sched_fair.c 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. /*
  26. * Targeted preemption latency for CPU-bound tasks:
  27. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  28. *
  29. * NOTE: this latency value is not the same as the concept of
  30. * 'timeslice length' - timeslices in CFS are of variable length
  31. * and have no persistent notion like in traditional, time-slice
  32. * based scheduling concepts.
  33. *
  34. * (to see the precise effective timeslice length of your workload,
  35. * run vmstat and monitor the context-switches (cs) field)
  36. */
  37. unsigned int sysctl_sched_latency = 6000000ULL;
  38. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  39. /*
  40. * The initial- and re-scaling of tunables is configurable
  41. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  42. *
  43. * Options are:
  44. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  45. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  46. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  47. */
  48. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  49. = SCHED_TUNABLESCALING_LOG;
  50. /*
  51. * Minimal preemption granularity for CPU-bound tasks:
  52. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  53. */
  54. unsigned int sysctl_sched_min_granularity = 750000ULL;
  55. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  56. /*
  57. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  58. */
  59. static unsigned int sched_nr_latency = 8;
  60. /*
  61. * After fork, child runs first. If set to 0 (default) then
  62. * parent will (try to) run first.
  63. */
  64. unsigned int sysctl_sched_child_runs_first __read_mostly;
  65. /*
  66. * SCHED_OTHER wake-up granularity.
  67. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68. *
  69. * This option delays the preemption effects of decoupled workloads
  70. * and reduces their over-scheduling. Synchronous workloads will still
  71. * have immediate wakeup/sleep latencies.
  72. */
  73. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  74. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  75. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  76. /*
  77. * The exponential sliding window over which load is averaged for shares
  78. * distribution.
  79. * (default: 10msec)
  80. */
  81. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  82. #ifdef CONFIG_CFS_BANDWIDTH
  83. /*
  84. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  85. * each time a cfs_rq requests quota.
  86. *
  87. * Note: in the case that the slice exceeds the runtime remaining (either due
  88. * to consumption or the quota being specified to be smaller than the slice)
  89. * we will always only issue the remaining available time.
  90. *
  91. * default: 5 msec, units: microseconds
  92. */
  93. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  94. #endif
  95. static const struct sched_class fair_sched_class;
  96. /**************************************************************
  97. * CFS operations on generic schedulable entities:
  98. */
  99. #ifdef CONFIG_FAIR_GROUP_SCHED
  100. /* cpu runqueue to which this cfs_rq is attached */
  101. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  102. {
  103. return cfs_rq->rq;
  104. }
  105. /* An entity is a task if it doesn't "own" a runqueue */
  106. #define entity_is_task(se) (!se->my_q)
  107. static inline struct task_struct *task_of(struct sched_entity *se)
  108. {
  109. #ifdef CONFIG_SCHED_DEBUG
  110. WARN_ON_ONCE(!entity_is_task(se));
  111. #endif
  112. return container_of(se, struct task_struct, se);
  113. }
  114. /* Walk up scheduling entities hierarchy */
  115. #define for_each_sched_entity(se) \
  116. for (; se; se = se->parent)
  117. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  118. {
  119. return p->se.cfs_rq;
  120. }
  121. /* runqueue on which this entity is (to be) queued */
  122. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  123. {
  124. return se->cfs_rq;
  125. }
  126. /* runqueue "owned" by this group */
  127. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  128. {
  129. return grp->my_q;
  130. }
  131. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  132. {
  133. if (!cfs_rq->on_list) {
  134. /*
  135. * Ensure we either appear before our parent (if already
  136. * enqueued) or force our parent to appear after us when it is
  137. * enqueued. The fact that we always enqueue bottom-up
  138. * reduces this to two cases.
  139. */
  140. if (cfs_rq->tg->parent &&
  141. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  142. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  143. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  144. } else {
  145. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  146. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  147. }
  148. cfs_rq->on_list = 1;
  149. }
  150. }
  151. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  152. {
  153. if (cfs_rq->on_list) {
  154. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  155. cfs_rq->on_list = 0;
  156. }
  157. }
  158. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  159. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  160. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  161. /* Do the two (enqueued) entities belong to the same group ? */
  162. static inline int
  163. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  164. {
  165. if (se->cfs_rq == pse->cfs_rq)
  166. return 1;
  167. return 0;
  168. }
  169. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  170. {
  171. return se->parent;
  172. }
  173. /* return depth at which a sched entity is present in the hierarchy */
  174. static inline int depth_se(struct sched_entity *se)
  175. {
  176. int depth = 0;
  177. for_each_sched_entity(se)
  178. depth++;
  179. return depth;
  180. }
  181. static void
  182. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  183. {
  184. int se_depth, pse_depth;
  185. /*
  186. * preemption test can be made between sibling entities who are in the
  187. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  188. * both tasks until we find their ancestors who are siblings of common
  189. * parent.
  190. */
  191. /* First walk up until both entities are at same depth */
  192. se_depth = depth_se(*se);
  193. pse_depth = depth_se(*pse);
  194. while (se_depth > pse_depth) {
  195. se_depth--;
  196. *se = parent_entity(*se);
  197. }
  198. while (pse_depth > se_depth) {
  199. pse_depth--;
  200. *pse = parent_entity(*pse);
  201. }
  202. while (!is_same_group(*se, *pse)) {
  203. *se = parent_entity(*se);
  204. *pse = parent_entity(*pse);
  205. }
  206. }
  207. #else /* !CONFIG_FAIR_GROUP_SCHED */
  208. static inline struct task_struct *task_of(struct sched_entity *se)
  209. {
  210. return container_of(se, struct task_struct, se);
  211. }
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return container_of(cfs_rq, struct rq, cfs);
  215. }
  216. #define entity_is_task(se) 1
  217. #define for_each_sched_entity(se) \
  218. for (; se; se = NULL)
  219. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  220. {
  221. return &task_rq(p)->cfs;
  222. }
  223. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  224. {
  225. struct task_struct *p = task_of(se);
  226. struct rq *rq = task_rq(p);
  227. return &rq->cfs;
  228. }
  229. /* runqueue "owned" by this group */
  230. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  231. {
  232. return NULL;
  233. }
  234. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  235. {
  236. }
  237. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  238. {
  239. }
  240. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  241. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  242. static inline int
  243. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  244. {
  245. return 1;
  246. }
  247. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  248. {
  249. return NULL;
  250. }
  251. static inline void
  252. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  253. {
  254. }
  255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  256. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  257. unsigned long delta_exec);
  258. /**************************************************************
  259. * Scheduling class tree data structure manipulation methods:
  260. */
  261. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  262. {
  263. s64 delta = (s64)(vruntime - min_vruntime);
  264. if (delta > 0)
  265. min_vruntime = vruntime;
  266. return min_vruntime;
  267. }
  268. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  269. {
  270. s64 delta = (s64)(vruntime - min_vruntime);
  271. if (delta < 0)
  272. min_vruntime = vruntime;
  273. return min_vruntime;
  274. }
  275. static inline int entity_before(struct sched_entity *a,
  276. struct sched_entity *b)
  277. {
  278. return (s64)(a->vruntime - b->vruntime) < 0;
  279. }
  280. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  281. {
  282. u64 vruntime = cfs_rq->min_vruntime;
  283. if (cfs_rq->curr)
  284. vruntime = cfs_rq->curr->vruntime;
  285. if (cfs_rq->rb_leftmost) {
  286. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  287. struct sched_entity,
  288. run_node);
  289. if (!cfs_rq->curr)
  290. vruntime = se->vruntime;
  291. else
  292. vruntime = min_vruntime(vruntime, se->vruntime);
  293. }
  294. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  295. #ifndef CONFIG_64BIT
  296. smp_wmb();
  297. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  298. #endif
  299. }
  300. /*
  301. * Enqueue an entity into the rb-tree:
  302. */
  303. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  304. {
  305. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  306. struct rb_node *parent = NULL;
  307. struct sched_entity *entry;
  308. int leftmost = 1;
  309. /*
  310. * Find the right place in the rbtree:
  311. */
  312. while (*link) {
  313. parent = *link;
  314. entry = rb_entry(parent, struct sched_entity, run_node);
  315. /*
  316. * We dont care about collisions. Nodes with
  317. * the same key stay together.
  318. */
  319. if (entity_before(se, entry)) {
  320. link = &parent->rb_left;
  321. } else {
  322. link = &parent->rb_right;
  323. leftmost = 0;
  324. }
  325. }
  326. /*
  327. * Maintain a cache of leftmost tree entries (it is frequently
  328. * used):
  329. */
  330. if (leftmost)
  331. cfs_rq->rb_leftmost = &se->run_node;
  332. rb_link_node(&se->run_node, parent, link);
  333. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  334. }
  335. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  336. {
  337. if (cfs_rq->rb_leftmost == &se->run_node) {
  338. struct rb_node *next_node;
  339. next_node = rb_next(&se->run_node);
  340. cfs_rq->rb_leftmost = next_node;
  341. }
  342. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  343. }
  344. static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  345. {
  346. struct rb_node *left = cfs_rq->rb_leftmost;
  347. if (!left)
  348. return NULL;
  349. return rb_entry(left, struct sched_entity, run_node);
  350. }
  351. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  352. {
  353. struct rb_node *next = rb_next(&se->run_node);
  354. if (!next)
  355. return NULL;
  356. return rb_entry(next, struct sched_entity, run_node);
  357. }
  358. #ifdef CONFIG_SCHED_DEBUG
  359. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  360. {
  361. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  362. if (!last)
  363. return NULL;
  364. return rb_entry(last, struct sched_entity, run_node);
  365. }
  366. /**************************************************************
  367. * Scheduling class statistics methods:
  368. */
  369. int sched_proc_update_handler(struct ctl_table *table, int write,
  370. void __user *buffer, size_t *lenp,
  371. loff_t *ppos)
  372. {
  373. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  374. int factor = get_update_sysctl_factor();
  375. if (ret || !write)
  376. return ret;
  377. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  378. sysctl_sched_min_granularity);
  379. #define WRT_SYSCTL(name) \
  380. (normalized_sysctl_##name = sysctl_##name / (factor))
  381. WRT_SYSCTL(sched_min_granularity);
  382. WRT_SYSCTL(sched_latency);
  383. WRT_SYSCTL(sched_wakeup_granularity);
  384. #undef WRT_SYSCTL
  385. return 0;
  386. }
  387. #endif
  388. /*
  389. * delta /= w
  390. */
  391. static inline unsigned long
  392. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  393. {
  394. if (unlikely(se->load.weight != NICE_0_LOAD))
  395. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  396. return delta;
  397. }
  398. /*
  399. * The idea is to set a period in which each task runs once.
  400. *
  401. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  402. * this period because otherwise the slices get too small.
  403. *
  404. * p = (nr <= nl) ? l : l*nr/nl
  405. */
  406. static u64 __sched_period(unsigned long nr_running)
  407. {
  408. u64 period = sysctl_sched_latency;
  409. unsigned long nr_latency = sched_nr_latency;
  410. if (unlikely(nr_running > nr_latency)) {
  411. period = sysctl_sched_min_granularity;
  412. period *= nr_running;
  413. }
  414. return period;
  415. }
  416. /*
  417. * We calculate the wall-time slice from the period by taking a part
  418. * proportional to the weight.
  419. *
  420. * s = p*P[w/rw]
  421. */
  422. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  423. {
  424. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  425. for_each_sched_entity(se) {
  426. struct load_weight *load;
  427. struct load_weight lw;
  428. cfs_rq = cfs_rq_of(se);
  429. load = &cfs_rq->load;
  430. if (unlikely(!se->on_rq)) {
  431. lw = cfs_rq->load;
  432. update_load_add(&lw, se->load.weight);
  433. load = &lw;
  434. }
  435. slice = calc_delta_mine(slice, se->load.weight, load);
  436. }
  437. return slice;
  438. }
  439. /*
  440. * We calculate the vruntime slice of a to be inserted task
  441. *
  442. * vs = s/w
  443. */
  444. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  445. {
  446. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  447. }
  448. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  449. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  450. /*
  451. * Update the current task's runtime statistics. Skip current tasks that
  452. * are not in our scheduling class.
  453. */
  454. static inline void
  455. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  456. unsigned long delta_exec)
  457. {
  458. unsigned long delta_exec_weighted;
  459. schedstat_set(curr->statistics.exec_max,
  460. max((u64)delta_exec, curr->statistics.exec_max));
  461. curr->sum_exec_runtime += delta_exec;
  462. schedstat_add(cfs_rq, exec_clock, delta_exec);
  463. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  464. curr->vruntime += delta_exec_weighted;
  465. update_min_vruntime(cfs_rq);
  466. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  467. cfs_rq->load_unacc_exec_time += delta_exec;
  468. #endif
  469. }
  470. static void update_curr(struct cfs_rq *cfs_rq)
  471. {
  472. struct sched_entity *curr = cfs_rq->curr;
  473. u64 now = rq_of(cfs_rq)->clock_task;
  474. unsigned long delta_exec;
  475. if (unlikely(!curr))
  476. return;
  477. /*
  478. * Get the amount of time the current task was running
  479. * since the last time we changed load (this cannot
  480. * overflow on 32 bits):
  481. */
  482. delta_exec = (unsigned long)(now - curr->exec_start);
  483. if (!delta_exec)
  484. return;
  485. __update_curr(cfs_rq, curr, delta_exec);
  486. curr->exec_start = now;
  487. if (entity_is_task(curr)) {
  488. struct task_struct *curtask = task_of(curr);
  489. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  490. cpuacct_charge(curtask, delta_exec);
  491. account_group_exec_runtime(curtask, delta_exec);
  492. }
  493. account_cfs_rq_runtime(cfs_rq, delta_exec);
  494. }
  495. static inline void
  496. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  497. {
  498. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  499. }
  500. /*
  501. * Task is being enqueued - update stats:
  502. */
  503. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  504. {
  505. /*
  506. * Are we enqueueing a waiting task? (for current tasks
  507. * a dequeue/enqueue event is a NOP)
  508. */
  509. if (se != cfs_rq->curr)
  510. update_stats_wait_start(cfs_rq, se);
  511. }
  512. static void
  513. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  514. {
  515. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  516. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  517. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  518. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  519. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  520. #ifdef CONFIG_SCHEDSTATS
  521. if (entity_is_task(se)) {
  522. trace_sched_stat_wait(task_of(se),
  523. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  524. }
  525. #endif
  526. schedstat_set(se->statistics.wait_start, 0);
  527. }
  528. static inline void
  529. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  530. {
  531. /*
  532. * Mark the end of the wait period if dequeueing a
  533. * waiting task:
  534. */
  535. if (se != cfs_rq->curr)
  536. update_stats_wait_end(cfs_rq, se);
  537. }
  538. /*
  539. * We are picking a new current task - update its stats:
  540. */
  541. static inline void
  542. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  543. {
  544. /*
  545. * We are starting a new run period:
  546. */
  547. se->exec_start = rq_of(cfs_rq)->clock_task;
  548. }
  549. /**************************************************
  550. * Scheduling class queueing methods:
  551. */
  552. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  553. static void
  554. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  555. {
  556. cfs_rq->task_weight += weight;
  557. }
  558. #else
  559. static inline void
  560. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  561. {
  562. }
  563. #endif
  564. static void
  565. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  566. {
  567. update_load_add(&cfs_rq->load, se->load.weight);
  568. if (!parent_entity(se))
  569. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  570. if (entity_is_task(se)) {
  571. add_cfs_task_weight(cfs_rq, se->load.weight);
  572. list_add(&se->group_node, &cfs_rq->tasks);
  573. }
  574. cfs_rq->nr_running++;
  575. }
  576. static void
  577. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  578. {
  579. update_load_sub(&cfs_rq->load, se->load.weight);
  580. if (!parent_entity(se))
  581. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  582. if (entity_is_task(se)) {
  583. add_cfs_task_weight(cfs_rq, -se->load.weight);
  584. list_del_init(&se->group_node);
  585. }
  586. cfs_rq->nr_running--;
  587. }
  588. #ifdef CONFIG_FAIR_GROUP_SCHED
  589. /* we need this in update_cfs_load and load-balance functions below */
  590. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  591. # ifdef CONFIG_SMP
  592. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  593. int global_update)
  594. {
  595. struct task_group *tg = cfs_rq->tg;
  596. long load_avg;
  597. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  598. load_avg -= cfs_rq->load_contribution;
  599. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  600. atomic_add(load_avg, &tg->load_weight);
  601. cfs_rq->load_contribution += load_avg;
  602. }
  603. }
  604. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  605. {
  606. u64 period = sysctl_sched_shares_window;
  607. u64 now, delta;
  608. unsigned long load = cfs_rq->load.weight;
  609. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  610. return;
  611. now = rq_of(cfs_rq)->clock_task;
  612. delta = now - cfs_rq->load_stamp;
  613. /* truncate load history at 4 idle periods */
  614. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  615. now - cfs_rq->load_last > 4 * period) {
  616. cfs_rq->load_period = 0;
  617. cfs_rq->load_avg = 0;
  618. delta = period - 1;
  619. }
  620. cfs_rq->load_stamp = now;
  621. cfs_rq->load_unacc_exec_time = 0;
  622. cfs_rq->load_period += delta;
  623. if (load) {
  624. cfs_rq->load_last = now;
  625. cfs_rq->load_avg += delta * load;
  626. }
  627. /* consider updating load contribution on each fold or truncate */
  628. if (global_update || cfs_rq->load_period > period
  629. || !cfs_rq->load_period)
  630. update_cfs_rq_load_contribution(cfs_rq, global_update);
  631. while (cfs_rq->load_period > period) {
  632. /*
  633. * Inline assembly required to prevent the compiler
  634. * optimising this loop into a divmod call.
  635. * See __iter_div_u64_rem() for another example of this.
  636. */
  637. asm("" : "+rm" (cfs_rq->load_period));
  638. cfs_rq->load_period /= 2;
  639. cfs_rq->load_avg /= 2;
  640. }
  641. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  642. list_del_leaf_cfs_rq(cfs_rq);
  643. }
  644. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  645. {
  646. long tg_weight;
  647. /*
  648. * Use this CPU's actual weight instead of the last load_contribution
  649. * to gain a more accurate current total weight. See
  650. * update_cfs_rq_load_contribution().
  651. */
  652. tg_weight = atomic_read(&tg->load_weight);
  653. tg_weight -= cfs_rq->load_contribution;
  654. tg_weight += cfs_rq->load.weight;
  655. return tg_weight;
  656. }
  657. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  658. {
  659. long tg_weight, load, shares;
  660. tg_weight = calc_tg_weight(tg, cfs_rq);
  661. load = cfs_rq->load.weight;
  662. shares = (tg->shares * load);
  663. if (tg_weight)
  664. shares /= tg_weight;
  665. if (shares < MIN_SHARES)
  666. shares = MIN_SHARES;
  667. if (shares > tg->shares)
  668. shares = tg->shares;
  669. return shares;
  670. }
  671. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  672. {
  673. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  674. update_cfs_load(cfs_rq, 0);
  675. update_cfs_shares(cfs_rq);
  676. }
  677. }
  678. # else /* CONFIG_SMP */
  679. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  680. {
  681. }
  682. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  683. {
  684. return tg->shares;
  685. }
  686. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  687. {
  688. }
  689. # endif /* CONFIG_SMP */
  690. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  691. unsigned long weight)
  692. {
  693. if (se->on_rq) {
  694. /* commit outstanding execution time */
  695. if (cfs_rq->curr == se)
  696. update_curr(cfs_rq);
  697. account_entity_dequeue(cfs_rq, se);
  698. }
  699. update_load_set(&se->load, weight);
  700. if (se->on_rq)
  701. account_entity_enqueue(cfs_rq, se);
  702. }
  703. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  704. {
  705. struct task_group *tg;
  706. struct sched_entity *se;
  707. long shares;
  708. tg = cfs_rq->tg;
  709. se = tg->se[cpu_of(rq_of(cfs_rq))];
  710. if (!se || throttled_hierarchy(cfs_rq))
  711. return;
  712. #ifndef CONFIG_SMP
  713. if (likely(se->load.weight == tg->shares))
  714. return;
  715. #endif
  716. shares = calc_cfs_shares(cfs_rq, tg);
  717. reweight_entity(cfs_rq_of(se), se, shares);
  718. }
  719. #else /* CONFIG_FAIR_GROUP_SCHED */
  720. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  721. {
  722. }
  723. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  724. {
  725. }
  726. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  727. {
  728. }
  729. #endif /* CONFIG_FAIR_GROUP_SCHED */
  730. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  731. {
  732. #ifdef CONFIG_SCHEDSTATS
  733. struct task_struct *tsk = NULL;
  734. if (entity_is_task(se))
  735. tsk = task_of(se);
  736. if (se->statistics.sleep_start) {
  737. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  738. if ((s64)delta < 0)
  739. delta = 0;
  740. if (unlikely(delta > se->statistics.sleep_max))
  741. se->statistics.sleep_max = delta;
  742. se->statistics.sleep_start = 0;
  743. se->statistics.sum_sleep_runtime += delta;
  744. if (tsk) {
  745. account_scheduler_latency(tsk, delta >> 10, 1);
  746. trace_sched_stat_sleep(tsk, delta);
  747. }
  748. }
  749. if (se->statistics.block_start) {
  750. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  751. if ((s64)delta < 0)
  752. delta = 0;
  753. if (unlikely(delta > se->statistics.block_max))
  754. se->statistics.block_max = delta;
  755. se->statistics.block_start = 0;
  756. se->statistics.sum_sleep_runtime += delta;
  757. if (tsk) {
  758. if (tsk->in_iowait) {
  759. se->statistics.iowait_sum += delta;
  760. se->statistics.iowait_count++;
  761. trace_sched_stat_iowait(tsk, delta);
  762. }
  763. /*
  764. * Blocking time is in units of nanosecs, so shift by
  765. * 20 to get a milliseconds-range estimation of the
  766. * amount of time that the task spent sleeping:
  767. */
  768. if (unlikely(prof_on == SLEEP_PROFILING)) {
  769. profile_hits(SLEEP_PROFILING,
  770. (void *)get_wchan(tsk),
  771. delta >> 20);
  772. }
  773. account_scheduler_latency(tsk, delta >> 10, 0);
  774. }
  775. }
  776. #endif
  777. }
  778. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  779. {
  780. #ifdef CONFIG_SCHED_DEBUG
  781. s64 d = se->vruntime - cfs_rq->min_vruntime;
  782. if (d < 0)
  783. d = -d;
  784. if (d > 3*sysctl_sched_latency)
  785. schedstat_inc(cfs_rq, nr_spread_over);
  786. #endif
  787. }
  788. static void
  789. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  790. {
  791. u64 vruntime = cfs_rq->min_vruntime;
  792. /*
  793. * The 'current' period is already promised to the current tasks,
  794. * however the extra weight of the new task will slow them down a
  795. * little, place the new task so that it fits in the slot that
  796. * stays open at the end.
  797. */
  798. if (initial && sched_feat(START_DEBIT))
  799. vruntime += sched_vslice(cfs_rq, se);
  800. /* sleeps up to a single latency don't count. */
  801. if (!initial) {
  802. unsigned long thresh = sysctl_sched_latency;
  803. /*
  804. * Halve their sleep time's effect, to allow
  805. * for a gentler effect of sleepers:
  806. */
  807. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  808. thresh >>= 1;
  809. vruntime -= thresh;
  810. }
  811. /* ensure we never gain time by being placed backwards. */
  812. vruntime = max_vruntime(se->vruntime, vruntime);
  813. se->vruntime = vruntime;
  814. }
  815. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  816. static void
  817. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  818. {
  819. /*
  820. * Update the normalized vruntime before updating min_vruntime
  821. * through callig update_curr().
  822. */
  823. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  824. se->vruntime += cfs_rq->min_vruntime;
  825. /*
  826. * Update run-time statistics of the 'current'.
  827. */
  828. update_curr(cfs_rq);
  829. update_cfs_load(cfs_rq, 0);
  830. account_entity_enqueue(cfs_rq, se);
  831. update_cfs_shares(cfs_rq);
  832. if (flags & ENQUEUE_WAKEUP) {
  833. place_entity(cfs_rq, se, 0);
  834. enqueue_sleeper(cfs_rq, se);
  835. }
  836. update_stats_enqueue(cfs_rq, se);
  837. check_spread(cfs_rq, se);
  838. if (se != cfs_rq->curr)
  839. __enqueue_entity(cfs_rq, se);
  840. se->on_rq = 1;
  841. if (cfs_rq->nr_running == 1) {
  842. list_add_leaf_cfs_rq(cfs_rq);
  843. check_enqueue_throttle(cfs_rq);
  844. }
  845. }
  846. static void __clear_buddies_last(struct sched_entity *se)
  847. {
  848. for_each_sched_entity(se) {
  849. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  850. if (cfs_rq->last == se)
  851. cfs_rq->last = NULL;
  852. else
  853. break;
  854. }
  855. }
  856. static void __clear_buddies_next(struct sched_entity *se)
  857. {
  858. for_each_sched_entity(se) {
  859. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  860. if (cfs_rq->next == se)
  861. cfs_rq->next = NULL;
  862. else
  863. break;
  864. }
  865. }
  866. static void __clear_buddies_skip(struct sched_entity *se)
  867. {
  868. for_each_sched_entity(se) {
  869. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  870. if (cfs_rq->skip == se)
  871. cfs_rq->skip = NULL;
  872. else
  873. break;
  874. }
  875. }
  876. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  877. {
  878. if (cfs_rq->last == se)
  879. __clear_buddies_last(se);
  880. if (cfs_rq->next == se)
  881. __clear_buddies_next(se);
  882. if (cfs_rq->skip == se)
  883. __clear_buddies_skip(se);
  884. }
  885. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  886. static void
  887. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  888. {
  889. /*
  890. * Update run-time statistics of the 'current'.
  891. */
  892. update_curr(cfs_rq);
  893. update_stats_dequeue(cfs_rq, se);
  894. if (flags & DEQUEUE_SLEEP) {
  895. #ifdef CONFIG_SCHEDSTATS
  896. if (entity_is_task(se)) {
  897. struct task_struct *tsk = task_of(se);
  898. if (tsk->state & TASK_INTERRUPTIBLE)
  899. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  900. if (tsk->state & TASK_UNINTERRUPTIBLE)
  901. se->statistics.block_start = rq_of(cfs_rq)->clock;
  902. }
  903. #endif
  904. }
  905. clear_buddies(cfs_rq, se);
  906. if (se != cfs_rq->curr)
  907. __dequeue_entity(cfs_rq, se);
  908. se->on_rq = 0;
  909. update_cfs_load(cfs_rq, 0);
  910. account_entity_dequeue(cfs_rq, se);
  911. /*
  912. * Normalize the entity after updating the min_vruntime because the
  913. * update can refer to the ->curr item and we need to reflect this
  914. * movement in our normalized position.
  915. */
  916. if (!(flags & DEQUEUE_SLEEP))
  917. se->vruntime -= cfs_rq->min_vruntime;
  918. /* return excess runtime on last dequeue */
  919. return_cfs_rq_runtime(cfs_rq);
  920. update_min_vruntime(cfs_rq);
  921. update_cfs_shares(cfs_rq);
  922. }
  923. /*
  924. * Preempt the current task with a newly woken task if needed:
  925. */
  926. static void
  927. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  928. {
  929. unsigned long ideal_runtime, delta_exec;
  930. struct sched_entity *se;
  931. s64 delta;
  932. ideal_runtime = sched_slice(cfs_rq, curr);
  933. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  934. if (delta_exec > ideal_runtime) {
  935. resched_task(rq_of(cfs_rq)->curr);
  936. /*
  937. * The current task ran long enough, ensure it doesn't get
  938. * re-elected due to buddy favours.
  939. */
  940. clear_buddies(cfs_rq, curr);
  941. return;
  942. }
  943. /*
  944. * Ensure that a task that missed wakeup preemption by a
  945. * narrow margin doesn't have to wait for a full slice.
  946. * This also mitigates buddy induced latencies under load.
  947. */
  948. if (delta_exec < sysctl_sched_min_granularity)
  949. return;
  950. se = __pick_first_entity(cfs_rq);
  951. delta = curr->vruntime - se->vruntime;
  952. if (delta < 0)
  953. return;
  954. if (delta > ideal_runtime)
  955. resched_task(rq_of(cfs_rq)->curr);
  956. }
  957. static void
  958. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  959. {
  960. /* 'current' is not kept within the tree. */
  961. if (se->on_rq) {
  962. /*
  963. * Any task has to be enqueued before it get to execute on
  964. * a CPU. So account for the time it spent waiting on the
  965. * runqueue.
  966. */
  967. update_stats_wait_end(cfs_rq, se);
  968. __dequeue_entity(cfs_rq, se);
  969. }
  970. update_stats_curr_start(cfs_rq, se);
  971. cfs_rq->curr = se;
  972. #ifdef CONFIG_SCHEDSTATS
  973. /*
  974. * Track our maximum slice length, if the CPU's load is at
  975. * least twice that of our own weight (i.e. dont track it
  976. * when there are only lesser-weight tasks around):
  977. */
  978. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  979. se->statistics.slice_max = max(se->statistics.slice_max,
  980. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  981. }
  982. #endif
  983. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  984. }
  985. static int
  986. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  987. /*
  988. * Pick the next process, keeping these things in mind, in this order:
  989. * 1) keep things fair between processes/task groups
  990. * 2) pick the "next" process, since someone really wants that to run
  991. * 3) pick the "last" process, for cache locality
  992. * 4) do not run the "skip" process, if something else is available
  993. */
  994. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  995. {
  996. struct sched_entity *se = __pick_first_entity(cfs_rq);
  997. struct sched_entity *left = se;
  998. /*
  999. * Avoid running the skip buddy, if running something else can
  1000. * be done without getting too unfair.
  1001. */
  1002. if (cfs_rq->skip == se) {
  1003. struct sched_entity *second = __pick_next_entity(se);
  1004. if (second && wakeup_preempt_entity(second, left) < 1)
  1005. se = second;
  1006. }
  1007. /*
  1008. * Prefer last buddy, try to return the CPU to a preempted task.
  1009. */
  1010. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1011. se = cfs_rq->last;
  1012. /*
  1013. * Someone really wants this to run. If it's not unfair, run it.
  1014. */
  1015. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1016. se = cfs_rq->next;
  1017. clear_buddies(cfs_rq, se);
  1018. return se;
  1019. }
  1020. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1021. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1022. {
  1023. /*
  1024. * If still on the runqueue then deactivate_task()
  1025. * was not called and update_curr() has to be done:
  1026. */
  1027. if (prev->on_rq)
  1028. update_curr(cfs_rq);
  1029. /* throttle cfs_rqs exceeding runtime */
  1030. check_cfs_rq_runtime(cfs_rq);
  1031. check_spread(cfs_rq, prev);
  1032. if (prev->on_rq) {
  1033. update_stats_wait_start(cfs_rq, prev);
  1034. /* Put 'current' back into the tree. */
  1035. __enqueue_entity(cfs_rq, prev);
  1036. }
  1037. cfs_rq->curr = NULL;
  1038. }
  1039. static void
  1040. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1041. {
  1042. /*
  1043. * Update run-time statistics of the 'current'.
  1044. */
  1045. update_curr(cfs_rq);
  1046. /*
  1047. * Update share accounting for long-running entities.
  1048. */
  1049. update_entity_shares_tick(cfs_rq);
  1050. #ifdef CONFIG_SCHED_HRTICK
  1051. /*
  1052. * queued ticks are scheduled to match the slice, so don't bother
  1053. * validating it and just reschedule.
  1054. */
  1055. if (queued) {
  1056. resched_task(rq_of(cfs_rq)->curr);
  1057. return;
  1058. }
  1059. /*
  1060. * don't let the period tick interfere with the hrtick preemption
  1061. */
  1062. if (!sched_feat(DOUBLE_TICK) &&
  1063. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1064. return;
  1065. #endif
  1066. if (cfs_rq->nr_running > 1)
  1067. check_preempt_tick(cfs_rq, curr);
  1068. }
  1069. /**************************************************
  1070. * CFS bandwidth control machinery
  1071. */
  1072. #ifdef CONFIG_CFS_BANDWIDTH
  1073. /*
  1074. * default period for cfs group bandwidth.
  1075. * default: 0.1s, units: nanoseconds
  1076. */
  1077. static inline u64 default_cfs_period(void)
  1078. {
  1079. return 100000000ULL;
  1080. }
  1081. static inline u64 sched_cfs_bandwidth_slice(void)
  1082. {
  1083. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1084. }
  1085. /*
  1086. * Replenish runtime according to assigned quota and update expiration time.
  1087. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1088. * additional synchronization around rq->lock.
  1089. *
  1090. * requires cfs_b->lock
  1091. */
  1092. static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1093. {
  1094. u64 now;
  1095. if (cfs_b->quota == RUNTIME_INF)
  1096. return;
  1097. now = sched_clock_cpu(smp_processor_id());
  1098. cfs_b->runtime = cfs_b->quota;
  1099. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1100. }
  1101. /* returns 0 on failure to allocate runtime */
  1102. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1103. {
  1104. struct task_group *tg = cfs_rq->tg;
  1105. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1106. u64 amount = 0, min_amount, expires;
  1107. /* note: this is a positive sum as runtime_remaining <= 0 */
  1108. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1109. raw_spin_lock(&cfs_b->lock);
  1110. if (cfs_b->quota == RUNTIME_INF)
  1111. amount = min_amount;
  1112. else {
  1113. /*
  1114. * If the bandwidth pool has become inactive, then at least one
  1115. * period must have elapsed since the last consumption.
  1116. * Refresh the global state and ensure bandwidth timer becomes
  1117. * active.
  1118. */
  1119. if (!cfs_b->timer_active) {
  1120. __refill_cfs_bandwidth_runtime(cfs_b);
  1121. __start_cfs_bandwidth(cfs_b);
  1122. }
  1123. if (cfs_b->runtime > 0) {
  1124. amount = min(cfs_b->runtime, min_amount);
  1125. cfs_b->runtime -= amount;
  1126. cfs_b->idle = 0;
  1127. }
  1128. }
  1129. expires = cfs_b->runtime_expires;
  1130. raw_spin_unlock(&cfs_b->lock);
  1131. cfs_rq->runtime_remaining += amount;
  1132. /*
  1133. * we may have advanced our local expiration to account for allowed
  1134. * spread between our sched_clock and the one on which runtime was
  1135. * issued.
  1136. */
  1137. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1138. cfs_rq->runtime_expires = expires;
  1139. return cfs_rq->runtime_remaining > 0;
  1140. }
  1141. /*
  1142. * Note: This depends on the synchronization provided by sched_clock and the
  1143. * fact that rq->clock snapshots this value.
  1144. */
  1145. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1146. {
  1147. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1148. struct rq *rq = rq_of(cfs_rq);
  1149. /* if the deadline is ahead of our clock, nothing to do */
  1150. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1151. return;
  1152. if (cfs_rq->runtime_remaining < 0)
  1153. return;
  1154. /*
  1155. * If the local deadline has passed we have to consider the
  1156. * possibility that our sched_clock is 'fast' and the global deadline
  1157. * has not truly expired.
  1158. *
  1159. * Fortunately we can check determine whether this the case by checking
  1160. * whether the global deadline has advanced.
  1161. */
  1162. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1163. /* extend local deadline, drift is bounded above by 2 ticks */
  1164. cfs_rq->runtime_expires += TICK_NSEC;
  1165. } else {
  1166. /* global deadline is ahead, expiration has passed */
  1167. cfs_rq->runtime_remaining = 0;
  1168. }
  1169. }
  1170. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1171. unsigned long delta_exec)
  1172. {
  1173. /* dock delta_exec before expiring quota (as it could span periods) */
  1174. cfs_rq->runtime_remaining -= delta_exec;
  1175. expire_cfs_rq_runtime(cfs_rq);
  1176. if (likely(cfs_rq->runtime_remaining > 0))
  1177. return;
  1178. /*
  1179. * if we're unable to extend our runtime we resched so that the active
  1180. * hierarchy can be throttled
  1181. */
  1182. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1183. resched_task(rq_of(cfs_rq)->curr);
  1184. }
  1185. static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1186. unsigned long delta_exec)
  1187. {
  1188. if (!cfs_rq->runtime_enabled)
  1189. return;
  1190. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1191. }
  1192. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1193. {
  1194. return cfs_rq->throttled;
  1195. }
  1196. /* check whether cfs_rq, or any parent, is throttled */
  1197. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1198. {
  1199. return cfs_rq->throttle_count;
  1200. }
  1201. /*
  1202. * Ensure that neither of the group entities corresponding to src_cpu or
  1203. * dest_cpu are members of a throttled hierarchy when performing group
  1204. * load-balance operations.
  1205. */
  1206. static inline int throttled_lb_pair(struct task_group *tg,
  1207. int src_cpu, int dest_cpu)
  1208. {
  1209. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1210. src_cfs_rq = tg->cfs_rq[src_cpu];
  1211. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1212. return throttled_hierarchy(src_cfs_rq) ||
  1213. throttled_hierarchy(dest_cfs_rq);
  1214. }
  1215. /* updated child weight may affect parent so we have to do this bottom up */
  1216. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1217. {
  1218. struct rq *rq = data;
  1219. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1220. cfs_rq->throttle_count--;
  1221. #ifdef CONFIG_SMP
  1222. if (!cfs_rq->throttle_count) {
  1223. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1224. /* leaving throttled state, advance shares averaging windows */
  1225. cfs_rq->load_stamp += delta;
  1226. cfs_rq->load_last += delta;
  1227. /* update entity weight now that we are on_rq again */
  1228. update_cfs_shares(cfs_rq);
  1229. }
  1230. #endif
  1231. return 0;
  1232. }
  1233. static int tg_throttle_down(struct task_group *tg, void *data)
  1234. {
  1235. struct rq *rq = data;
  1236. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1237. /* group is entering throttled state, record last load */
  1238. if (!cfs_rq->throttle_count)
  1239. update_cfs_load(cfs_rq, 0);
  1240. cfs_rq->throttle_count++;
  1241. return 0;
  1242. }
  1243. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1244. {
  1245. struct rq *rq = rq_of(cfs_rq);
  1246. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1247. struct sched_entity *se;
  1248. long task_delta, dequeue = 1;
  1249. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1250. /* account load preceding throttle */
  1251. rcu_read_lock();
  1252. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1253. rcu_read_unlock();
  1254. task_delta = cfs_rq->h_nr_running;
  1255. for_each_sched_entity(se) {
  1256. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1257. /* throttled entity or throttle-on-deactivate */
  1258. if (!se->on_rq)
  1259. break;
  1260. if (dequeue)
  1261. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1262. qcfs_rq->h_nr_running -= task_delta;
  1263. if (qcfs_rq->load.weight)
  1264. dequeue = 0;
  1265. }
  1266. if (!se)
  1267. rq->nr_running -= task_delta;
  1268. cfs_rq->throttled = 1;
  1269. cfs_rq->throttled_timestamp = rq->clock;
  1270. raw_spin_lock(&cfs_b->lock);
  1271. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1272. raw_spin_unlock(&cfs_b->lock);
  1273. }
  1274. static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1275. {
  1276. struct rq *rq = rq_of(cfs_rq);
  1277. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1278. struct sched_entity *se;
  1279. int enqueue = 1;
  1280. long task_delta;
  1281. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1282. cfs_rq->throttled = 0;
  1283. raw_spin_lock(&cfs_b->lock);
  1284. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1285. list_del_rcu(&cfs_rq->throttled_list);
  1286. raw_spin_unlock(&cfs_b->lock);
  1287. cfs_rq->throttled_timestamp = 0;
  1288. update_rq_clock(rq);
  1289. /* update hierarchical throttle state */
  1290. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1291. if (!cfs_rq->load.weight)
  1292. return;
  1293. task_delta = cfs_rq->h_nr_running;
  1294. for_each_sched_entity(se) {
  1295. if (se->on_rq)
  1296. enqueue = 0;
  1297. cfs_rq = cfs_rq_of(se);
  1298. if (enqueue)
  1299. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1300. cfs_rq->h_nr_running += task_delta;
  1301. if (cfs_rq_throttled(cfs_rq))
  1302. break;
  1303. }
  1304. if (!se)
  1305. rq->nr_running += task_delta;
  1306. /* determine whether we need to wake up potentially idle cpu */
  1307. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1308. resched_task(rq->curr);
  1309. }
  1310. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1311. u64 remaining, u64 expires)
  1312. {
  1313. struct cfs_rq *cfs_rq;
  1314. u64 runtime = remaining;
  1315. rcu_read_lock();
  1316. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1317. throttled_list) {
  1318. struct rq *rq = rq_of(cfs_rq);
  1319. raw_spin_lock(&rq->lock);
  1320. if (!cfs_rq_throttled(cfs_rq))
  1321. goto next;
  1322. runtime = -cfs_rq->runtime_remaining + 1;
  1323. if (runtime > remaining)
  1324. runtime = remaining;
  1325. remaining -= runtime;
  1326. cfs_rq->runtime_remaining += runtime;
  1327. cfs_rq->runtime_expires = expires;
  1328. /* we check whether we're throttled above */
  1329. if (cfs_rq->runtime_remaining > 0)
  1330. unthrottle_cfs_rq(cfs_rq);
  1331. next:
  1332. raw_spin_unlock(&rq->lock);
  1333. if (!remaining)
  1334. break;
  1335. }
  1336. rcu_read_unlock();
  1337. return remaining;
  1338. }
  1339. /*
  1340. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1341. * cfs_rqs as appropriate. If there has been no activity within the last
  1342. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1343. * used to track this state.
  1344. */
  1345. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1346. {
  1347. u64 runtime, runtime_expires;
  1348. int idle = 1, throttled;
  1349. raw_spin_lock(&cfs_b->lock);
  1350. /* no need to continue the timer with no bandwidth constraint */
  1351. if (cfs_b->quota == RUNTIME_INF)
  1352. goto out_unlock;
  1353. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1354. /* idle depends on !throttled (for the case of a large deficit) */
  1355. idle = cfs_b->idle && !throttled;
  1356. cfs_b->nr_periods += overrun;
  1357. /* if we're going inactive then everything else can be deferred */
  1358. if (idle)
  1359. goto out_unlock;
  1360. __refill_cfs_bandwidth_runtime(cfs_b);
  1361. if (!throttled) {
  1362. /* mark as potentially idle for the upcoming period */
  1363. cfs_b->idle = 1;
  1364. goto out_unlock;
  1365. }
  1366. /* account preceding periods in which throttling occurred */
  1367. cfs_b->nr_throttled += overrun;
  1368. /*
  1369. * There are throttled entities so we must first use the new bandwidth
  1370. * to unthrottle them before making it generally available. This
  1371. * ensures that all existing debts will be paid before a new cfs_rq is
  1372. * allowed to run.
  1373. */
  1374. runtime = cfs_b->runtime;
  1375. runtime_expires = cfs_b->runtime_expires;
  1376. cfs_b->runtime = 0;
  1377. /*
  1378. * This check is repeated as we are holding onto the new bandwidth
  1379. * while we unthrottle. This can potentially race with an unthrottled
  1380. * group trying to acquire new bandwidth from the global pool.
  1381. */
  1382. while (throttled && runtime > 0) {
  1383. raw_spin_unlock(&cfs_b->lock);
  1384. /* we can't nest cfs_b->lock while distributing bandwidth */
  1385. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1386. runtime_expires);
  1387. raw_spin_lock(&cfs_b->lock);
  1388. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1389. }
  1390. /* return (any) remaining runtime */
  1391. cfs_b->runtime = runtime;
  1392. /*
  1393. * While we are ensured activity in the period following an
  1394. * unthrottle, this also covers the case in which the new bandwidth is
  1395. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1396. * timer to remain active while there are any throttled entities.)
  1397. */
  1398. cfs_b->idle = 0;
  1399. out_unlock:
  1400. if (idle)
  1401. cfs_b->timer_active = 0;
  1402. raw_spin_unlock(&cfs_b->lock);
  1403. return idle;
  1404. }
  1405. /* a cfs_rq won't donate quota below this amount */
  1406. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1407. /* minimum remaining period time to redistribute slack quota */
  1408. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1409. /* how long we wait to gather additional slack before distributing */
  1410. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1411. /* are we near the end of the current quota period? */
  1412. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1413. {
  1414. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1415. u64 remaining;
  1416. /* if the call-back is running a quota refresh is already occurring */
  1417. if (hrtimer_callback_running(refresh_timer))
  1418. return 1;
  1419. /* is a quota refresh about to occur? */
  1420. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1421. if (remaining < min_expire)
  1422. return 1;
  1423. return 0;
  1424. }
  1425. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1426. {
  1427. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1428. /* if there's a quota refresh soon don't bother with slack */
  1429. if (runtime_refresh_within(cfs_b, min_left))
  1430. return;
  1431. start_bandwidth_timer(&cfs_b->slack_timer,
  1432. ns_to_ktime(cfs_bandwidth_slack_period));
  1433. }
  1434. /* we know any runtime found here is valid as update_curr() precedes return */
  1435. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1436. {
  1437. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1438. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1439. if (slack_runtime <= 0)
  1440. return;
  1441. raw_spin_lock(&cfs_b->lock);
  1442. if (cfs_b->quota != RUNTIME_INF &&
  1443. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1444. cfs_b->runtime += slack_runtime;
  1445. /* we are under rq->lock, defer unthrottling using a timer */
  1446. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1447. !list_empty(&cfs_b->throttled_cfs_rq))
  1448. start_cfs_slack_bandwidth(cfs_b);
  1449. }
  1450. raw_spin_unlock(&cfs_b->lock);
  1451. /* even if it's not valid for return we don't want to try again */
  1452. cfs_rq->runtime_remaining -= slack_runtime;
  1453. }
  1454. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1455. {
  1456. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1457. return;
  1458. __return_cfs_rq_runtime(cfs_rq);
  1459. }
  1460. /*
  1461. * This is done with a timer (instead of inline with bandwidth return) since
  1462. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1463. */
  1464. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1465. {
  1466. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1467. u64 expires;
  1468. /* confirm we're still not at a refresh boundary */
  1469. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  1470. return;
  1471. raw_spin_lock(&cfs_b->lock);
  1472. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1473. runtime = cfs_b->runtime;
  1474. cfs_b->runtime = 0;
  1475. }
  1476. expires = cfs_b->runtime_expires;
  1477. raw_spin_unlock(&cfs_b->lock);
  1478. if (!runtime)
  1479. return;
  1480. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1481. raw_spin_lock(&cfs_b->lock);
  1482. if (expires == cfs_b->runtime_expires)
  1483. cfs_b->runtime = runtime;
  1484. raw_spin_unlock(&cfs_b->lock);
  1485. }
  1486. /*
  1487. * When a group wakes up we want to make sure that its quota is not already
  1488. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1489. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1490. */
  1491. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1492. {
  1493. /* an active group must be handled by the update_curr()->put() path */
  1494. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1495. return;
  1496. /* ensure the group is not already throttled */
  1497. if (cfs_rq_throttled(cfs_rq))
  1498. return;
  1499. /* update runtime allocation */
  1500. account_cfs_rq_runtime(cfs_rq, 0);
  1501. if (cfs_rq->runtime_remaining <= 0)
  1502. throttle_cfs_rq(cfs_rq);
  1503. }
  1504. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1505. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1506. {
  1507. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1508. return;
  1509. /*
  1510. * it's possible for a throttled entity to be forced into a running
  1511. * state (e.g. set_curr_task), in this case we're finished.
  1512. */
  1513. if (cfs_rq_throttled(cfs_rq))
  1514. return;
  1515. throttle_cfs_rq(cfs_rq);
  1516. }
  1517. #else
  1518. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1519. unsigned long delta_exec) {}
  1520. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1521. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1522. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1523. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1524. {
  1525. return 0;
  1526. }
  1527. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1528. {
  1529. return 0;
  1530. }
  1531. static inline int throttled_lb_pair(struct task_group *tg,
  1532. int src_cpu, int dest_cpu)
  1533. {
  1534. return 0;
  1535. }
  1536. #endif
  1537. /**************************************************
  1538. * CFS operations on tasks:
  1539. */
  1540. #ifdef CONFIG_SCHED_HRTICK
  1541. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1542. {
  1543. struct sched_entity *se = &p->se;
  1544. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1545. WARN_ON(task_rq(p) != rq);
  1546. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1547. u64 slice = sched_slice(cfs_rq, se);
  1548. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1549. s64 delta = slice - ran;
  1550. if (delta < 0) {
  1551. if (rq->curr == p)
  1552. resched_task(p);
  1553. return;
  1554. }
  1555. /*
  1556. * Don't schedule slices shorter than 10000ns, that just
  1557. * doesn't make sense. Rely on vruntime for fairness.
  1558. */
  1559. if (rq->curr != p)
  1560. delta = max_t(s64, 10000LL, delta);
  1561. hrtick_start(rq, delta);
  1562. }
  1563. }
  1564. /*
  1565. * called from enqueue/dequeue and updates the hrtick when the
  1566. * current task is from our class and nr_running is low enough
  1567. * to matter.
  1568. */
  1569. static void hrtick_update(struct rq *rq)
  1570. {
  1571. struct task_struct *curr = rq->curr;
  1572. if (curr->sched_class != &fair_sched_class)
  1573. return;
  1574. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1575. hrtick_start_fair(rq, curr);
  1576. }
  1577. #else /* !CONFIG_SCHED_HRTICK */
  1578. static inline void
  1579. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1580. {
  1581. }
  1582. static inline void hrtick_update(struct rq *rq)
  1583. {
  1584. }
  1585. #endif
  1586. /*
  1587. * The enqueue_task method is called before nr_running is
  1588. * increased. Here we update the fair scheduling stats and
  1589. * then put the task into the rbtree:
  1590. */
  1591. static void
  1592. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1593. {
  1594. struct cfs_rq *cfs_rq;
  1595. struct sched_entity *se = &p->se;
  1596. for_each_sched_entity(se) {
  1597. if (se->on_rq)
  1598. break;
  1599. cfs_rq = cfs_rq_of(se);
  1600. enqueue_entity(cfs_rq, se, flags);
  1601. /*
  1602. * end evaluation on encountering a throttled cfs_rq
  1603. *
  1604. * note: in the case of encountering a throttled cfs_rq we will
  1605. * post the final h_nr_running increment below.
  1606. */
  1607. if (cfs_rq_throttled(cfs_rq))
  1608. break;
  1609. cfs_rq->h_nr_running++;
  1610. flags = ENQUEUE_WAKEUP;
  1611. }
  1612. for_each_sched_entity(se) {
  1613. cfs_rq = cfs_rq_of(se);
  1614. cfs_rq->h_nr_running++;
  1615. if (cfs_rq_throttled(cfs_rq))
  1616. break;
  1617. update_cfs_load(cfs_rq, 0);
  1618. update_cfs_shares(cfs_rq);
  1619. }
  1620. if (!se)
  1621. inc_nr_running(rq);
  1622. hrtick_update(rq);
  1623. }
  1624. static void set_next_buddy(struct sched_entity *se);
  1625. /*
  1626. * The dequeue_task method is called before nr_running is
  1627. * decreased. We remove the task from the rbtree and
  1628. * update the fair scheduling stats:
  1629. */
  1630. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1631. {
  1632. struct cfs_rq *cfs_rq;
  1633. struct sched_entity *se = &p->se;
  1634. int task_sleep = flags & DEQUEUE_SLEEP;
  1635. for_each_sched_entity(se) {
  1636. cfs_rq = cfs_rq_of(se);
  1637. dequeue_entity(cfs_rq, se, flags);
  1638. /*
  1639. * end evaluation on encountering a throttled cfs_rq
  1640. *
  1641. * note: in the case of encountering a throttled cfs_rq we will
  1642. * post the final h_nr_running decrement below.
  1643. */
  1644. if (cfs_rq_throttled(cfs_rq))
  1645. break;
  1646. cfs_rq->h_nr_running--;
  1647. /* Don't dequeue parent if it has other entities besides us */
  1648. if (cfs_rq->load.weight) {
  1649. /*
  1650. * Bias pick_next to pick a task from this cfs_rq, as
  1651. * p is sleeping when it is within its sched_slice.
  1652. */
  1653. if (task_sleep && parent_entity(se))
  1654. set_next_buddy(parent_entity(se));
  1655. /* avoid re-evaluating load for this entity */
  1656. se = parent_entity(se);
  1657. break;
  1658. }
  1659. flags |= DEQUEUE_SLEEP;
  1660. }
  1661. for_each_sched_entity(se) {
  1662. cfs_rq = cfs_rq_of(se);
  1663. cfs_rq->h_nr_running--;
  1664. if (cfs_rq_throttled(cfs_rq))
  1665. break;
  1666. update_cfs_load(cfs_rq, 0);
  1667. update_cfs_shares(cfs_rq);
  1668. }
  1669. if (!se)
  1670. dec_nr_running(rq);
  1671. hrtick_update(rq);
  1672. }
  1673. #ifdef CONFIG_SMP
  1674. static void task_waking_fair(struct task_struct *p)
  1675. {
  1676. struct sched_entity *se = &p->se;
  1677. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1678. u64 min_vruntime;
  1679. #ifndef CONFIG_64BIT
  1680. u64 min_vruntime_copy;
  1681. do {
  1682. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1683. smp_rmb();
  1684. min_vruntime = cfs_rq->min_vruntime;
  1685. } while (min_vruntime != min_vruntime_copy);
  1686. #else
  1687. min_vruntime = cfs_rq->min_vruntime;
  1688. #endif
  1689. se->vruntime -= min_vruntime;
  1690. }
  1691. #ifdef CONFIG_FAIR_GROUP_SCHED
  1692. /*
  1693. * effective_load() calculates the load change as seen from the root_task_group
  1694. *
  1695. * Adding load to a group doesn't make a group heavier, but can cause movement
  1696. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1697. * can calculate the shift in shares.
  1698. *
  1699. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  1700. * on this @cpu and results in a total addition (subtraction) of @wg to the
  1701. * total group weight.
  1702. *
  1703. * Given a runqueue weight distribution (rw_i) we can compute a shares
  1704. * distribution (s_i) using:
  1705. *
  1706. * s_i = rw_i / \Sum rw_j (1)
  1707. *
  1708. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  1709. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  1710. * shares distribution (s_i):
  1711. *
  1712. * rw_i = { 2, 4, 1, 0 }
  1713. * s_i = { 2/7, 4/7, 1/7, 0 }
  1714. *
  1715. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  1716. * task used to run on and the CPU the waker is running on), we need to
  1717. * compute the effect of waking a task on either CPU and, in case of a sync
  1718. * wakeup, compute the effect of the current task going to sleep.
  1719. *
  1720. * So for a change of @wl to the local @cpu with an overall group weight change
  1721. * of @wl we can compute the new shares distribution (s'_i) using:
  1722. *
  1723. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  1724. *
  1725. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  1726. * differences in waking a task to CPU 0. The additional task changes the
  1727. * weight and shares distributions like:
  1728. *
  1729. * rw'_i = { 3, 4, 1, 0 }
  1730. * s'_i = { 3/8, 4/8, 1/8, 0 }
  1731. *
  1732. * We can then compute the difference in effective weight by using:
  1733. *
  1734. * dw_i = S * (s'_i - s_i) (3)
  1735. *
  1736. * Where 'S' is the group weight as seen by its parent.
  1737. *
  1738. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  1739. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  1740. * 4/7) times the weight of the group.
  1741. */
  1742. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1743. {
  1744. struct sched_entity *se = tg->se[cpu];
  1745. if (!tg->parent) /* the trivial, non-cgroup case */
  1746. return wl;
  1747. for_each_sched_entity(se) {
  1748. long w, W;
  1749. tg = se->my_q->tg;
  1750. /*
  1751. * W = @wg + \Sum rw_j
  1752. */
  1753. W = wg + calc_tg_weight(tg, se->my_q);
  1754. /*
  1755. * w = rw_i + @wl
  1756. */
  1757. w = se->my_q->load.weight + wl;
  1758. /*
  1759. * wl = S * s'_i; see (2)
  1760. */
  1761. if (W > 0 && w < W)
  1762. wl = (w * tg->shares) / W;
  1763. else
  1764. wl = tg->shares;
  1765. /*
  1766. * Per the above, wl is the new se->load.weight value; since
  1767. * those are clipped to [MIN_SHARES, ...) do so now. See
  1768. * calc_cfs_shares().
  1769. */
  1770. if (wl < MIN_SHARES)
  1771. wl = MIN_SHARES;
  1772. /*
  1773. * wl = dw_i = S * (s'_i - s_i); see (3)
  1774. */
  1775. wl -= se->load.weight;
  1776. /*
  1777. * Recursively apply this logic to all parent groups to compute
  1778. * the final effective load change on the root group. Since
  1779. * only the @tg group gets extra weight, all parent groups can
  1780. * only redistribute existing shares. @wl is the shift in shares
  1781. * resulting from this level per the above.
  1782. */
  1783. wg = 0;
  1784. }
  1785. return wl;
  1786. }
  1787. #else
  1788. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1789. unsigned long wl, unsigned long wg)
  1790. {
  1791. return wl;
  1792. }
  1793. #endif
  1794. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1795. {
  1796. s64 this_load, load;
  1797. int idx, this_cpu, prev_cpu;
  1798. unsigned long tl_per_task;
  1799. struct task_group *tg;
  1800. unsigned long weight;
  1801. int balanced;
  1802. idx = sd->wake_idx;
  1803. this_cpu = smp_processor_id();
  1804. prev_cpu = task_cpu(p);
  1805. load = source_load(prev_cpu, idx);
  1806. this_load = target_load(this_cpu, idx);
  1807. /*
  1808. * If sync wakeup then subtract the (maximum possible)
  1809. * effect of the currently running task from the load
  1810. * of the current CPU:
  1811. */
  1812. if (sync) {
  1813. tg = task_group(current);
  1814. weight = current->se.load.weight;
  1815. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1816. load += effective_load(tg, prev_cpu, 0, -weight);
  1817. }
  1818. tg = task_group(p);
  1819. weight = p->se.load.weight;
  1820. /*
  1821. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1822. * due to the sync cause above having dropped this_load to 0, we'll
  1823. * always have an imbalance, but there's really nothing you can do
  1824. * about that, so that's good too.
  1825. *
  1826. * Otherwise check if either cpus are near enough in load to allow this
  1827. * task to be woken on this_cpu.
  1828. */
  1829. if (this_load > 0) {
  1830. s64 this_eff_load, prev_eff_load;
  1831. this_eff_load = 100;
  1832. this_eff_load *= power_of(prev_cpu);
  1833. this_eff_load *= this_load +
  1834. effective_load(tg, this_cpu, weight, weight);
  1835. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1836. prev_eff_load *= power_of(this_cpu);
  1837. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1838. balanced = this_eff_load <= prev_eff_load;
  1839. } else
  1840. balanced = true;
  1841. /*
  1842. * If the currently running task will sleep within
  1843. * a reasonable amount of time then attract this newly
  1844. * woken task:
  1845. */
  1846. if (sync && balanced)
  1847. return 1;
  1848. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1849. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1850. if (balanced ||
  1851. (this_load <= load &&
  1852. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1853. /*
  1854. * This domain has SD_WAKE_AFFINE and
  1855. * p is cache cold in this domain, and
  1856. * there is no bad imbalance.
  1857. */
  1858. schedstat_inc(sd, ttwu_move_affine);
  1859. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1860. return 1;
  1861. }
  1862. return 0;
  1863. }
  1864. /*
  1865. * find_idlest_group finds and returns the least busy CPU group within the
  1866. * domain.
  1867. */
  1868. static struct sched_group *
  1869. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1870. int this_cpu, int load_idx)
  1871. {
  1872. struct sched_group *idlest = NULL, *group = sd->groups;
  1873. unsigned long min_load = ULONG_MAX, this_load = 0;
  1874. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1875. do {
  1876. unsigned long load, avg_load;
  1877. int local_group;
  1878. int i;
  1879. /* Skip over this group if it has no CPUs allowed */
  1880. if (!cpumask_intersects(sched_group_cpus(group),
  1881. tsk_cpus_allowed(p)))
  1882. continue;
  1883. local_group = cpumask_test_cpu(this_cpu,
  1884. sched_group_cpus(group));
  1885. /* Tally up the load of all CPUs in the group */
  1886. avg_load = 0;
  1887. for_each_cpu(i, sched_group_cpus(group)) {
  1888. /* Bias balancing toward cpus of our domain */
  1889. if (local_group)
  1890. load = source_load(i, load_idx);
  1891. else
  1892. load = target_load(i, load_idx);
  1893. avg_load += load;
  1894. }
  1895. /* Adjust by relative CPU power of the group */
  1896. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  1897. if (local_group) {
  1898. this_load = avg_load;
  1899. } else if (avg_load < min_load) {
  1900. min_load = avg_load;
  1901. idlest = group;
  1902. }
  1903. } while (group = group->next, group != sd->groups);
  1904. if (!idlest || 100*this_load < imbalance*min_load)
  1905. return NULL;
  1906. return idlest;
  1907. }
  1908. /*
  1909. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1910. */
  1911. static int
  1912. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1913. {
  1914. unsigned long load, min_load = ULONG_MAX;
  1915. int idlest = -1;
  1916. int i;
  1917. /* Traverse only the allowed CPUs */
  1918. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  1919. load = weighted_cpuload(i);
  1920. if (load < min_load || (load == min_load && i == this_cpu)) {
  1921. min_load = load;
  1922. idlest = i;
  1923. }
  1924. }
  1925. return idlest;
  1926. }
  1927. /*
  1928. * Try and locate an idle CPU in the sched_domain.
  1929. */
  1930. static int select_idle_sibling(struct task_struct *p, int target)
  1931. {
  1932. int cpu = smp_processor_id();
  1933. int prev_cpu = task_cpu(p);
  1934. struct sched_domain *sd;
  1935. struct sched_group *sg;
  1936. int i, smt = 0;
  1937. /*
  1938. * If the task is going to be woken-up on this cpu and if it is
  1939. * already idle, then it is the right target.
  1940. */
  1941. if (target == cpu && idle_cpu(cpu))
  1942. return cpu;
  1943. /*
  1944. * If the task is going to be woken-up on the cpu where it previously
  1945. * ran and if it is currently idle, then it the right target.
  1946. */
  1947. if (target == prev_cpu && idle_cpu(prev_cpu))
  1948. return prev_cpu;
  1949. /*
  1950. * Otherwise, iterate the domains and find an elegible idle cpu.
  1951. */
  1952. rcu_read_lock();
  1953. again:
  1954. for_each_domain(target, sd) {
  1955. if (!smt && (sd->flags & SD_SHARE_CPUPOWER))
  1956. continue;
  1957. if (smt && !(sd->flags & SD_SHARE_CPUPOWER))
  1958. break;
  1959. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1960. break;
  1961. sg = sd->groups;
  1962. do {
  1963. if (!cpumask_intersects(sched_group_cpus(sg),
  1964. tsk_cpus_allowed(p)))
  1965. goto next;
  1966. for_each_cpu(i, sched_group_cpus(sg)) {
  1967. if (!idle_cpu(i))
  1968. goto next;
  1969. }
  1970. target = cpumask_first_and(sched_group_cpus(sg),
  1971. tsk_cpus_allowed(p));
  1972. goto done;
  1973. next:
  1974. sg = sg->next;
  1975. } while (sg != sd->groups);
  1976. }
  1977. if (!smt) {
  1978. smt = 1;
  1979. goto again;
  1980. }
  1981. done:
  1982. rcu_read_unlock();
  1983. return target;
  1984. }
  1985. /*
  1986. * sched_balance_self: balance the current task (running on cpu) in domains
  1987. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1988. * SD_BALANCE_EXEC.
  1989. *
  1990. * Balance, ie. select the least loaded group.
  1991. *
  1992. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1993. *
  1994. * preempt must be disabled.
  1995. */
  1996. static int
  1997. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  1998. {
  1999. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2000. int cpu = smp_processor_id();
  2001. int prev_cpu = task_cpu(p);
  2002. int new_cpu = cpu;
  2003. int want_affine = 0;
  2004. int want_sd = 1;
  2005. int sync = wake_flags & WF_SYNC;
  2006. if (sd_flag & SD_BALANCE_WAKE) {
  2007. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2008. want_affine = 1;
  2009. new_cpu = prev_cpu;
  2010. }
  2011. rcu_read_lock();
  2012. for_each_domain(cpu, tmp) {
  2013. if (!(tmp->flags & SD_LOAD_BALANCE))
  2014. continue;
  2015. /*
  2016. * If power savings logic is enabled for a domain, see if we
  2017. * are not overloaded, if so, don't balance wider.
  2018. */
  2019. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  2020. unsigned long power = 0;
  2021. unsigned long nr_running = 0;
  2022. unsigned long capacity;
  2023. int i;
  2024. for_each_cpu(i, sched_domain_span(tmp)) {
  2025. power += power_of(i);
  2026. nr_running += cpu_rq(i)->cfs.nr_running;
  2027. }
  2028. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  2029. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  2030. nr_running /= 2;
  2031. if (nr_running < capacity)
  2032. want_sd = 0;
  2033. }
  2034. /*
  2035. * If both cpu and prev_cpu are part of this domain,
  2036. * cpu is a valid SD_WAKE_AFFINE target.
  2037. */
  2038. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2039. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2040. affine_sd = tmp;
  2041. want_affine = 0;
  2042. }
  2043. if (!want_sd && !want_affine)
  2044. break;
  2045. if (!(tmp->flags & sd_flag))
  2046. continue;
  2047. if (want_sd)
  2048. sd = tmp;
  2049. }
  2050. if (affine_sd) {
  2051. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  2052. prev_cpu = cpu;
  2053. new_cpu = select_idle_sibling(p, prev_cpu);
  2054. goto unlock;
  2055. }
  2056. while (sd) {
  2057. int load_idx = sd->forkexec_idx;
  2058. struct sched_group *group;
  2059. int weight;
  2060. if (!(sd->flags & sd_flag)) {
  2061. sd = sd->child;
  2062. continue;
  2063. }
  2064. if (sd_flag & SD_BALANCE_WAKE)
  2065. load_idx = sd->wake_idx;
  2066. group = find_idlest_group(sd, p, cpu, load_idx);
  2067. if (!group) {
  2068. sd = sd->child;
  2069. continue;
  2070. }
  2071. new_cpu = find_idlest_cpu(group, p, cpu);
  2072. if (new_cpu == -1 || new_cpu == cpu) {
  2073. /* Now try balancing at a lower domain level of cpu */
  2074. sd = sd->child;
  2075. continue;
  2076. }
  2077. /* Now try balancing at a lower domain level of new_cpu */
  2078. cpu = new_cpu;
  2079. weight = sd->span_weight;
  2080. sd = NULL;
  2081. for_each_domain(cpu, tmp) {
  2082. if (weight <= tmp->span_weight)
  2083. break;
  2084. if (tmp->flags & sd_flag)
  2085. sd = tmp;
  2086. }
  2087. /* while loop will break here if sd == NULL */
  2088. }
  2089. unlock:
  2090. rcu_read_unlock();
  2091. return new_cpu;
  2092. }
  2093. #endif /* CONFIG_SMP */
  2094. static unsigned long
  2095. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2096. {
  2097. unsigned long gran = sysctl_sched_wakeup_granularity;
  2098. /*
  2099. * Since its curr running now, convert the gran from real-time
  2100. * to virtual-time in his units.
  2101. *
  2102. * By using 'se' instead of 'curr' we penalize light tasks, so
  2103. * they get preempted easier. That is, if 'se' < 'curr' then
  2104. * the resulting gran will be larger, therefore penalizing the
  2105. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2106. * be smaller, again penalizing the lighter task.
  2107. *
  2108. * This is especially important for buddies when the leftmost
  2109. * task is higher priority than the buddy.
  2110. */
  2111. return calc_delta_fair(gran, se);
  2112. }
  2113. /*
  2114. * Should 'se' preempt 'curr'.
  2115. *
  2116. * |s1
  2117. * |s2
  2118. * |s3
  2119. * g
  2120. * |<--->|c
  2121. *
  2122. * w(c, s1) = -1
  2123. * w(c, s2) = 0
  2124. * w(c, s3) = 1
  2125. *
  2126. */
  2127. static int
  2128. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2129. {
  2130. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2131. if (vdiff <= 0)
  2132. return -1;
  2133. gran = wakeup_gran(curr, se);
  2134. if (vdiff > gran)
  2135. return 1;
  2136. return 0;
  2137. }
  2138. static void set_last_buddy(struct sched_entity *se)
  2139. {
  2140. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2141. return;
  2142. for_each_sched_entity(se)
  2143. cfs_rq_of(se)->last = se;
  2144. }
  2145. static void set_next_buddy(struct sched_entity *se)
  2146. {
  2147. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2148. return;
  2149. for_each_sched_entity(se)
  2150. cfs_rq_of(se)->next = se;
  2151. }
  2152. static void set_skip_buddy(struct sched_entity *se)
  2153. {
  2154. for_each_sched_entity(se)
  2155. cfs_rq_of(se)->skip = se;
  2156. }
  2157. /*
  2158. * Preempt the current task with a newly woken task if needed:
  2159. */
  2160. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2161. {
  2162. struct task_struct *curr = rq->curr;
  2163. struct sched_entity *se = &curr->se, *pse = &p->se;
  2164. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2165. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2166. int next_buddy_marked = 0;
  2167. if (unlikely(se == pse))
  2168. return;
  2169. /*
  2170. * This is possible from callers such as pull_task(), in which we
  2171. * unconditionally check_prempt_curr() after an enqueue (which may have
  2172. * lead to a throttle). This both saves work and prevents false
  2173. * next-buddy nomination below.
  2174. */
  2175. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2176. return;
  2177. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2178. set_next_buddy(pse);
  2179. next_buddy_marked = 1;
  2180. }
  2181. /*
  2182. * We can come here with TIF_NEED_RESCHED already set from new task
  2183. * wake up path.
  2184. *
  2185. * Note: this also catches the edge-case of curr being in a throttled
  2186. * group (e.g. via set_curr_task), since update_curr() (in the
  2187. * enqueue of curr) will have resulted in resched being set. This
  2188. * prevents us from potentially nominating it as a false LAST_BUDDY
  2189. * below.
  2190. */
  2191. if (test_tsk_need_resched(curr))
  2192. return;
  2193. /* Idle tasks are by definition preempted by non-idle tasks. */
  2194. if (unlikely(curr->policy == SCHED_IDLE) &&
  2195. likely(p->policy != SCHED_IDLE))
  2196. goto preempt;
  2197. /*
  2198. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2199. * is driven by the tick):
  2200. */
  2201. if (unlikely(p->policy != SCHED_NORMAL))
  2202. return;
  2203. find_matching_se(&se, &pse);
  2204. update_curr(cfs_rq_of(se));
  2205. BUG_ON(!pse);
  2206. if (wakeup_preempt_entity(se, pse) == 1) {
  2207. /*
  2208. * Bias pick_next to pick the sched entity that is
  2209. * triggering this preemption.
  2210. */
  2211. if (!next_buddy_marked)
  2212. set_next_buddy(pse);
  2213. goto preempt;
  2214. }
  2215. return;
  2216. preempt:
  2217. resched_task(curr);
  2218. /*
  2219. * Only set the backward buddy when the current task is still
  2220. * on the rq. This can happen when a wakeup gets interleaved
  2221. * with schedule on the ->pre_schedule() or idle_balance()
  2222. * point, either of which can * drop the rq lock.
  2223. *
  2224. * Also, during early boot the idle thread is in the fair class,
  2225. * for obvious reasons its a bad idea to schedule back to it.
  2226. */
  2227. if (unlikely(!se->on_rq || curr == rq->idle))
  2228. return;
  2229. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2230. set_last_buddy(se);
  2231. }
  2232. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2233. {
  2234. struct task_struct *p;
  2235. struct cfs_rq *cfs_rq = &rq->cfs;
  2236. struct sched_entity *se;
  2237. if (!cfs_rq->nr_running)
  2238. return NULL;
  2239. do {
  2240. se = pick_next_entity(cfs_rq);
  2241. set_next_entity(cfs_rq, se);
  2242. cfs_rq = group_cfs_rq(se);
  2243. } while (cfs_rq);
  2244. p = task_of(se);
  2245. hrtick_start_fair(rq, p);
  2246. return p;
  2247. }
  2248. /*
  2249. * Account for a descheduled task:
  2250. */
  2251. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2252. {
  2253. struct sched_entity *se = &prev->se;
  2254. struct cfs_rq *cfs_rq;
  2255. for_each_sched_entity(se) {
  2256. cfs_rq = cfs_rq_of(se);
  2257. put_prev_entity(cfs_rq, se);
  2258. }
  2259. }
  2260. /*
  2261. * sched_yield() is very simple
  2262. *
  2263. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2264. */
  2265. static void yield_task_fair(struct rq *rq)
  2266. {
  2267. struct task_struct *curr = rq->curr;
  2268. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2269. struct sched_entity *se = &curr->se;
  2270. /*
  2271. * Are we the only task in the tree?
  2272. */
  2273. if (unlikely(rq->nr_running == 1))
  2274. return;
  2275. clear_buddies(cfs_rq, se);
  2276. if (curr->policy != SCHED_BATCH) {
  2277. update_rq_clock(rq);
  2278. /*
  2279. * Update run-time statistics of the 'current'.
  2280. */
  2281. update_curr(cfs_rq);
  2282. }
  2283. set_skip_buddy(se);
  2284. }
  2285. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2286. {
  2287. struct sched_entity *se = &p->se;
  2288. /* throttled hierarchies are not runnable */
  2289. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2290. return false;
  2291. /* Tell the scheduler that we'd really like pse to run next. */
  2292. set_next_buddy(se);
  2293. yield_task_fair(rq);
  2294. return true;
  2295. }
  2296. #ifdef CONFIG_SMP
  2297. /**************************************************
  2298. * Fair scheduling class load-balancing methods:
  2299. */
  2300. /*
  2301. * pull_task - move a task from a remote runqueue to the local runqueue.
  2302. * Both runqueues must be locked.
  2303. */
  2304. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2305. struct rq *this_rq, int this_cpu)
  2306. {
  2307. deactivate_task(src_rq, p, 0);
  2308. set_task_cpu(p, this_cpu);
  2309. activate_task(this_rq, p, 0);
  2310. check_preempt_curr(this_rq, p, 0);
  2311. }
  2312. /*
  2313. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2314. */
  2315. static
  2316. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2317. struct sched_domain *sd, enum cpu_idle_type idle,
  2318. int *all_pinned)
  2319. {
  2320. int tsk_cache_hot = 0;
  2321. /*
  2322. * We do not migrate tasks that are:
  2323. * 1) running (obviously), or
  2324. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2325. * 3) are cache-hot on their current CPU.
  2326. */
  2327. if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
  2328. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2329. return 0;
  2330. }
  2331. *all_pinned = 0;
  2332. if (task_running(rq, p)) {
  2333. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2334. return 0;
  2335. }
  2336. /*
  2337. * Aggressive migration if:
  2338. * 1) task is cache cold, or
  2339. * 2) too many balance attempts have failed.
  2340. */
  2341. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  2342. if (!tsk_cache_hot ||
  2343. sd->nr_balance_failed > sd->cache_nice_tries) {
  2344. #ifdef CONFIG_SCHEDSTATS
  2345. if (tsk_cache_hot) {
  2346. schedstat_inc(sd, lb_hot_gained[idle]);
  2347. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2348. }
  2349. #endif
  2350. return 1;
  2351. }
  2352. if (tsk_cache_hot) {
  2353. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2354. return 0;
  2355. }
  2356. return 1;
  2357. }
  2358. /*
  2359. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2360. * part of active balancing operations within "domain".
  2361. * Returns 1 if successful and 0 otherwise.
  2362. *
  2363. * Called with both runqueues locked.
  2364. */
  2365. static int
  2366. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2367. struct sched_domain *sd, enum cpu_idle_type idle)
  2368. {
  2369. struct task_struct *p, *n;
  2370. struct cfs_rq *cfs_rq;
  2371. int pinned = 0;
  2372. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  2373. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  2374. if (throttled_lb_pair(task_group(p),
  2375. busiest->cpu, this_cpu))
  2376. break;
  2377. if (!can_migrate_task(p, busiest, this_cpu,
  2378. sd, idle, &pinned))
  2379. continue;
  2380. pull_task(busiest, p, this_rq, this_cpu);
  2381. /*
  2382. * Right now, this is only the second place pull_task()
  2383. * is called, so we can safely collect pull_task()
  2384. * stats here rather than inside pull_task().
  2385. */
  2386. schedstat_inc(sd, lb_gained[idle]);
  2387. return 1;
  2388. }
  2389. }
  2390. return 0;
  2391. }
  2392. static unsigned long
  2393. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2394. unsigned long max_load_move, struct sched_domain *sd,
  2395. enum cpu_idle_type idle, int *all_pinned,
  2396. struct cfs_rq *busiest_cfs_rq)
  2397. {
  2398. int loops = 0, pulled = 0;
  2399. long rem_load_move = max_load_move;
  2400. struct task_struct *p, *n;
  2401. if (max_load_move == 0)
  2402. goto out;
  2403. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  2404. if (loops++ > sysctl_sched_nr_migrate)
  2405. break;
  2406. if ((p->se.load.weight >> 1) > rem_load_move ||
  2407. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  2408. all_pinned))
  2409. continue;
  2410. pull_task(busiest, p, this_rq, this_cpu);
  2411. pulled++;
  2412. rem_load_move -= p->se.load.weight;
  2413. #ifdef CONFIG_PREEMPT
  2414. /*
  2415. * NEWIDLE balancing is a source of latency, so preemptible
  2416. * kernels will stop after the first task is pulled to minimize
  2417. * the critical section.
  2418. */
  2419. if (idle == CPU_NEWLY_IDLE)
  2420. break;
  2421. #endif
  2422. /*
  2423. * We only want to steal up to the prescribed amount of
  2424. * weighted load.
  2425. */
  2426. if (rem_load_move <= 0)
  2427. break;
  2428. }
  2429. out:
  2430. /*
  2431. * Right now, this is one of only two places pull_task() is called,
  2432. * so we can safely collect pull_task() stats here rather than
  2433. * inside pull_task().
  2434. */
  2435. schedstat_add(sd, lb_gained[idle], pulled);
  2436. return max_load_move - rem_load_move;
  2437. }
  2438. #ifdef CONFIG_FAIR_GROUP_SCHED
  2439. /*
  2440. * update tg->load_weight by folding this cpu's load_avg
  2441. */
  2442. static int update_shares_cpu(struct task_group *tg, int cpu)
  2443. {
  2444. struct cfs_rq *cfs_rq;
  2445. unsigned long flags;
  2446. struct rq *rq;
  2447. if (!tg->se[cpu])
  2448. return 0;
  2449. rq = cpu_rq(cpu);
  2450. cfs_rq = tg->cfs_rq[cpu];
  2451. raw_spin_lock_irqsave(&rq->lock, flags);
  2452. update_rq_clock(rq);
  2453. update_cfs_load(cfs_rq, 1);
  2454. /*
  2455. * We need to update shares after updating tg->load_weight in
  2456. * order to adjust the weight of groups with long running tasks.
  2457. */
  2458. update_cfs_shares(cfs_rq);
  2459. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2460. return 0;
  2461. }
  2462. static void update_shares(int cpu)
  2463. {
  2464. struct cfs_rq *cfs_rq;
  2465. struct rq *rq = cpu_rq(cpu);
  2466. rcu_read_lock();
  2467. /*
  2468. * Iterates the task_group tree in a bottom up fashion, see
  2469. * list_add_leaf_cfs_rq() for details.
  2470. */
  2471. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2472. /* throttled entities do not contribute to load */
  2473. if (throttled_hierarchy(cfs_rq))
  2474. continue;
  2475. update_shares_cpu(cfs_rq->tg, cpu);
  2476. }
  2477. rcu_read_unlock();
  2478. }
  2479. /*
  2480. * Compute the cpu's hierarchical load factor for each task group.
  2481. * This needs to be done in a top-down fashion because the load of a child
  2482. * group is a fraction of its parents load.
  2483. */
  2484. static int tg_load_down(struct task_group *tg, void *data)
  2485. {
  2486. unsigned long load;
  2487. long cpu = (long)data;
  2488. if (!tg->parent) {
  2489. load = cpu_rq(cpu)->load.weight;
  2490. } else {
  2491. load = tg->parent->cfs_rq[cpu]->h_load;
  2492. load *= tg->se[cpu]->load.weight;
  2493. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2494. }
  2495. tg->cfs_rq[cpu]->h_load = load;
  2496. return 0;
  2497. }
  2498. static void update_h_load(long cpu)
  2499. {
  2500. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2501. }
  2502. static unsigned long
  2503. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2504. unsigned long max_load_move,
  2505. struct sched_domain *sd, enum cpu_idle_type idle,
  2506. int *all_pinned)
  2507. {
  2508. long rem_load_move = max_load_move;
  2509. struct cfs_rq *busiest_cfs_rq;
  2510. rcu_read_lock();
  2511. update_h_load(cpu_of(busiest));
  2512. for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
  2513. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  2514. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  2515. u64 rem_load, moved_load;
  2516. /*
  2517. * empty group or part of a throttled hierarchy
  2518. */
  2519. if (!busiest_cfs_rq->task_weight ||
  2520. throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
  2521. continue;
  2522. rem_load = (u64)rem_load_move * busiest_weight;
  2523. rem_load = div_u64(rem_load, busiest_h_load + 1);
  2524. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  2525. rem_load, sd, idle, all_pinned,
  2526. busiest_cfs_rq);
  2527. if (!moved_load)
  2528. continue;
  2529. moved_load *= busiest_h_load;
  2530. moved_load = div_u64(moved_load, busiest_weight + 1);
  2531. rem_load_move -= moved_load;
  2532. if (rem_load_move < 0)
  2533. break;
  2534. }
  2535. rcu_read_unlock();
  2536. return max_load_move - rem_load_move;
  2537. }
  2538. #else
  2539. static inline void update_shares(int cpu)
  2540. {
  2541. }
  2542. static unsigned long
  2543. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2544. unsigned long max_load_move,
  2545. struct sched_domain *sd, enum cpu_idle_type idle,
  2546. int *all_pinned)
  2547. {
  2548. return balance_tasks(this_rq, this_cpu, busiest,
  2549. max_load_move, sd, idle, all_pinned,
  2550. &busiest->cfs);
  2551. }
  2552. #endif
  2553. /*
  2554. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2555. * this_rq, as part of a balancing operation within domain "sd".
  2556. * Returns 1 if successful and 0 otherwise.
  2557. *
  2558. * Called with both runqueues locked.
  2559. */
  2560. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2561. unsigned long max_load_move,
  2562. struct sched_domain *sd, enum cpu_idle_type idle,
  2563. int *all_pinned)
  2564. {
  2565. unsigned long total_load_moved = 0, load_moved;
  2566. do {
  2567. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  2568. max_load_move - total_load_moved,
  2569. sd, idle, all_pinned);
  2570. total_load_moved += load_moved;
  2571. #ifdef CONFIG_PREEMPT
  2572. /*
  2573. * NEWIDLE balancing is a source of latency, so preemptible
  2574. * kernels will stop after the first task is pulled to minimize
  2575. * the critical section.
  2576. */
  2577. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2578. break;
  2579. if (raw_spin_is_contended(&this_rq->lock) ||
  2580. raw_spin_is_contended(&busiest->lock))
  2581. break;
  2582. #endif
  2583. } while (load_moved && max_load_move > total_load_moved);
  2584. return total_load_moved > 0;
  2585. }
  2586. /********** Helpers for find_busiest_group ************************/
  2587. /*
  2588. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2589. * during load balancing.
  2590. */
  2591. struct sd_lb_stats {
  2592. struct sched_group *busiest; /* Busiest group in this sd */
  2593. struct sched_group *this; /* Local group in this sd */
  2594. unsigned long total_load; /* Total load of all groups in sd */
  2595. unsigned long total_pwr; /* Total power of all groups in sd */
  2596. unsigned long avg_load; /* Average load across all groups in sd */
  2597. /** Statistics of this group */
  2598. unsigned long this_load;
  2599. unsigned long this_load_per_task;
  2600. unsigned long this_nr_running;
  2601. unsigned long this_has_capacity;
  2602. unsigned int this_idle_cpus;
  2603. /* Statistics of the busiest group */
  2604. unsigned int busiest_idle_cpus;
  2605. unsigned long max_load;
  2606. unsigned long busiest_load_per_task;
  2607. unsigned long busiest_nr_running;
  2608. unsigned long busiest_group_capacity;
  2609. unsigned long busiest_has_capacity;
  2610. unsigned int busiest_group_weight;
  2611. int group_imb; /* Is there imbalance in this sd */
  2612. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2613. int power_savings_balance; /* Is powersave balance needed for this sd */
  2614. struct sched_group *group_min; /* Least loaded group in sd */
  2615. struct sched_group *group_leader; /* Group which relieves group_min */
  2616. unsigned long min_load_per_task; /* load_per_task in group_min */
  2617. unsigned long leader_nr_running; /* Nr running of group_leader */
  2618. unsigned long min_nr_running; /* Nr running of group_min */
  2619. #endif
  2620. };
  2621. /*
  2622. * sg_lb_stats - stats of a sched_group required for load_balancing
  2623. */
  2624. struct sg_lb_stats {
  2625. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2626. unsigned long group_load; /* Total load over the CPUs of the group */
  2627. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2628. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2629. unsigned long group_capacity;
  2630. unsigned long idle_cpus;
  2631. unsigned long group_weight;
  2632. int group_imb; /* Is there an imbalance in the group ? */
  2633. int group_has_capacity; /* Is there extra capacity in the group? */
  2634. };
  2635. /**
  2636. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2637. * @group: The group whose first cpu is to be returned.
  2638. */
  2639. static inline unsigned int group_first_cpu(struct sched_group *group)
  2640. {
  2641. return cpumask_first(sched_group_cpus(group));
  2642. }
  2643. /**
  2644. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2645. * @sd: The sched_domain whose load_idx is to be obtained.
  2646. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2647. */
  2648. static inline int get_sd_load_idx(struct sched_domain *sd,
  2649. enum cpu_idle_type idle)
  2650. {
  2651. int load_idx;
  2652. switch (idle) {
  2653. case CPU_NOT_IDLE:
  2654. load_idx = sd->busy_idx;
  2655. break;
  2656. case CPU_NEWLY_IDLE:
  2657. load_idx = sd->newidle_idx;
  2658. break;
  2659. default:
  2660. load_idx = sd->idle_idx;
  2661. break;
  2662. }
  2663. return load_idx;
  2664. }
  2665. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2666. /**
  2667. * init_sd_power_savings_stats - Initialize power savings statistics for
  2668. * the given sched_domain, during load balancing.
  2669. *
  2670. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2671. * @sds: Variable containing the statistics for sd.
  2672. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2673. */
  2674. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2675. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2676. {
  2677. /*
  2678. * Busy processors will not participate in power savings
  2679. * balance.
  2680. */
  2681. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2682. sds->power_savings_balance = 0;
  2683. else {
  2684. sds->power_savings_balance = 1;
  2685. sds->min_nr_running = ULONG_MAX;
  2686. sds->leader_nr_running = 0;
  2687. }
  2688. }
  2689. /**
  2690. * update_sd_power_savings_stats - Update the power saving stats for a
  2691. * sched_domain while performing load balancing.
  2692. *
  2693. * @group: sched_group belonging to the sched_domain under consideration.
  2694. * @sds: Variable containing the statistics of the sched_domain
  2695. * @local_group: Does group contain the CPU for which we're performing
  2696. * load balancing ?
  2697. * @sgs: Variable containing the statistics of the group.
  2698. */
  2699. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2700. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2701. {
  2702. if (!sds->power_savings_balance)
  2703. return;
  2704. /*
  2705. * If the local group is idle or completely loaded
  2706. * no need to do power savings balance at this domain
  2707. */
  2708. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2709. !sds->this_nr_running))
  2710. sds->power_savings_balance = 0;
  2711. /*
  2712. * If a group is already running at full capacity or idle,
  2713. * don't include that group in power savings calculations
  2714. */
  2715. if (!sds->power_savings_balance ||
  2716. sgs->sum_nr_running >= sgs->group_capacity ||
  2717. !sgs->sum_nr_running)
  2718. return;
  2719. /*
  2720. * Calculate the group which has the least non-idle load.
  2721. * This is the group from where we need to pick up the load
  2722. * for saving power
  2723. */
  2724. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2725. (sgs->sum_nr_running == sds->min_nr_running &&
  2726. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2727. sds->group_min = group;
  2728. sds->min_nr_running = sgs->sum_nr_running;
  2729. sds->min_load_per_task = sgs->sum_weighted_load /
  2730. sgs->sum_nr_running;
  2731. }
  2732. /*
  2733. * Calculate the group which is almost near its
  2734. * capacity but still has some space to pick up some load
  2735. * from other group and save more power
  2736. */
  2737. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2738. return;
  2739. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2740. (sgs->sum_nr_running == sds->leader_nr_running &&
  2741. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2742. sds->group_leader = group;
  2743. sds->leader_nr_running = sgs->sum_nr_running;
  2744. }
  2745. }
  2746. /**
  2747. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2748. * @sds: Variable containing the statistics of the sched_domain
  2749. * under consideration.
  2750. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2751. * @imbalance: Variable to store the imbalance.
  2752. *
  2753. * Description:
  2754. * Check if we have potential to perform some power-savings balance.
  2755. * If yes, set the busiest group to be the least loaded group in the
  2756. * sched_domain, so that it's CPUs can be put to idle.
  2757. *
  2758. * Returns 1 if there is potential to perform power-savings balance.
  2759. * Else returns 0.
  2760. */
  2761. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2762. int this_cpu, unsigned long *imbalance)
  2763. {
  2764. if (!sds->power_savings_balance)
  2765. return 0;
  2766. if (sds->this != sds->group_leader ||
  2767. sds->group_leader == sds->group_min)
  2768. return 0;
  2769. *imbalance = sds->min_load_per_task;
  2770. sds->busiest = sds->group_min;
  2771. return 1;
  2772. }
  2773. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2774. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2775. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2776. {
  2777. return;
  2778. }
  2779. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2780. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2781. {
  2782. return;
  2783. }
  2784. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2785. int this_cpu, unsigned long *imbalance)
  2786. {
  2787. return 0;
  2788. }
  2789. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2790. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2791. {
  2792. return SCHED_POWER_SCALE;
  2793. }
  2794. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2795. {
  2796. return default_scale_freq_power(sd, cpu);
  2797. }
  2798. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2799. {
  2800. unsigned long weight = sd->span_weight;
  2801. unsigned long smt_gain = sd->smt_gain;
  2802. smt_gain /= weight;
  2803. return smt_gain;
  2804. }
  2805. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2806. {
  2807. return default_scale_smt_power(sd, cpu);
  2808. }
  2809. unsigned long scale_rt_power(int cpu)
  2810. {
  2811. struct rq *rq = cpu_rq(cpu);
  2812. u64 total, available;
  2813. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2814. if (unlikely(total < rq->rt_avg)) {
  2815. /* Ensures that power won't end up being negative */
  2816. available = 0;
  2817. } else {
  2818. available = total - rq->rt_avg;
  2819. }
  2820. if (unlikely((s64)total < SCHED_POWER_SCALE))
  2821. total = SCHED_POWER_SCALE;
  2822. total >>= SCHED_POWER_SHIFT;
  2823. return div_u64(available, total);
  2824. }
  2825. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2826. {
  2827. unsigned long weight = sd->span_weight;
  2828. unsigned long power = SCHED_POWER_SCALE;
  2829. struct sched_group *sdg = sd->groups;
  2830. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2831. if (sched_feat(ARCH_POWER))
  2832. power *= arch_scale_smt_power(sd, cpu);
  2833. else
  2834. power *= default_scale_smt_power(sd, cpu);
  2835. power >>= SCHED_POWER_SHIFT;
  2836. }
  2837. sdg->sgp->power_orig = power;
  2838. if (sched_feat(ARCH_POWER))
  2839. power *= arch_scale_freq_power(sd, cpu);
  2840. else
  2841. power *= default_scale_freq_power(sd, cpu);
  2842. power >>= SCHED_POWER_SHIFT;
  2843. power *= scale_rt_power(cpu);
  2844. power >>= SCHED_POWER_SHIFT;
  2845. if (!power)
  2846. power = 1;
  2847. cpu_rq(cpu)->cpu_power = power;
  2848. sdg->sgp->power = power;
  2849. }
  2850. static void update_group_power(struct sched_domain *sd, int cpu)
  2851. {
  2852. struct sched_domain *child = sd->child;
  2853. struct sched_group *group, *sdg = sd->groups;
  2854. unsigned long power;
  2855. if (!child) {
  2856. update_cpu_power(sd, cpu);
  2857. return;
  2858. }
  2859. power = 0;
  2860. group = child->groups;
  2861. do {
  2862. power += group->sgp->power;
  2863. group = group->next;
  2864. } while (group != child->groups);
  2865. sdg->sgp->power = power;
  2866. }
  2867. /*
  2868. * Try and fix up capacity for tiny siblings, this is needed when
  2869. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2870. * which on its own isn't powerful enough.
  2871. *
  2872. * See update_sd_pick_busiest() and check_asym_packing().
  2873. */
  2874. static inline int
  2875. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2876. {
  2877. /*
  2878. * Only siblings can have significantly less than SCHED_POWER_SCALE
  2879. */
  2880. if (!(sd->flags & SD_SHARE_CPUPOWER))
  2881. return 0;
  2882. /*
  2883. * If ~90% of the cpu_power is still there, we're good.
  2884. */
  2885. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  2886. return 1;
  2887. return 0;
  2888. }
  2889. /**
  2890. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2891. * @sd: The sched_domain whose statistics are to be updated.
  2892. * @group: sched_group whose statistics are to be updated.
  2893. * @this_cpu: Cpu for which load balance is currently performed.
  2894. * @idle: Idle status of this_cpu
  2895. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2896. * @local_group: Does group contain this_cpu.
  2897. * @cpus: Set of cpus considered for load balancing.
  2898. * @balance: Should we balance.
  2899. * @sgs: variable to hold the statistics for this group.
  2900. */
  2901. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2902. struct sched_group *group, int this_cpu,
  2903. enum cpu_idle_type idle, int load_idx,
  2904. int local_group, const struct cpumask *cpus,
  2905. int *balance, struct sg_lb_stats *sgs)
  2906. {
  2907. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2908. int i;
  2909. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2910. unsigned long avg_load_per_task = 0;
  2911. if (local_group)
  2912. balance_cpu = group_first_cpu(group);
  2913. /* Tally up the load of all CPUs in the group */
  2914. max_cpu_load = 0;
  2915. min_cpu_load = ~0UL;
  2916. max_nr_running = 0;
  2917. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2918. struct rq *rq = cpu_rq(i);
  2919. /* Bias balancing toward cpus of our domain */
  2920. if (local_group) {
  2921. if (idle_cpu(i) && !first_idle_cpu) {
  2922. first_idle_cpu = 1;
  2923. balance_cpu = i;
  2924. }
  2925. load = target_load(i, load_idx);
  2926. } else {
  2927. load = source_load(i, load_idx);
  2928. if (load > max_cpu_load) {
  2929. max_cpu_load = load;
  2930. max_nr_running = rq->nr_running;
  2931. }
  2932. if (min_cpu_load > load)
  2933. min_cpu_load = load;
  2934. }
  2935. sgs->group_load += load;
  2936. sgs->sum_nr_running += rq->nr_running;
  2937. sgs->sum_weighted_load += weighted_cpuload(i);
  2938. if (idle_cpu(i))
  2939. sgs->idle_cpus++;
  2940. }
  2941. /*
  2942. * First idle cpu or the first cpu(busiest) in this sched group
  2943. * is eligible for doing load balancing at this and above
  2944. * domains. In the newly idle case, we will allow all the cpu's
  2945. * to do the newly idle load balance.
  2946. */
  2947. if (idle != CPU_NEWLY_IDLE && local_group) {
  2948. if (balance_cpu != this_cpu) {
  2949. *balance = 0;
  2950. return;
  2951. }
  2952. update_group_power(sd, this_cpu);
  2953. }
  2954. /* Adjust by relative CPU power of the group */
  2955. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  2956. /*
  2957. * Consider the group unbalanced when the imbalance is larger
  2958. * than the average weight of a task.
  2959. *
  2960. * APZ: with cgroup the avg task weight can vary wildly and
  2961. * might not be a suitable number - should we keep a
  2962. * normalized nr_running number somewhere that negates
  2963. * the hierarchy?
  2964. */
  2965. if (sgs->sum_nr_running)
  2966. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2967. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  2968. sgs->group_imb = 1;
  2969. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  2970. SCHED_POWER_SCALE);
  2971. if (!sgs->group_capacity)
  2972. sgs->group_capacity = fix_small_capacity(sd, group);
  2973. sgs->group_weight = group->group_weight;
  2974. if (sgs->group_capacity > sgs->sum_nr_running)
  2975. sgs->group_has_capacity = 1;
  2976. }
  2977. /**
  2978. * update_sd_pick_busiest - return 1 on busiest group
  2979. * @sd: sched_domain whose statistics are to be checked
  2980. * @sds: sched_domain statistics
  2981. * @sg: sched_group candidate to be checked for being the busiest
  2982. * @sgs: sched_group statistics
  2983. * @this_cpu: the current cpu
  2984. *
  2985. * Determine if @sg is a busier group than the previously selected
  2986. * busiest group.
  2987. */
  2988. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2989. struct sd_lb_stats *sds,
  2990. struct sched_group *sg,
  2991. struct sg_lb_stats *sgs,
  2992. int this_cpu)
  2993. {
  2994. if (sgs->avg_load <= sds->max_load)
  2995. return false;
  2996. if (sgs->sum_nr_running > sgs->group_capacity)
  2997. return true;
  2998. if (sgs->group_imb)
  2999. return true;
  3000. /*
  3001. * ASYM_PACKING needs to move all the work to the lowest
  3002. * numbered CPUs in the group, therefore mark all groups
  3003. * higher than ourself as busy.
  3004. */
  3005. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3006. this_cpu < group_first_cpu(sg)) {
  3007. if (!sds->busiest)
  3008. return true;
  3009. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3010. return true;
  3011. }
  3012. return false;
  3013. }
  3014. /**
  3015. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3016. * @sd: sched_domain whose statistics are to be updated.
  3017. * @this_cpu: Cpu for which load balance is currently performed.
  3018. * @idle: Idle status of this_cpu
  3019. * @cpus: Set of cpus considered for load balancing.
  3020. * @balance: Should we balance.
  3021. * @sds: variable to hold the statistics for this sched_domain.
  3022. */
  3023. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3024. enum cpu_idle_type idle, const struct cpumask *cpus,
  3025. int *balance, struct sd_lb_stats *sds)
  3026. {
  3027. struct sched_domain *child = sd->child;
  3028. struct sched_group *sg = sd->groups;
  3029. struct sg_lb_stats sgs;
  3030. int load_idx, prefer_sibling = 0;
  3031. if (child && child->flags & SD_PREFER_SIBLING)
  3032. prefer_sibling = 1;
  3033. init_sd_power_savings_stats(sd, sds, idle);
  3034. load_idx = get_sd_load_idx(sd, idle);
  3035. do {
  3036. int local_group;
  3037. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  3038. memset(&sgs, 0, sizeof(sgs));
  3039. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  3040. local_group, cpus, balance, &sgs);
  3041. if (local_group && !(*balance))
  3042. return;
  3043. sds->total_load += sgs.group_load;
  3044. sds->total_pwr += sg->sgp->power;
  3045. /*
  3046. * In case the child domain prefers tasks go to siblings
  3047. * first, lower the sg capacity to one so that we'll try
  3048. * and move all the excess tasks away. We lower the capacity
  3049. * of a group only if the local group has the capacity to fit
  3050. * these excess tasks, i.e. nr_running < group_capacity. The
  3051. * extra check prevents the case where you always pull from the
  3052. * heaviest group when it is already under-utilized (possible
  3053. * with a large weight task outweighs the tasks on the system).
  3054. */
  3055. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3056. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3057. if (local_group) {
  3058. sds->this_load = sgs.avg_load;
  3059. sds->this = sg;
  3060. sds->this_nr_running = sgs.sum_nr_running;
  3061. sds->this_load_per_task = sgs.sum_weighted_load;
  3062. sds->this_has_capacity = sgs.group_has_capacity;
  3063. sds->this_idle_cpus = sgs.idle_cpus;
  3064. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  3065. sds->max_load = sgs.avg_load;
  3066. sds->busiest = sg;
  3067. sds->busiest_nr_running = sgs.sum_nr_running;
  3068. sds->busiest_idle_cpus = sgs.idle_cpus;
  3069. sds->busiest_group_capacity = sgs.group_capacity;
  3070. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3071. sds->busiest_has_capacity = sgs.group_has_capacity;
  3072. sds->busiest_group_weight = sgs.group_weight;
  3073. sds->group_imb = sgs.group_imb;
  3074. }
  3075. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  3076. sg = sg->next;
  3077. } while (sg != sd->groups);
  3078. }
  3079. int __weak arch_sd_sibling_asym_packing(void)
  3080. {
  3081. return 0*SD_ASYM_PACKING;
  3082. }
  3083. /**
  3084. * check_asym_packing - Check to see if the group is packed into the
  3085. * sched doman.
  3086. *
  3087. * This is primarily intended to used at the sibling level. Some
  3088. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3089. * case of POWER7, it can move to lower SMT modes only when higher
  3090. * threads are idle. When in lower SMT modes, the threads will
  3091. * perform better since they share less core resources. Hence when we
  3092. * have idle threads, we want them to be the higher ones.
  3093. *
  3094. * This packing function is run on idle threads. It checks to see if
  3095. * the busiest CPU in this domain (core in the P7 case) has a higher
  3096. * CPU number than the packing function is being run on. Here we are
  3097. * assuming lower CPU number will be equivalent to lower a SMT thread
  3098. * number.
  3099. *
  3100. * Returns 1 when packing is required and a task should be moved to
  3101. * this CPU. The amount of the imbalance is returned in *imbalance.
  3102. *
  3103. * @sd: The sched_domain whose packing is to be checked.
  3104. * @sds: Statistics of the sched_domain which is to be packed
  3105. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3106. * @imbalance: returns amount of imbalanced due to packing.
  3107. */
  3108. static int check_asym_packing(struct sched_domain *sd,
  3109. struct sd_lb_stats *sds,
  3110. int this_cpu, unsigned long *imbalance)
  3111. {
  3112. int busiest_cpu;
  3113. if (!(sd->flags & SD_ASYM_PACKING))
  3114. return 0;
  3115. if (!sds->busiest)
  3116. return 0;
  3117. busiest_cpu = group_first_cpu(sds->busiest);
  3118. if (this_cpu > busiest_cpu)
  3119. return 0;
  3120. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  3121. SCHED_POWER_SCALE);
  3122. return 1;
  3123. }
  3124. /**
  3125. * fix_small_imbalance - Calculate the minor imbalance that exists
  3126. * amongst the groups of a sched_domain, during
  3127. * load balancing.
  3128. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3129. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3130. * @imbalance: Variable to store the imbalance.
  3131. */
  3132. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3133. int this_cpu, unsigned long *imbalance)
  3134. {
  3135. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3136. unsigned int imbn = 2;
  3137. unsigned long scaled_busy_load_per_task;
  3138. if (sds->this_nr_running) {
  3139. sds->this_load_per_task /= sds->this_nr_running;
  3140. if (sds->busiest_load_per_task >
  3141. sds->this_load_per_task)
  3142. imbn = 1;
  3143. } else
  3144. sds->this_load_per_task =
  3145. cpu_avg_load_per_task(this_cpu);
  3146. scaled_busy_load_per_task = sds->busiest_load_per_task
  3147. * SCHED_POWER_SCALE;
  3148. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3149. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3150. (scaled_busy_load_per_task * imbn)) {
  3151. *imbalance = sds->busiest_load_per_task;
  3152. return;
  3153. }
  3154. /*
  3155. * OK, we don't have enough imbalance to justify moving tasks,
  3156. * however we may be able to increase total CPU power used by
  3157. * moving them.
  3158. */
  3159. pwr_now += sds->busiest->sgp->power *
  3160. min(sds->busiest_load_per_task, sds->max_load);
  3161. pwr_now += sds->this->sgp->power *
  3162. min(sds->this_load_per_task, sds->this_load);
  3163. pwr_now /= SCHED_POWER_SCALE;
  3164. /* Amount of load we'd subtract */
  3165. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3166. sds->busiest->sgp->power;
  3167. if (sds->max_load > tmp)
  3168. pwr_move += sds->busiest->sgp->power *
  3169. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3170. /* Amount of load we'd add */
  3171. if (sds->max_load * sds->busiest->sgp->power <
  3172. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3173. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3174. sds->this->sgp->power;
  3175. else
  3176. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3177. sds->this->sgp->power;
  3178. pwr_move += sds->this->sgp->power *
  3179. min(sds->this_load_per_task, sds->this_load + tmp);
  3180. pwr_move /= SCHED_POWER_SCALE;
  3181. /* Move if we gain throughput */
  3182. if (pwr_move > pwr_now)
  3183. *imbalance = sds->busiest_load_per_task;
  3184. }
  3185. /**
  3186. * calculate_imbalance - Calculate the amount of imbalance present within the
  3187. * groups of a given sched_domain during load balance.
  3188. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3189. * @this_cpu: Cpu for which currently load balance is being performed.
  3190. * @imbalance: The variable to store the imbalance.
  3191. */
  3192. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3193. unsigned long *imbalance)
  3194. {
  3195. unsigned long max_pull, load_above_capacity = ~0UL;
  3196. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3197. if (sds->group_imb) {
  3198. sds->busiest_load_per_task =
  3199. min(sds->busiest_load_per_task, sds->avg_load);
  3200. }
  3201. /*
  3202. * In the presence of smp nice balancing, certain scenarios can have
  3203. * max load less than avg load(as we skip the groups at or below
  3204. * its cpu_power, while calculating max_load..)
  3205. */
  3206. if (sds->max_load < sds->avg_load) {
  3207. *imbalance = 0;
  3208. return fix_small_imbalance(sds, this_cpu, imbalance);
  3209. }
  3210. if (!sds->group_imb) {
  3211. /*
  3212. * Don't want to pull so many tasks that a group would go idle.
  3213. */
  3214. load_above_capacity = (sds->busiest_nr_running -
  3215. sds->busiest_group_capacity);
  3216. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3217. load_above_capacity /= sds->busiest->sgp->power;
  3218. }
  3219. /*
  3220. * We're trying to get all the cpus to the average_load, so we don't
  3221. * want to push ourselves above the average load, nor do we wish to
  3222. * reduce the max loaded cpu below the average load. At the same time,
  3223. * we also don't want to reduce the group load below the group capacity
  3224. * (so that we can implement power-savings policies etc). Thus we look
  3225. * for the minimum possible imbalance.
  3226. * Be careful of negative numbers as they'll appear as very large values
  3227. * with unsigned longs.
  3228. */
  3229. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3230. /* How much load to actually move to equalise the imbalance */
  3231. *imbalance = min(max_pull * sds->busiest->sgp->power,
  3232. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3233. / SCHED_POWER_SCALE;
  3234. /*
  3235. * if *imbalance is less than the average load per runnable task
  3236. * there is no guarantee that any tasks will be moved so we'll have
  3237. * a think about bumping its value to force at least one task to be
  3238. * moved
  3239. */
  3240. if (*imbalance < sds->busiest_load_per_task)
  3241. return fix_small_imbalance(sds, this_cpu, imbalance);
  3242. }
  3243. /******* find_busiest_group() helpers end here *********************/
  3244. /**
  3245. * find_busiest_group - Returns the busiest group within the sched_domain
  3246. * if there is an imbalance. If there isn't an imbalance, and
  3247. * the user has opted for power-savings, it returns a group whose
  3248. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3249. * such a group exists.
  3250. *
  3251. * Also calculates the amount of weighted load which should be moved
  3252. * to restore balance.
  3253. *
  3254. * @sd: The sched_domain whose busiest group is to be returned.
  3255. * @this_cpu: The cpu for which load balancing is currently being performed.
  3256. * @imbalance: Variable which stores amount of weighted load which should
  3257. * be moved to restore balance/put a group to idle.
  3258. * @idle: The idle status of this_cpu.
  3259. * @cpus: The set of CPUs under consideration for load-balancing.
  3260. * @balance: Pointer to a variable indicating if this_cpu
  3261. * is the appropriate cpu to perform load balancing at this_level.
  3262. *
  3263. * Returns: - the busiest group if imbalance exists.
  3264. * - If no imbalance and user has opted for power-savings balance,
  3265. * return the least loaded group whose CPUs can be
  3266. * put to idle by rebalancing its tasks onto our group.
  3267. */
  3268. static struct sched_group *
  3269. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3270. unsigned long *imbalance, enum cpu_idle_type idle,
  3271. const struct cpumask *cpus, int *balance)
  3272. {
  3273. struct sd_lb_stats sds;
  3274. memset(&sds, 0, sizeof(sds));
  3275. /*
  3276. * Compute the various statistics relavent for load balancing at
  3277. * this level.
  3278. */
  3279. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  3280. /*
  3281. * this_cpu is not the appropriate cpu to perform load balancing at
  3282. * this level.
  3283. */
  3284. if (!(*balance))
  3285. goto ret;
  3286. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  3287. check_asym_packing(sd, &sds, this_cpu, imbalance))
  3288. return sds.busiest;
  3289. /* There is no busy sibling group to pull tasks from */
  3290. if (!sds.busiest || sds.busiest_nr_running == 0)
  3291. goto out_balanced;
  3292. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3293. /*
  3294. * If the busiest group is imbalanced the below checks don't
  3295. * work because they assumes all things are equal, which typically
  3296. * isn't true due to cpus_allowed constraints and the like.
  3297. */
  3298. if (sds.group_imb)
  3299. goto force_balance;
  3300. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3301. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3302. !sds.busiest_has_capacity)
  3303. goto force_balance;
  3304. /*
  3305. * If the local group is more busy than the selected busiest group
  3306. * don't try and pull any tasks.
  3307. */
  3308. if (sds.this_load >= sds.max_load)
  3309. goto out_balanced;
  3310. /*
  3311. * Don't pull any tasks if this group is already above the domain
  3312. * average load.
  3313. */
  3314. if (sds.this_load >= sds.avg_load)
  3315. goto out_balanced;
  3316. if (idle == CPU_IDLE) {
  3317. /*
  3318. * This cpu is idle. If the busiest group load doesn't
  3319. * have more tasks than the number of available cpu's and
  3320. * there is no imbalance between this and busiest group
  3321. * wrt to idle cpu's, it is balanced.
  3322. */
  3323. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3324. sds.busiest_nr_running <= sds.busiest_group_weight)
  3325. goto out_balanced;
  3326. } else {
  3327. /*
  3328. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3329. * imbalance_pct to be conservative.
  3330. */
  3331. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3332. goto out_balanced;
  3333. }
  3334. force_balance:
  3335. /* Looks like there is an imbalance. Compute it */
  3336. calculate_imbalance(&sds, this_cpu, imbalance);
  3337. return sds.busiest;
  3338. out_balanced:
  3339. /*
  3340. * There is no obvious imbalance. But check if we can do some balancing
  3341. * to save power.
  3342. */
  3343. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3344. return sds.busiest;
  3345. ret:
  3346. *imbalance = 0;
  3347. return NULL;
  3348. }
  3349. /*
  3350. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3351. */
  3352. static struct rq *
  3353. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  3354. enum cpu_idle_type idle, unsigned long imbalance,
  3355. const struct cpumask *cpus)
  3356. {
  3357. struct rq *busiest = NULL, *rq;
  3358. unsigned long max_load = 0;
  3359. int i;
  3360. for_each_cpu(i, sched_group_cpus(group)) {
  3361. unsigned long power = power_of(i);
  3362. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3363. SCHED_POWER_SCALE);
  3364. unsigned long wl;
  3365. if (!capacity)
  3366. capacity = fix_small_capacity(sd, group);
  3367. if (!cpumask_test_cpu(i, cpus))
  3368. continue;
  3369. rq = cpu_rq(i);
  3370. wl = weighted_cpuload(i);
  3371. /*
  3372. * When comparing with imbalance, use weighted_cpuload()
  3373. * which is not scaled with the cpu power.
  3374. */
  3375. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3376. continue;
  3377. /*
  3378. * For the load comparisons with the other cpu's, consider
  3379. * the weighted_cpuload() scaled with the cpu power, so that
  3380. * the load can be moved away from the cpu that is potentially
  3381. * running at a lower capacity.
  3382. */
  3383. wl = (wl * SCHED_POWER_SCALE) / power;
  3384. if (wl > max_load) {
  3385. max_load = wl;
  3386. busiest = rq;
  3387. }
  3388. }
  3389. return busiest;
  3390. }
  3391. /*
  3392. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3393. * so long as it is large enough.
  3394. */
  3395. #define MAX_PINNED_INTERVAL 512
  3396. /* Working cpumask for load_balance and load_balance_newidle. */
  3397. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3398. static int need_active_balance(struct sched_domain *sd, int idle,
  3399. int busiest_cpu, int this_cpu)
  3400. {
  3401. if (idle == CPU_NEWLY_IDLE) {
  3402. /*
  3403. * ASYM_PACKING needs to force migrate tasks from busy but
  3404. * higher numbered CPUs in order to pack all tasks in the
  3405. * lowest numbered CPUs.
  3406. */
  3407. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  3408. return 1;
  3409. /*
  3410. * The only task running in a non-idle cpu can be moved to this
  3411. * cpu in an attempt to completely freeup the other CPU
  3412. * package.
  3413. *
  3414. * The package power saving logic comes from
  3415. * find_busiest_group(). If there are no imbalance, then
  3416. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3417. * f_b_g() will select a group from which a running task may be
  3418. * pulled to this cpu in order to make the other package idle.
  3419. * If there is no opportunity to make a package idle and if
  3420. * there are no imbalance, then f_b_g() will return NULL and no
  3421. * action will be taken in load_balance_newidle().
  3422. *
  3423. * Under normal task pull operation due to imbalance, there
  3424. * will be more than one task in the source run queue and
  3425. * move_tasks() will succeed. ld_moved will be true and this
  3426. * active balance code will not be triggered.
  3427. */
  3428. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3429. return 0;
  3430. }
  3431. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3432. }
  3433. static int active_load_balance_cpu_stop(void *data);
  3434. /*
  3435. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3436. * tasks if there is an imbalance.
  3437. */
  3438. static int load_balance(int this_cpu, struct rq *this_rq,
  3439. struct sched_domain *sd, enum cpu_idle_type idle,
  3440. int *balance)
  3441. {
  3442. int ld_moved, all_pinned = 0, active_balance = 0;
  3443. struct sched_group *group;
  3444. unsigned long imbalance;
  3445. struct rq *busiest;
  3446. unsigned long flags;
  3447. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3448. cpumask_copy(cpus, cpu_active_mask);
  3449. schedstat_inc(sd, lb_count[idle]);
  3450. redo:
  3451. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  3452. cpus, balance);
  3453. if (*balance == 0)
  3454. goto out_balanced;
  3455. if (!group) {
  3456. schedstat_inc(sd, lb_nobusyg[idle]);
  3457. goto out_balanced;
  3458. }
  3459. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  3460. if (!busiest) {
  3461. schedstat_inc(sd, lb_nobusyq[idle]);
  3462. goto out_balanced;
  3463. }
  3464. BUG_ON(busiest == this_rq);
  3465. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3466. ld_moved = 0;
  3467. if (busiest->nr_running > 1) {
  3468. /*
  3469. * Attempt to move tasks. If find_busiest_group has found
  3470. * an imbalance but busiest->nr_running <= 1, the group is
  3471. * still unbalanced. ld_moved simply stays zero, so it is
  3472. * correctly treated as an imbalance.
  3473. */
  3474. all_pinned = 1;
  3475. local_irq_save(flags);
  3476. double_rq_lock(this_rq, busiest);
  3477. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3478. imbalance, sd, idle, &all_pinned);
  3479. double_rq_unlock(this_rq, busiest);
  3480. local_irq_restore(flags);
  3481. /*
  3482. * some other cpu did the load balance for us.
  3483. */
  3484. if (ld_moved && this_cpu != smp_processor_id())
  3485. resched_cpu(this_cpu);
  3486. /* All tasks on this runqueue were pinned by CPU affinity */
  3487. if (unlikely(all_pinned)) {
  3488. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3489. if (!cpumask_empty(cpus))
  3490. goto redo;
  3491. goto out_balanced;
  3492. }
  3493. }
  3494. if (!ld_moved) {
  3495. schedstat_inc(sd, lb_failed[idle]);
  3496. /*
  3497. * Increment the failure counter only on periodic balance.
  3498. * We do not want newidle balance, which can be very
  3499. * frequent, pollute the failure counter causing
  3500. * excessive cache_hot migrations and active balances.
  3501. */
  3502. if (idle != CPU_NEWLY_IDLE)
  3503. sd->nr_balance_failed++;
  3504. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  3505. raw_spin_lock_irqsave(&busiest->lock, flags);
  3506. /* don't kick the active_load_balance_cpu_stop,
  3507. * if the curr task on busiest cpu can't be
  3508. * moved to this_cpu
  3509. */
  3510. if (!cpumask_test_cpu(this_cpu,
  3511. tsk_cpus_allowed(busiest->curr))) {
  3512. raw_spin_unlock_irqrestore(&busiest->lock,
  3513. flags);
  3514. all_pinned = 1;
  3515. goto out_one_pinned;
  3516. }
  3517. /*
  3518. * ->active_balance synchronizes accesses to
  3519. * ->active_balance_work. Once set, it's cleared
  3520. * only after active load balance is finished.
  3521. */
  3522. if (!busiest->active_balance) {
  3523. busiest->active_balance = 1;
  3524. busiest->push_cpu = this_cpu;
  3525. active_balance = 1;
  3526. }
  3527. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3528. if (active_balance)
  3529. stop_one_cpu_nowait(cpu_of(busiest),
  3530. active_load_balance_cpu_stop, busiest,
  3531. &busiest->active_balance_work);
  3532. /*
  3533. * We've kicked active balancing, reset the failure
  3534. * counter.
  3535. */
  3536. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3537. }
  3538. } else
  3539. sd->nr_balance_failed = 0;
  3540. if (likely(!active_balance)) {
  3541. /* We were unbalanced, so reset the balancing interval */
  3542. sd->balance_interval = sd->min_interval;
  3543. } else {
  3544. /*
  3545. * If we've begun active balancing, start to back off. This
  3546. * case may not be covered by the all_pinned logic if there
  3547. * is only 1 task on the busy runqueue (because we don't call
  3548. * move_tasks).
  3549. */
  3550. if (sd->balance_interval < sd->max_interval)
  3551. sd->balance_interval *= 2;
  3552. }
  3553. goto out;
  3554. out_balanced:
  3555. schedstat_inc(sd, lb_balanced[idle]);
  3556. sd->nr_balance_failed = 0;
  3557. out_one_pinned:
  3558. /* tune up the balancing interval */
  3559. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3560. (sd->balance_interval < sd->max_interval))
  3561. sd->balance_interval *= 2;
  3562. ld_moved = 0;
  3563. out:
  3564. return ld_moved;
  3565. }
  3566. /*
  3567. * idle_balance is called by schedule() if this_cpu is about to become
  3568. * idle. Attempts to pull tasks from other CPUs.
  3569. */
  3570. static void idle_balance(int this_cpu, struct rq *this_rq)
  3571. {
  3572. struct sched_domain *sd;
  3573. int pulled_task = 0;
  3574. unsigned long next_balance = jiffies + HZ;
  3575. this_rq->idle_stamp = this_rq->clock;
  3576. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3577. return;
  3578. /*
  3579. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3580. */
  3581. raw_spin_unlock(&this_rq->lock);
  3582. update_shares(this_cpu);
  3583. rcu_read_lock();
  3584. for_each_domain(this_cpu, sd) {
  3585. unsigned long interval;
  3586. int balance = 1;
  3587. if (!(sd->flags & SD_LOAD_BALANCE))
  3588. continue;
  3589. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3590. /* If we've pulled tasks over stop searching: */
  3591. pulled_task = load_balance(this_cpu, this_rq,
  3592. sd, CPU_NEWLY_IDLE, &balance);
  3593. }
  3594. interval = msecs_to_jiffies(sd->balance_interval);
  3595. if (time_after(next_balance, sd->last_balance + interval))
  3596. next_balance = sd->last_balance + interval;
  3597. if (pulled_task) {
  3598. this_rq->idle_stamp = 0;
  3599. break;
  3600. }
  3601. }
  3602. rcu_read_unlock();
  3603. raw_spin_lock(&this_rq->lock);
  3604. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3605. /*
  3606. * We are going idle. next_balance may be set based on
  3607. * a busy processor. So reset next_balance.
  3608. */
  3609. this_rq->next_balance = next_balance;
  3610. }
  3611. }
  3612. /*
  3613. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3614. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3615. * least 1 task to be running on each physical CPU where possible, and
  3616. * avoids physical / logical imbalances.
  3617. */
  3618. static int active_load_balance_cpu_stop(void *data)
  3619. {
  3620. struct rq *busiest_rq = data;
  3621. int busiest_cpu = cpu_of(busiest_rq);
  3622. int target_cpu = busiest_rq->push_cpu;
  3623. struct rq *target_rq = cpu_rq(target_cpu);
  3624. struct sched_domain *sd;
  3625. raw_spin_lock_irq(&busiest_rq->lock);
  3626. /* make sure the requested cpu hasn't gone down in the meantime */
  3627. if (unlikely(busiest_cpu != smp_processor_id() ||
  3628. !busiest_rq->active_balance))
  3629. goto out_unlock;
  3630. /* Is there any task to move? */
  3631. if (busiest_rq->nr_running <= 1)
  3632. goto out_unlock;
  3633. /*
  3634. * This condition is "impossible", if it occurs
  3635. * we need to fix it. Originally reported by
  3636. * Bjorn Helgaas on a 128-cpu setup.
  3637. */
  3638. BUG_ON(busiest_rq == target_rq);
  3639. /* move a task from busiest_rq to target_rq */
  3640. double_lock_balance(busiest_rq, target_rq);
  3641. /* Search for an sd spanning us and the target CPU. */
  3642. rcu_read_lock();
  3643. for_each_domain(target_cpu, sd) {
  3644. if ((sd->flags & SD_LOAD_BALANCE) &&
  3645. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3646. break;
  3647. }
  3648. if (likely(sd)) {
  3649. schedstat_inc(sd, alb_count);
  3650. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3651. sd, CPU_IDLE))
  3652. schedstat_inc(sd, alb_pushed);
  3653. else
  3654. schedstat_inc(sd, alb_failed);
  3655. }
  3656. rcu_read_unlock();
  3657. double_unlock_balance(busiest_rq, target_rq);
  3658. out_unlock:
  3659. busiest_rq->active_balance = 0;
  3660. raw_spin_unlock_irq(&busiest_rq->lock);
  3661. return 0;
  3662. }
  3663. #ifdef CONFIG_NO_HZ
  3664. /*
  3665. * idle load balancing details
  3666. * - One of the idle CPUs nominates itself as idle load_balancer, while
  3667. * entering idle.
  3668. * - This idle load balancer CPU will also go into tickless mode when
  3669. * it is idle, just like all other idle CPUs
  3670. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3671. * needed, they will kick the idle load balancer, which then does idle
  3672. * load balancing for all the idle CPUs.
  3673. */
  3674. static struct {
  3675. atomic_t load_balancer;
  3676. atomic_t first_pick_cpu;
  3677. atomic_t second_pick_cpu;
  3678. cpumask_var_t idle_cpus_mask;
  3679. cpumask_var_t grp_idle_mask;
  3680. unsigned long next_balance; /* in jiffy units */
  3681. } nohz ____cacheline_aligned;
  3682. int get_nohz_load_balancer(void)
  3683. {
  3684. return atomic_read(&nohz.load_balancer);
  3685. }
  3686. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3687. /**
  3688. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3689. * @cpu: The cpu whose lowest level of sched domain is to
  3690. * be returned.
  3691. * @flag: The flag to check for the lowest sched_domain
  3692. * for the given cpu.
  3693. *
  3694. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3695. */
  3696. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3697. {
  3698. struct sched_domain *sd;
  3699. for_each_domain(cpu, sd)
  3700. if (sd->flags & flag)
  3701. break;
  3702. return sd;
  3703. }
  3704. /**
  3705. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3706. * @cpu: The cpu whose domains we're iterating over.
  3707. * @sd: variable holding the value of the power_savings_sd
  3708. * for cpu.
  3709. * @flag: The flag to filter the sched_domains to be iterated.
  3710. *
  3711. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3712. * set, starting from the lowest sched_domain to the highest.
  3713. */
  3714. #define for_each_flag_domain(cpu, sd, flag) \
  3715. for (sd = lowest_flag_domain(cpu, flag); \
  3716. (sd && (sd->flags & flag)); sd = sd->parent)
  3717. /**
  3718. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3719. * @ilb_group: group to be checked for semi-idleness
  3720. *
  3721. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3722. *
  3723. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3724. * and atleast one non-idle CPU. This helper function checks if the given
  3725. * sched_group is semi-idle or not.
  3726. */
  3727. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3728. {
  3729. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3730. sched_group_cpus(ilb_group));
  3731. /*
  3732. * A sched_group is semi-idle when it has atleast one busy cpu
  3733. * and atleast one idle cpu.
  3734. */
  3735. if (cpumask_empty(nohz.grp_idle_mask))
  3736. return 0;
  3737. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3738. return 0;
  3739. return 1;
  3740. }
  3741. /**
  3742. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3743. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3744. *
  3745. * Returns: Returns the id of the idle load balancer if it exists,
  3746. * Else, returns >= nr_cpu_ids.
  3747. *
  3748. * This algorithm picks the idle load balancer such that it belongs to a
  3749. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3750. * completely idle packages/cores just for the purpose of idle load balancing
  3751. * when there are other idle cpu's which are better suited for that job.
  3752. */
  3753. static int find_new_ilb(int cpu)
  3754. {
  3755. struct sched_domain *sd;
  3756. struct sched_group *ilb_group;
  3757. int ilb = nr_cpu_ids;
  3758. /*
  3759. * Have idle load balancer selection from semi-idle packages only
  3760. * when power-aware load balancing is enabled
  3761. */
  3762. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3763. goto out_done;
  3764. /*
  3765. * Optimize for the case when we have no idle CPUs or only one
  3766. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3767. */
  3768. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3769. goto out_done;
  3770. rcu_read_lock();
  3771. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3772. ilb_group = sd->groups;
  3773. do {
  3774. if (is_semi_idle_group(ilb_group)) {
  3775. ilb = cpumask_first(nohz.grp_idle_mask);
  3776. goto unlock;
  3777. }
  3778. ilb_group = ilb_group->next;
  3779. } while (ilb_group != sd->groups);
  3780. }
  3781. unlock:
  3782. rcu_read_unlock();
  3783. out_done:
  3784. return ilb;
  3785. }
  3786. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3787. static inline int find_new_ilb(int call_cpu)
  3788. {
  3789. return nr_cpu_ids;
  3790. }
  3791. #endif
  3792. /*
  3793. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3794. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3795. * CPU (if there is one).
  3796. */
  3797. static void nohz_balancer_kick(int cpu)
  3798. {
  3799. int ilb_cpu;
  3800. nohz.next_balance++;
  3801. ilb_cpu = get_nohz_load_balancer();
  3802. if (ilb_cpu >= nr_cpu_ids) {
  3803. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3804. if (ilb_cpu >= nr_cpu_ids)
  3805. return;
  3806. }
  3807. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3808. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3809. smp_mb();
  3810. /*
  3811. * Use smp_send_reschedule() instead of resched_cpu().
  3812. * This way we generate a sched IPI on the target cpu which
  3813. * is idle. And the softirq performing nohz idle load balance
  3814. * will be run before returning from the IPI.
  3815. */
  3816. smp_send_reschedule(ilb_cpu);
  3817. }
  3818. return;
  3819. }
  3820. /*
  3821. * This routine will try to nominate the ilb (idle load balancing)
  3822. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3823. * load balancing on behalf of all those cpus.
  3824. *
  3825. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3826. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3827. * idle load balancing by kicking one of the idle CPUs.
  3828. *
  3829. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3830. * ilb owner CPU in future (when there is a need for idle load balancing on
  3831. * behalf of all idle CPUs).
  3832. */
  3833. void select_nohz_load_balancer(int stop_tick)
  3834. {
  3835. int cpu = smp_processor_id();
  3836. if (stop_tick) {
  3837. if (!cpu_active(cpu)) {
  3838. if (atomic_read(&nohz.load_balancer) != cpu)
  3839. return;
  3840. /*
  3841. * If we are going offline and still the leader,
  3842. * give up!
  3843. */
  3844. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3845. nr_cpu_ids) != cpu)
  3846. BUG();
  3847. return;
  3848. }
  3849. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3850. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3851. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3852. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3853. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3854. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3855. int new_ilb;
  3856. /* make me the ilb owner */
  3857. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3858. cpu) != nr_cpu_ids)
  3859. return;
  3860. /*
  3861. * Check to see if there is a more power-efficient
  3862. * ilb.
  3863. */
  3864. new_ilb = find_new_ilb(cpu);
  3865. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3866. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3867. resched_cpu(new_ilb);
  3868. return;
  3869. }
  3870. return;
  3871. }
  3872. } else {
  3873. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3874. return;
  3875. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3876. if (atomic_read(&nohz.load_balancer) == cpu)
  3877. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3878. nr_cpu_ids) != cpu)
  3879. BUG();
  3880. }
  3881. return;
  3882. }
  3883. #endif
  3884. static DEFINE_SPINLOCK(balancing);
  3885. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3886. /*
  3887. * Scale the max load_balance interval with the number of CPUs in the system.
  3888. * This trades load-balance latency on larger machines for less cross talk.
  3889. */
  3890. static void update_max_interval(void)
  3891. {
  3892. max_load_balance_interval = HZ*num_online_cpus()/10;
  3893. }
  3894. /*
  3895. * It checks each scheduling domain to see if it is due to be balanced,
  3896. * and initiates a balancing operation if so.
  3897. *
  3898. * Balancing parameters are set up in arch_init_sched_domains.
  3899. */
  3900. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3901. {
  3902. int balance = 1;
  3903. struct rq *rq = cpu_rq(cpu);
  3904. unsigned long interval;
  3905. struct sched_domain *sd;
  3906. /* Earliest time when we have to do rebalance again */
  3907. unsigned long next_balance = jiffies + 60*HZ;
  3908. int update_next_balance = 0;
  3909. int need_serialize;
  3910. update_shares(cpu);
  3911. rcu_read_lock();
  3912. for_each_domain(cpu, sd) {
  3913. if (!(sd->flags & SD_LOAD_BALANCE))
  3914. continue;
  3915. interval = sd->balance_interval;
  3916. if (idle != CPU_IDLE)
  3917. interval *= sd->busy_factor;
  3918. /* scale ms to jiffies */
  3919. interval = msecs_to_jiffies(interval);
  3920. interval = clamp(interval, 1UL, max_load_balance_interval);
  3921. need_serialize = sd->flags & SD_SERIALIZE;
  3922. if (need_serialize) {
  3923. if (!spin_trylock(&balancing))
  3924. goto out;
  3925. }
  3926. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3927. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3928. /*
  3929. * We've pulled tasks over so either we're no
  3930. * longer idle.
  3931. */
  3932. idle = CPU_NOT_IDLE;
  3933. }
  3934. sd->last_balance = jiffies;
  3935. }
  3936. if (need_serialize)
  3937. spin_unlock(&balancing);
  3938. out:
  3939. if (time_after(next_balance, sd->last_balance + interval)) {
  3940. next_balance = sd->last_balance + interval;
  3941. update_next_balance = 1;
  3942. }
  3943. /*
  3944. * Stop the load balance at this level. There is another
  3945. * CPU in our sched group which is doing load balancing more
  3946. * actively.
  3947. */
  3948. if (!balance)
  3949. break;
  3950. }
  3951. rcu_read_unlock();
  3952. /*
  3953. * next_balance will be updated only when there is a need.
  3954. * When the cpu is attached to null domain for ex, it will not be
  3955. * updated.
  3956. */
  3957. if (likely(update_next_balance))
  3958. rq->next_balance = next_balance;
  3959. }
  3960. #ifdef CONFIG_NO_HZ
  3961. /*
  3962. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3963. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3964. */
  3965. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3966. {
  3967. struct rq *this_rq = cpu_rq(this_cpu);
  3968. struct rq *rq;
  3969. int balance_cpu;
  3970. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3971. return;
  3972. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3973. if (balance_cpu == this_cpu)
  3974. continue;
  3975. /*
  3976. * If this cpu gets work to do, stop the load balancing
  3977. * work being done for other cpus. Next load
  3978. * balancing owner will pick it up.
  3979. */
  3980. if (need_resched()) {
  3981. this_rq->nohz_balance_kick = 0;
  3982. break;
  3983. }
  3984. raw_spin_lock_irq(&this_rq->lock);
  3985. update_rq_clock(this_rq);
  3986. update_cpu_load(this_rq);
  3987. raw_spin_unlock_irq(&this_rq->lock);
  3988. rebalance_domains(balance_cpu, CPU_IDLE);
  3989. rq = cpu_rq(balance_cpu);
  3990. if (time_after(this_rq->next_balance, rq->next_balance))
  3991. this_rq->next_balance = rq->next_balance;
  3992. }
  3993. nohz.next_balance = this_rq->next_balance;
  3994. this_rq->nohz_balance_kick = 0;
  3995. }
  3996. /*
  3997. * Current heuristic for kicking the idle load balancer
  3998. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3999. * idle load balancer when it has more than one process active. This
  4000. * eliminates the need for idle load balancing altogether when we have
  4001. * only one running process in the system (common case).
  4002. * - If there are more than one busy CPU, idle load balancer may have
  4003. * to run for active_load_balance to happen (i.e., two busy CPUs are
  4004. * SMT or core siblings and can run better if they move to different
  4005. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  4006. * which will kick idle load balancer as soon as it has any load.
  4007. */
  4008. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4009. {
  4010. unsigned long now = jiffies;
  4011. int ret;
  4012. int first_pick_cpu, second_pick_cpu;
  4013. if (time_before(now, nohz.next_balance))
  4014. return 0;
  4015. if (idle_cpu(cpu))
  4016. return 0;
  4017. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  4018. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  4019. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  4020. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  4021. return 0;
  4022. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  4023. if (ret == nr_cpu_ids || ret == cpu) {
  4024. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  4025. if (rq->nr_running > 1)
  4026. return 1;
  4027. } else {
  4028. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  4029. if (ret == nr_cpu_ids || ret == cpu) {
  4030. if (rq->nr_running)
  4031. return 1;
  4032. }
  4033. }
  4034. return 0;
  4035. }
  4036. #else
  4037. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4038. #endif
  4039. /*
  4040. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4041. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4042. */
  4043. static void run_rebalance_domains(struct softirq_action *h)
  4044. {
  4045. int this_cpu = smp_processor_id();
  4046. struct rq *this_rq = cpu_rq(this_cpu);
  4047. enum cpu_idle_type idle = this_rq->idle_balance ?
  4048. CPU_IDLE : CPU_NOT_IDLE;
  4049. rebalance_domains(this_cpu, idle);
  4050. /*
  4051. * If this cpu has a pending nohz_balance_kick, then do the
  4052. * balancing on behalf of the other idle cpus whose ticks are
  4053. * stopped.
  4054. */
  4055. nohz_idle_balance(this_cpu, idle);
  4056. }
  4057. static inline int on_null_domain(int cpu)
  4058. {
  4059. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4060. }
  4061. /*
  4062. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4063. */
  4064. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4065. {
  4066. /* Don't need to rebalance while attached to NULL domain */
  4067. if (time_after_eq(jiffies, rq->next_balance) &&
  4068. likely(!on_null_domain(cpu)))
  4069. raise_softirq(SCHED_SOFTIRQ);
  4070. #ifdef CONFIG_NO_HZ
  4071. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4072. nohz_balancer_kick(cpu);
  4073. #endif
  4074. }
  4075. static void rq_online_fair(struct rq *rq)
  4076. {
  4077. update_sysctl();
  4078. }
  4079. static void rq_offline_fair(struct rq *rq)
  4080. {
  4081. update_sysctl();
  4082. }
  4083. #else /* CONFIG_SMP */
  4084. /*
  4085. * on UP we do not need to balance between CPUs:
  4086. */
  4087. static inline void idle_balance(int cpu, struct rq *rq)
  4088. {
  4089. }
  4090. #endif /* CONFIG_SMP */
  4091. /*
  4092. * scheduler tick hitting a task of our scheduling class:
  4093. */
  4094. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4095. {
  4096. struct cfs_rq *cfs_rq;
  4097. struct sched_entity *se = &curr->se;
  4098. for_each_sched_entity(se) {
  4099. cfs_rq = cfs_rq_of(se);
  4100. entity_tick(cfs_rq, se, queued);
  4101. }
  4102. }
  4103. /*
  4104. * called on fork with the child task as argument from the parent's context
  4105. * - child not yet on the tasklist
  4106. * - preemption disabled
  4107. */
  4108. static void task_fork_fair(struct task_struct *p)
  4109. {
  4110. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  4111. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  4112. int this_cpu = smp_processor_id();
  4113. struct rq *rq = this_rq();
  4114. unsigned long flags;
  4115. raw_spin_lock_irqsave(&rq->lock, flags);
  4116. update_rq_clock(rq);
  4117. if (unlikely(task_cpu(p) != this_cpu)) {
  4118. rcu_read_lock();
  4119. __set_task_cpu(p, this_cpu);
  4120. rcu_read_unlock();
  4121. }
  4122. update_curr(cfs_rq);
  4123. if (curr)
  4124. se->vruntime = curr->vruntime;
  4125. place_entity(cfs_rq, se, 1);
  4126. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4127. /*
  4128. * Upon rescheduling, sched_class::put_prev_task() will place
  4129. * 'current' within the tree based on its new key value.
  4130. */
  4131. swap(curr->vruntime, se->vruntime);
  4132. resched_task(rq->curr);
  4133. }
  4134. se->vruntime -= cfs_rq->min_vruntime;
  4135. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4136. }
  4137. /*
  4138. * Priority of the task has changed. Check to see if we preempt
  4139. * the current task.
  4140. */
  4141. static void
  4142. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4143. {
  4144. if (!p->se.on_rq)
  4145. return;
  4146. /*
  4147. * Reschedule if we are currently running on this runqueue and
  4148. * our priority decreased, or if we are not currently running on
  4149. * this runqueue and our priority is higher than the current's
  4150. */
  4151. if (rq->curr == p) {
  4152. if (p->prio > oldprio)
  4153. resched_task(rq->curr);
  4154. } else
  4155. check_preempt_curr(rq, p, 0);
  4156. }
  4157. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4158. {
  4159. struct sched_entity *se = &p->se;
  4160. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4161. /*
  4162. * Ensure the task's vruntime is normalized, so that when its
  4163. * switched back to the fair class the enqueue_entity(.flags=0) will
  4164. * do the right thing.
  4165. *
  4166. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4167. * have normalized the vruntime, if it was !on_rq, then only when
  4168. * the task is sleeping will it still have non-normalized vruntime.
  4169. */
  4170. if (!se->on_rq && p->state != TASK_RUNNING) {
  4171. /*
  4172. * Fix up our vruntime so that the current sleep doesn't
  4173. * cause 'unlimited' sleep bonus.
  4174. */
  4175. place_entity(cfs_rq, se, 0);
  4176. se->vruntime -= cfs_rq->min_vruntime;
  4177. }
  4178. }
  4179. /*
  4180. * We switched to the sched_fair class.
  4181. */
  4182. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4183. {
  4184. if (!p->se.on_rq)
  4185. return;
  4186. /*
  4187. * We were most likely switched from sched_rt, so
  4188. * kick off the schedule if running, otherwise just see
  4189. * if we can still preempt the current task.
  4190. */
  4191. if (rq->curr == p)
  4192. resched_task(rq->curr);
  4193. else
  4194. check_preempt_curr(rq, p, 0);
  4195. }
  4196. /* Account for a task changing its policy or group.
  4197. *
  4198. * This routine is mostly called to set cfs_rq->curr field when a task
  4199. * migrates between groups/classes.
  4200. */
  4201. static void set_curr_task_fair(struct rq *rq)
  4202. {
  4203. struct sched_entity *se = &rq->curr->se;
  4204. for_each_sched_entity(se) {
  4205. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4206. set_next_entity(cfs_rq, se);
  4207. /* ensure bandwidth has been allocated on our new cfs_rq */
  4208. account_cfs_rq_runtime(cfs_rq, 0);
  4209. }
  4210. }
  4211. #ifdef CONFIG_FAIR_GROUP_SCHED
  4212. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4213. {
  4214. /*
  4215. * If the task was not on the rq at the time of this cgroup movement
  4216. * it must have been asleep, sleeping tasks keep their ->vruntime
  4217. * absolute on their old rq until wakeup (needed for the fair sleeper
  4218. * bonus in place_entity()).
  4219. *
  4220. * If it was on the rq, we've just 'preempted' it, which does convert
  4221. * ->vruntime to a relative base.
  4222. *
  4223. * Make sure both cases convert their relative position when migrating
  4224. * to another cgroup's rq. This does somewhat interfere with the
  4225. * fair sleeper stuff for the first placement, but who cares.
  4226. */
  4227. if (!on_rq)
  4228. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4229. set_task_rq(p, task_cpu(p));
  4230. if (!on_rq)
  4231. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4232. }
  4233. #endif
  4234. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4235. {
  4236. struct sched_entity *se = &task->se;
  4237. unsigned int rr_interval = 0;
  4238. /*
  4239. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4240. * idle runqueue:
  4241. */
  4242. if (rq->cfs.load.weight)
  4243. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4244. return rr_interval;
  4245. }
  4246. /*
  4247. * All the scheduling class methods:
  4248. */
  4249. static const struct sched_class fair_sched_class = {
  4250. .next = &idle_sched_class,
  4251. .enqueue_task = enqueue_task_fair,
  4252. .dequeue_task = dequeue_task_fair,
  4253. .yield_task = yield_task_fair,
  4254. .yield_to_task = yield_to_task_fair,
  4255. .check_preempt_curr = check_preempt_wakeup,
  4256. .pick_next_task = pick_next_task_fair,
  4257. .put_prev_task = put_prev_task_fair,
  4258. #ifdef CONFIG_SMP
  4259. .select_task_rq = select_task_rq_fair,
  4260. .rq_online = rq_online_fair,
  4261. .rq_offline = rq_offline_fair,
  4262. .task_waking = task_waking_fair,
  4263. #endif
  4264. .set_curr_task = set_curr_task_fair,
  4265. .task_tick = task_tick_fair,
  4266. .task_fork = task_fork_fair,
  4267. .prio_changed = prio_changed_fair,
  4268. .switched_from = switched_from_fair,
  4269. .switched_to = switched_to_fair,
  4270. .get_rr_interval = get_rr_interval_fair,
  4271. #ifdef CONFIG_FAIR_GROUP_SCHED
  4272. .task_move_group = task_move_group_fair,
  4273. #endif
  4274. };
  4275. #ifdef CONFIG_SCHED_DEBUG
  4276. static void print_cfs_stats(struct seq_file *m, int cpu)
  4277. {
  4278. struct cfs_rq *cfs_rq;
  4279. rcu_read_lock();
  4280. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4281. print_cfs_rq(m, cpu, cfs_rq);
  4282. rcu_read_unlock();
  4283. }
  4284. #endif