mlock.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/mempolicy.h>
  14. #include <linux/syscalls.h>
  15. #include <linux/sched.h>
  16. #include <linux/module.h>
  17. #include <linux/rmap.h>
  18. #include <linux/mmzone.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. int can_do_mlock(void)
  22. {
  23. if (capable(CAP_IPC_LOCK))
  24. return 1;
  25. if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
  26. return 1;
  27. return 0;
  28. }
  29. EXPORT_SYMBOL(can_do_mlock);
  30. #ifdef CONFIG_UNEVICTABLE_LRU
  31. /*
  32. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  33. * in vmscan and, possibly, the fault path; and to support semi-accurate
  34. * statistics.
  35. *
  36. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  37. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  38. * The unevictable list is an LRU sibling list to the [in]active lists.
  39. * PageUnevictable is set to indicate the unevictable state.
  40. *
  41. * When lazy mlocking via vmscan, it is important to ensure that the
  42. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  43. * may have mlocked a page that is being munlocked. So lazy mlock must take
  44. * the mmap_sem for read, and verify that the vma really is locked
  45. * (see mm/rmap.c).
  46. */
  47. /*
  48. * LRU accounting for clear_page_mlock()
  49. */
  50. void __clear_page_mlock(struct page *page)
  51. {
  52. VM_BUG_ON(!PageLocked(page));
  53. if (!page->mapping) { /* truncated ? */
  54. return;
  55. }
  56. dec_zone_page_state(page, NR_MLOCK);
  57. count_vm_event(UNEVICTABLE_PGCLEARED);
  58. if (!isolate_lru_page(page)) {
  59. putback_lru_page(page);
  60. } else {
  61. /*
  62. * We lost the race. the page already moved to evictable list.
  63. */
  64. if (PageUnevictable(page))
  65. count_vm_event(UNEVICTABLE_PGSTRANDED);
  66. }
  67. }
  68. /*
  69. * Mark page as mlocked if not already.
  70. * If page on LRU, isolate and putback to move to unevictable list.
  71. */
  72. void mlock_vma_page(struct page *page)
  73. {
  74. BUG_ON(!PageLocked(page));
  75. if (!TestSetPageMlocked(page)) {
  76. inc_zone_page_state(page, NR_MLOCK);
  77. count_vm_event(UNEVICTABLE_PGMLOCKED);
  78. if (!isolate_lru_page(page))
  79. putback_lru_page(page);
  80. }
  81. }
  82. /*
  83. * called from munlock()/munmap() path with page supposedly on the LRU.
  84. *
  85. * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
  86. * [in try_to_munlock()] and then attempt to isolate the page. We must
  87. * isolate the page to keep others from messing with its unevictable
  88. * and mlocked state while trying to munlock. However, we pre-clear the
  89. * mlocked state anyway as we might lose the isolation race and we might
  90. * not get another chance to clear PageMlocked. If we successfully
  91. * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
  92. * mapping the page, it will restore the PageMlocked state, unless the page
  93. * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
  94. * perhaps redundantly.
  95. * If we lose the isolation race, and the page is mapped by other VM_LOCKED
  96. * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
  97. * either of which will restore the PageMlocked state by calling
  98. * mlock_vma_page() above, if it can grab the vma's mmap sem.
  99. */
  100. static void munlock_vma_page(struct page *page)
  101. {
  102. BUG_ON(!PageLocked(page));
  103. if (TestClearPageMlocked(page)) {
  104. dec_zone_page_state(page, NR_MLOCK);
  105. if (!isolate_lru_page(page)) {
  106. int ret = try_to_munlock(page);
  107. /*
  108. * did try_to_unlock() succeed or punt?
  109. */
  110. if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
  111. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  112. putback_lru_page(page);
  113. } else {
  114. /*
  115. * We lost the race. let try_to_unmap() deal
  116. * with it. At least we get the page state and
  117. * mlock stats right. However, page is still on
  118. * the noreclaim list. We'll fix that up when
  119. * the page is eventually freed or we scan the
  120. * noreclaim list.
  121. */
  122. if (PageUnevictable(page))
  123. count_vm_event(UNEVICTABLE_PGSTRANDED);
  124. else
  125. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  126. }
  127. }
  128. }
  129. /**
  130. * __mlock_vma_pages_range() - mlock/munlock a range of pages in the vma.
  131. * @vma: target vma
  132. * @start: start address
  133. * @end: end address
  134. * @mlock: 0 indicate munlock, otherwise mlock.
  135. *
  136. * If @mlock == 0, unlock an mlocked range;
  137. * else mlock the range of pages. This takes care of making the pages present ,
  138. * too.
  139. *
  140. * return 0 on success, negative error code on error.
  141. *
  142. * vma->vm_mm->mmap_sem must be held for at least read.
  143. */
  144. static long __mlock_vma_pages_range(struct vm_area_struct *vma,
  145. unsigned long start, unsigned long end,
  146. int mlock)
  147. {
  148. struct mm_struct *mm = vma->vm_mm;
  149. unsigned long addr = start;
  150. struct page *pages[16]; /* 16 gives a reasonable batch */
  151. int nr_pages = (end - start) / PAGE_SIZE;
  152. int ret = 0;
  153. int gup_flags = 0;
  154. VM_BUG_ON(start & ~PAGE_MASK);
  155. VM_BUG_ON(end & ~PAGE_MASK);
  156. VM_BUG_ON(start < vma->vm_start);
  157. VM_BUG_ON(end > vma->vm_end);
  158. VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) &&
  159. (atomic_read(&mm->mm_users) != 0));
  160. /*
  161. * mlock: don't page populate if vma has PROT_NONE permission.
  162. * munlock: always do munlock although the vma has PROT_NONE
  163. * permission, or SIGKILL is pending.
  164. */
  165. if (!mlock)
  166. gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS |
  167. GUP_FLAGS_IGNORE_SIGKILL;
  168. if (vma->vm_flags & VM_WRITE)
  169. gup_flags |= GUP_FLAGS_WRITE;
  170. while (nr_pages > 0) {
  171. int i;
  172. cond_resched();
  173. /*
  174. * get_user_pages makes pages present if we are
  175. * setting mlock. and this extra reference count will
  176. * disable migration of this page. However, page may
  177. * still be truncated out from under us.
  178. */
  179. ret = __get_user_pages(current, mm, addr,
  180. min_t(int, nr_pages, ARRAY_SIZE(pages)),
  181. gup_flags, pages, NULL);
  182. /*
  183. * This can happen for, e.g., VM_NONLINEAR regions before
  184. * a page has been allocated and mapped at a given offset,
  185. * or for addresses that map beyond end of a file.
  186. * We'll mlock the the pages if/when they get faulted in.
  187. */
  188. if (ret < 0)
  189. break;
  190. if (ret == 0) {
  191. /*
  192. * We know the vma is there, so the only time
  193. * we cannot get a single page should be an
  194. * error (ret < 0) case.
  195. */
  196. WARN_ON(1);
  197. break;
  198. }
  199. lru_add_drain(); /* push cached pages to LRU */
  200. for (i = 0; i < ret; i++) {
  201. struct page *page = pages[i];
  202. lock_page(page);
  203. /*
  204. * Because we lock page here and migration is blocked
  205. * by the elevated reference, we need only check for
  206. * page truncation (file-cache only).
  207. */
  208. if (page->mapping) {
  209. if (mlock)
  210. mlock_vma_page(page);
  211. else
  212. munlock_vma_page(page);
  213. }
  214. unlock_page(page);
  215. put_page(page); /* ref from get_user_pages() */
  216. /*
  217. * here we assume that get_user_pages() has given us
  218. * a list of virtually contiguous pages.
  219. */
  220. addr += PAGE_SIZE; /* for next get_user_pages() */
  221. nr_pages--;
  222. }
  223. ret = 0;
  224. }
  225. return ret; /* count entire vma as locked_vm */
  226. }
  227. /*
  228. * convert get_user_pages() return value to posix mlock() error
  229. */
  230. static int __mlock_posix_error_return(long retval)
  231. {
  232. if (retval == -EFAULT)
  233. retval = -ENOMEM;
  234. else if (retval == -ENOMEM)
  235. retval = -EAGAIN;
  236. return retval;
  237. }
  238. #else /* CONFIG_UNEVICTABLE_LRU */
  239. /*
  240. * Just make pages present if VM_LOCKED. No-op if unlocking.
  241. */
  242. static long __mlock_vma_pages_range(struct vm_area_struct *vma,
  243. unsigned long start, unsigned long end,
  244. int mlock)
  245. {
  246. if (mlock && (vma->vm_flags & VM_LOCKED))
  247. return make_pages_present(start, end);
  248. return 0;
  249. }
  250. static inline int __mlock_posix_error_return(long retval)
  251. {
  252. return 0;
  253. }
  254. #endif /* CONFIG_UNEVICTABLE_LRU */
  255. /**
  256. * mlock_vma_pages_range() - mlock pages in specified vma range.
  257. * @vma - the vma containing the specfied address range
  258. * @start - starting address in @vma to mlock
  259. * @end - end address [+1] in @vma to mlock
  260. *
  261. * For mmap()/mremap()/expansion of mlocked vma.
  262. *
  263. * return 0 on success for "normal" vmas.
  264. *
  265. * return number of pages [> 0] to be removed from locked_vm on success
  266. * of "special" vmas.
  267. */
  268. long mlock_vma_pages_range(struct vm_area_struct *vma,
  269. unsigned long start, unsigned long end)
  270. {
  271. int nr_pages = (end - start) / PAGE_SIZE;
  272. BUG_ON(!(vma->vm_flags & VM_LOCKED));
  273. /*
  274. * filter unlockable vmas
  275. */
  276. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  277. goto no_mlock;
  278. if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
  279. is_vm_hugetlb_page(vma) ||
  280. vma == get_gate_vma(current))) {
  281. return __mlock_vma_pages_range(vma, start, end, 1);
  282. }
  283. /*
  284. * User mapped kernel pages or huge pages:
  285. * make these pages present to populate the ptes, but
  286. * fall thru' to reset VM_LOCKED--no need to unlock, and
  287. * return nr_pages so these don't get counted against task's
  288. * locked limit. huge pages are already counted against
  289. * locked vm limit.
  290. */
  291. make_pages_present(start, end);
  292. no_mlock:
  293. vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
  294. return nr_pages; /* error or pages NOT mlocked */
  295. }
  296. /*
  297. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  298. * @vma - vma containing range to be munlock()ed.
  299. * @start - start address in @vma of the range
  300. * @end - end of range in @vma.
  301. *
  302. * For mremap(), munmap() and exit().
  303. *
  304. * Called with @vma VM_LOCKED.
  305. *
  306. * Returns with VM_LOCKED cleared. Callers must be prepared to
  307. * deal with this.
  308. *
  309. * We don't save and restore VM_LOCKED here because pages are
  310. * still on lru. In unmap path, pages might be scanned by reclaim
  311. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  312. * free them. This will result in freeing mlocked pages.
  313. */
  314. void munlock_vma_pages_range(struct vm_area_struct *vma,
  315. unsigned long start, unsigned long end)
  316. {
  317. vma->vm_flags &= ~VM_LOCKED;
  318. __mlock_vma_pages_range(vma, start, end, 0);
  319. }
  320. /*
  321. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  322. *
  323. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  324. * munlock is a no-op. However, for some special vmas, we go ahead and
  325. * populate the ptes via make_pages_present().
  326. *
  327. * For vmas that pass the filters, merge/split as appropriate.
  328. */
  329. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  330. unsigned long start, unsigned long end, unsigned int newflags)
  331. {
  332. struct mm_struct *mm = vma->vm_mm;
  333. pgoff_t pgoff;
  334. int nr_pages;
  335. int ret = 0;
  336. int lock = newflags & VM_LOCKED;
  337. if (newflags == vma->vm_flags ||
  338. (vma->vm_flags & (VM_IO | VM_PFNMAP)))
  339. goto out; /* don't set VM_LOCKED, don't count */
  340. if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
  341. is_vm_hugetlb_page(vma) ||
  342. vma == get_gate_vma(current)) {
  343. if (lock)
  344. make_pages_present(start, end);
  345. goto out; /* don't set VM_LOCKED, don't count */
  346. }
  347. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  348. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  349. vma->vm_file, pgoff, vma_policy(vma));
  350. if (*prev) {
  351. vma = *prev;
  352. goto success;
  353. }
  354. if (start != vma->vm_start) {
  355. ret = split_vma(mm, vma, start, 1);
  356. if (ret)
  357. goto out;
  358. }
  359. if (end != vma->vm_end) {
  360. ret = split_vma(mm, vma, end, 0);
  361. if (ret)
  362. goto out;
  363. }
  364. success:
  365. /*
  366. * Keep track of amount of locked VM.
  367. */
  368. nr_pages = (end - start) >> PAGE_SHIFT;
  369. if (!lock)
  370. nr_pages = -nr_pages;
  371. mm->locked_vm += nr_pages;
  372. /*
  373. * vm_flags is protected by the mmap_sem held in write mode.
  374. * It's okay if try_to_unmap_one unmaps a page just after we
  375. * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  376. */
  377. vma->vm_flags = newflags;
  378. if (lock) {
  379. ret = __mlock_vma_pages_range(vma, start, end, 1);
  380. if (ret > 0) {
  381. mm->locked_vm -= ret;
  382. ret = 0;
  383. } else
  384. ret = __mlock_posix_error_return(ret); /* translate if needed */
  385. } else {
  386. __mlock_vma_pages_range(vma, start, end, 0);
  387. }
  388. out:
  389. *prev = vma;
  390. return ret;
  391. }
  392. static int do_mlock(unsigned long start, size_t len, int on)
  393. {
  394. unsigned long nstart, end, tmp;
  395. struct vm_area_struct * vma, * prev;
  396. int error;
  397. len = PAGE_ALIGN(len);
  398. end = start + len;
  399. if (end < start)
  400. return -EINVAL;
  401. if (end == start)
  402. return 0;
  403. vma = find_vma_prev(current->mm, start, &prev);
  404. if (!vma || vma->vm_start > start)
  405. return -ENOMEM;
  406. if (start > vma->vm_start)
  407. prev = vma;
  408. for (nstart = start ; ; ) {
  409. unsigned int newflags;
  410. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  411. newflags = vma->vm_flags | VM_LOCKED;
  412. if (!on)
  413. newflags &= ~VM_LOCKED;
  414. tmp = vma->vm_end;
  415. if (tmp > end)
  416. tmp = end;
  417. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  418. if (error)
  419. break;
  420. nstart = tmp;
  421. if (nstart < prev->vm_end)
  422. nstart = prev->vm_end;
  423. if (nstart >= end)
  424. break;
  425. vma = prev->vm_next;
  426. if (!vma || vma->vm_start != nstart) {
  427. error = -ENOMEM;
  428. break;
  429. }
  430. }
  431. return error;
  432. }
  433. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  434. {
  435. unsigned long locked;
  436. unsigned long lock_limit;
  437. int error = -ENOMEM;
  438. if (!can_do_mlock())
  439. return -EPERM;
  440. lru_add_drain_all(); /* flush pagevec */
  441. down_write(&current->mm->mmap_sem);
  442. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  443. start &= PAGE_MASK;
  444. locked = len >> PAGE_SHIFT;
  445. locked += current->mm->locked_vm;
  446. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  447. lock_limit >>= PAGE_SHIFT;
  448. /* check against resource limits */
  449. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  450. error = do_mlock(start, len, 1);
  451. up_write(&current->mm->mmap_sem);
  452. return error;
  453. }
  454. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  455. {
  456. int ret;
  457. down_write(&current->mm->mmap_sem);
  458. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  459. start &= PAGE_MASK;
  460. ret = do_mlock(start, len, 0);
  461. up_write(&current->mm->mmap_sem);
  462. return ret;
  463. }
  464. static int do_mlockall(int flags)
  465. {
  466. struct vm_area_struct * vma, * prev = NULL;
  467. unsigned int def_flags = 0;
  468. if (flags & MCL_FUTURE)
  469. def_flags = VM_LOCKED;
  470. current->mm->def_flags = def_flags;
  471. if (flags == MCL_FUTURE)
  472. goto out;
  473. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  474. unsigned int newflags;
  475. newflags = vma->vm_flags | VM_LOCKED;
  476. if (!(flags & MCL_CURRENT))
  477. newflags &= ~VM_LOCKED;
  478. /* Ignore errors */
  479. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  480. }
  481. out:
  482. return 0;
  483. }
  484. SYSCALL_DEFINE1(mlockall, int, flags)
  485. {
  486. unsigned long lock_limit;
  487. int ret = -EINVAL;
  488. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  489. goto out;
  490. ret = -EPERM;
  491. if (!can_do_mlock())
  492. goto out;
  493. lru_add_drain_all(); /* flush pagevec */
  494. down_write(&current->mm->mmap_sem);
  495. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  496. lock_limit >>= PAGE_SHIFT;
  497. ret = -ENOMEM;
  498. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  499. capable(CAP_IPC_LOCK))
  500. ret = do_mlockall(flags);
  501. up_write(&current->mm->mmap_sem);
  502. out:
  503. return ret;
  504. }
  505. SYSCALL_DEFINE0(munlockall)
  506. {
  507. int ret;
  508. down_write(&current->mm->mmap_sem);
  509. ret = do_mlockall(0);
  510. up_write(&current->mm->mmap_sem);
  511. return ret;
  512. }
  513. /*
  514. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  515. * shm segments) get accounted against the user_struct instead.
  516. */
  517. static DEFINE_SPINLOCK(shmlock_user_lock);
  518. int user_shm_lock(size_t size, struct user_struct *user)
  519. {
  520. unsigned long lock_limit, locked;
  521. int allowed = 0;
  522. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  523. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  524. if (lock_limit == RLIM_INFINITY)
  525. allowed = 1;
  526. lock_limit >>= PAGE_SHIFT;
  527. spin_lock(&shmlock_user_lock);
  528. if (!allowed &&
  529. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  530. goto out;
  531. get_uid(user);
  532. user->locked_shm += locked;
  533. allowed = 1;
  534. out:
  535. spin_unlock(&shmlock_user_lock);
  536. return allowed;
  537. }
  538. void user_shm_unlock(size_t size, struct user_struct *user)
  539. {
  540. spin_lock(&shmlock_user_lock);
  541. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  542. spin_unlock(&shmlock_user_lock);
  543. free_uid(user);
  544. }
  545. void *alloc_locked_buffer(size_t size)
  546. {
  547. unsigned long rlim, vm, pgsz;
  548. void *buffer = NULL;
  549. pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
  550. down_write(&current->mm->mmap_sem);
  551. rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
  552. vm = current->mm->total_vm + pgsz;
  553. if (rlim < vm)
  554. goto out;
  555. rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
  556. vm = current->mm->locked_vm + pgsz;
  557. if (rlim < vm)
  558. goto out;
  559. buffer = kzalloc(size, GFP_KERNEL);
  560. if (!buffer)
  561. goto out;
  562. current->mm->total_vm += pgsz;
  563. current->mm->locked_vm += pgsz;
  564. out:
  565. up_write(&current->mm->mmap_sem);
  566. return buffer;
  567. }
  568. void free_locked_buffer(void *buffer, size_t size)
  569. {
  570. unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
  571. down_write(&current->mm->mmap_sem);
  572. current->mm->total_vm -= pgsz;
  573. current->mm->locked_vm -= pgsz;
  574. up_write(&current->mm->mmap_sem);
  575. kfree(buffer);
  576. }