iwl-4965-hw.h 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22. * USA
  23. *
  24. * The full GNU General Public License is included in this distribution
  25. * in the file called LICENSE.GPL.
  26. *
  27. * Contact Information:
  28. * Intel Linux Wireless <ilw@linux.intel.com>
  29. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30. *
  31. * BSD LICENSE
  32. *
  33. * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
  34. * All rights reserved.
  35. *
  36. * Redistribution and use in source and binary forms, with or without
  37. * modification, are permitted provided that the following conditions
  38. * are met:
  39. *
  40. * * Redistributions of source code must retain the above copyright
  41. * notice, this list of conditions and the following disclaimer.
  42. * * Redistributions in binary form must reproduce the above copyright
  43. * notice, this list of conditions and the following disclaimer in
  44. * the documentation and/or other materials provided with the
  45. * distribution.
  46. * * Neither the name Intel Corporation nor the names of its
  47. * contributors may be used to endorse or promote products derived
  48. * from this software without specific prior written permission.
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61. *
  62. *****************************************************************************/
  63. /*
  64. * Please use this file (iwl-4965-hw.h) only for hardware-related definitions.
  65. * Use iwl-commands.h for uCode API definitions.
  66. * Use iwl-dev.h for driver implementation definitions.
  67. */
  68. #ifndef __iwl_4965_hw_h__
  69. #define __iwl_4965_hw_h__
  70. #include "iwl-fh.h"
  71. /* EEPROM */
  72. #define IWL4965_EEPROM_IMG_SIZE 1024
  73. /*
  74. * uCode queue management definitions ...
  75. * Queue #4 is the command queue for 3945 and 4965; map it to Tx FIFO chnl 4.
  76. * The first queue used for block-ack aggregation is #7 (4965 only).
  77. * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
  78. */
  79. #define IWL_CMD_QUEUE_NUM 4
  80. #define IWL_CMD_FIFO_NUM 4
  81. #define IWL49_FIRST_AMPDU_QUEUE 7
  82. /* Time constants */
  83. #define SHORT_SLOT_TIME 9
  84. #define LONG_SLOT_TIME 20
  85. /* RSSI to dBm */
  86. #define IWL49_RSSI_OFFSET 44
  87. /* PCI registers */
  88. #define PCI_CFG_RETRY_TIMEOUT 0x041
  89. #define PCI_CFG_POWER_SOURCE 0x0C8
  90. #define PCI_REG_WUM8 0x0E8
  91. #define PCI_CFG_LINK_CTRL 0x0F0
  92. /* PCI register values */
  93. #define PCI_CFG_LINK_CTRL_VAL_L0S_EN 0x01
  94. #define PCI_CFG_LINK_CTRL_VAL_L1_EN 0x02
  95. #define PCI_CFG_CMD_REG_INT_DIS_MSK 0x04
  96. #define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000)
  97. #define IWL_NUM_SCAN_RATES (2)
  98. #define IWL_DEFAULT_TX_RETRY 15
  99. /* Sizes and addresses for instruction and data memory (SRAM) in
  100. * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
  101. #define IWL49_RTC_INST_LOWER_BOUND (0x000000)
  102. #define IWL49_RTC_INST_UPPER_BOUND (0x018000)
  103. #define IWL49_RTC_DATA_LOWER_BOUND (0x800000)
  104. #define IWL49_RTC_DATA_UPPER_BOUND (0x80A000)
  105. #define IWL49_RTC_INST_SIZE (IWL49_RTC_INST_UPPER_BOUND - \
  106. IWL49_RTC_INST_LOWER_BOUND)
  107. #define IWL49_RTC_DATA_SIZE (IWL49_RTC_DATA_UPPER_BOUND - \
  108. IWL49_RTC_DATA_LOWER_BOUND)
  109. #define IWL49_MAX_INST_SIZE IWL49_RTC_INST_SIZE
  110. #define IWL49_MAX_DATA_SIZE IWL49_RTC_DATA_SIZE
  111. /* Size of uCode instruction memory in bootstrap state machine */
  112. #define IWL49_MAX_BSM_SIZE BSM_SRAM_SIZE
  113. static inline int iwl4965_hw_valid_rtc_data_addr(u32 addr)
  114. {
  115. return (addr >= IWL49_RTC_DATA_LOWER_BOUND) &&
  116. (addr < IWL49_RTC_DATA_UPPER_BOUND);
  117. }
  118. /********************* START TEMPERATURE *************************************/
  119. /**
  120. * 4965 temperature calculation.
  121. *
  122. * The driver must calculate the device temperature before calculating
  123. * a txpower setting (amplifier gain is temperature dependent). The
  124. * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
  125. * values used for the life of the driver, and one of which (R4) is the
  126. * real-time temperature indicator.
  127. *
  128. * uCode provides all 4 values to the driver via the "initialize alive"
  129. * notification (see struct iwl4965_init_alive_resp). After the runtime uCode
  130. * image loads, uCode updates the R4 value via statistics notifications
  131. * (see STATISTICS_NOTIFICATION), which occur after each received beacon
  132. * when associated, or can be requested via REPLY_STATISTICS_CMD.
  133. *
  134. * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
  135. * must sign-extend to 32 bits before applying formula below.
  136. *
  137. * Formula:
  138. *
  139. * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
  140. *
  141. * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
  142. * an additional correction, which should be centered around 0 degrees
  143. * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
  144. * centering the 97/100 correction around 0 degrees K.
  145. *
  146. * Add 273 to Kelvin value to find degrees Celsius, for comparing current
  147. * temperature with factory-measured temperatures when calculating txpower
  148. * settings.
  149. */
  150. #define TEMPERATURE_CALIB_KELVIN_OFFSET 8
  151. #define TEMPERATURE_CALIB_A_VAL 259
  152. /* Limit range of calculated temperature to be between these Kelvin values */
  153. #define IWL_TX_POWER_TEMPERATURE_MIN (263)
  154. #define IWL_TX_POWER_TEMPERATURE_MAX (410)
  155. #define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
  156. (((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \
  157. ((t) > IWL_TX_POWER_TEMPERATURE_MAX))
  158. /********************* END TEMPERATURE ***************************************/
  159. /********************* START TXPOWER *****************************************/
  160. /**
  161. * 4965 txpower calculations rely on information from three sources:
  162. *
  163. * 1) EEPROM
  164. * 2) "initialize" alive notification
  165. * 3) statistics notifications
  166. *
  167. * EEPROM data consists of:
  168. *
  169. * 1) Regulatory information (max txpower and channel usage flags) is provided
  170. * separately for each channel that can possibly supported by 4965.
  171. * 40 MHz wide (.11n fat) channels are listed separately from 20 MHz
  172. * (legacy) channels.
  173. *
  174. * See struct iwl4965_eeprom_channel for format, and struct iwl4965_eeprom
  175. * for locations in EEPROM.
  176. *
  177. * 2) Factory txpower calibration information is provided separately for
  178. * sub-bands of contiguous channels. 2.4GHz has just one sub-band,
  179. * but 5 GHz has several sub-bands.
  180. *
  181. * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
  182. *
  183. * See struct iwl4965_eeprom_calib_info (and the tree of structures
  184. * contained within it) for format, and struct iwl4965_eeprom for
  185. * locations in EEPROM.
  186. *
  187. * "Initialization alive" notification (see struct iwl4965_init_alive_resp)
  188. * consists of:
  189. *
  190. * 1) Temperature calculation parameters.
  191. *
  192. * 2) Power supply voltage measurement.
  193. *
  194. * 3) Tx gain compensation to balance 2 transmitters for MIMO use.
  195. *
  196. * Statistics notifications deliver:
  197. *
  198. * 1) Current values for temperature param R4.
  199. */
  200. /**
  201. * To calculate a txpower setting for a given desired target txpower, channel,
  202. * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
  203. * support MIMO and transmit diversity), driver must do the following:
  204. *
  205. * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
  206. * Do not exceed regulatory limit; reduce target txpower if necessary.
  207. *
  208. * If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
  209. * 2 transmitters will be used simultaneously; driver must reduce the
  210. * regulatory limit by 3 dB (half-power) for each transmitter, so the
  211. * combined total output of the 2 transmitters is within regulatory limits.
  212. *
  213. *
  214. * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
  215. * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
  216. * reduce target txpower if necessary.
  217. *
  218. * Backoff values below are in 1/2 dB units (equivalent to steps in
  219. * txpower gain tables):
  220. *
  221. * OFDM 6 - 36 MBit: 10 steps (5 dB)
  222. * OFDM 48 MBit: 15 steps (7.5 dB)
  223. * OFDM 54 MBit: 17 steps (8.5 dB)
  224. * OFDM 60 MBit: 20 steps (10 dB)
  225. * CCK all rates: 10 steps (5 dB)
  226. *
  227. * Backoff values apply to saturation txpower on a per-transmitter basis;
  228. * when using MIMO (2 transmitters), each transmitter uses the same
  229. * saturation level provided in EEPROM, and the same backoff values;
  230. * no reduction (such as with regulatory txpower limits) is required.
  231. *
  232. * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
  233. * widths and 40 Mhz (.11n fat) channel widths; there is no separate
  234. * factory measurement for fat channels.
  235. *
  236. * The result of this step is the final target txpower. The rest of
  237. * the steps figure out the proper settings for the device to achieve
  238. * that target txpower.
  239. *
  240. *
  241. * 3) Determine (EEPROM) calibration sub band for the target channel, by
  242. * comparing against first and last channels in each sub band
  243. * (see struct iwl4965_eeprom_calib_subband_info).
  244. *
  245. *
  246. * 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
  247. * referencing the 2 factory-measured (sample) channels within the sub band.
  248. *
  249. * Interpolation is based on difference between target channel's frequency
  250. * and the sample channels' frequencies. Since channel numbers are based
  251. * on frequency (5 MHz between each channel number), this is equivalent
  252. * to interpolating based on channel number differences.
  253. *
  254. * Note that the sample channels may or may not be the channels at the
  255. * edges of the sub band. The target channel may be "outside" of the
  256. * span of the sampled channels.
  257. *
  258. * Driver may choose the pair (for 2 Tx chains) of measurements (see
  259. * struct iwl4965_eeprom_calib_ch_info) for which the actual measured
  260. * txpower comes closest to the desired txpower. Usually, though,
  261. * the middle set of measurements is closest to the regulatory limits,
  262. * and is therefore a good choice for all txpower calculations (this
  263. * assumes that high accuracy is needed for maximizing legal txpower,
  264. * while lower txpower configurations do not need as much accuracy).
  265. *
  266. * Driver should interpolate both members of the chosen measurement pair,
  267. * i.e. for both Tx chains (radio transmitters), unless the driver knows
  268. * that only one of the chains will be used (e.g. only one tx antenna
  269. * connected, but this should be unusual). The rate scaling algorithm
  270. * switches antennas to find best performance, so both Tx chains will
  271. * be used (although only one at a time) even for non-MIMO transmissions.
  272. *
  273. * Driver should interpolate factory values for temperature, gain table
  274. * index, and actual power. The power amplifier detector values are
  275. * not used by the driver.
  276. *
  277. * Sanity check: If the target channel happens to be one of the sample
  278. * channels, the results should agree with the sample channel's
  279. * measurements!
  280. *
  281. *
  282. * 5) Find difference between desired txpower and (interpolated)
  283. * factory-measured txpower. Using (interpolated) factory gain table index
  284. * (shown elsewhere) as a starting point, adjust this index lower to
  285. * increase txpower, or higher to decrease txpower, until the target
  286. * txpower is reached. Each step in the gain table is 1/2 dB.
  287. *
  288. * For example, if factory measured txpower is 16 dBm, and target txpower
  289. * is 13 dBm, add 6 steps to the factory gain index to reduce txpower
  290. * by 3 dB.
  291. *
  292. *
  293. * 6) Find difference between current device temperature and (interpolated)
  294. * factory-measured temperature for sub-band. Factory values are in
  295. * degrees Celsius. To calculate current temperature, see comments for
  296. * "4965 temperature calculation".
  297. *
  298. * If current temperature is higher than factory temperature, driver must
  299. * increase gain (lower gain table index), and vice verse.
  300. *
  301. * Temperature affects gain differently for different channels:
  302. *
  303. * 2.4 GHz all channels: 3.5 degrees per half-dB step
  304. * 5 GHz channels 34-43: 4.5 degrees per half-dB step
  305. * 5 GHz channels >= 44: 4.0 degrees per half-dB step
  306. *
  307. * NOTE: Temperature can increase rapidly when transmitting, especially
  308. * with heavy traffic at high txpowers. Driver should update
  309. * temperature calculations often under these conditions to
  310. * maintain strong txpower in the face of rising temperature.
  311. *
  312. *
  313. * 7) Find difference between current power supply voltage indicator
  314. * (from "initialize alive") and factory-measured power supply voltage
  315. * indicator (EEPROM).
  316. *
  317. * If the current voltage is higher (indicator is lower) than factory
  318. * voltage, gain should be reduced (gain table index increased) by:
  319. *
  320. * (eeprom - current) / 7
  321. *
  322. * If the current voltage is lower (indicator is higher) than factory
  323. * voltage, gain should be increased (gain table index decreased) by:
  324. *
  325. * 2 * (current - eeprom) / 7
  326. *
  327. * If number of index steps in either direction turns out to be > 2,
  328. * something is wrong ... just use 0.
  329. *
  330. * NOTE: Voltage compensation is independent of band/channel.
  331. *
  332. * NOTE: "Initialize" uCode measures current voltage, which is assumed
  333. * to be constant after this initial measurement. Voltage
  334. * compensation for txpower (number of steps in gain table)
  335. * may be calculated once and used until the next uCode bootload.
  336. *
  337. *
  338. * 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
  339. * adjust txpower for each transmitter chain, so txpower is balanced
  340. * between the two chains. There are 5 pairs of tx_atten[group][chain]
  341. * values in "initialize alive", one pair for each of 5 channel ranges:
  342. *
  343. * Group 0: 5 GHz channel 34-43
  344. * Group 1: 5 GHz channel 44-70
  345. * Group 2: 5 GHz channel 71-124
  346. * Group 3: 5 GHz channel 125-200
  347. * Group 4: 2.4 GHz all channels
  348. *
  349. * Add the tx_atten[group][chain] value to the index for the target chain.
  350. * The values are signed, but are in pairs of 0 and a non-negative number,
  351. * so as to reduce gain (if necessary) of the "hotter" channel. This
  352. * avoids any need to double-check for regulatory compliance after
  353. * this step.
  354. *
  355. *
  356. * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
  357. * value to the index:
  358. *
  359. * Hardware rev B: 9 steps (4.5 dB)
  360. * Hardware rev C: 5 steps (2.5 dB)
  361. *
  362. * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
  363. * bits [3:2], 1 = B, 2 = C.
  364. *
  365. * NOTE: This compensation is in addition to any saturation backoff that
  366. * might have been applied in an earlier step.
  367. *
  368. *
  369. * 10) Select the gain table, based on band (2.4 vs 5 GHz).
  370. *
  371. * Limit the adjusted index to stay within the table!
  372. *
  373. *
  374. * 11) Read gain table entries for DSP and radio gain, place into appropriate
  375. * location(s) in command (struct iwl4965_txpowertable_cmd).
  376. */
  377. /* Limit range of txpower output target to be between these values */
  378. #define IWL_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */
  379. #define IWL_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */
  380. /**
  381. * When MIMO is used (2 transmitters operating simultaneously), driver should
  382. * limit each transmitter to deliver a max of 3 dB below the regulatory limit
  383. * for the device. That is, use half power for each transmitter, so total
  384. * txpower is within regulatory limits.
  385. *
  386. * The value "6" represents number of steps in gain table to reduce power 3 dB.
  387. * Each step is 1/2 dB.
  388. */
  389. #define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
  390. /**
  391. * CCK gain compensation.
  392. *
  393. * When calculating txpowers for CCK, after making sure that the target power
  394. * is within regulatory and saturation limits, driver must additionally
  395. * back off gain by adding these values to the gain table index.
  396. *
  397. * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
  398. * bits [3:2], 1 = B, 2 = C.
  399. */
  400. #define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
  401. #define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
  402. /*
  403. * 4965 power supply voltage compensation for txpower
  404. */
  405. #define TX_POWER_IWL_VOLTAGE_CODES_PER_03V (7)
  406. /**
  407. * Gain tables.
  408. *
  409. * The following tables contain pair of values for setting txpower, i.e.
  410. * gain settings for the output of the device's digital signal processor (DSP),
  411. * and for the analog gain structure of the transmitter.
  412. *
  413. * Each entry in the gain tables represents a step of 1/2 dB. Note that these
  414. * are *relative* steps, not indications of absolute output power. Output
  415. * power varies with temperature, voltage, and channel frequency, and also
  416. * requires consideration of average power (to satisfy regulatory constraints),
  417. * and peak power (to avoid distortion of the output signal).
  418. *
  419. * Each entry contains two values:
  420. * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
  421. * linear value that multiplies the output of the digital signal processor,
  422. * before being sent to the analog radio.
  423. * 2) Radio gain. This sets the analog gain of the radio Tx path.
  424. * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
  425. *
  426. * EEPROM contains factory calibration data for txpower. This maps actual
  427. * measured txpower levels to gain settings in the "well known" tables
  428. * below ("well-known" means here that both factory calibration *and* the
  429. * driver work with the same table).
  430. *
  431. * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
  432. * has an extension (into negative indexes), in case the driver needs to
  433. * boost power setting for high device temperatures (higher than would be
  434. * present during factory calibration). A 5 Ghz EEPROM index of "40"
  435. * corresponds to the 49th entry in the table used by the driver.
  436. */
  437. #define MIN_TX_GAIN_INDEX (0) /* highest gain, lowest idx, 2.4 */
  438. #define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
  439. /**
  440. * 2.4 GHz gain table
  441. *
  442. * Index Dsp gain Radio gain
  443. * 0 110 0x3f (highest gain)
  444. * 1 104 0x3f
  445. * 2 98 0x3f
  446. * 3 110 0x3e
  447. * 4 104 0x3e
  448. * 5 98 0x3e
  449. * 6 110 0x3d
  450. * 7 104 0x3d
  451. * 8 98 0x3d
  452. * 9 110 0x3c
  453. * 10 104 0x3c
  454. * 11 98 0x3c
  455. * 12 110 0x3b
  456. * 13 104 0x3b
  457. * 14 98 0x3b
  458. * 15 110 0x3a
  459. * 16 104 0x3a
  460. * 17 98 0x3a
  461. * 18 110 0x39
  462. * 19 104 0x39
  463. * 20 98 0x39
  464. * 21 110 0x38
  465. * 22 104 0x38
  466. * 23 98 0x38
  467. * 24 110 0x37
  468. * 25 104 0x37
  469. * 26 98 0x37
  470. * 27 110 0x36
  471. * 28 104 0x36
  472. * 29 98 0x36
  473. * 30 110 0x35
  474. * 31 104 0x35
  475. * 32 98 0x35
  476. * 33 110 0x34
  477. * 34 104 0x34
  478. * 35 98 0x34
  479. * 36 110 0x33
  480. * 37 104 0x33
  481. * 38 98 0x33
  482. * 39 110 0x32
  483. * 40 104 0x32
  484. * 41 98 0x32
  485. * 42 110 0x31
  486. * 43 104 0x31
  487. * 44 98 0x31
  488. * 45 110 0x30
  489. * 46 104 0x30
  490. * 47 98 0x30
  491. * 48 110 0x6
  492. * 49 104 0x6
  493. * 50 98 0x6
  494. * 51 110 0x5
  495. * 52 104 0x5
  496. * 53 98 0x5
  497. * 54 110 0x4
  498. * 55 104 0x4
  499. * 56 98 0x4
  500. * 57 110 0x3
  501. * 58 104 0x3
  502. * 59 98 0x3
  503. * 60 110 0x2
  504. * 61 104 0x2
  505. * 62 98 0x2
  506. * 63 110 0x1
  507. * 64 104 0x1
  508. * 65 98 0x1
  509. * 66 110 0x0
  510. * 67 104 0x0
  511. * 68 98 0x0
  512. * 69 97 0
  513. * 70 96 0
  514. * 71 95 0
  515. * 72 94 0
  516. * 73 93 0
  517. * 74 92 0
  518. * 75 91 0
  519. * 76 90 0
  520. * 77 89 0
  521. * 78 88 0
  522. * 79 87 0
  523. * 80 86 0
  524. * 81 85 0
  525. * 82 84 0
  526. * 83 83 0
  527. * 84 82 0
  528. * 85 81 0
  529. * 86 80 0
  530. * 87 79 0
  531. * 88 78 0
  532. * 89 77 0
  533. * 90 76 0
  534. * 91 75 0
  535. * 92 74 0
  536. * 93 73 0
  537. * 94 72 0
  538. * 95 71 0
  539. * 96 70 0
  540. * 97 69 0
  541. * 98 68 0
  542. */
  543. /**
  544. * 5 GHz gain table
  545. *
  546. * Index Dsp gain Radio gain
  547. * -9 123 0x3F (highest gain)
  548. * -8 117 0x3F
  549. * -7 110 0x3F
  550. * -6 104 0x3F
  551. * -5 98 0x3F
  552. * -4 110 0x3E
  553. * -3 104 0x3E
  554. * -2 98 0x3E
  555. * -1 110 0x3D
  556. * 0 104 0x3D
  557. * 1 98 0x3D
  558. * 2 110 0x3C
  559. * 3 104 0x3C
  560. * 4 98 0x3C
  561. * 5 110 0x3B
  562. * 6 104 0x3B
  563. * 7 98 0x3B
  564. * 8 110 0x3A
  565. * 9 104 0x3A
  566. * 10 98 0x3A
  567. * 11 110 0x39
  568. * 12 104 0x39
  569. * 13 98 0x39
  570. * 14 110 0x38
  571. * 15 104 0x38
  572. * 16 98 0x38
  573. * 17 110 0x37
  574. * 18 104 0x37
  575. * 19 98 0x37
  576. * 20 110 0x36
  577. * 21 104 0x36
  578. * 22 98 0x36
  579. * 23 110 0x35
  580. * 24 104 0x35
  581. * 25 98 0x35
  582. * 26 110 0x34
  583. * 27 104 0x34
  584. * 28 98 0x34
  585. * 29 110 0x33
  586. * 30 104 0x33
  587. * 31 98 0x33
  588. * 32 110 0x32
  589. * 33 104 0x32
  590. * 34 98 0x32
  591. * 35 110 0x31
  592. * 36 104 0x31
  593. * 37 98 0x31
  594. * 38 110 0x30
  595. * 39 104 0x30
  596. * 40 98 0x30
  597. * 41 110 0x25
  598. * 42 104 0x25
  599. * 43 98 0x25
  600. * 44 110 0x24
  601. * 45 104 0x24
  602. * 46 98 0x24
  603. * 47 110 0x23
  604. * 48 104 0x23
  605. * 49 98 0x23
  606. * 50 110 0x22
  607. * 51 104 0x18
  608. * 52 98 0x18
  609. * 53 110 0x17
  610. * 54 104 0x17
  611. * 55 98 0x17
  612. * 56 110 0x16
  613. * 57 104 0x16
  614. * 58 98 0x16
  615. * 59 110 0x15
  616. * 60 104 0x15
  617. * 61 98 0x15
  618. * 62 110 0x14
  619. * 63 104 0x14
  620. * 64 98 0x14
  621. * 65 110 0x13
  622. * 66 104 0x13
  623. * 67 98 0x13
  624. * 68 110 0x12
  625. * 69 104 0x08
  626. * 70 98 0x08
  627. * 71 110 0x07
  628. * 72 104 0x07
  629. * 73 98 0x07
  630. * 74 110 0x06
  631. * 75 104 0x06
  632. * 76 98 0x06
  633. * 77 110 0x05
  634. * 78 104 0x05
  635. * 79 98 0x05
  636. * 80 110 0x04
  637. * 81 104 0x04
  638. * 82 98 0x04
  639. * 83 110 0x03
  640. * 84 104 0x03
  641. * 85 98 0x03
  642. * 86 110 0x02
  643. * 87 104 0x02
  644. * 88 98 0x02
  645. * 89 110 0x01
  646. * 90 104 0x01
  647. * 91 98 0x01
  648. * 92 110 0x00
  649. * 93 104 0x00
  650. * 94 98 0x00
  651. * 95 93 0x00
  652. * 96 88 0x00
  653. * 97 83 0x00
  654. * 98 78 0x00
  655. */
  656. /**
  657. * Sanity checks and default values for EEPROM regulatory levels.
  658. * If EEPROM values fall outside MIN/MAX range, use default values.
  659. *
  660. * Regulatory limits refer to the maximum average txpower allowed by
  661. * regulatory agencies in the geographies in which the device is meant
  662. * to be operated. These limits are SKU-specific (i.e. geography-specific),
  663. * and channel-specific; each channel has an individual regulatory limit
  664. * listed in the EEPROM.
  665. *
  666. * Units are in half-dBm (i.e. "34" means 17 dBm).
  667. */
  668. #define IWL_TX_POWER_DEFAULT_REGULATORY_24 (34)
  669. #define IWL_TX_POWER_DEFAULT_REGULATORY_52 (34)
  670. #define IWL_TX_POWER_REGULATORY_MIN (0)
  671. #define IWL_TX_POWER_REGULATORY_MAX (34)
  672. /**
  673. * Sanity checks and default values for EEPROM saturation levels.
  674. * If EEPROM values fall outside MIN/MAX range, use default values.
  675. *
  676. * Saturation is the highest level that the output power amplifier can produce
  677. * without significant clipping distortion. This is a "peak" power level.
  678. * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
  679. * require differing amounts of backoff, relative to their average power output,
  680. * in order to avoid clipping distortion.
  681. *
  682. * Driver must make sure that it is violating neither the saturation limit,
  683. * nor the regulatory limit, when calculating Tx power settings for various
  684. * rates.
  685. *
  686. * Units are in half-dBm (i.e. "38" means 19 dBm).
  687. */
  688. #define IWL_TX_POWER_DEFAULT_SATURATION_24 (38)
  689. #define IWL_TX_POWER_DEFAULT_SATURATION_52 (38)
  690. #define IWL_TX_POWER_SATURATION_MIN (20)
  691. #define IWL_TX_POWER_SATURATION_MAX (50)
  692. /**
  693. * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
  694. * and thermal Txpower calibration.
  695. *
  696. * When calculating txpower, driver must compensate for current device
  697. * temperature; higher temperature requires higher gain. Driver must calculate
  698. * current temperature (see "4965 temperature calculation"), then compare vs.
  699. * factory calibration temperature in EEPROM; if current temperature is higher
  700. * than factory temperature, driver must *increase* gain by proportions shown
  701. * in table below. If current temperature is lower than factory, driver must
  702. * *decrease* gain.
  703. *
  704. * Different frequency ranges require different compensation, as shown below.
  705. */
  706. /* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
  707. #define CALIB_IWL_TX_ATTEN_GR1_FCH 34
  708. #define CALIB_IWL_TX_ATTEN_GR1_LCH 43
  709. /* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
  710. #define CALIB_IWL_TX_ATTEN_GR2_FCH 44
  711. #define CALIB_IWL_TX_ATTEN_GR2_LCH 70
  712. /* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
  713. #define CALIB_IWL_TX_ATTEN_GR3_FCH 71
  714. #define CALIB_IWL_TX_ATTEN_GR3_LCH 124
  715. /* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
  716. #define CALIB_IWL_TX_ATTEN_GR4_FCH 125
  717. #define CALIB_IWL_TX_ATTEN_GR4_LCH 200
  718. /* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
  719. #define CALIB_IWL_TX_ATTEN_GR5_FCH 1
  720. #define CALIB_IWL_TX_ATTEN_GR5_LCH 20
  721. enum {
  722. CALIB_CH_GROUP_1 = 0,
  723. CALIB_CH_GROUP_2 = 1,
  724. CALIB_CH_GROUP_3 = 2,
  725. CALIB_CH_GROUP_4 = 3,
  726. CALIB_CH_GROUP_5 = 4,
  727. CALIB_CH_GROUP_MAX
  728. };
  729. /********************* END TXPOWER *****************************************/
  730. /**
  731. * Tx/Rx Queues
  732. *
  733. * Most communication between driver and 4965 is via queues of data buffers.
  734. * For example, all commands that the driver issues to device's embedded
  735. * controller (uCode) are via the command queue (one of the Tx queues). All
  736. * uCode command responses/replies/notifications, including Rx frames, are
  737. * conveyed from uCode to driver via the Rx queue.
  738. *
  739. * Most support for these queues, including handshake support, resides in
  740. * structures in host DRAM, shared between the driver and the device. When
  741. * allocating this memory, the driver must make sure that data written by
  742. * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
  743. * cache memory), so DRAM and cache are consistent, and the device can
  744. * immediately see changes made by the driver.
  745. *
  746. * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
  747. * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array
  748. * in DRAM containing 256 Transmit Frame Descriptors (TFDs).
  749. */
  750. #define IWL49_NUM_FIFOS 7
  751. #define IWL49_CMD_FIFO_NUM 4
  752. #define IWL49_NUM_QUEUES 16
  753. #define IWL49_NUM_AMPDU_QUEUES 8
  754. /**
  755. * struct iwl4965_schedq_bc_tbl
  756. *
  757. * Byte Count table
  758. *
  759. * Each Tx queue uses a byte-count table containing 320 entries:
  760. * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
  761. * duplicate the first 64 entries (to avoid wrap-around within a Tx window;
  762. * max Tx window is 64 TFDs).
  763. *
  764. * When driver sets up a new TFD, it must also enter the total byte count
  765. * of the frame to be transmitted into the corresponding entry in the byte
  766. * count table for the chosen Tx queue. If the TFD index is 0-63, the driver
  767. * must duplicate the byte count entry in corresponding index 256-319.
  768. *
  769. * padding puts each byte count table on a 1024-byte boundary;
  770. * 4965 assumes tables are separated by 1024 bytes.
  771. */
  772. struct iwl4965_scd_bc_tbl {
  773. __le16 tfd_offset[TFD_QUEUE_BC_SIZE];
  774. u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)];
  775. } __attribute__ ((packed));
  776. #endif /* !__iwl_4965_hw_h__ */