pte_page(pte);
  1921. if (page != ref_page)
  1922. continue;
  1923. /*
  1924. * Mark the VMA as having unmapped its page so that
  1925. * future faults in this VMA will fail rather than
  1926. * looking like data was lost
  1927. */
  1928. set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
  1929. }
  1930. pte = huge_ptep_get_and_clear(mm, address, ptep);
  1931. if (huge_pte_none(pte))
  1932. continue;
  1933. /*
  1934. * HWPoisoned hugepage is already unmapped and dropped reference
  1935. */
  1936. if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
  1937. continue;
  1938. page = pte_page(pte);
  1939. if (pte_dirty(pte))
  1940. set_page_dirty(page);
  1941. list_add(&page->lru, &page_list);
  1942. }
  1943. spin_unlock(&mm->page_table_lock);
  1944. flush_tlb_range(vma, start, end);
  1945. mmu_notifier_invalidate_range_end(mm, start, end);
  1946. list_for_each_entry_safe(page, tmp, &page_list, lru) {
  1947. page_remove_rmap(page);
  1948. list_del(&page->lru);
  1949. put_page(page);
  1950. }
  1951. }
  1952. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  1953. unsigned long end, struct page *ref_page)
  1954. {
  1955. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1956. __unmap_hugepage_range(vma, start, end, ref_page);
  1957. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1958. }
  1959. /*
  1960. * This is called when the original mapper is failing to COW a MAP_PRIVATE
  1961. * mappping it owns the reserve page for. The intention is to unmap the page
  1962. * from other VMAs and let the children be SIGKILLed if they are faulting the
  1963. * same region.
  1964. */
  1965. static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
  1966. struct page *page, unsigned long address)
  1967. {
  1968. struct hstate *h = hstate_vma(vma);
  1969. struct vm_area_struct *iter_vma;
  1970. struct address_space *mapping;
  1971. struct prio_tree_iter iter;
  1972. pgoff_t pgoff;
  1973. /*
  1974. * vm_pgoff is in PAGE_SIZE units, hence the different calculation
  1975. * from page cache lookup which is in HPAGE_SIZE units.
  1976. */
  1977. address = address & huge_page_mask(h);
  1978. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
  1979. + (vma->vm_pgoff >> PAGE_SHIFT);
  1980. mapping = (struct address_space *)page_private(page);
  1981. /*
  1982. * Take the mapping lock for the duration of the table walk. As
  1983. * this mapping should be shared between all the VMAs,
  1984. * __unmap_hugepage_range() is called as the lock is already held
  1985. */
  1986. mutex_lock(&mapping->i_mmap_mutex);
  1987. vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1988. /* Do not unmap the current VMA */
  1989. if (iter_vma == vma)
  1990. continue;
  1991. /*
  1992. * Unmap the page from other VMAs without their own reserves.
  1993. * They get marked to be SIGKILLed if they fault in these
  1994. * areas. This is because a future no-page fault on this VMA
  1995. * could insert a zeroed page instead of the data existing
  1996. * from the time of fork. This would look like data corruption
  1997. */
  1998. if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
  1999. __unmap_hugepage_range(iter_vma,
  2000. address, address + huge_page_size(h),
  2001. page);
  2002. }
  2003. mutex_unlock(&mapping->i_mmap_mutex);
  2004. return 1;
  2005. }
  2006. /*
  2007. * Hugetlb_cow() should be called with page lock of the original hugepage held.
  2008. */
  2009. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  2010. unsigned long address, pte_t *ptep, pte_t pte,
  2011. struct page *pagecache_page)
  2012. {
  2013. struct hstate *h = hstate_vma(vma);
  2014. struct page *old_page, *new_page;
  2015. int avoidcopy;
  2016. int outside_reserve = 0;
  2017. old_page = pte_page(pte);
  2018. retry_avoidcopy:
  2019. /* If no-one else is actually using this page, avoid the copy
  2020. * and just make the page writable */
  2021. avoidcopy = (page_mapcount(old_page) == 1);
  2022. if (avoidcopy) {
  2023. if (PageAnon(old_page))
  2024. page_move_anon_rmap(old_page, vma, address);
  2025. set_huge_ptep_writable(vma, address, ptep);
  2026. return 0;
  2027. }
  2028. /*
  2029. * If the process that created a MAP_PRIVATE mapping is about to
  2030. * perform a COW due to a shared page count, attempt to satisfy
  2031. * the allocation without using the existing reserves. The pagecache
  2032. * page is used to determine if the reserve at this address was
  2033. * consumed or not. If reserves were used, a partial faulted mapping
  2034. * at the time of fork() could consume its reserves on COW instead
  2035. * of the full address range.
  2036. */
  2037. if (!(vma->vm_flags & VM_MAYSHARE) &&
  2038. is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
  2039. old_page != pagecache_page)
  2040. outside_reserve = 1;
  2041. page_cache_get(old_page);
  2042. /* Drop page_table_lock as buddy allocator may be called */
  2043. spin_unlock(&mm->page_table_lock);
  2044. new_page = alloc_huge_page(vma, address, outside_reserve);
  2045. if (IS_ERR(new_page)) {
  2046. page_cache_release(old_page);
  2047. /*
  2048. * If a process owning a MAP_PRIVATE mapping fails to COW,
  2049. * it is due to references held by a child and an insufficient
  2050. * huge page pool. To guarantee the original mappers
  2051. * reliability, unmap the page from child processes. The child
  2052. * may get SIGKILLed if it later faults.
  2053. */
  2054. if (outside_reserve) {
  2055. BUG_ON(huge_pte_none(pte));
  2056. if (unmap_ref_private(mm, vma, old_page, address)) {
  2057. BUG_ON(page_count(old_page) != 1);
  2058. BUG_ON(huge_pte_none(pte));
  2059. spin_lock(&mm->page_table_lock);
  2060. goto retry_avoidcopy;
  2061. }
  2062. WARN_ON_ONCE(1);
  2063. }
  2064. /* Caller expects lock to be held */
  2065. spin_lock(&mm->page_table_lock);
  2066. return -PTR_ERR(new_page);
  2067. }
  2068. /*
  2069. * When the original hugepage is shared one, it does not have
  2070. * anon_vma prepared.
  2071. */
  2072. if (unlikely(anon_vma_prepare(vma))) {
  2073. page_cache_release(new_page);
  2074. page_cache_release(old_page);
  2075. /* Caller expects lock to be held */
  2076. spin_lock(&mm->page_table_lock);
  2077. return VM_FAULT_OOM;
  2078. }
  2079. copy_user_huge_page(new_page, old_page, address, vma,
  2080. pages_per_huge_page(h));
  2081. __SetPageUptodate(new_page);
  2082. /*
  2083. * Retake the page_table_lock to check for racing updates
  2084. * before the page tables are altered
  2085. */
  2086. spin_lock(&mm->page_table_lock);
  2087. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2088. if (likely(pte_same(huge_ptep_get(ptep), pte))) {
  2089. /* Break COW */
  2090. mmu_notifier_invalidate_range_start(mm,
  2091. address & huge_page_mask(h),
  2092. (address & huge_page_mask(h)) + huge_page_size(h));
  2093. huge_ptep_clear_flush(vma, address, ptep);
  2094. set_huge_pte_at(mm, address, ptep,
  2095. make_huge_pte(vma, new_page, 1));
  2096. page_remove_rmap(old_page);
  2097. hugepage_add_new_anon_rmap(new_page, vma, address);
  2098. /* Make the old page be freed below */
  2099. new_page = old_page;
  2100. mmu_notifier_invalidate_range_end(mm,
  2101. address & huge_page_mask(h),
  2102. (address & huge_page_mask(h)) + huge_page_size(h));
  2103. }
  2104. page_cache_release(new_page);
  2105. page_cache_release(old_page);
  2106. return 0;
  2107. }
  2108. /* Return the pagecache page at a given address within a VMA */
  2109. static struct page *hugetlbfs_pagecache_page(struct hstate *h,
  2110. struct vm_area_struct *vma, unsigned long address)
  2111. {
  2112. struct address_space *mapping;
  2113. pgoff_t idx;
  2114. mapping = vma->vm_file->f_mapping;
  2115. idx = vma_hugecache_offset(h, vma, address);
  2116. return find_lock_page(mapping, idx);
  2117. }
  2118. /*
  2119. * Return whether there is a pagecache page to back given address within VMA.
  2120. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
  2121. */
  2122. static bool hugetlbfs_pagecache_present(struct hstate *h,
  2123. struct vm_area_struct *vma, unsigned long address)
  2124. {
  2125. struct address_space *mapping;
  2126. pgoff_t idx;
  2127. struct page *page;
  2128. mapping = vma->vm_file->f_mapping;
  2129. idx = vma_hugecache_offset(h, vma, address);
  2130. page = find_get_page(mapping, idx);
  2131. if (page)
  2132. put_page(page);
  2133. return page != NULL;
  2134. }
  2135. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2136. unsigned long address, pte_t *ptep, unsigned int flags)
  2137. {
  2138. struct hstate *h = hstate_vma(vma);
  2139. int ret = VM_FAULT_SIGBUS;
  2140. pgoff_t idx;
  2141. unsigned long size;
  2142. struct page *page;
  2143. struct address_space *mapping;
  2144. pte_t new_pte;
  2145. /*
  2146. * Currently, we are forced to kill the process in the event the
  2147. * original mapper has unmapped pages from the child due to a failed
  2148. * COW. Warn that such a situation has occurred as it may not be obvious
  2149. */
  2150. if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
  2151. printk(KERN_WARNING
  2152. "PID %d killed due to inadequate hugepage pool\n",
  2153. current->pid);
  2154. return ret;
  2155. }
  2156. mapping = vma->vm_file->f_mapping;
  2157. idx = vma_hugecache_offset(h, vma, address);
  2158. /*
  2159. * Use page lock to guard against racing truncation
  2160. * before we get page_table_lock.
  2161. */
  2162. retry:
  2163. page = find_lock_page(mapping, idx);
  2164. if (!page) {
  2165. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2166. if (idx >= size)
  2167. goto out;
  2168. page = alloc_huge_page(vma, address, 0);
  2169. if (IS_ERR(page)) {
  2170. ret = -PTR_ERR(page);
  2171. goto out;
  2172. }
  2173. clear_huge_page(page, address, pages_per_huge_page(h));
  2174. __SetPageUptodate(page);
  2175. if (vma->vm_flags & VM_MAYSHARE) {
  2176. int err;
  2177. struct inode *inode = mapping->host;
  2178. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  2179. if (err) {
  2180. put_page(page);
  2181. if (err == -EEXIST)
  2182. goto retry;
  2183. goto out;
  2184. }
  2185. spin_lock(&inode->i_lock);
  2186. inode->i_blocks += blocks_per_huge_page(h);
  2187. spin_unlock(&inode->i_lock);
  2188. page_dup_rmap(page);
  2189. } else {
  2190. lock_page(page);
  2191. if (unlikely(anon_vma_prepare(vma))) {
  2192. ret = VM_FAULT_OOM;
  2193. goto backout_unlocked;
  2194. }
  2195. hugepage_add_new_anon_rmap(page, vma, address);
  2196. }
  2197. } else {
  2198. /*
  2199. * If memory error occurs between mmap() and fault, some process
  2200. * don't have hwpoisoned swap entry for errored virtual address.
  2201. * So we need to block hugepage fault by PG_hwpoison bit check.
  2202. */
  2203. if (unlikely(PageHWPoison(page))) {
  2204. ret = VM_FAULT_HWPOISON |
  2205. VM_FAULT_SET_HINDEX(h - hstates);
  2206. goto backout_unlocked;
  2207. }
  2208. page_dup_rmap(page);
  2209. }
  2210. /*
  2211. * If we are going to COW a private mapping later, we examine the
  2212. * pending reservations for this page now. This will ensure that
  2213. * any allocations necessary to record that reservation occur outside
  2214. * the spinlock.
  2215. */
  2216. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
  2217. if (vma_needs_reservation(h, vma, address) < 0) {
  2218. ret = VM_FAULT_OOM;
  2219. goto backout_unlocked;
  2220. }
  2221. spin_lock(&mm->page_table_lock);
  2222. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2223. if (idx >= size)
  2224. goto backout;
  2225. ret = 0;
  2226. if (!huge_pte_none(huge_ptep_get(ptep)))
  2227. goto backout;
  2228. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  2229. && (vma->vm_flags & VM_SHARED)));
  2230. set_huge_pte_at(mm, address, ptep, new_pte);
  2231. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2232. /* Optimization, do the COW without a second fault */
  2233. ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
  2234. }
  2235. spin_unlock(&mm->page_table_lock);
  2236. unlock_page(page);
  2237. out:
  2238. return ret;
  2239. backout:
  2240. spin_unlock(&mm->page_table_lock);
  2241. backout_unlocked:
  2242. unlock_page(page);
  2243. put_page(page);
  2244. goto out;
  2245. }
  2246. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2247. unsigned long address, unsigned int flags)
  2248. {
  2249. pte_t *ptep;
  2250. pte_t entry;
  2251. int ret;
  2252. struct page *page = NULL;
  2253. struct page *pagecache_page = NULL;
  2254. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  2255. struct hstate *h = hstate_vma(vma);
  2256. ptep = huge_pte_offset(mm, address);
  2257. if (ptep) {
  2258. entry = huge_ptep_get(ptep);
  2259. if (unlikely(is_hugetlb_entry_migration(entry))) {
  2260. migration_entry_wait(mm, (pmd_t *)ptep, address);
  2261. return 0;
  2262. } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
  2263. return VM_FAULT_HWPOISON_LARGE |
  2264. VM_FAULT_SET_HINDEX(h - hstates);
  2265. }
  2266. ptep = huge_pte_alloc(mm, address, huge_page_size(h));
  2267. if (!ptep)
  2268. return VM_FAULT_OOM;
  2269. /*
  2270. * Serialize hugepage allocation and instantiation, so that we don't
  2271. * get spurious allocation failures if two CPUs race to instantiate
  2272. * the same page in the page cache.
  2273. */
  2274. mutex_lock(&hugetlb_instantiation_mutex);
  2275. entry = huge_ptep_get(ptep);
  2276. if (huge_pte_none(entry)) {
  2277. ret = hugetlb_no_page(mm, vma, address, ptep, flags);
  2278. goto out_mutex;
  2279. }
  2280. ret = 0;
  2281. /*
  2282. * If we are going to COW the mapping later, we examine the pending
  2283. * reservations for this page now. This will ensure that any
  2284. * allocations necessary to record that reservation occur outside the
  2285. * spinlock. For private mappings, we also lookup the pagecache
  2286. * page now as it is used to determine if a reservation has been
  2287. * consumed.
  2288. */
  2289. if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
  2290. if (vma_needs_reservation(h, vma, address) < 0) {
  2291. ret = VM_FAULT_OOM;
  2292. goto out_mutex;
  2293. }
  2294. if (!(vma->vm_flags & VM_MAYSHARE))
  2295. pagecache_page = hugetlbfs_pagecache_page(h,
  2296. vma, address);
  2297. }
  2298. /*
  2299. * hugetlb_cow() requires page locks of pte_page(entry) and
  2300. * pagecache_page, so here we need take the former one
  2301. * when page != pagecache_page or !pagecache_page.
  2302. * Note that locking order is always pagecache_page -> page,
  2303. * so no worry about deadlock.
  2304. */
  2305. page = pte_page(entry);
  2306. if (page != pagecache_page)
  2307. lock_page(page);
  2308. spin_lock(&mm->page_table_lock);
  2309. /* Check for a racing update before calling hugetlb_cow */
  2310. if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
  2311. goto out_page_table_lock;
  2312. if (flags & FAULT_FLAG_WRITE) {
  2313. if (!pte_write(entry)) {
  2314. ret = hugetlb_cow(mm, vma, address, ptep, entry,
  2315. pagecache_page);
  2316. goto out_page_table_lock;
  2317. }
  2318. entry = pte_mkdirty(entry);
  2319. }
  2320. entry = pte_mkyoung(entry);
  2321. if (huge_ptep_set_access_flags(vma, address, ptep, entry,
  2322. flags & FAULT_FLAG_WRITE))
  2323. update_mmu_cache(vma, address, ptep);
  2324. out_page_table_lock:
  2325. spin_unlock(&mm->page_table_lock);
  2326. if (pagecache_page) {
  2327. unlock_page(pagecache_page);
  2328. put_page(pagecache_page);
  2329. }
  2330. if (page != pagecache_page)
  2331. unlock_page(page);
  2332. out_mutex:
  2333. mutex_unlock(&hugetlb_instantiation_mutex);
  2334. return ret;
  2335. }
  2336. /* Can be overriden by architectures */
  2337. __attribute__((weak)) struct page *
  2338. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  2339. pud_t *pud, int write)
  2340. {
  2341. BUG();
  2342. return NULL;
  2343. }
  2344. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2345. struct page **pages, struct vm_area_struct **vmas,
  2346. unsigned long *position, int *length, int i,
  2347. unsigned int flags)
  2348. {
  2349. unsigned long pfn_offset;
  2350. unsigned long vaddr = *position;
  2351. int remainder = *length;
  2352. struct hstate *h = hstate_vma(vma);
  2353. spin_lock(&mm->page_table_lock);
  2354. while (vaddr < vma->vm_end && remainder) {
  2355. pte_t *pte;
  2356. int absent;
  2357. struct page *page;
  2358. /*
  2359. * Some archs (sparc64, sh*) have multiple pte_ts to
  2360. * each hugepage. We have to make sure we get the
  2361. * first, for the page indexing below to work.
  2362. */
  2363. pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
  2364. absent = !pte || huge_pte_none(huge_ptep_get(pte));
  2365. /*
  2366. * When coredumping, it suits get_dump_page if we just return
  2367. * an error where there's an empty slot with no huge pagecache
  2368. * to back it. This way, we avoid allocating a hugepage, and
  2369. * the sparse dumpfile avoids allocating disk blocks, but its
  2370. * huge holes still show up with zeroes where they need to be.
  2371. */
  2372. if (absent && (flags & FOLL_DUMP) &&
  2373. !hugetlbfs_pagecache_present(h, vma, vaddr)) {
  2374. remainder = 0;
  2375. break;
  2376. }
  2377. if (absent ||
  2378. ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
  2379. int ret;
  2380. spin_unlock(&mm->page_table_lock);
  2381. ret = hugetlb_fault(mm, vma, vaddr,
  2382. (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
  2383. spin_lock(&mm->page_table_lock);
  2384. if (!(ret & VM_FAULT_ERROR))
  2385. continue;
  2386. remainder = 0;
  2387. break;
  2388. }
  2389. pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
  2390. page = pte_page(huge_ptep_get(pte));
  2391. same_page:
  2392. if (pages) {
  2393. pages[i] = mem_map_offset(page, pfn_offset);
  2394. get_page(pages[i]);
  2395. }
  2396. if (vmas)
  2397. vmas[i] = vma;
  2398. vaddr += PAGE_SIZE;
  2399. ++pfn_offset;
  2400. --remainder;
  2401. ++i;
  2402. if (vaddr < vma->vm_end && remainder &&
  2403. pfn_offset < pages_per_huge_page(h)) {
  2404. /*
  2405. * We use pfn_offset to avoid touching the pageframes
  2406. * of this compound page.
  2407. */
  2408. goto same_page;
  2409. }
  2410. }
  2411. spin_unlock(&mm->page_table_lock);
  2412. *length = remainder;
  2413. *position = vaddr;
  2414. return i ? i : -EFAULT;
  2415. }
  2416. void hugetlb_change_protection(struct vm_area_struct *vma,
  2417. unsigned long address, unsigned long end, pgprot_t newprot)
  2418. {
  2419. struct mm_struct *mm = vma->vm_mm;
  2420. unsigned long start = address;
  2421. pte_t *ptep;
  2422. pte_t pte;
  2423. struct hstate *h = hstate_vma(vma);
  2424. BUG_ON(address >= end);
  2425. flush_cache_range(vma, address, end);
  2426. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  2427. spin_lock(&mm->page_table_lock);
  2428. for (; address < end; address += huge_page_size(h)) {
  2429. ptep = huge_pte_offset(mm, address);
  2430. if (!ptep)
  2431. continue;
  2432. if (huge_pmd_unshare(mm, &address, ptep))
  2433. continue;
  2434. if (!huge_pte_none(huge_ptep_get(ptep))) {
  2435. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2436. pte = pte_mkhuge(pte_modify(pte, newprot));
  2437. set_huge_pte_at(mm, address, ptep, pte);
  2438. }
  2439. }
  2440. spin_unlock(&mm->page_table_lock);
  2441. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  2442. flush_tlb_range(vma, start, end);
  2443. }
  2444. int hugetlb_reserve_pages(struct inode *inode,
  2445. long from, long to,
  2446. struct vm_area_struct *vma,
  2447. vm_flags_t vm_flags)
  2448. {
  2449. long ret, chg;
  2450. struct hstate *h = hstate_inode(inode);
  2451. /*
  2452. * Only apply hugepage reservation if asked. At fault time, an
  2453. * attempt will be made for VM_NORESERVE to allocate a page
  2454. * and filesystem quota without using reserves
  2455. */
  2456. if (vm_flags & VM_NORESERVE)
  2457. return 0;
  2458. /*
  2459. * Shared mappings base their reservation on the number of pages that
  2460. * are already allocated on behalf of the file. Private mappings need
  2461. * to reserve the full area even if read-only as mprotect() may be
  2462. * called to make the mapping read-write. Assume !vma is a shm mapping
  2463. */
  2464. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2465. chg = region_chg(&inode->i_mapping->private_list, from, to);
  2466. else {
  2467. struct resv_map *resv_map = resv_map_alloc();
  2468. if (!resv_map)
  2469. return -ENOMEM;
  2470. chg = to - from;
  2471. set_vma_resv_map(vma, resv_map);
  2472. set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
  2473. }
  2474. if (chg < 0)
  2475. return chg;
  2476. /* There must be enough filesystem quota for the mapping */
  2477. if (hugetlb_get_quota(inode->i_mapping, chg))
  2478. return -ENOSPC;
  2479. /*
  2480. * Check enough hugepages are available for the reservation.
  2481. * Hand back the quota if there are not
  2482. */
  2483. ret = hugetlb_acct_memory(h, chg);
  2484. if (ret < 0) {
  2485. hugetlb_put_quota(inode->i_mapping, chg);
  2486. return ret;
  2487. }
  2488. /*
  2489. * Account for the reservations made. Shared mappings record regions
  2490. * that have reservations as they are shared by multiple VMAs.
  2491. * When the last VMA disappears, the region map says how much
  2492. * the reservation was and the page cache tells how much of
  2493. * the reservation was consumed. Private mappings are per-VMA and
  2494. * only the consumed reservations are tracked. When the VMA
  2495. * disappears, the original reservation is the VMA size and the
  2496. * consumed reservations are stored in the map. Hence, nothing
  2497. * else has to be done for private mappings here
  2498. */
  2499. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2500. region_add(&inode->i_mapping->private_list, from, to);
  2501. return 0;
  2502. }
  2503. void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
  2504. {
  2505. struct hstate *h = hstate_inode(inode);
  2506. long chg = region_truncate(&inode->i_mapping->private_list, offset);
  2507. spin_lock(&inode->i_lock);
  2508. inode->i_blocks -= (blocks_per_huge_page(h) * freed);
  2509. spin_unlock(&inode->i_lock);
  2510. hugetlb_put_quota(inode->i_mapping, (chg - freed));
  2511. hugetlb_acct_memory(h, -(chg - freed));
  2512. }
  2513. #ifdef CONFIG_MEMORY_FAILURE
  2514. /* Should be called in hugetlb_lock */
  2515. static int is_hugepage_on_freelist(struct page *hpage)
  2516. {
  2517. struct page *page;
  2518. struct page *tmp;
  2519. struct hstate *h = page_hstate(hpage);
  2520. int nid = page_to_nid(hpage);
  2521. list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
  2522. if (page == hpage)
  2523. return 1;
  2524. return 0;
  2525. }
  2526. /*
  2527. * This function is called from memory failure code.
  2528. * Assume the caller holds page lock of the head page.
  2529. */
  2530. int dequeue_hwpoisoned_huge_page(struct page *hpage)
  2531. {
  2532. struct hstate *h = page_hstate(hpage);
  2533. int nid = page_to_nid(hpage);
  2534. int ret = -EBUSY;
  2535. spin_lock(&hugetlb_lock);
  2536. if (is_hugepage_on_freelist(hpage)) {
  2537. list_del(&hpage->lru);
  2538. set_page_refcounted(hpage);
  2539. h->free_huge_pages--;
  2540. h->free_huge_pages_node[nid]--;
  2541. ret = 0;
  2542. }
  2543. spin_unlock(&hugetlb_lock);
  2544. return ret;
  2545. }
  2546. #endif