eeprom.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include "ath5k.h"
  23. #include "reg.h"
  24. #include "debug.h"
  25. #include "base.h"
  26. /*
  27. * Read from eeprom
  28. */
  29. static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  30. {
  31. u32 status, timeout;
  32. ATH5K_TRACE(ah->ah_sc);
  33. /*
  34. * Initialize EEPROM access
  35. */
  36. if (ah->ah_version == AR5K_AR5210) {
  37. AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  38. (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  39. } else {
  40. ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  41. AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  42. AR5K_EEPROM_CMD_READ);
  43. }
  44. for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  45. status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  46. if (status & AR5K_EEPROM_STAT_RDDONE) {
  47. if (status & AR5K_EEPROM_STAT_RDERR)
  48. return -EIO;
  49. *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  50. 0xffff);
  51. return 0;
  52. }
  53. udelay(15);
  54. }
  55. return -ETIMEDOUT;
  56. }
  57. /*
  58. * Translate binary channel representation in EEPROM to frequency
  59. */
  60. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  61. unsigned int mode)
  62. {
  63. u16 val;
  64. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  65. return bin;
  66. if (mode == AR5K_EEPROM_MODE_11A) {
  67. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  68. val = (5 * bin) + 4800;
  69. else
  70. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  71. (bin * 10) + 5100;
  72. } else {
  73. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  74. val = bin + 2300;
  75. else
  76. val = bin + 2400;
  77. }
  78. return val;
  79. }
  80. /*
  81. * Initialize eeprom & capabilities structs
  82. */
  83. static int
  84. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  85. {
  86. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  87. int ret;
  88. u16 val;
  89. /* Initial TX thermal adjustment values */
  90. ee->ee_tx_clip = 4;
  91. ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
  92. ee->ee_gain_select = 1;
  93. /*
  94. * Read values from EEPROM and store them in the capability structure
  95. */
  96. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  97. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  98. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  99. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  100. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  101. /* Return if we have an old EEPROM */
  102. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  103. return 0;
  104. #ifdef notyet
  105. /*
  106. * Validate the checksum of the EEPROM date. There are some
  107. * devices with invalid EEPROMs.
  108. */
  109. for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
  110. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  111. cksum ^= val;
  112. }
  113. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  114. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
  115. return -EIO;
  116. }
  117. #endif
  118. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  119. ee_ant_gain);
  120. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  121. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  122. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  123. /* XXX: Don't know which versions include these two */
  124. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  125. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  126. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  127. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  128. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  129. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  130. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  131. }
  132. }
  133. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  134. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  135. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  136. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  137. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  138. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  139. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  140. }
  141. return 0;
  142. }
  143. /*
  144. * Read antenna infos from eeprom
  145. */
  146. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  147. unsigned int mode)
  148. {
  149. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  150. u32 o = *offset;
  151. u16 val;
  152. int ret, i = 0;
  153. AR5K_EEPROM_READ(o++, val);
  154. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  155. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  156. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  157. AR5K_EEPROM_READ(o++, val);
  158. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  159. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  160. ee->ee_ant_control[mode][i++] = val & 0x3f;
  161. AR5K_EEPROM_READ(o++, val);
  162. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  163. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  164. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  165. AR5K_EEPROM_READ(o++, val);
  166. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  167. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  168. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  169. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  170. AR5K_EEPROM_READ(o++, val);
  171. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  172. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  173. ee->ee_ant_control[mode][i++] = val & 0x3f;
  174. /* Get antenna modes */
  175. ah->ah_antenna[mode][0] =
  176. (ee->ee_ant_control[mode][0] << 4) | 0x1;
  177. ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
  178. ee->ee_ant_control[mode][1] |
  179. (ee->ee_ant_control[mode][2] << 6) |
  180. (ee->ee_ant_control[mode][3] << 12) |
  181. (ee->ee_ant_control[mode][4] << 18) |
  182. (ee->ee_ant_control[mode][5] << 24);
  183. ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
  184. ee->ee_ant_control[mode][6] |
  185. (ee->ee_ant_control[mode][7] << 6) |
  186. (ee->ee_ant_control[mode][8] << 12) |
  187. (ee->ee_ant_control[mode][9] << 18) |
  188. (ee->ee_ant_control[mode][10] << 24);
  189. /* return new offset */
  190. *offset = o;
  191. return 0;
  192. }
  193. /*
  194. * Read supported modes and some mode-specific calibration data
  195. * from eeprom
  196. */
  197. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  198. unsigned int mode)
  199. {
  200. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  201. u32 o = *offset;
  202. u16 val;
  203. int ret;
  204. ee->ee_n_piers[mode] = 0;
  205. AR5K_EEPROM_READ(o++, val);
  206. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  207. switch(mode) {
  208. case AR5K_EEPROM_MODE_11A:
  209. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  210. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  211. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  212. AR5K_EEPROM_READ(o++, val);
  213. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  214. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  215. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  216. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  217. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  218. ee->ee_db[mode][0] = val & 0x7;
  219. break;
  220. case AR5K_EEPROM_MODE_11G:
  221. case AR5K_EEPROM_MODE_11B:
  222. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  223. ee->ee_db[mode][1] = val & 0x7;
  224. break;
  225. }
  226. AR5K_EEPROM_READ(o++, val);
  227. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  228. ee->ee_thr_62[mode] = val & 0xff;
  229. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  230. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  231. AR5K_EEPROM_READ(o++, val);
  232. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  233. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  234. AR5K_EEPROM_READ(o++, val);
  235. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  236. if ((val & 0xff) & 0x80)
  237. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  238. else
  239. ee->ee_noise_floor_thr[mode] = val & 0xff;
  240. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  241. ee->ee_noise_floor_thr[mode] =
  242. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  243. AR5K_EEPROM_READ(o++, val);
  244. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  245. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  246. ee->ee_xpd[mode] = val & 0x1;
  247. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
  248. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  249. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  250. AR5K_EEPROM_READ(o++, val);
  251. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  252. if (mode == AR5K_EEPROM_MODE_11A)
  253. ee->ee_xr_power[mode] = val & 0x3f;
  254. else {
  255. ee->ee_ob[mode][0] = val & 0x7;
  256. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  257. }
  258. }
  259. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  260. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  261. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  262. } else {
  263. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  264. AR5K_EEPROM_READ(o++, val);
  265. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  266. if (mode == AR5K_EEPROM_MODE_11G) {
  267. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  268. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  269. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  270. }
  271. }
  272. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  273. mode == AR5K_EEPROM_MODE_11A) {
  274. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  275. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  276. }
  277. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  278. goto done;
  279. /* Note: >= v5 have bg freq piers on another location
  280. * so these freq piers are ignored for >= v5 (should be 0xff
  281. * anyway) */
  282. switch(mode) {
  283. case AR5K_EEPROM_MODE_11A:
  284. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  285. break;
  286. AR5K_EEPROM_READ(o++, val);
  287. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  288. break;
  289. case AR5K_EEPROM_MODE_11B:
  290. AR5K_EEPROM_READ(o++, val);
  291. ee->ee_pwr_cal_b[0].freq =
  292. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  293. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  294. ee->ee_n_piers[mode]++;
  295. ee->ee_pwr_cal_b[1].freq =
  296. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  297. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  298. ee->ee_n_piers[mode]++;
  299. AR5K_EEPROM_READ(o++, val);
  300. ee->ee_pwr_cal_b[2].freq =
  301. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  302. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  303. ee->ee_n_piers[mode]++;
  304. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  305. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  306. break;
  307. case AR5K_EEPROM_MODE_11G:
  308. AR5K_EEPROM_READ(o++, val);
  309. ee->ee_pwr_cal_g[0].freq =
  310. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  311. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  312. ee->ee_n_piers[mode]++;
  313. ee->ee_pwr_cal_g[1].freq =
  314. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  315. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  316. ee->ee_n_piers[mode]++;
  317. AR5K_EEPROM_READ(o++, val);
  318. ee->ee_turbo_max_power[mode] = val & 0x7f;
  319. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  320. AR5K_EEPROM_READ(o++, val);
  321. ee->ee_pwr_cal_g[2].freq =
  322. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  323. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  324. ee->ee_n_piers[mode]++;
  325. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  326. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  327. AR5K_EEPROM_READ(o++, val);
  328. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  329. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  330. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  331. AR5K_EEPROM_READ(o++, val);
  332. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  333. }
  334. break;
  335. }
  336. done:
  337. /* return new offset */
  338. *offset = o;
  339. return 0;
  340. }
  341. /*
  342. * Read turbo mode information on newer EEPROM versions
  343. */
  344. static int
  345. ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
  346. u32 *offset, unsigned int mode)
  347. {
  348. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  349. u32 o = *offset;
  350. u16 val;
  351. int ret;
  352. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  353. return 0;
  354. switch (mode){
  355. case AR5K_EEPROM_MODE_11A:
  356. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  357. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  358. AR5K_EEPROM_READ(o++, val);
  359. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  360. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  361. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  362. AR5K_EEPROM_READ(o++, val);
  363. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  364. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  365. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  366. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  367. break;
  368. case AR5K_EEPROM_MODE_11G:
  369. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  370. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  371. AR5K_EEPROM_READ(o++, val);
  372. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  373. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  374. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  375. AR5K_EEPROM_READ(o++, val);
  376. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  377. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  378. break;
  379. }
  380. /* return new offset */
  381. *offset = o;
  382. return 0;
  383. }
  384. /* Read mode-specific data (except power calibration data) */
  385. static int
  386. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  387. {
  388. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  389. u32 mode_offset[3];
  390. unsigned int mode;
  391. u32 offset;
  392. int ret;
  393. /*
  394. * Get values for all modes
  395. */
  396. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  397. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  398. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  399. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  400. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  401. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  402. offset = mode_offset[mode];
  403. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  404. if (ret)
  405. return ret;
  406. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  407. if (ret)
  408. return ret;
  409. ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
  410. if (ret)
  411. return ret;
  412. }
  413. /* override for older eeprom versions for better performance */
  414. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  415. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  416. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  417. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  418. }
  419. return 0;
  420. }
  421. /* Used to match PCDAC steps with power values on RF5111 chips
  422. * (eeprom versions < 4). For RF5111 we have 10 pre-defined PCDAC
  423. * steps that match with the power values we read from eeprom. On
  424. * older eeprom versions (< 3.2) these steps are equaly spaced at
  425. * 10% of the pcdac curve -until the curve reaches it's maximum-
  426. * (10 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  427. * these 10 steps are spaced in a different way. This function returns
  428. * the pcdac steps based on eeprom version and curve min/max so that we
  429. * can have pcdac/pwr points.
  430. */
  431. static inline void
  432. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  433. {
  434. const static u16 intercepts3[] =
  435. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  436. const static u16 intercepts3_2[] =
  437. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  438. const u16 *ip;
  439. int i;
  440. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  441. ip = intercepts3_2;
  442. else
  443. ip = intercepts3;
  444. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  445. *vp++ = (ip[i] * max + (100 - ip[i]) * min) / 100;
  446. }
  447. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  448. * frequency mask) */
  449. static inline int
  450. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  451. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  452. {
  453. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  454. int o = *offset;
  455. int i = 0;
  456. u8 freq1, freq2;
  457. int ret;
  458. u16 val;
  459. while(i < max) {
  460. AR5K_EEPROM_READ(o++, val);
  461. freq1 = (val >> 8) & 0xff;
  462. freq2 = val & 0xff;
  463. if (freq1) {
  464. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  465. freq1, mode);
  466. ee->ee_n_piers[mode]++;
  467. }
  468. if (freq2) {
  469. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  470. freq2, mode);
  471. ee->ee_n_piers[mode]++;
  472. }
  473. if (!freq1 || !freq2)
  474. break;
  475. }
  476. /* return new offset */
  477. *offset = o;
  478. return 0;
  479. }
  480. /* Read frequency piers for 802.11a */
  481. static int
  482. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  483. {
  484. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  485. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  486. int i, ret;
  487. u16 val;
  488. u8 mask;
  489. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  490. ath5k_eeprom_read_freq_list(ah, &offset,
  491. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  492. AR5K_EEPROM_MODE_11A);
  493. } else {
  494. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  495. AR5K_EEPROM_READ(offset++, val);
  496. pcal[0].freq = (val >> 9) & mask;
  497. pcal[1].freq = (val >> 2) & mask;
  498. pcal[2].freq = (val << 5) & mask;
  499. AR5K_EEPROM_READ(offset++, val);
  500. pcal[2].freq |= (val >> 11) & 0x1f;
  501. pcal[3].freq = (val >> 4) & mask;
  502. pcal[4].freq = (val << 3) & mask;
  503. AR5K_EEPROM_READ(offset++, val);
  504. pcal[4].freq |= (val >> 13) & 0x7;
  505. pcal[5].freq = (val >> 6) & mask;
  506. pcal[6].freq = (val << 1) & mask;
  507. AR5K_EEPROM_READ(offset++, val);
  508. pcal[6].freq |= (val >> 15) & 0x1;
  509. pcal[7].freq = (val >> 8) & mask;
  510. pcal[8].freq = (val >> 1) & mask;
  511. pcal[9].freq = (val << 6) & mask;
  512. AR5K_EEPROM_READ(offset++, val);
  513. pcal[9].freq |= (val >> 10) & 0x3f;
  514. /* Fixed number of piers */
  515. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  516. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  517. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  518. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  519. }
  520. }
  521. return 0;
  522. }
  523. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  524. static inline int
  525. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  526. {
  527. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  528. struct ath5k_chan_pcal_info *pcal;
  529. switch(mode) {
  530. case AR5K_EEPROM_MODE_11B:
  531. pcal = ee->ee_pwr_cal_b;
  532. break;
  533. case AR5K_EEPROM_MODE_11G:
  534. pcal = ee->ee_pwr_cal_g;
  535. break;
  536. default:
  537. return -EINVAL;
  538. }
  539. ath5k_eeprom_read_freq_list(ah, &offset,
  540. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  541. mode);
  542. return 0;
  543. }
  544. /* Read power calibration for RF5111 chips
  545. * For RF5111 we have an XPD -eXternal Power Detector- curve
  546. * for each calibrated channel. Each curve has PCDAC steps on
  547. * x axis and power on y axis and looks like a logarithmic
  548. * function. To recreate the curve and pass the power values
  549. * on the pcdac table, we read 10 points here and interpolate later.
  550. */
  551. static int
  552. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  553. {
  554. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  555. struct ath5k_chan_pcal_info *pcal;
  556. int offset, ret;
  557. int i;
  558. u16 val;
  559. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  560. switch(mode) {
  561. case AR5K_EEPROM_MODE_11A:
  562. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  563. return 0;
  564. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  565. offset + AR5K_EEPROM_GROUP1_OFFSET);
  566. if (ret < 0)
  567. return ret;
  568. offset += AR5K_EEPROM_GROUP2_OFFSET;
  569. pcal = ee->ee_pwr_cal_a;
  570. break;
  571. case AR5K_EEPROM_MODE_11B:
  572. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  573. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  574. return 0;
  575. pcal = ee->ee_pwr_cal_b;
  576. offset += AR5K_EEPROM_GROUP3_OFFSET;
  577. /* fixed piers */
  578. pcal[0].freq = 2412;
  579. pcal[1].freq = 2447;
  580. pcal[2].freq = 2484;
  581. ee->ee_n_piers[mode] = 3;
  582. break;
  583. case AR5K_EEPROM_MODE_11G:
  584. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  585. return 0;
  586. pcal = ee->ee_pwr_cal_g;
  587. offset += AR5K_EEPROM_GROUP4_OFFSET;
  588. /* fixed piers */
  589. pcal[0].freq = 2312;
  590. pcal[1].freq = 2412;
  591. pcal[2].freq = 2484;
  592. ee->ee_n_piers[mode] = 3;
  593. break;
  594. default:
  595. return -EINVAL;
  596. }
  597. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  598. struct ath5k_chan_pcal_info_rf5111 *cdata =
  599. &pcal[i].rf5111_info;
  600. AR5K_EEPROM_READ(offset++, val);
  601. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  602. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  603. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  604. AR5K_EEPROM_READ(offset++, val);
  605. cdata->pwr[0] |= ((val >> 14) & 0x3);
  606. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  607. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  608. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  609. AR5K_EEPROM_READ(offset++, val);
  610. cdata->pwr[3] |= ((val >> 12) & 0xf);
  611. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  612. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  613. AR5K_EEPROM_READ(offset++, val);
  614. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  615. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  616. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  617. AR5K_EEPROM_READ(offset++, val);
  618. cdata->pwr[8] |= ((val >> 14) & 0x3);
  619. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  620. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  621. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  622. cdata->pcdac_max, cdata->pcdac);
  623. }
  624. return 0;
  625. }
  626. /* Read power calibration for RF5112 chips
  627. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  628. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  629. * use the higher (3) and the lower (0) curves. Each curve has PCDAC
  630. * steps on x axis and power on y axis and looks like a linear
  631. * function. To recreate the curve and pass the power values
  632. * on the pcdac table, we read 4 points for xpd 0 and 3 points
  633. * for xpd 3 here and interpolate later.
  634. *
  635. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  636. */
  637. static int
  638. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  639. {
  640. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  641. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  642. struct ath5k_chan_pcal_info *gen_chan_info;
  643. u32 offset;
  644. unsigned int i, c;
  645. u16 val;
  646. int ret;
  647. switch (mode) {
  648. case AR5K_EEPROM_MODE_11A:
  649. /*
  650. * Read 5GHz EEPROM channels
  651. */
  652. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  653. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  654. offset += AR5K_EEPROM_GROUP2_OFFSET;
  655. gen_chan_info = ee->ee_pwr_cal_a;
  656. break;
  657. case AR5K_EEPROM_MODE_11B:
  658. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  659. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  660. offset += AR5K_EEPROM_GROUP3_OFFSET;
  661. /* NB: frequency piers parsed during mode init */
  662. gen_chan_info = ee->ee_pwr_cal_b;
  663. break;
  664. case AR5K_EEPROM_MODE_11G:
  665. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  666. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  667. offset += AR5K_EEPROM_GROUP4_OFFSET;
  668. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  669. offset += AR5K_EEPROM_GROUP2_OFFSET;
  670. /* NB: frequency piers parsed during mode init */
  671. gen_chan_info = ee->ee_pwr_cal_g;
  672. break;
  673. default:
  674. return -EINVAL;
  675. }
  676. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  677. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  678. /* Power values in dBm * 4
  679. * for the lower xpd gain curve
  680. * (0 dBm -> higher output power) */
  681. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  682. AR5K_EEPROM_READ(offset++, val);
  683. chan_pcal_info->pwr_x0[c] = (val & 0xff);
  684. chan_pcal_info->pwr_x0[++c] = ((val >> 8) & 0xff);
  685. }
  686. /* PCDAC steps
  687. * corresponding to the above power
  688. * measurements */
  689. AR5K_EEPROM_READ(offset++, val);
  690. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  691. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  692. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  693. /* Power values in dBm * 4
  694. * for the higher xpd gain curve
  695. * (18 dBm -> lower output power) */
  696. AR5K_EEPROM_READ(offset++, val);
  697. chan_pcal_info->pwr_x3[0] = (val & 0xff);
  698. chan_pcal_info->pwr_x3[1] = ((val >> 8) & 0xff);
  699. AR5K_EEPROM_READ(offset++, val);
  700. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  701. /* PCDAC steps
  702. * corresponding to the above power
  703. * measurements (fixed) */
  704. chan_pcal_info->pcdac_x3[0] = 20;
  705. chan_pcal_info->pcdac_x3[1] = 35;
  706. chan_pcal_info->pcdac_x3[2] = 63;
  707. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  708. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0xff);
  709. /* Last xpd0 power level is also channel maximum */
  710. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  711. } else {
  712. chan_pcal_info->pcdac_x0[0] = 1;
  713. gen_chan_info[i].max_pwr = ((val >> 8) & 0xff);
  714. }
  715. /* Recreate pcdac_x0 table for this channel using pcdac steps */
  716. chan_pcal_info->pcdac_x0[1] += chan_pcal_info->pcdac_x0[0];
  717. chan_pcal_info->pcdac_x0[2] += chan_pcal_info->pcdac_x0[1];
  718. chan_pcal_info->pcdac_x0[3] += chan_pcal_info->pcdac_x0[2];
  719. }
  720. return 0;
  721. }
  722. /* For RF2413 power calibration data doesn't start on a fixed location and
  723. * if a mode is not supported, it's section is missing -not zeroed-.
  724. * So we need to calculate the starting offset for each section by using
  725. * these two functions */
  726. /* Return the size of each section based on the mode and the number of pd
  727. * gains available (maximum 4). */
  728. static inline unsigned int
  729. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  730. {
  731. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  732. unsigned int sz;
  733. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  734. sz *= ee->ee_n_piers[mode];
  735. return sz;
  736. }
  737. /* Return the starting offset for a section based on the modes supported
  738. * and each section's size. */
  739. static unsigned int
  740. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  741. {
  742. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  743. switch(mode) {
  744. case AR5K_EEPROM_MODE_11G:
  745. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  746. offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11B) +
  747. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  748. /* fall through */
  749. case AR5K_EEPROM_MODE_11B:
  750. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  751. offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11A) +
  752. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  753. /* fall through */
  754. case AR5K_EEPROM_MODE_11A:
  755. break;
  756. default:
  757. break;
  758. }
  759. return offset;
  760. }
  761. /* Read power calibration for RF2413 chips
  762. * For RF2413 we have a PDDAC table (Power Detector) instead
  763. * of a PCDAC and 4 pd gain curves for each calibrated channel.
  764. * Each curve has PDDAC steps on x axis and power on y axis and
  765. * looks like an exponential function. To recreate the curves
  766. * we read here the points and interpolate later. Note that
  767. * in most cases only higher and lower curves are used (like
  768. * RF5112) but vendors have the oportunity to include all 4
  769. * curves on eeprom. The final curve (higher power) has an extra
  770. * point for better accuracy like RF5112.
  771. */
  772. static int
  773. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  774. {
  775. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  776. struct ath5k_chan_pcal_info_rf2413 *chan_pcal_info;
  777. struct ath5k_chan_pcal_info *gen_chan_info;
  778. unsigned int i, c;
  779. u32 offset;
  780. int ret;
  781. u16 val;
  782. u8 pd_gains = 0;
  783. if (ee->ee_x_gain[mode] & 0x1) pd_gains++;
  784. if ((ee->ee_x_gain[mode] >> 1) & 0x1) pd_gains++;
  785. if ((ee->ee_x_gain[mode] >> 2) & 0x1) pd_gains++;
  786. if ((ee->ee_x_gain[mode] >> 3) & 0x1) pd_gains++;
  787. ee->ee_pd_gains[mode] = pd_gains;
  788. offset = ath5k_cal_data_offset_2413(ee, mode);
  789. ee->ee_n_piers[mode] = 0;
  790. switch (mode) {
  791. case AR5K_EEPROM_MODE_11A:
  792. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  793. return 0;
  794. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  795. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  796. gen_chan_info = ee->ee_pwr_cal_a;
  797. break;
  798. case AR5K_EEPROM_MODE_11B:
  799. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  800. return 0;
  801. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  802. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  803. gen_chan_info = ee->ee_pwr_cal_b;
  804. break;
  805. case AR5K_EEPROM_MODE_11G:
  806. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  807. return 0;
  808. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  809. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  810. gen_chan_info = ee->ee_pwr_cal_g;
  811. break;
  812. default:
  813. return -EINVAL;
  814. }
  815. if (pd_gains == 0)
  816. return 0;
  817. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  818. chan_pcal_info = &gen_chan_info[i].rf2413_info;
  819. /*
  820. * Read pwr_i, pddac_i and the first
  821. * 2 pd points (pwr, pddac)
  822. */
  823. AR5K_EEPROM_READ(offset++, val);
  824. chan_pcal_info->pwr_i[0] = val & 0x1f;
  825. chan_pcal_info->pddac_i[0] = (val >> 5) & 0x7f;
  826. chan_pcal_info->pwr[0][0] =
  827. (val >> 12) & 0xf;
  828. AR5K_EEPROM_READ(offset++, val);
  829. chan_pcal_info->pddac[0][0] = val & 0x3f;
  830. chan_pcal_info->pwr[0][1] = (val >> 6) & 0xf;
  831. chan_pcal_info->pddac[0][1] =
  832. (val >> 10) & 0x3f;
  833. AR5K_EEPROM_READ(offset++, val);
  834. chan_pcal_info->pwr[0][2] = val & 0xf;
  835. chan_pcal_info->pddac[0][2] =
  836. (val >> 4) & 0x3f;
  837. chan_pcal_info->pwr[0][3] = 0;
  838. chan_pcal_info->pddac[0][3] = 0;
  839. if (pd_gains > 1) {
  840. /*
  841. * Pd gain 0 is not the last pd gain
  842. * so it only has 2 pd points.
  843. * Continue wih pd gain 1.
  844. */
  845. chan_pcal_info->pwr_i[1] = (val >> 10) & 0x1f;
  846. chan_pcal_info->pddac_i[1] = (val >> 15) & 0x1;
  847. AR5K_EEPROM_READ(offset++, val);
  848. chan_pcal_info->pddac_i[1] |= (val & 0x3F) << 1;
  849. chan_pcal_info->pwr[1][0] = (val >> 6) & 0xf;
  850. chan_pcal_info->pddac[1][0] =
  851. (val >> 10) & 0x3f;
  852. AR5K_EEPROM_READ(offset++, val);
  853. chan_pcal_info->pwr[1][1] = val & 0xf;
  854. chan_pcal_info->pddac[1][1] =
  855. (val >> 4) & 0x3f;
  856. chan_pcal_info->pwr[1][2] =
  857. (val >> 10) & 0xf;
  858. chan_pcal_info->pddac[1][2] =
  859. (val >> 14) & 0x3;
  860. AR5K_EEPROM_READ(offset++, val);
  861. chan_pcal_info->pddac[1][2] |=
  862. (val & 0xF) << 2;
  863. chan_pcal_info->pwr[1][3] = 0;
  864. chan_pcal_info->pddac[1][3] = 0;
  865. } else if (pd_gains == 1) {
  866. /*
  867. * Pd gain 0 is the last one so
  868. * read the extra point.
  869. */
  870. chan_pcal_info->pwr[0][3] =
  871. (val >> 10) & 0xf;
  872. chan_pcal_info->pddac[0][3] =
  873. (val >> 14) & 0x3;
  874. AR5K_EEPROM_READ(offset++, val);
  875. chan_pcal_info->pddac[0][3] |=
  876. (val & 0xF) << 2;
  877. }
  878. /*
  879. * Proceed with the other pd_gains
  880. * as above.
  881. */
  882. if (pd_gains > 2) {
  883. chan_pcal_info->pwr_i[2] = (val >> 4) & 0x1f;
  884. chan_pcal_info->pddac_i[2] = (val >> 9) & 0x7f;
  885. AR5K_EEPROM_READ(offset++, val);
  886. chan_pcal_info->pwr[2][0] =
  887. (val >> 0) & 0xf;
  888. chan_pcal_info->pddac[2][0] =
  889. (val >> 4) & 0x3f;
  890. chan_pcal_info->pwr[2][1] =
  891. (val >> 10) & 0xf;
  892. chan_pcal_info->pddac[2][1] =
  893. (val >> 14) & 0x3;
  894. AR5K_EEPROM_READ(offset++, val);
  895. chan_pcal_info->pddac[2][1] |=
  896. (val & 0xF) << 2;
  897. chan_pcal_info->pwr[2][2] =
  898. (val >> 4) & 0xf;
  899. chan_pcal_info->pddac[2][2] =
  900. (val >> 8) & 0x3f;
  901. chan_pcal_info->pwr[2][3] = 0;
  902. chan_pcal_info->pddac[2][3] = 0;
  903. } else if (pd_gains == 2) {
  904. chan_pcal_info->pwr[1][3] =
  905. (val >> 4) & 0xf;
  906. chan_pcal_info->pddac[1][3] =
  907. (val >> 8) & 0x3f;
  908. }
  909. if (pd_gains > 3) {
  910. chan_pcal_info->pwr_i[3] = (val >> 14) & 0x3;
  911. AR5K_EEPROM_READ(offset++, val);
  912. chan_pcal_info->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  913. chan_pcal_info->pddac_i[3] = (val >> 3) & 0x7f;
  914. chan_pcal_info->pwr[3][0] =
  915. (val >> 10) & 0xf;
  916. chan_pcal_info->pddac[3][0] =
  917. (val >> 14) & 0x3;
  918. AR5K_EEPROM_READ(offset++, val);
  919. chan_pcal_info->pddac[3][0] |=
  920. (val & 0xF) << 2;
  921. chan_pcal_info->pwr[3][1] =
  922. (val >> 4) & 0xf;
  923. chan_pcal_info->pddac[3][1] =
  924. (val >> 8) & 0x3f;
  925. chan_pcal_info->pwr[3][2] =
  926. (val >> 14) & 0x3;
  927. AR5K_EEPROM_READ(offset++, val);
  928. chan_pcal_info->pwr[3][2] |=
  929. ((val >> 0) & 0x3) << 2;
  930. chan_pcal_info->pddac[3][2] =
  931. (val >> 2) & 0x3f;
  932. chan_pcal_info->pwr[3][3] =
  933. (val >> 8) & 0xf;
  934. chan_pcal_info->pddac[3][3] =
  935. (val >> 12) & 0xF;
  936. AR5K_EEPROM_READ(offset++, val);
  937. chan_pcal_info->pddac[3][3] |=
  938. ((val >> 0) & 0x3) << 4;
  939. } else if (pd_gains == 3) {
  940. chan_pcal_info->pwr[2][3] =
  941. (val >> 14) & 0x3;
  942. AR5K_EEPROM_READ(offset++, val);
  943. chan_pcal_info->pwr[2][3] |=
  944. ((val >> 0) & 0x3) << 2;
  945. chan_pcal_info->pddac[2][3] =
  946. (val >> 2) & 0x3f;
  947. }
  948. for (c = 0; c < pd_gains; c++) {
  949. /* Recreate pwr table for this channel using pwr steps */
  950. chan_pcal_info->pwr[c][0] += chan_pcal_info->pwr_i[c] * 2;
  951. chan_pcal_info->pwr[c][1] += chan_pcal_info->pwr[c][0];
  952. chan_pcal_info->pwr[c][2] += chan_pcal_info->pwr[c][1];
  953. chan_pcal_info->pwr[c][3] += chan_pcal_info->pwr[c][2];
  954. if (chan_pcal_info->pwr[c][3] == chan_pcal_info->pwr[c][2])
  955. chan_pcal_info->pwr[c][3] = 0;
  956. /* Recreate pddac table for this channel using pddac steps */
  957. chan_pcal_info->pddac[c][0] += chan_pcal_info->pddac_i[c];
  958. chan_pcal_info->pddac[c][1] += chan_pcal_info->pddac[c][0];
  959. chan_pcal_info->pddac[c][2] += chan_pcal_info->pddac[c][1];
  960. chan_pcal_info->pddac[c][3] += chan_pcal_info->pddac[c][2];
  961. if (chan_pcal_info->pddac[c][3] == chan_pcal_info->pddac[c][2])
  962. chan_pcal_info->pddac[c][3] = 0;
  963. }
  964. }
  965. return 0;
  966. }
  967. /*
  968. * Read per rate target power (this is the maximum tx power
  969. * supported by the card). This info is used when setting
  970. * tx power, no matter the channel.
  971. *
  972. * This also works for v5 EEPROMs.
  973. */
  974. static int ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  975. {
  976. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  977. struct ath5k_rate_pcal_info *rate_pcal_info;
  978. u16 *rate_target_pwr_num;
  979. u32 offset;
  980. u16 val;
  981. int ret, i;
  982. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  983. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  984. switch (mode) {
  985. case AR5K_EEPROM_MODE_11A:
  986. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  987. rate_pcal_info = ee->ee_rate_tpwr_a;
  988. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  989. break;
  990. case AR5K_EEPROM_MODE_11B:
  991. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  992. rate_pcal_info = ee->ee_rate_tpwr_b;
  993. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  994. break;
  995. case AR5K_EEPROM_MODE_11G:
  996. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  997. rate_pcal_info = ee->ee_rate_tpwr_g;
  998. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  999. break;
  1000. default:
  1001. return -EINVAL;
  1002. }
  1003. /* Different freq mask for older eeproms (<= v3.2) */
  1004. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1005. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1006. AR5K_EEPROM_READ(offset++, val);
  1007. rate_pcal_info[i].freq =
  1008. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1009. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1010. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1011. AR5K_EEPROM_READ(offset++, val);
  1012. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1013. val == 0) {
  1014. (*rate_target_pwr_num) = i;
  1015. break;
  1016. }
  1017. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1018. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1019. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1020. }
  1021. } else {
  1022. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1023. AR5K_EEPROM_READ(offset++, val);
  1024. rate_pcal_info[i].freq =
  1025. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1026. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1027. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1028. AR5K_EEPROM_READ(offset++, val);
  1029. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1030. val == 0) {
  1031. (*rate_target_pwr_num) = i;
  1032. break;
  1033. }
  1034. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1035. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1036. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1037. }
  1038. }
  1039. return 0;
  1040. }
  1041. /*
  1042. * Read per channel calibration info from EEPROM
  1043. *
  1044. * This info is used to calibrate the baseband power table. Imagine
  1045. * that for each channel there is a power curve that's hw specific
  1046. * (depends on amplifier etc) and we try to "correct" this curve using
  1047. * offests we pass on to phy chip (baseband -> before amplifier) so that
  1048. * it can use accurate power values when setting tx power (takes amplifier's
  1049. * performance on each channel into account).
  1050. *
  1051. * EEPROM provides us with the offsets for some pre-calibrated channels
  1052. * and we have to interpolate to create the full table for these channels and
  1053. * also the table for any channel.
  1054. */
  1055. static int
  1056. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1057. {
  1058. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1059. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1060. int mode;
  1061. int err;
  1062. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1063. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1064. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1065. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1066. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1067. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1068. else
  1069. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1070. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  1071. err = read_pcal(ah, mode);
  1072. if (err)
  1073. return err;
  1074. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1075. if (err < 0)
  1076. return err;
  1077. }
  1078. return 0;
  1079. }
  1080. /* Read conformance test limits used for regulatory control */
  1081. static int
  1082. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1083. {
  1084. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1085. struct ath5k_edge_power *rep;
  1086. unsigned int fmask, pmask;
  1087. unsigned int ctl_mode;
  1088. int ret, i, j;
  1089. u32 offset;
  1090. u16 val;
  1091. pmask = AR5K_EEPROM_POWER_M;
  1092. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1093. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1094. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1095. for (i = 0; i < ee->ee_ctls; i += 2) {
  1096. AR5K_EEPROM_READ(offset++, val);
  1097. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1098. ee->ee_ctl[i + 1] = val & 0xff;
  1099. }
  1100. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1101. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1102. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1103. AR5K_EEPROM_GROUP5_OFFSET;
  1104. else
  1105. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1106. rep = ee->ee_ctl_pwr;
  1107. for(i = 0; i < ee->ee_ctls; i++) {
  1108. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1109. case AR5K_CTL_11A:
  1110. case AR5K_CTL_TURBO:
  1111. ctl_mode = AR5K_EEPROM_MODE_11A;
  1112. break;
  1113. default:
  1114. ctl_mode = AR5K_EEPROM_MODE_11G;
  1115. break;
  1116. }
  1117. if (ee->ee_ctl[i] == 0) {
  1118. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1119. offset += 8;
  1120. else
  1121. offset += 7;
  1122. rep += AR5K_EEPROM_N_EDGES;
  1123. continue;
  1124. }
  1125. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1126. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1127. AR5K_EEPROM_READ(offset++, val);
  1128. rep[j].freq = (val >> 8) & fmask;
  1129. rep[j + 1].freq = val & fmask;
  1130. }
  1131. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1132. AR5K_EEPROM_READ(offset++, val);
  1133. rep[j].edge = (val >> 8) & pmask;
  1134. rep[j].flag = (val >> 14) & 1;
  1135. rep[j + 1].edge = val & pmask;
  1136. rep[j + 1].flag = (val >> 6) & 1;
  1137. }
  1138. } else {
  1139. AR5K_EEPROM_READ(offset++, val);
  1140. rep[0].freq = (val >> 9) & fmask;
  1141. rep[1].freq = (val >> 2) & fmask;
  1142. rep[2].freq = (val << 5) & fmask;
  1143. AR5K_EEPROM_READ(offset++, val);
  1144. rep[2].freq |= (val >> 11) & 0x1f;
  1145. rep[3].freq = (val >> 4) & fmask;
  1146. rep[4].freq = (val << 3) & fmask;
  1147. AR5K_EEPROM_READ(offset++, val);
  1148. rep[4].freq |= (val >> 13) & 0x7;
  1149. rep[5].freq = (val >> 6) & fmask;
  1150. rep[6].freq = (val << 1) & fmask;
  1151. AR5K_EEPROM_READ(offset++, val);
  1152. rep[6].freq |= (val >> 15) & 0x1;
  1153. rep[7].freq = (val >> 8) & fmask;
  1154. rep[0].edge = (val >> 2) & pmask;
  1155. rep[1].edge = (val << 4) & pmask;
  1156. AR5K_EEPROM_READ(offset++, val);
  1157. rep[1].edge |= (val >> 12) & 0xf;
  1158. rep[2].edge = (val >> 6) & pmask;
  1159. rep[3].edge = val & pmask;
  1160. AR5K_EEPROM_READ(offset++, val);
  1161. rep[4].edge = (val >> 10) & pmask;
  1162. rep[5].edge = (val >> 4) & pmask;
  1163. rep[6].edge = (val << 2) & pmask;
  1164. AR5K_EEPROM_READ(offset++, val);
  1165. rep[6].edge |= (val >> 14) & 0x3;
  1166. rep[7].edge = (val >> 8) & pmask;
  1167. }
  1168. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1169. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1170. rep[j].freq, ctl_mode);
  1171. }
  1172. rep += AR5K_EEPROM_N_EDGES;
  1173. }
  1174. return 0;
  1175. }
  1176. /*
  1177. * Initialize eeprom power tables
  1178. */
  1179. int
  1180. ath5k_eeprom_init(struct ath5k_hw *ah)
  1181. {
  1182. int err;
  1183. err = ath5k_eeprom_init_header(ah);
  1184. if (err < 0)
  1185. return err;
  1186. err = ath5k_eeprom_init_modes(ah);
  1187. if (err < 0)
  1188. return err;
  1189. err = ath5k_eeprom_read_pcal_info(ah);
  1190. if (err < 0)
  1191. return err;
  1192. err = ath5k_eeprom_read_ctl_info(ah);
  1193. if (err < 0)
  1194. return err;
  1195. return 0;
  1196. }
  1197. /*
  1198. * Read the MAC address from eeprom
  1199. */
  1200. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1201. {
  1202. u8 mac_d[ETH_ALEN];
  1203. u32 total, offset;
  1204. u16 data;
  1205. int octet, ret;
  1206. memset(mac, 0, ETH_ALEN);
  1207. memset(mac_d, 0, ETH_ALEN);
  1208. ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
  1209. if (ret)
  1210. return ret;
  1211. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1212. ret = ath5k_hw_eeprom_read(ah, offset, &data);
  1213. if (ret)
  1214. return ret;
  1215. total += data;
  1216. mac_d[octet + 1] = data & 0xff;
  1217. mac_d[octet] = data >> 8;
  1218. octet += 2;
  1219. }
  1220. memcpy(mac, mac_d, ETH_ALEN);
  1221. if (!total || total == 3 * 0xffff)
  1222. return -EINVAL;
  1223. return 0;
  1224. }