qlge_main.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. NETIF_MSG_TX_QUEUED |
  58. NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_wait_cfg(qdev, bit);
  194. if (status) {
  195. QPRINTK(qdev, IFUP, ERR,
  196. "Timed out waiting for CFG to come ready.\n");
  197. goto exit;
  198. }
  199. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  200. if (status)
  201. goto exit;
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  205. mask = CFG_Q_MASK | (bit << 16);
  206. value = bit | (q_id << CFG_Q_SHIFT);
  207. ql_write32(qdev, CFG, (mask | value));
  208. /*
  209. * Wait for the bit to clear after signaling hw.
  210. */
  211. status = ql_wait_cfg(qdev, bit);
  212. exit:
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  223. if (status)
  224. return status;
  225. switch (type) {
  226. case MAC_ADDR_TYPE_MULTI_MAC:
  227. case MAC_ADDR_TYPE_CAM_MAC:
  228. {
  229. status =
  230. ql_wait_reg_rdy(qdev,
  231. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  232. if (status)
  233. goto exit;
  234. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  235. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  236. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  237. status =
  238. ql_wait_reg_rdy(qdev,
  239. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  240. if (status)
  241. goto exit;
  242. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  243. status =
  244. ql_wait_reg_rdy(qdev,
  245. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  246. if (status)
  247. goto exit;
  248. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  249. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  250. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  251. status =
  252. ql_wait_reg_rdy(qdev,
  253. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  254. if (status)
  255. goto exit;
  256. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  257. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  258. status =
  259. ql_wait_reg_rdy(qdev,
  260. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  261. if (status)
  262. goto exit;
  263. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  264. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  265. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  266. status =
  267. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  268. MAC_ADDR_MR, 0);
  269. if (status)
  270. goto exit;
  271. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  272. }
  273. break;
  274. }
  275. case MAC_ADDR_TYPE_VLAN:
  276. case MAC_ADDR_TYPE_MULTI_FLTR:
  277. default:
  278. QPRINTK(qdev, IFUP, CRIT,
  279. "Address type %d not yet supported.\n", type);
  280. status = -EPERM;
  281. }
  282. exit:
  283. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  284. return status;
  285. }
  286. /* Set up a MAC, multicast or VLAN address for the
  287. * inbound frame matching.
  288. */
  289. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  290. u16 index)
  291. {
  292. u32 offset = 0;
  293. int status = 0;
  294. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  295. if (status)
  296. return status;
  297. switch (type) {
  298. case MAC_ADDR_TYPE_MULTI_MAC:
  299. case MAC_ADDR_TYPE_CAM_MAC:
  300. {
  301. u32 cam_output;
  302. u32 upper = (addr[0] << 8) | addr[1];
  303. u32 lower =
  304. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  305. (addr[5]);
  306. QPRINTK(qdev, IFUP, INFO,
  307. "Adding %s address %pM"
  308. " at index %d in the CAM.\n",
  309. ((type ==
  310. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  311. "UNICAST"), addr, index);
  312. status =
  313. ql_wait_reg_rdy(qdev,
  314. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  315. if (status)
  316. goto exit;
  317. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  318. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  319. type); /* type */
  320. ql_write32(qdev, MAC_ADDR_DATA, lower);
  321. status =
  322. ql_wait_reg_rdy(qdev,
  323. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  324. if (status)
  325. goto exit;
  326. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  327. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  328. type); /* type */
  329. ql_write32(qdev, MAC_ADDR_DATA, upper);
  330. status =
  331. ql_wait_reg_rdy(qdev,
  332. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  333. if (status)
  334. goto exit;
  335. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  336. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  337. type); /* type */
  338. /* This field should also include the queue id
  339. and possibly the function id. Right now we hardcode
  340. the route field to NIC core.
  341. */
  342. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  343. cam_output = (CAM_OUT_ROUTE_NIC |
  344. (qdev->
  345. func << CAM_OUT_FUNC_SHIFT) |
  346. (qdev->
  347. rss_ring_first_cq_id <<
  348. CAM_OUT_CQ_ID_SHIFT));
  349. if (qdev->vlgrp)
  350. cam_output |= CAM_OUT_RV;
  351. /* route to NIC core */
  352. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  353. }
  354. break;
  355. }
  356. case MAC_ADDR_TYPE_VLAN:
  357. {
  358. u32 enable_bit = *((u32 *) &addr[0]);
  359. /* For VLAN, the addr actually holds a bit that
  360. * either enables or disables the vlan id we are
  361. * addressing. It's either MAC_ADDR_E on or off.
  362. * That's bit-27 we're talking about.
  363. */
  364. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  365. (enable_bit ? "Adding" : "Removing"),
  366. index, (enable_bit ? "to" : "from"));
  367. status =
  368. ql_wait_reg_rdy(qdev,
  369. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  370. if (status)
  371. goto exit;
  372. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  373. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  374. type | /* type */
  375. enable_bit); /* enable/disable */
  376. break;
  377. }
  378. case MAC_ADDR_TYPE_MULTI_FLTR:
  379. default:
  380. QPRINTK(qdev, IFUP, CRIT,
  381. "Address type %d not yet supported.\n", type);
  382. status = -EPERM;
  383. }
  384. exit:
  385. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  386. return status;
  387. }
  388. /* Get a specific frame routing value from the CAM.
  389. * Used for debug and reg dump.
  390. */
  391. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  392. {
  393. int status = 0;
  394. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  395. if (status)
  396. goto exit;
  397. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  398. if (status)
  399. goto exit;
  400. ql_write32(qdev, RT_IDX,
  401. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  402. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  403. if (status)
  404. goto exit;
  405. *value = ql_read32(qdev, RT_DATA);
  406. exit:
  407. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  408. return status;
  409. }
  410. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  411. * to route different frame types to various inbound queues. We send broadcast/
  412. * multicast/error frames to the default queue for slow handling,
  413. * and CAM hit/RSS frames to the fast handling queues.
  414. */
  415. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  416. int enable)
  417. {
  418. int status;
  419. u32 value = 0;
  420. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  421. if (status)
  422. return status;
  423. QPRINTK(qdev, IFUP, DEBUG,
  424. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  425. (enable ? "Adding" : "Removing"),
  426. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  427. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  428. ((index ==
  429. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  430. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  431. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  432. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  433. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  434. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  435. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  436. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  437. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  438. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  439. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  440. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  441. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  442. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  443. (enable ? "to" : "from"));
  444. switch (mask) {
  445. case RT_IDX_CAM_HIT:
  446. {
  447. value = RT_IDX_DST_CAM_Q | /* dest */
  448. RT_IDX_TYPE_NICQ | /* type */
  449. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  450. break;
  451. }
  452. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  453. {
  454. value = RT_IDX_DST_DFLT_Q | /* dest */
  455. RT_IDX_TYPE_NICQ | /* type */
  456. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  457. break;
  458. }
  459. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  460. {
  461. value = RT_IDX_DST_DFLT_Q | /* dest */
  462. RT_IDX_TYPE_NICQ | /* type */
  463. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  464. break;
  465. }
  466. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  467. {
  468. value = RT_IDX_DST_DFLT_Q | /* dest */
  469. RT_IDX_TYPE_NICQ | /* type */
  470. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  471. break;
  472. }
  473. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  474. {
  475. value = RT_IDX_DST_CAM_Q | /* dest */
  476. RT_IDX_TYPE_NICQ | /* type */
  477. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  478. break;
  479. }
  480. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  481. {
  482. value = RT_IDX_DST_CAM_Q | /* dest */
  483. RT_IDX_TYPE_NICQ | /* type */
  484. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  485. break;
  486. }
  487. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  488. {
  489. value = RT_IDX_DST_RSS | /* dest */
  490. RT_IDX_TYPE_NICQ | /* type */
  491. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  492. break;
  493. }
  494. case 0: /* Clear the E-bit on an entry. */
  495. {
  496. value = RT_IDX_DST_DFLT_Q | /* dest */
  497. RT_IDX_TYPE_NICQ | /* type */
  498. (index << RT_IDX_IDX_SHIFT);/* index */
  499. break;
  500. }
  501. default:
  502. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  503. mask);
  504. status = -EPERM;
  505. goto exit;
  506. }
  507. if (value) {
  508. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  509. if (status)
  510. goto exit;
  511. value |= (enable ? RT_IDX_E : 0);
  512. ql_write32(qdev, RT_IDX, value);
  513. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  514. }
  515. exit:
  516. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  517. return status;
  518. }
  519. static void ql_enable_interrupts(struct ql_adapter *qdev)
  520. {
  521. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  522. }
  523. static void ql_disable_interrupts(struct ql_adapter *qdev)
  524. {
  525. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  526. }
  527. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  528. * Otherwise, we may have multiple outstanding workers and don't want to
  529. * enable until the last one finishes. In this case, the irq_cnt gets
  530. * incremented everytime we queue a worker and decremented everytime
  531. * a worker finishes. Once it hits zero we enable the interrupt.
  532. */
  533. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  534. {
  535. u32 var = 0;
  536. unsigned long hw_flags = 0;
  537. struct intr_context *ctx = qdev->intr_context + intr;
  538. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  539. /* Always enable if we're MSIX multi interrupts and
  540. * it's not the default (zeroeth) interrupt.
  541. */
  542. ql_write32(qdev, INTR_EN,
  543. ctx->intr_en_mask);
  544. var = ql_read32(qdev, STS);
  545. return var;
  546. }
  547. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  548. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  549. ql_write32(qdev, INTR_EN,
  550. ctx->intr_en_mask);
  551. var = ql_read32(qdev, STS);
  552. }
  553. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  554. return var;
  555. }
  556. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  557. {
  558. u32 var = 0;
  559. unsigned long hw_flags;
  560. struct intr_context *ctx;
  561. /* HW disables for us if we're MSIX multi interrupts and
  562. * it's not the default (zeroeth) interrupt.
  563. */
  564. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  565. return 0;
  566. ctx = qdev->intr_context + intr;
  567. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  568. if (!atomic_read(&ctx->irq_cnt)) {
  569. ql_write32(qdev, INTR_EN,
  570. ctx->intr_dis_mask);
  571. var = ql_read32(qdev, STS);
  572. }
  573. atomic_inc(&ctx->irq_cnt);
  574. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  575. return var;
  576. }
  577. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  578. {
  579. int i;
  580. for (i = 0; i < qdev->intr_count; i++) {
  581. /* The enable call does a atomic_dec_and_test
  582. * and enables only if the result is zero.
  583. * So we precharge it here.
  584. */
  585. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  586. i == 0))
  587. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  588. ql_enable_completion_interrupt(qdev, i);
  589. }
  590. }
  591. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  592. {
  593. int status = 0;
  594. /* wait for reg to come ready */
  595. status = ql_wait_reg_rdy(qdev,
  596. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  597. if (status)
  598. goto exit;
  599. /* set up for reg read */
  600. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  601. /* wait for reg to come ready */
  602. status = ql_wait_reg_rdy(qdev,
  603. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  604. if (status)
  605. goto exit;
  606. /* This data is stored on flash as an array of
  607. * __le32. Since ql_read32() returns cpu endian
  608. * we need to swap it back.
  609. */
  610. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  611. exit:
  612. return status;
  613. }
  614. static int ql_get_flash_params(struct ql_adapter *qdev)
  615. {
  616. int i;
  617. int status;
  618. __le32 *p = (__le32 *)&qdev->flash;
  619. u32 offset = 0;
  620. /* Second function's parameters follow the first
  621. * function's.
  622. */
  623. if (qdev->func)
  624. offset = sizeof(qdev->flash) / sizeof(u32);
  625. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  626. return -ETIMEDOUT;
  627. for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
  628. status = ql_read_flash_word(qdev, i+offset, p);
  629. if (status) {
  630. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  631. goto exit;
  632. }
  633. }
  634. exit:
  635. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  636. return status;
  637. }
  638. /* xgmac register are located behind the xgmac_addr and xgmac_data
  639. * register pair. Each read/write requires us to wait for the ready
  640. * bit before reading/writing the data.
  641. */
  642. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  643. {
  644. int status;
  645. /* wait for reg to come ready */
  646. status = ql_wait_reg_rdy(qdev,
  647. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  648. if (status)
  649. return status;
  650. /* write the data to the data reg */
  651. ql_write32(qdev, XGMAC_DATA, data);
  652. /* trigger the write */
  653. ql_write32(qdev, XGMAC_ADDR, reg);
  654. return status;
  655. }
  656. /* xgmac register are located behind the xgmac_addr and xgmac_data
  657. * register pair. Each read/write requires us to wait for the ready
  658. * bit before reading/writing the data.
  659. */
  660. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  661. {
  662. int status = 0;
  663. /* wait for reg to come ready */
  664. status = ql_wait_reg_rdy(qdev,
  665. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  666. if (status)
  667. goto exit;
  668. /* set up for reg read */
  669. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  670. /* wait for reg to come ready */
  671. status = ql_wait_reg_rdy(qdev,
  672. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  673. if (status)
  674. goto exit;
  675. /* get the data */
  676. *data = ql_read32(qdev, XGMAC_DATA);
  677. exit:
  678. return status;
  679. }
  680. /* This is used for reading the 64-bit statistics regs. */
  681. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  682. {
  683. int status = 0;
  684. u32 hi = 0;
  685. u32 lo = 0;
  686. status = ql_read_xgmac_reg(qdev, reg, &lo);
  687. if (status)
  688. goto exit;
  689. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  690. if (status)
  691. goto exit;
  692. *data = (u64) lo | ((u64) hi << 32);
  693. exit:
  694. return status;
  695. }
  696. /* Take the MAC Core out of reset.
  697. * Enable statistics counting.
  698. * Take the transmitter/receiver out of reset.
  699. * This functionality may be done in the MPI firmware at a
  700. * later date.
  701. */
  702. static int ql_port_initialize(struct ql_adapter *qdev)
  703. {
  704. int status = 0;
  705. u32 data;
  706. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  707. /* Another function has the semaphore, so
  708. * wait for the port init bit to come ready.
  709. */
  710. QPRINTK(qdev, LINK, INFO,
  711. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  712. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  713. if (status) {
  714. QPRINTK(qdev, LINK, CRIT,
  715. "Port initialize timed out.\n");
  716. }
  717. return status;
  718. }
  719. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  720. /* Set the core reset. */
  721. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  722. if (status)
  723. goto end;
  724. data |= GLOBAL_CFG_RESET;
  725. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  726. if (status)
  727. goto end;
  728. /* Clear the core reset and turn on jumbo for receiver. */
  729. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  730. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  731. data |= GLOBAL_CFG_TX_STAT_EN;
  732. data |= GLOBAL_CFG_RX_STAT_EN;
  733. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  734. if (status)
  735. goto end;
  736. /* Enable transmitter, and clear it's reset. */
  737. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  738. if (status)
  739. goto end;
  740. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  741. data |= TX_CFG_EN; /* Enable the transmitter. */
  742. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  743. if (status)
  744. goto end;
  745. /* Enable receiver and clear it's reset. */
  746. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  747. if (status)
  748. goto end;
  749. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  750. data |= RX_CFG_EN; /* Enable the receiver. */
  751. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  752. if (status)
  753. goto end;
  754. /* Turn on jumbo. */
  755. status =
  756. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  757. if (status)
  758. goto end;
  759. status =
  760. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  761. if (status)
  762. goto end;
  763. /* Signal to the world that the port is enabled. */
  764. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  765. end:
  766. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  767. return status;
  768. }
  769. /* Get the next large buffer. */
  770. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  771. {
  772. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  773. rx_ring->lbq_curr_idx++;
  774. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  775. rx_ring->lbq_curr_idx = 0;
  776. rx_ring->lbq_free_cnt++;
  777. return lbq_desc;
  778. }
  779. /* Get the next small buffer. */
  780. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  781. {
  782. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  783. rx_ring->sbq_curr_idx++;
  784. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  785. rx_ring->sbq_curr_idx = 0;
  786. rx_ring->sbq_free_cnt++;
  787. return sbq_desc;
  788. }
  789. /* Update an rx ring index. */
  790. static void ql_update_cq(struct rx_ring *rx_ring)
  791. {
  792. rx_ring->cnsmr_idx++;
  793. rx_ring->curr_entry++;
  794. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  795. rx_ring->cnsmr_idx = 0;
  796. rx_ring->curr_entry = rx_ring->cq_base;
  797. }
  798. }
  799. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  800. {
  801. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  802. }
  803. /* Process (refill) a large buffer queue. */
  804. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  805. {
  806. int clean_idx = rx_ring->lbq_clean_idx;
  807. struct bq_desc *lbq_desc;
  808. u64 map;
  809. int i;
  810. while (rx_ring->lbq_free_cnt > 16) {
  811. for (i = 0; i < 16; i++) {
  812. QPRINTK(qdev, RX_STATUS, DEBUG,
  813. "lbq: try cleaning clean_idx = %d.\n",
  814. clean_idx);
  815. lbq_desc = &rx_ring->lbq[clean_idx];
  816. if (lbq_desc->p.lbq_page == NULL) {
  817. QPRINTK(qdev, RX_STATUS, DEBUG,
  818. "lbq: getting new page for index %d.\n",
  819. lbq_desc->index);
  820. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  821. if (lbq_desc->p.lbq_page == NULL) {
  822. QPRINTK(qdev, RX_STATUS, ERR,
  823. "Couldn't get a page.\n");
  824. return;
  825. }
  826. map = pci_map_page(qdev->pdev,
  827. lbq_desc->p.lbq_page,
  828. 0, PAGE_SIZE,
  829. PCI_DMA_FROMDEVICE);
  830. if (pci_dma_mapping_error(qdev->pdev, map)) {
  831. QPRINTK(qdev, RX_STATUS, ERR,
  832. "PCI mapping failed.\n");
  833. return;
  834. }
  835. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  836. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  837. *lbq_desc->addr = cpu_to_le64(map);
  838. }
  839. clean_idx++;
  840. if (clean_idx == rx_ring->lbq_len)
  841. clean_idx = 0;
  842. }
  843. rx_ring->lbq_clean_idx = clean_idx;
  844. rx_ring->lbq_prod_idx += 16;
  845. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  846. rx_ring->lbq_prod_idx = 0;
  847. QPRINTK(qdev, RX_STATUS, DEBUG,
  848. "lbq: updating prod idx = %d.\n",
  849. rx_ring->lbq_prod_idx);
  850. ql_write_db_reg(rx_ring->lbq_prod_idx,
  851. rx_ring->lbq_prod_idx_db_reg);
  852. rx_ring->lbq_free_cnt -= 16;
  853. }
  854. }
  855. /* Process (refill) a small buffer queue. */
  856. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  857. {
  858. int clean_idx = rx_ring->sbq_clean_idx;
  859. struct bq_desc *sbq_desc;
  860. u64 map;
  861. int i;
  862. while (rx_ring->sbq_free_cnt > 16) {
  863. for (i = 0; i < 16; i++) {
  864. sbq_desc = &rx_ring->sbq[clean_idx];
  865. QPRINTK(qdev, RX_STATUS, DEBUG,
  866. "sbq: try cleaning clean_idx = %d.\n",
  867. clean_idx);
  868. if (sbq_desc->p.skb == NULL) {
  869. QPRINTK(qdev, RX_STATUS, DEBUG,
  870. "sbq: getting new skb for index %d.\n",
  871. sbq_desc->index);
  872. sbq_desc->p.skb =
  873. netdev_alloc_skb(qdev->ndev,
  874. rx_ring->sbq_buf_size);
  875. if (sbq_desc->p.skb == NULL) {
  876. QPRINTK(qdev, PROBE, ERR,
  877. "Couldn't get an skb.\n");
  878. rx_ring->sbq_clean_idx = clean_idx;
  879. return;
  880. }
  881. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  882. map = pci_map_single(qdev->pdev,
  883. sbq_desc->p.skb->data,
  884. rx_ring->sbq_buf_size /
  885. 2, PCI_DMA_FROMDEVICE);
  886. if (pci_dma_mapping_error(qdev->pdev, map)) {
  887. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  888. rx_ring->sbq_clean_idx = clean_idx;
  889. return;
  890. }
  891. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  892. pci_unmap_len_set(sbq_desc, maplen,
  893. rx_ring->sbq_buf_size / 2);
  894. *sbq_desc->addr = cpu_to_le64(map);
  895. }
  896. clean_idx++;
  897. if (clean_idx == rx_ring->sbq_len)
  898. clean_idx = 0;
  899. }
  900. rx_ring->sbq_clean_idx = clean_idx;
  901. rx_ring->sbq_prod_idx += 16;
  902. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  903. rx_ring->sbq_prod_idx = 0;
  904. QPRINTK(qdev, RX_STATUS, DEBUG,
  905. "sbq: updating prod idx = %d.\n",
  906. rx_ring->sbq_prod_idx);
  907. ql_write_db_reg(rx_ring->sbq_prod_idx,
  908. rx_ring->sbq_prod_idx_db_reg);
  909. rx_ring->sbq_free_cnt -= 16;
  910. }
  911. }
  912. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  913. struct rx_ring *rx_ring)
  914. {
  915. ql_update_sbq(qdev, rx_ring);
  916. ql_update_lbq(qdev, rx_ring);
  917. }
  918. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  919. * fails at some stage, or from the interrupt when a tx completes.
  920. */
  921. static void ql_unmap_send(struct ql_adapter *qdev,
  922. struct tx_ring_desc *tx_ring_desc, int mapped)
  923. {
  924. int i;
  925. for (i = 0; i < mapped; i++) {
  926. if (i == 0 || (i == 7 && mapped > 7)) {
  927. /*
  928. * Unmap the skb->data area, or the
  929. * external sglist (AKA the Outbound
  930. * Address List (OAL)).
  931. * If its the zeroeth element, then it's
  932. * the skb->data area. If it's the 7th
  933. * element and there is more than 6 frags,
  934. * then its an OAL.
  935. */
  936. if (i == 7) {
  937. QPRINTK(qdev, TX_DONE, DEBUG,
  938. "unmapping OAL area.\n");
  939. }
  940. pci_unmap_single(qdev->pdev,
  941. pci_unmap_addr(&tx_ring_desc->map[i],
  942. mapaddr),
  943. pci_unmap_len(&tx_ring_desc->map[i],
  944. maplen),
  945. PCI_DMA_TODEVICE);
  946. } else {
  947. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  948. i);
  949. pci_unmap_page(qdev->pdev,
  950. pci_unmap_addr(&tx_ring_desc->map[i],
  951. mapaddr),
  952. pci_unmap_len(&tx_ring_desc->map[i],
  953. maplen), PCI_DMA_TODEVICE);
  954. }
  955. }
  956. }
  957. /* Map the buffers for this transmit. This will return
  958. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  959. */
  960. static int ql_map_send(struct ql_adapter *qdev,
  961. struct ob_mac_iocb_req *mac_iocb_ptr,
  962. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  963. {
  964. int len = skb_headlen(skb);
  965. dma_addr_t map;
  966. int frag_idx, err, map_idx = 0;
  967. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  968. int frag_cnt = skb_shinfo(skb)->nr_frags;
  969. if (frag_cnt) {
  970. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  971. }
  972. /*
  973. * Map the skb buffer first.
  974. */
  975. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  976. err = pci_dma_mapping_error(qdev->pdev, map);
  977. if (err) {
  978. QPRINTK(qdev, TX_QUEUED, ERR,
  979. "PCI mapping failed with error: %d\n", err);
  980. return NETDEV_TX_BUSY;
  981. }
  982. tbd->len = cpu_to_le32(len);
  983. tbd->addr = cpu_to_le64(map);
  984. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  985. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  986. map_idx++;
  987. /*
  988. * This loop fills the remainder of the 8 address descriptors
  989. * in the IOCB. If there are more than 7 fragments, then the
  990. * eighth address desc will point to an external list (OAL).
  991. * When this happens, the remainder of the frags will be stored
  992. * in this list.
  993. */
  994. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  995. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  996. tbd++;
  997. if (frag_idx == 6 && frag_cnt > 7) {
  998. /* Let's tack on an sglist.
  999. * Our control block will now
  1000. * look like this:
  1001. * iocb->seg[0] = skb->data
  1002. * iocb->seg[1] = frag[0]
  1003. * iocb->seg[2] = frag[1]
  1004. * iocb->seg[3] = frag[2]
  1005. * iocb->seg[4] = frag[3]
  1006. * iocb->seg[5] = frag[4]
  1007. * iocb->seg[6] = frag[5]
  1008. * iocb->seg[7] = ptr to OAL (external sglist)
  1009. * oal->seg[0] = frag[6]
  1010. * oal->seg[1] = frag[7]
  1011. * oal->seg[2] = frag[8]
  1012. * oal->seg[3] = frag[9]
  1013. * oal->seg[4] = frag[10]
  1014. * etc...
  1015. */
  1016. /* Tack on the OAL in the eighth segment of IOCB. */
  1017. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1018. sizeof(struct oal),
  1019. PCI_DMA_TODEVICE);
  1020. err = pci_dma_mapping_error(qdev->pdev, map);
  1021. if (err) {
  1022. QPRINTK(qdev, TX_QUEUED, ERR,
  1023. "PCI mapping outbound address list with error: %d\n",
  1024. err);
  1025. goto map_error;
  1026. }
  1027. tbd->addr = cpu_to_le64(map);
  1028. /*
  1029. * The length is the number of fragments
  1030. * that remain to be mapped times the length
  1031. * of our sglist (OAL).
  1032. */
  1033. tbd->len =
  1034. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1035. (frag_cnt - frag_idx)) | TX_DESC_C);
  1036. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1037. map);
  1038. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1039. sizeof(struct oal));
  1040. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1041. map_idx++;
  1042. }
  1043. map =
  1044. pci_map_page(qdev->pdev, frag->page,
  1045. frag->page_offset, frag->size,
  1046. PCI_DMA_TODEVICE);
  1047. err = pci_dma_mapping_error(qdev->pdev, map);
  1048. if (err) {
  1049. QPRINTK(qdev, TX_QUEUED, ERR,
  1050. "PCI mapping frags failed with error: %d.\n",
  1051. err);
  1052. goto map_error;
  1053. }
  1054. tbd->addr = cpu_to_le64(map);
  1055. tbd->len = cpu_to_le32(frag->size);
  1056. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1057. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1058. frag->size);
  1059. }
  1060. /* Save the number of segments we've mapped. */
  1061. tx_ring_desc->map_cnt = map_idx;
  1062. /* Terminate the last segment. */
  1063. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1064. return NETDEV_TX_OK;
  1065. map_error:
  1066. /*
  1067. * If the first frag mapping failed, then i will be zero.
  1068. * This causes the unmap of the skb->data area. Otherwise
  1069. * we pass in the number of frags that mapped successfully
  1070. * so they can be umapped.
  1071. */
  1072. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1073. return NETDEV_TX_BUSY;
  1074. }
  1075. static void ql_realign_skb(struct sk_buff *skb, int len)
  1076. {
  1077. void *temp_addr = skb->data;
  1078. /* Undo the skb_reserve(skb,32) we did before
  1079. * giving to hardware, and realign data on
  1080. * a 2-byte boundary.
  1081. */
  1082. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1083. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1084. skb_copy_to_linear_data(skb, temp_addr,
  1085. (unsigned int)len);
  1086. }
  1087. /*
  1088. * This function builds an skb for the given inbound
  1089. * completion. It will be rewritten for readability in the near
  1090. * future, but for not it works well.
  1091. */
  1092. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1093. struct rx_ring *rx_ring,
  1094. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1095. {
  1096. struct bq_desc *lbq_desc;
  1097. struct bq_desc *sbq_desc;
  1098. struct sk_buff *skb = NULL;
  1099. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1100. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1101. /*
  1102. * Handle the header buffer if present.
  1103. */
  1104. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1105. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1106. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1107. /*
  1108. * Headers fit nicely into a small buffer.
  1109. */
  1110. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1111. pci_unmap_single(qdev->pdev,
  1112. pci_unmap_addr(sbq_desc, mapaddr),
  1113. pci_unmap_len(sbq_desc, maplen),
  1114. PCI_DMA_FROMDEVICE);
  1115. skb = sbq_desc->p.skb;
  1116. ql_realign_skb(skb, hdr_len);
  1117. skb_put(skb, hdr_len);
  1118. sbq_desc->p.skb = NULL;
  1119. }
  1120. /*
  1121. * Handle the data buffer(s).
  1122. */
  1123. if (unlikely(!length)) { /* Is there data too? */
  1124. QPRINTK(qdev, RX_STATUS, DEBUG,
  1125. "No Data buffer in this packet.\n");
  1126. return skb;
  1127. }
  1128. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1129. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1130. QPRINTK(qdev, RX_STATUS, DEBUG,
  1131. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1132. /*
  1133. * Data is less than small buffer size so it's
  1134. * stuffed in a small buffer.
  1135. * For this case we append the data
  1136. * from the "data" small buffer to the "header" small
  1137. * buffer.
  1138. */
  1139. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1140. pci_dma_sync_single_for_cpu(qdev->pdev,
  1141. pci_unmap_addr
  1142. (sbq_desc, mapaddr),
  1143. pci_unmap_len
  1144. (sbq_desc, maplen),
  1145. PCI_DMA_FROMDEVICE);
  1146. memcpy(skb_put(skb, length),
  1147. sbq_desc->p.skb->data, length);
  1148. pci_dma_sync_single_for_device(qdev->pdev,
  1149. pci_unmap_addr
  1150. (sbq_desc,
  1151. mapaddr),
  1152. pci_unmap_len
  1153. (sbq_desc,
  1154. maplen),
  1155. PCI_DMA_FROMDEVICE);
  1156. } else {
  1157. QPRINTK(qdev, RX_STATUS, DEBUG,
  1158. "%d bytes in a single small buffer.\n", length);
  1159. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1160. skb = sbq_desc->p.skb;
  1161. ql_realign_skb(skb, length);
  1162. skb_put(skb, length);
  1163. pci_unmap_single(qdev->pdev,
  1164. pci_unmap_addr(sbq_desc,
  1165. mapaddr),
  1166. pci_unmap_len(sbq_desc,
  1167. maplen),
  1168. PCI_DMA_FROMDEVICE);
  1169. sbq_desc->p.skb = NULL;
  1170. }
  1171. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1172. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1173. QPRINTK(qdev, RX_STATUS, DEBUG,
  1174. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1175. /*
  1176. * The data is in a single large buffer. We
  1177. * chain it to the header buffer's skb and let
  1178. * it rip.
  1179. */
  1180. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1181. pci_unmap_page(qdev->pdev,
  1182. pci_unmap_addr(lbq_desc,
  1183. mapaddr),
  1184. pci_unmap_len(lbq_desc, maplen),
  1185. PCI_DMA_FROMDEVICE);
  1186. QPRINTK(qdev, RX_STATUS, DEBUG,
  1187. "Chaining page to skb.\n");
  1188. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1189. 0, length);
  1190. skb->len += length;
  1191. skb->data_len += length;
  1192. skb->truesize += length;
  1193. lbq_desc->p.lbq_page = NULL;
  1194. } else {
  1195. /*
  1196. * The headers and data are in a single large buffer. We
  1197. * copy it to a new skb and let it go. This can happen with
  1198. * jumbo mtu on a non-TCP/UDP frame.
  1199. */
  1200. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1201. skb = netdev_alloc_skb(qdev->ndev, length);
  1202. if (skb == NULL) {
  1203. QPRINTK(qdev, PROBE, DEBUG,
  1204. "No skb available, drop the packet.\n");
  1205. return NULL;
  1206. }
  1207. pci_unmap_page(qdev->pdev,
  1208. pci_unmap_addr(lbq_desc,
  1209. mapaddr),
  1210. pci_unmap_len(lbq_desc, maplen),
  1211. PCI_DMA_FROMDEVICE);
  1212. skb_reserve(skb, NET_IP_ALIGN);
  1213. QPRINTK(qdev, RX_STATUS, DEBUG,
  1214. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1215. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1216. 0, length);
  1217. skb->len += length;
  1218. skb->data_len += length;
  1219. skb->truesize += length;
  1220. length -= length;
  1221. lbq_desc->p.lbq_page = NULL;
  1222. __pskb_pull_tail(skb,
  1223. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1224. VLAN_ETH_HLEN : ETH_HLEN);
  1225. }
  1226. } else {
  1227. /*
  1228. * The data is in a chain of large buffers
  1229. * pointed to by a small buffer. We loop
  1230. * thru and chain them to the our small header
  1231. * buffer's skb.
  1232. * frags: There are 18 max frags and our small
  1233. * buffer will hold 32 of them. The thing is,
  1234. * we'll use 3 max for our 9000 byte jumbo
  1235. * frames. If the MTU goes up we could
  1236. * eventually be in trouble.
  1237. */
  1238. int size, offset, i = 0;
  1239. __le64 *bq, bq_array[8];
  1240. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1241. pci_unmap_single(qdev->pdev,
  1242. pci_unmap_addr(sbq_desc, mapaddr),
  1243. pci_unmap_len(sbq_desc, maplen),
  1244. PCI_DMA_FROMDEVICE);
  1245. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1246. /*
  1247. * This is an non TCP/UDP IP frame, so
  1248. * the headers aren't split into a small
  1249. * buffer. We have to use the small buffer
  1250. * that contains our sg list as our skb to
  1251. * send upstairs. Copy the sg list here to
  1252. * a local buffer and use it to find the
  1253. * pages to chain.
  1254. */
  1255. QPRINTK(qdev, RX_STATUS, DEBUG,
  1256. "%d bytes of headers & data in chain of large.\n", length);
  1257. skb = sbq_desc->p.skb;
  1258. bq = &bq_array[0];
  1259. memcpy(bq, skb->data, sizeof(bq_array));
  1260. sbq_desc->p.skb = NULL;
  1261. skb_reserve(skb, NET_IP_ALIGN);
  1262. } else {
  1263. QPRINTK(qdev, RX_STATUS, DEBUG,
  1264. "Headers in small, %d bytes of data in chain of large.\n", length);
  1265. bq = (__le64 *)sbq_desc->p.skb->data;
  1266. }
  1267. while (length > 0) {
  1268. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1269. pci_unmap_page(qdev->pdev,
  1270. pci_unmap_addr(lbq_desc,
  1271. mapaddr),
  1272. pci_unmap_len(lbq_desc,
  1273. maplen),
  1274. PCI_DMA_FROMDEVICE);
  1275. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1276. offset = 0;
  1277. QPRINTK(qdev, RX_STATUS, DEBUG,
  1278. "Adding page %d to skb for %d bytes.\n",
  1279. i, size);
  1280. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1281. offset, size);
  1282. skb->len += size;
  1283. skb->data_len += size;
  1284. skb->truesize += size;
  1285. length -= size;
  1286. lbq_desc->p.lbq_page = NULL;
  1287. bq++;
  1288. i++;
  1289. }
  1290. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1291. VLAN_ETH_HLEN : ETH_HLEN);
  1292. }
  1293. return skb;
  1294. }
  1295. /* Process an inbound completion from an rx ring. */
  1296. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1297. struct rx_ring *rx_ring,
  1298. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1299. {
  1300. struct net_device *ndev = qdev->ndev;
  1301. struct sk_buff *skb = NULL;
  1302. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1303. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1304. if (unlikely(!skb)) {
  1305. QPRINTK(qdev, RX_STATUS, DEBUG,
  1306. "No skb available, drop packet.\n");
  1307. return;
  1308. }
  1309. prefetch(skb->data);
  1310. skb->dev = ndev;
  1311. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1312. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1313. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1314. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1315. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1316. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1317. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1318. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1319. }
  1320. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1321. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1322. }
  1323. if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
  1324. QPRINTK(qdev, RX_STATUS, ERR,
  1325. "Bad checksum for this %s packet.\n",
  1326. ((ib_mac_rsp->
  1327. flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
  1328. skb->ip_summed = CHECKSUM_NONE;
  1329. } else if (qdev->rx_csum &&
  1330. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
  1331. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1332. !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
  1333. QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
  1334. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1335. }
  1336. qdev->stats.rx_packets++;
  1337. qdev->stats.rx_bytes += skb->len;
  1338. skb->protocol = eth_type_trans(skb, ndev);
  1339. skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
  1340. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1341. QPRINTK(qdev, RX_STATUS, DEBUG,
  1342. "Passing a VLAN packet upstream.\n");
  1343. vlan_hwaccel_rx(skb, qdev->vlgrp,
  1344. le16_to_cpu(ib_mac_rsp->vlan_id));
  1345. } else {
  1346. QPRINTK(qdev, RX_STATUS, DEBUG,
  1347. "Passing a normal packet upstream.\n");
  1348. netif_rx(skb);
  1349. }
  1350. }
  1351. /* Process an outbound completion from an rx ring. */
  1352. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1353. struct ob_mac_iocb_rsp *mac_rsp)
  1354. {
  1355. struct tx_ring *tx_ring;
  1356. struct tx_ring_desc *tx_ring_desc;
  1357. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1358. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1359. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1360. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1361. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1362. qdev->stats.tx_packets++;
  1363. dev_kfree_skb(tx_ring_desc->skb);
  1364. tx_ring_desc->skb = NULL;
  1365. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1366. OB_MAC_IOCB_RSP_S |
  1367. OB_MAC_IOCB_RSP_L |
  1368. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1369. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1370. QPRINTK(qdev, TX_DONE, WARNING,
  1371. "Total descriptor length did not match transfer length.\n");
  1372. }
  1373. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1374. QPRINTK(qdev, TX_DONE, WARNING,
  1375. "Frame too short to be legal, not sent.\n");
  1376. }
  1377. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1378. QPRINTK(qdev, TX_DONE, WARNING,
  1379. "Frame too long, but sent anyway.\n");
  1380. }
  1381. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1382. QPRINTK(qdev, TX_DONE, WARNING,
  1383. "PCI backplane error. Frame not sent.\n");
  1384. }
  1385. }
  1386. atomic_inc(&tx_ring->tx_count);
  1387. }
  1388. /* Fire up a handler to reset the MPI processor. */
  1389. void ql_queue_fw_error(struct ql_adapter *qdev)
  1390. {
  1391. netif_stop_queue(qdev->ndev);
  1392. netif_carrier_off(qdev->ndev);
  1393. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1394. }
  1395. void ql_queue_asic_error(struct ql_adapter *qdev)
  1396. {
  1397. netif_stop_queue(qdev->ndev);
  1398. netif_carrier_off(qdev->ndev);
  1399. ql_disable_interrupts(qdev);
  1400. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1401. }
  1402. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1403. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1404. {
  1405. switch (ib_ae_rsp->event) {
  1406. case MGMT_ERR_EVENT:
  1407. QPRINTK(qdev, RX_ERR, ERR,
  1408. "Management Processor Fatal Error.\n");
  1409. ql_queue_fw_error(qdev);
  1410. return;
  1411. case CAM_LOOKUP_ERR_EVENT:
  1412. QPRINTK(qdev, LINK, ERR,
  1413. "Multiple CAM hits lookup occurred.\n");
  1414. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1415. ql_queue_asic_error(qdev);
  1416. return;
  1417. case SOFT_ECC_ERROR_EVENT:
  1418. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1419. ql_queue_asic_error(qdev);
  1420. break;
  1421. case PCI_ERR_ANON_BUF_RD:
  1422. QPRINTK(qdev, RX_ERR, ERR,
  1423. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1424. ib_ae_rsp->q_id);
  1425. ql_queue_asic_error(qdev);
  1426. break;
  1427. default:
  1428. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1429. ib_ae_rsp->event);
  1430. ql_queue_asic_error(qdev);
  1431. break;
  1432. }
  1433. }
  1434. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1435. {
  1436. struct ql_adapter *qdev = rx_ring->qdev;
  1437. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1438. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1439. int count = 0;
  1440. /* While there are entries in the completion queue. */
  1441. while (prod != rx_ring->cnsmr_idx) {
  1442. QPRINTK(qdev, RX_STATUS, DEBUG,
  1443. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1444. prod, rx_ring->cnsmr_idx);
  1445. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1446. rmb();
  1447. switch (net_rsp->opcode) {
  1448. case OPCODE_OB_MAC_TSO_IOCB:
  1449. case OPCODE_OB_MAC_IOCB:
  1450. ql_process_mac_tx_intr(qdev, net_rsp);
  1451. break;
  1452. default:
  1453. QPRINTK(qdev, RX_STATUS, DEBUG,
  1454. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1455. net_rsp->opcode);
  1456. }
  1457. count++;
  1458. ql_update_cq(rx_ring);
  1459. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1460. }
  1461. ql_write_cq_idx(rx_ring);
  1462. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1463. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1464. if (atomic_read(&tx_ring->queue_stopped) &&
  1465. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1466. /*
  1467. * The queue got stopped because the tx_ring was full.
  1468. * Wake it up, because it's now at least 25% empty.
  1469. */
  1470. netif_wake_queue(qdev->ndev);
  1471. }
  1472. return count;
  1473. }
  1474. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1475. {
  1476. struct ql_adapter *qdev = rx_ring->qdev;
  1477. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1478. struct ql_net_rsp_iocb *net_rsp;
  1479. int count = 0;
  1480. /* While there are entries in the completion queue. */
  1481. while (prod != rx_ring->cnsmr_idx) {
  1482. QPRINTK(qdev, RX_STATUS, DEBUG,
  1483. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1484. prod, rx_ring->cnsmr_idx);
  1485. net_rsp = rx_ring->curr_entry;
  1486. rmb();
  1487. switch (net_rsp->opcode) {
  1488. case OPCODE_IB_MAC_IOCB:
  1489. ql_process_mac_rx_intr(qdev, rx_ring,
  1490. (struct ib_mac_iocb_rsp *)
  1491. net_rsp);
  1492. break;
  1493. case OPCODE_IB_AE_IOCB:
  1494. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1495. net_rsp);
  1496. break;
  1497. default:
  1498. {
  1499. QPRINTK(qdev, RX_STATUS, DEBUG,
  1500. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1501. net_rsp->opcode);
  1502. }
  1503. }
  1504. count++;
  1505. ql_update_cq(rx_ring);
  1506. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1507. if (count == budget)
  1508. break;
  1509. }
  1510. ql_update_buffer_queues(qdev, rx_ring);
  1511. ql_write_cq_idx(rx_ring);
  1512. return count;
  1513. }
  1514. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1515. {
  1516. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1517. struct ql_adapter *qdev = rx_ring->qdev;
  1518. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1519. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1520. rx_ring->cq_id);
  1521. if (work_done < budget) {
  1522. __napi_complete(napi);
  1523. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1524. }
  1525. return work_done;
  1526. }
  1527. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1528. {
  1529. struct ql_adapter *qdev = netdev_priv(ndev);
  1530. qdev->vlgrp = grp;
  1531. if (grp) {
  1532. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1533. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1534. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1535. } else {
  1536. QPRINTK(qdev, IFUP, DEBUG,
  1537. "Turning off VLAN in NIC_RCV_CFG.\n");
  1538. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1539. }
  1540. }
  1541. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1542. {
  1543. struct ql_adapter *qdev = netdev_priv(ndev);
  1544. u32 enable_bit = MAC_ADDR_E;
  1545. spin_lock(&qdev->hw_lock);
  1546. if (ql_set_mac_addr_reg
  1547. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1548. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1549. }
  1550. spin_unlock(&qdev->hw_lock);
  1551. }
  1552. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1553. {
  1554. struct ql_adapter *qdev = netdev_priv(ndev);
  1555. u32 enable_bit = 0;
  1556. spin_lock(&qdev->hw_lock);
  1557. if (ql_set_mac_addr_reg
  1558. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1559. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1560. }
  1561. spin_unlock(&qdev->hw_lock);
  1562. }
  1563. /* Worker thread to process a given rx_ring that is dedicated
  1564. * to outbound completions.
  1565. */
  1566. static void ql_tx_clean(struct work_struct *work)
  1567. {
  1568. struct rx_ring *rx_ring =
  1569. container_of(work, struct rx_ring, rx_work.work);
  1570. ql_clean_outbound_rx_ring(rx_ring);
  1571. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1572. }
  1573. /* Worker thread to process a given rx_ring that is dedicated
  1574. * to inbound completions.
  1575. */
  1576. static void ql_rx_clean(struct work_struct *work)
  1577. {
  1578. struct rx_ring *rx_ring =
  1579. container_of(work, struct rx_ring, rx_work.work);
  1580. ql_clean_inbound_rx_ring(rx_ring, 64);
  1581. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1582. }
  1583. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1584. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1585. {
  1586. struct rx_ring *rx_ring = dev_id;
  1587. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1588. &rx_ring->rx_work, 0);
  1589. return IRQ_HANDLED;
  1590. }
  1591. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1592. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1593. {
  1594. struct rx_ring *rx_ring = dev_id;
  1595. napi_schedule(&rx_ring->napi);
  1596. return IRQ_HANDLED;
  1597. }
  1598. /* This handles a fatal error, MPI activity, and the default
  1599. * rx_ring in an MSI-X multiple vector environment.
  1600. * In MSI/Legacy environment it also process the rest of
  1601. * the rx_rings.
  1602. */
  1603. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1604. {
  1605. struct rx_ring *rx_ring = dev_id;
  1606. struct ql_adapter *qdev = rx_ring->qdev;
  1607. struct intr_context *intr_context = &qdev->intr_context[0];
  1608. u32 var;
  1609. int i;
  1610. int work_done = 0;
  1611. spin_lock(&qdev->hw_lock);
  1612. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1613. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1614. spin_unlock(&qdev->hw_lock);
  1615. return IRQ_NONE;
  1616. }
  1617. spin_unlock(&qdev->hw_lock);
  1618. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1619. /*
  1620. * Check for fatal error.
  1621. */
  1622. if (var & STS_FE) {
  1623. ql_queue_asic_error(qdev);
  1624. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1625. var = ql_read32(qdev, ERR_STS);
  1626. QPRINTK(qdev, INTR, ERR,
  1627. "Resetting chip. Error Status Register = 0x%x\n", var);
  1628. return IRQ_HANDLED;
  1629. }
  1630. /*
  1631. * Check MPI processor activity.
  1632. */
  1633. if (var & STS_PI) {
  1634. /*
  1635. * We've got an async event or mailbox completion.
  1636. * Handle it and clear the source of the interrupt.
  1637. */
  1638. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1639. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1640. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1641. &qdev->mpi_work, 0);
  1642. work_done++;
  1643. }
  1644. /*
  1645. * Check the default queue and wake handler if active.
  1646. */
  1647. rx_ring = &qdev->rx_ring[0];
  1648. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1649. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1650. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1651. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1652. &rx_ring->rx_work, 0);
  1653. work_done++;
  1654. }
  1655. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1656. /*
  1657. * Start the DPC for each active queue.
  1658. */
  1659. for (i = 1; i < qdev->rx_ring_count; i++) {
  1660. rx_ring = &qdev->rx_ring[i];
  1661. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1662. rx_ring->cnsmr_idx) {
  1663. QPRINTK(qdev, INTR, INFO,
  1664. "Waking handler for rx_ring[%d].\n", i);
  1665. ql_disable_completion_interrupt(qdev,
  1666. intr_context->
  1667. intr);
  1668. if (i < qdev->rss_ring_first_cq_id)
  1669. queue_delayed_work_on(rx_ring->cpu,
  1670. qdev->q_workqueue,
  1671. &rx_ring->rx_work,
  1672. 0);
  1673. else
  1674. napi_schedule(&rx_ring->napi);
  1675. work_done++;
  1676. }
  1677. }
  1678. }
  1679. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1680. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1681. }
  1682. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1683. {
  1684. if (skb_is_gso(skb)) {
  1685. int err;
  1686. if (skb_header_cloned(skb)) {
  1687. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1688. if (err)
  1689. return err;
  1690. }
  1691. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1692. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1693. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1694. mac_iocb_ptr->total_hdrs_len =
  1695. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1696. mac_iocb_ptr->net_trans_offset =
  1697. cpu_to_le16(skb_network_offset(skb) |
  1698. skb_transport_offset(skb)
  1699. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1700. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1701. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1702. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1703. struct iphdr *iph = ip_hdr(skb);
  1704. iph->check = 0;
  1705. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1706. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1707. iph->daddr, 0,
  1708. IPPROTO_TCP,
  1709. 0);
  1710. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1711. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1712. tcp_hdr(skb)->check =
  1713. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1714. &ipv6_hdr(skb)->daddr,
  1715. 0, IPPROTO_TCP, 0);
  1716. }
  1717. return 1;
  1718. }
  1719. return 0;
  1720. }
  1721. static void ql_hw_csum_setup(struct sk_buff *skb,
  1722. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1723. {
  1724. int len;
  1725. struct iphdr *iph = ip_hdr(skb);
  1726. __sum16 *check;
  1727. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1728. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1729. mac_iocb_ptr->net_trans_offset =
  1730. cpu_to_le16(skb_network_offset(skb) |
  1731. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1732. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1733. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1734. if (likely(iph->protocol == IPPROTO_TCP)) {
  1735. check = &(tcp_hdr(skb)->check);
  1736. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1737. mac_iocb_ptr->total_hdrs_len =
  1738. cpu_to_le16(skb_transport_offset(skb) +
  1739. (tcp_hdr(skb)->doff << 2));
  1740. } else {
  1741. check = &(udp_hdr(skb)->check);
  1742. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1743. mac_iocb_ptr->total_hdrs_len =
  1744. cpu_to_le16(skb_transport_offset(skb) +
  1745. sizeof(struct udphdr));
  1746. }
  1747. *check = ~csum_tcpudp_magic(iph->saddr,
  1748. iph->daddr, len, iph->protocol, 0);
  1749. }
  1750. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1751. {
  1752. struct tx_ring_desc *tx_ring_desc;
  1753. struct ob_mac_iocb_req *mac_iocb_ptr;
  1754. struct ql_adapter *qdev = netdev_priv(ndev);
  1755. int tso;
  1756. struct tx_ring *tx_ring;
  1757. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1758. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1759. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1760. QPRINTK(qdev, TX_QUEUED, INFO,
  1761. "%s: shutting down tx queue %d du to lack of resources.\n",
  1762. __func__, tx_ring_idx);
  1763. netif_stop_queue(ndev);
  1764. atomic_inc(&tx_ring->queue_stopped);
  1765. return NETDEV_TX_BUSY;
  1766. }
  1767. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1768. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1769. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1770. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
  1771. QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
  1772. return NETDEV_TX_BUSY;
  1773. }
  1774. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1775. mac_iocb_ptr->tid = tx_ring_desc->index;
  1776. /* We use the upper 32-bits to store the tx queue for this IO.
  1777. * When we get the completion we can use it to establish the context.
  1778. */
  1779. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1780. tx_ring_desc->skb = skb;
  1781. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1782. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1783. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1784. vlan_tx_tag_get(skb));
  1785. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1786. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1787. }
  1788. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1789. if (tso < 0) {
  1790. dev_kfree_skb_any(skb);
  1791. return NETDEV_TX_OK;
  1792. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1793. ql_hw_csum_setup(skb,
  1794. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1795. }
  1796. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1797. tx_ring->prod_idx++;
  1798. if (tx_ring->prod_idx == tx_ring->wq_len)
  1799. tx_ring->prod_idx = 0;
  1800. wmb();
  1801. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1802. ndev->trans_start = jiffies;
  1803. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1804. tx_ring->prod_idx, skb->len);
  1805. atomic_dec(&tx_ring->tx_count);
  1806. return NETDEV_TX_OK;
  1807. }
  1808. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1809. {
  1810. if (qdev->rx_ring_shadow_reg_area) {
  1811. pci_free_consistent(qdev->pdev,
  1812. PAGE_SIZE,
  1813. qdev->rx_ring_shadow_reg_area,
  1814. qdev->rx_ring_shadow_reg_dma);
  1815. qdev->rx_ring_shadow_reg_area = NULL;
  1816. }
  1817. if (qdev->tx_ring_shadow_reg_area) {
  1818. pci_free_consistent(qdev->pdev,
  1819. PAGE_SIZE,
  1820. qdev->tx_ring_shadow_reg_area,
  1821. qdev->tx_ring_shadow_reg_dma);
  1822. qdev->tx_ring_shadow_reg_area = NULL;
  1823. }
  1824. }
  1825. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1826. {
  1827. qdev->rx_ring_shadow_reg_area =
  1828. pci_alloc_consistent(qdev->pdev,
  1829. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1830. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1831. QPRINTK(qdev, IFUP, ERR,
  1832. "Allocation of RX shadow space failed.\n");
  1833. return -ENOMEM;
  1834. }
  1835. qdev->tx_ring_shadow_reg_area =
  1836. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1837. &qdev->tx_ring_shadow_reg_dma);
  1838. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1839. QPRINTK(qdev, IFUP, ERR,
  1840. "Allocation of TX shadow space failed.\n");
  1841. goto err_wqp_sh_area;
  1842. }
  1843. return 0;
  1844. err_wqp_sh_area:
  1845. pci_free_consistent(qdev->pdev,
  1846. PAGE_SIZE,
  1847. qdev->rx_ring_shadow_reg_area,
  1848. qdev->rx_ring_shadow_reg_dma);
  1849. return -ENOMEM;
  1850. }
  1851. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1852. {
  1853. struct tx_ring_desc *tx_ring_desc;
  1854. int i;
  1855. struct ob_mac_iocb_req *mac_iocb_ptr;
  1856. mac_iocb_ptr = tx_ring->wq_base;
  1857. tx_ring_desc = tx_ring->q;
  1858. for (i = 0; i < tx_ring->wq_len; i++) {
  1859. tx_ring_desc->index = i;
  1860. tx_ring_desc->skb = NULL;
  1861. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1862. mac_iocb_ptr++;
  1863. tx_ring_desc++;
  1864. }
  1865. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1866. atomic_set(&tx_ring->queue_stopped, 0);
  1867. }
  1868. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1869. struct tx_ring *tx_ring)
  1870. {
  1871. if (tx_ring->wq_base) {
  1872. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1873. tx_ring->wq_base, tx_ring->wq_base_dma);
  1874. tx_ring->wq_base = NULL;
  1875. }
  1876. kfree(tx_ring->q);
  1877. tx_ring->q = NULL;
  1878. }
  1879. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1880. struct tx_ring *tx_ring)
  1881. {
  1882. tx_ring->wq_base =
  1883. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1884. &tx_ring->wq_base_dma);
  1885. if ((tx_ring->wq_base == NULL)
  1886. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1887. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1888. return -ENOMEM;
  1889. }
  1890. tx_ring->q =
  1891. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1892. if (tx_ring->q == NULL)
  1893. goto err;
  1894. return 0;
  1895. err:
  1896. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1897. tx_ring->wq_base, tx_ring->wq_base_dma);
  1898. return -ENOMEM;
  1899. }
  1900. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1901. {
  1902. int i;
  1903. struct bq_desc *lbq_desc;
  1904. for (i = 0; i < rx_ring->lbq_len; i++) {
  1905. lbq_desc = &rx_ring->lbq[i];
  1906. if (lbq_desc->p.lbq_page) {
  1907. pci_unmap_page(qdev->pdev,
  1908. pci_unmap_addr(lbq_desc, mapaddr),
  1909. pci_unmap_len(lbq_desc, maplen),
  1910. PCI_DMA_FROMDEVICE);
  1911. put_page(lbq_desc->p.lbq_page);
  1912. lbq_desc->p.lbq_page = NULL;
  1913. }
  1914. }
  1915. }
  1916. /*
  1917. * Allocate and map a page for each element of the lbq.
  1918. */
  1919. static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
  1920. struct rx_ring *rx_ring)
  1921. {
  1922. int i;
  1923. struct bq_desc *lbq_desc;
  1924. u64 map;
  1925. __le64 *bq = rx_ring->lbq_base;
  1926. for (i = 0; i < rx_ring->lbq_len; i++) {
  1927. lbq_desc = &rx_ring->lbq[i];
  1928. memset(lbq_desc, 0, sizeof(lbq_desc));
  1929. lbq_desc->addr = bq;
  1930. lbq_desc->index = i;
  1931. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  1932. if (unlikely(!lbq_desc->p.lbq_page)) {
  1933. QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
  1934. goto mem_error;
  1935. } else {
  1936. map = pci_map_page(qdev->pdev,
  1937. lbq_desc->p.lbq_page,
  1938. 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1939. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1940. QPRINTK(qdev, IFUP, ERR,
  1941. "PCI mapping failed.\n");
  1942. goto mem_error;
  1943. }
  1944. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1945. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  1946. *lbq_desc->addr = cpu_to_le64(map);
  1947. }
  1948. bq++;
  1949. }
  1950. return 0;
  1951. mem_error:
  1952. ql_free_lbq_buffers(qdev, rx_ring);
  1953. return -ENOMEM;
  1954. }
  1955. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1956. {
  1957. int i;
  1958. struct bq_desc *sbq_desc;
  1959. for (i = 0; i < rx_ring->sbq_len; i++) {
  1960. sbq_desc = &rx_ring->sbq[i];
  1961. if (sbq_desc == NULL) {
  1962. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  1963. return;
  1964. }
  1965. if (sbq_desc->p.skb) {
  1966. pci_unmap_single(qdev->pdev,
  1967. pci_unmap_addr(sbq_desc, mapaddr),
  1968. pci_unmap_len(sbq_desc, maplen),
  1969. PCI_DMA_FROMDEVICE);
  1970. dev_kfree_skb(sbq_desc->p.skb);
  1971. sbq_desc->p.skb = NULL;
  1972. }
  1973. }
  1974. }
  1975. /* Allocate and map an skb for each element of the sbq. */
  1976. static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
  1977. struct rx_ring *rx_ring)
  1978. {
  1979. int i;
  1980. struct bq_desc *sbq_desc;
  1981. struct sk_buff *skb;
  1982. u64 map;
  1983. __le64 *bq = rx_ring->sbq_base;
  1984. for (i = 0; i < rx_ring->sbq_len; i++) {
  1985. sbq_desc = &rx_ring->sbq[i];
  1986. memset(sbq_desc, 0, sizeof(sbq_desc));
  1987. sbq_desc->index = i;
  1988. sbq_desc->addr = bq;
  1989. skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
  1990. if (unlikely(!skb)) {
  1991. /* Better luck next round */
  1992. QPRINTK(qdev, IFUP, ERR,
  1993. "small buff alloc failed for %d bytes at index %d.\n",
  1994. rx_ring->sbq_buf_size, i);
  1995. goto mem_err;
  1996. }
  1997. skb_reserve(skb, QLGE_SB_PAD);
  1998. sbq_desc->p.skb = skb;
  1999. /*
  2000. * Map only half the buffer. Because the
  2001. * other half may get some data copied to it
  2002. * when the completion arrives.
  2003. */
  2004. map = pci_map_single(qdev->pdev,
  2005. skb->data,
  2006. rx_ring->sbq_buf_size / 2,
  2007. PCI_DMA_FROMDEVICE);
  2008. if (pci_dma_mapping_error(qdev->pdev, map)) {
  2009. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  2010. goto mem_err;
  2011. }
  2012. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  2013. pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
  2014. *sbq_desc->addr = cpu_to_le64(map);
  2015. bq++;
  2016. }
  2017. return 0;
  2018. mem_err:
  2019. ql_free_sbq_buffers(qdev, rx_ring);
  2020. return -ENOMEM;
  2021. }
  2022. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2023. struct rx_ring *rx_ring)
  2024. {
  2025. if (rx_ring->sbq_len)
  2026. ql_free_sbq_buffers(qdev, rx_ring);
  2027. if (rx_ring->lbq_len)
  2028. ql_free_lbq_buffers(qdev, rx_ring);
  2029. /* Free the small buffer queue. */
  2030. if (rx_ring->sbq_base) {
  2031. pci_free_consistent(qdev->pdev,
  2032. rx_ring->sbq_size,
  2033. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2034. rx_ring->sbq_base = NULL;
  2035. }
  2036. /* Free the small buffer queue control blocks. */
  2037. kfree(rx_ring->sbq);
  2038. rx_ring->sbq = NULL;
  2039. /* Free the large buffer queue. */
  2040. if (rx_ring->lbq_base) {
  2041. pci_free_consistent(qdev->pdev,
  2042. rx_ring->lbq_size,
  2043. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2044. rx_ring->lbq_base = NULL;
  2045. }
  2046. /* Free the large buffer queue control blocks. */
  2047. kfree(rx_ring->lbq);
  2048. rx_ring->lbq = NULL;
  2049. /* Free the rx queue. */
  2050. if (rx_ring->cq_base) {
  2051. pci_free_consistent(qdev->pdev,
  2052. rx_ring->cq_size,
  2053. rx_ring->cq_base, rx_ring->cq_base_dma);
  2054. rx_ring->cq_base = NULL;
  2055. }
  2056. }
  2057. /* Allocate queues and buffers for this completions queue based
  2058. * on the values in the parameter structure. */
  2059. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2060. struct rx_ring *rx_ring)
  2061. {
  2062. /*
  2063. * Allocate the completion queue for this rx_ring.
  2064. */
  2065. rx_ring->cq_base =
  2066. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2067. &rx_ring->cq_base_dma);
  2068. if (rx_ring->cq_base == NULL) {
  2069. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2070. return -ENOMEM;
  2071. }
  2072. if (rx_ring->sbq_len) {
  2073. /*
  2074. * Allocate small buffer queue.
  2075. */
  2076. rx_ring->sbq_base =
  2077. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2078. &rx_ring->sbq_base_dma);
  2079. if (rx_ring->sbq_base == NULL) {
  2080. QPRINTK(qdev, IFUP, ERR,
  2081. "Small buffer queue allocation failed.\n");
  2082. goto err_mem;
  2083. }
  2084. /*
  2085. * Allocate small buffer queue control blocks.
  2086. */
  2087. rx_ring->sbq =
  2088. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2089. GFP_KERNEL);
  2090. if (rx_ring->sbq == NULL) {
  2091. QPRINTK(qdev, IFUP, ERR,
  2092. "Small buffer queue control block allocation failed.\n");
  2093. goto err_mem;
  2094. }
  2095. if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
  2096. QPRINTK(qdev, IFUP, ERR,
  2097. "Small buffer allocation failed.\n");
  2098. goto err_mem;
  2099. }
  2100. }
  2101. if (rx_ring->lbq_len) {
  2102. /*
  2103. * Allocate large buffer queue.
  2104. */
  2105. rx_ring->lbq_base =
  2106. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2107. &rx_ring->lbq_base_dma);
  2108. if (rx_ring->lbq_base == NULL) {
  2109. QPRINTK(qdev, IFUP, ERR,
  2110. "Large buffer queue allocation failed.\n");
  2111. goto err_mem;
  2112. }
  2113. /*
  2114. * Allocate large buffer queue control blocks.
  2115. */
  2116. rx_ring->lbq =
  2117. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2118. GFP_KERNEL);
  2119. if (rx_ring->lbq == NULL) {
  2120. QPRINTK(qdev, IFUP, ERR,
  2121. "Large buffer queue control block allocation failed.\n");
  2122. goto err_mem;
  2123. }
  2124. /*
  2125. * Allocate the buffers.
  2126. */
  2127. if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
  2128. QPRINTK(qdev, IFUP, ERR,
  2129. "Large buffer allocation failed.\n");
  2130. goto err_mem;
  2131. }
  2132. }
  2133. return 0;
  2134. err_mem:
  2135. ql_free_rx_resources(qdev, rx_ring);
  2136. return -ENOMEM;
  2137. }
  2138. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2139. {
  2140. struct tx_ring *tx_ring;
  2141. struct tx_ring_desc *tx_ring_desc;
  2142. int i, j;
  2143. /*
  2144. * Loop through all queues and free
  2145. * any resources.
  2146. */
  2147. for (j = 0; j < qdev->tx_ring_count; j++) {
  2148. tx_ring = &qdev->tx_ring[j];
  2149. for (i = 0; i < tx_ring->wq_len; i++) {
  2150. tx_ring_desc = &tx_ring->q[i];
  2151. if (tx_ring_desc && tx_ring_desc->skb) {
  2152. QPRINTK(qdev, IFDOWN, ERR,
  2153. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2154. tx_ring_desc->skb, j,
  2155. tx_ring_desc->index);
  2156. ql_unmap_send(qdev, tx_ring_desc,
  2157. tx_ring_desc->map_cnt);
  2158. dev_kfree_skb(tx_ring_desc->skb);
  2159. tx_ring_desc->skb = NULL;
  2160. }
  2161. }
  2162. }
  2163. }
  2164. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2165. {
  2166. int i;
  2167. for (i = 0; i < qdev->tx_ring_count; i++)
  2168. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2169. for (i = 0; i < qdev->rx_ring_count; i++)
  2170. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2171. ql_free_shadow_space(qdev);
  2172. }
  2173. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2174. {
  2175. int i;
  2176. /* Allocate space for our shadow registers and such. */
  2177. if (ql_alloc_shadow_space(qdev))
  2178. return -ENOMEM;
  2179. for (i = 0; i < qdev->rx_ring_count; i++) {
  2180. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2181. QPRINTK(qdev, IFUP, ERR,
  2182. "RX resource allocation failed.\n");
  2183. goto err_mem;
  2184. }
  2185. }
  2186. /* Allocate tx queue resources */
  2187. for (i = 0; i < qdev->tx_ring_count; i++) {
  2188. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2189. QPRINTK(qdev, IFUP, ERR,
  2190. "TX resource allocation failed.\n");
  2191. goto err_mem;
  2192. }
  2193. }
  2194. return 0;
  2195. err_mem:
  2196. ql_free_mem_resources(qdev);
  2197. return -ENOMEM;
  2198. }
  2199. /* Set up the rx ring control block and pass it to the chip.
  2200. * The control block is defined as
  2201. * "Completion Queue Initialization Control Block", or cqicb.
  2202. */
  2203. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2204. {
  2205. struct cqicb *cqicb = &rx_ring->cqicb;
  2206. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2207. (rx_ring->cq_id * sizeof(u64) * 4);
  2208. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2209. (rx_ring->cq_id * sizeof(u64) * 4);
  2210. void __iomem *doorbell_area =
  2211. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2212. int err = 0;
  2213. u16 bq_len;
  2214. /* Set up the shadow registers for this ring. */
  2215. rx_ring->prod_idx_sh_reg = shadow_reg;
  2216. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2217. shadow_reg += sizeof(u64);
  2218. shadow_reg_dma += sizeof(u64);
  2219. rx_ring->lbq_base_indirect = shadow_reg;
  2220. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2221. shadow_reg += sizeof(u64);
  2222. shadow_reg_dma += sizeof(u64);
  2223. rx_ring->sbq_base_indirect = shadow_reg;
  2224. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2225. /* PCI doorbell mem area + 0x00 for consumer index register */
  2226. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2227. rx_ring->cnsmr_idx = 0;
  2228. rx_ring->curr_entry = rx_ring->cq_base;
  2229. /* PCI doorbell mem area + 0x04 for valid register */
  2230. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2231. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2232. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2233. /* PCI doorbell mem area + 0x1c */
  2234. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2235. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2236. cqicb->msix_vect = rx_ring->irq;
  2237. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2238. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2239. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2240. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2241. /*
  2242. * Set up the control block load flags.
  2243. */
  2244. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2245. FLAGS_LV | /* Load MSI-X vector */
  2246. FLAGS_LI; /* Load irq delay values */
  2247. if (rx_ring->lbq_len) {
  2248. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2249. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2250. cqicb->lbq_addr =
  2251. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2252. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2253. (u16) rx_ring->lbq_buf_size;
  2254. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2255. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2256. (u16) rx_ring->lbq_len;
  2257. cqicb->lbq_len = cpu_to_le16(bq_len);
  2258. rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
  2259. rx_ring->lbq_curr_idx = 0;
  2260. rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
  2261. rx_ring->lbq_free_cnt = 16;
  2262. }
  2263. if (rx_ring->sbq_len) {
  2264. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2265. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2266. cqicb->sbq_addr =
  2267. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2268. cqicb->sbq_buf_size =
  2269. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2270. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2271. (u16) rx_ring->sbq_len;
  2272. cqicb->sbq_len = cpu_to_le16(bq_len);
  2273. rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
  2274. rx_ring->sbq_curr_idx = 0;
  2275. rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
  2276. rx_ring->sbq_free_cnt = 16;
  2277. }
  2278. switch (rx_ring->type) {
  2279. case TX_Q:
  2280. /* If there's only one interrupt, then we use
  2281. * worker threads to process the outbound
  2282. * completion handling rx_rings. We do this so
  2283. * they can be run on multiple CPUs. There is
  2284. * room to play with this more where we would only
  2285. * run in a worker if there are more than x number
  2286. * of outbound completions on the queue and more
  2287. * than one queue active. Some threshold that
  2288. * would indicate a benefit in spite of the cost
  2289. * of a context switch.
  2290. * If there's more than one interrupt, then the
  2291. * outbound completions are processed in the ISR.
  2292. */
  2293. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2294. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2295. else {
  2296. /* With all debug warnings on we see a WARN_ON message
  2297. * when we free the skb in the interrupt context.
  2298. */
  2299. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2300. }
  2301. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2302. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2303. break;
  2304. case DEFAULT_Q:
  2305. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2306. cqicb->irq_delay = 0;
  2307. cqicb->pkt_delay = 0;
  2308. break;
  2309. case RX_Q:
  2310. /* Inbound completion handling rx_rings run in
  2311. * separate NAPI contexts.
  2312. */
  2313. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2314. 64);
  2315. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2316. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2317. break;
  2318. default:
  2319. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2320. rx_ring->type);
  2321. }
  2322. QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
  2323. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2324. CFG_LCQ, rx_ring->cq_id);
  2325. if (err) {
  2326. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2327. return err;
  2328. }
  2329. QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
  2330. /*
  2331. * Advance the producer index for the buffer queues.
  2332. */
  2333. wmb();
  2334. if (rx_ring->lbq_len)
  2335. ql_write_db_reg(rx_ring->lbq_prod_idx,
  2336. rx_ring->lbq_prod_idx_db_reg);
  2337. if (rx_ring->sbq_len)
  2338. ql_write_db_reg(rx_ring->sbq_prod_idx,
  2339. rx_ring->sbq_prod_idx_db_reg);
  2340. return err;
  2341. }
  2342. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2343. {
  2344. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2345. void __iomem *doorbell_area =
  2346. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2347. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2348. (tx_ring->wq_id * sizeof(u64));
  2349. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2350. (tx_ring->wq_id * sizeof(u64));
  2351. int err = 0;
  2352. /*
  2353. * Assign doorbell registers for this tx_ring.
  2354. */
  2355. /* TX PCI doorbell mem area for tx producer index */
  2356. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2357. tx_ring->prod_idx = 0;
  2358. /* TX PCI doorbell mem area + 0x04 */
  2359. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2360. /*
  2361. * Assign shadow registers for this tx_ring.
  2362. */
  2363. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2364. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2365. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2366. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2367. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2368. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2369. wqicb->rid = 0;
  2370. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2371. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2372. ql_init_tx_ring(qdev, tx_ring);
  2373. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2374. (u16) tx_ring->wq_id);
  2375. if (err) {
  2376. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2377. return err;
  2378. }
  2379. QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
  2380. return err;
  2381. }
  2382. static void ql_disable_msix(struct ql_adapter *qdev)
  2383. {
  2384. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2385. pci_disable_msix(qdev->pdev);
  2386. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2387. kfree(qdev->msi_x_entry);
  2388. qdev->msi_x_entry = NULL;
  2389. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2390. pci_disable_msi(qdev->pdev);
  2391. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2392. }
  2393. }
  2394. static void ql_enable_msix(struct ql_adapter *qdev)
  2395. {
  2396. int i;
  2397. qdev->intr_count = 1;
  2398. /* Get the MSIX vectors. */
  2399. if (irq_type == MSIX_IRQ) {
  2400. /* Try to alloc space for the msix struct,
  2401. * if it fails then go to MSI/legacy.
  2402. */
  2403. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2404. sizeof(struct msix_entry),
  2405. GFP_KERNEL);
  2406. if (!qdev->msi_x_entry) {
  2407. irq_type = MSI_IRQ;
  2408. goto msi;
  2409. }
  2410. for (i = 0; i < qdev->rx_ring_count; i++)
  2411. qdev->msi_x_entry[i].entry = i;
  2412. if (!pci_enable_msix
  2413. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2414. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2415. qdev->intr_count = qdev->rx_ring_count;
  2416. QPRINTK(qdev, IFUP, INFO,
  2417. "MSI-X Enabled, got %d vectors.\n",
  2418. qdev->intr_count);
  2419. return;
  2420. } else {
  2421. kfree(qdev->msi_x_entry);
  2422. qdev->msi_x_entry = NULL;
  2423. QPRINTK(qdev, IFUP, WARNING,
  2424. "MSI-X Enable failed, trying MSI.\n");
  2425. irq_type = MSI_IRQ;
  2426. }
  2427. }
  2428. msi:
  2429. if (irq_type == MSI_IRQ) {
  2430. if (!pci_enable_msi(qdev->pdev)) {
  2431. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2432. QPRINTK(qdev, IFUP, INFO,
  2433. "Running with MSI interrupts.\n");
  2434. return;
  2435. }
  2436. }
  2437. irq_type = LEG_IRQ;
  2438. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2439. }
  2440. /*
  2441. * Here we build the intr_context structures based on
  2442. * our rx_ring count and intr vector count.
  2443. * The intr_context structure is used to hook each vector
  2444. * to possibly different handlers.
  2445. */
  2446. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2447. {
  2448. int i = 0;
  2449. struct intr_context *intr_context = &qdev->intr_context[0];
  2450. ql_enable_msix(qdev);
  2451. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2452. /* Each rx_ring has it's
  2453. * own intr_context since we have separate
  2454. * vectors for each queue.
  2455. * This only true when MSI-X is enabled.
  2456. */
  2457. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2458. qdev->rx_ring[i].irq = i;
  2459. intr_context->intr = i;
  2460. intr_context->qdev = qdev;
  2461. /*
  2462. * We set up each vectors enable/disable/read bits so
  2463. * there's no bit/mask calculations in the critical path.
  2464. */
  2465. intr_context->intr_en_mask =
  2466. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2467. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2468. | i;
  2469. intr_context->intr_dis_mask =
  2470. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2471. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2472. INTR_EN_IHD | i;
  2473. intr_context->intr_read_mask =
  2474. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2475. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2476. i;
  2477. if (i == 0) {
  2478. /*
  2479. * Default queue handles bcast/mcast plus
  2480. * async events. Needs buffers.
  2481. */
  2482. intr_context->handler = qlge_isr;
  2483. sprintf(intr_context->name, "%s-default-queue",
  2484. qdev->ndev->name);
  2485. } else if (i < qdev->rss_ring_first_cq_id) {
  2486. /*
  2487. * Outbound queue is for outbound completions only.
  2488. */
  2489. intr_context->handler = qlge_msix_tx_isr;
  2490. sprintf(intr_context->name, "%s-tx-%d",
  2491. qdev->ndev->name, i);
  2492. } else {
  2493. /*
  2494. * Inbound queues handle unicast frames only.
  2495. */
  2496. intr_context->handler = qlge_msix_rx_isr;
  2497. sprintf(intr_context->name, "%s-rx-%d",
  2498. qdev->ndev->name, i);
  2499. }
  2500. }
  2501. } else {
  2502. /*
  2503. * All rx_rings use the same intr_context since
  2504. * there is only one vector.
  2505. */
  2506. intr_context->intr = 0;
  2507. intr_context->qdev = qdev;
  2508. /*
  2509. * We set up each vectors enable/disable/read bits so
  2510. * there's no bit/mask calculations in the critical path.
  2511. */
  2512. intr_context->intr_en_mask =
  2513. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2514. intr_context->intr_dis_mask =
  2515. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2516. INTR_EN_TYPE_DISABLE;
  2517. intr_context->intr_read_mask =
  2518. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2519. /*
  2520. * Single interrupt means one handler for all rings.
  2521. */
  2522. intr_context->handler = qlge_isr;
  2523. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2524. for (i = 0; i < qdev->rx_ring_count; i++)
  2525. qdev->rx_ring[i].irq = 0;
  2526. }
  2527. }
  2528. static void ql_free_irq(struct ql_adapter *qdev)
  2529. {
  2530. int i;
  2531. struct intr_context *intr_context = &qdev->intr_context[0];
  2532. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2533. if (intr_context->hooked) {
  2534. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2535. free_irq(qdev->msi_x_entry[i].vector,
  2536. &qdev->rx_ring[i]);
  2537. QPRINTK(qdev, IFDOWN, ERR,
  2538. "freeing msix interrupt %d.\n", i);
  2539. } else {
  2540. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2541. QPRINTK(qdev, IFDOWN, ERR,
  2542. "freeing msi interrupt %d.\n", i);
  2543. }
  2544. }
  2545. }
  2546. ql_disable_msix(qdev);
  2547. }
  2548. static int ql_request_irq(struct ql_adapter *qdev)
  2549. {
  2550. int i;
  2551. int status = 0;
  2552. struct pci_dev *pdev = qdev->pdev;
  2553. struct intr_context *intr_context = &qdev->intr_context[0];
  2554. ql_resolve_queues_to_irqs(qdev);
  2555. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2556. atomic_set(&intr_context->irq_cnt, 0);
  2557. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2558. status = request_irq(qdev->msi_x_entry[i].vector,
  2559. intr_context->handler,
  2560. 0,
  2561. intr_context->name,
  2562. &qdev->rx_ring[i]);
  2563. if (status) {
  2564. QPRINTK(qdev, IFUP, ERR,
  2565. "Failed request for MSIX interrupt %d.\n",
  2566. i);
  2567. goto err_irq;
  2568. } else {
  2569. QPRINTK(qdev, IFUP, INFO,
  2570. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2571. i,
  2572. qdev->rx_ring[i].type ==
  2573. DEFAULT_Q ? "DEFAULT_Q" : "",
  2574. qdev->rx_ring[i].type ==
  2575. TX_Q ? "TX_Q" : "",
  2576. qdev->rx_ring[i].type ==
  2577. RX_Q ? "RX_Q" : "", intr_context->name);
  2578. }
  2579. } else {
  2580. QPRINTK(qdev, IFUP, DEBUG,
  2581. "trying msi or legacy interrupts.\n");
  2582. QPRINTK(qdev, IFUP, DEBUG,
  2583. "%s: irq = %d.\n", __func__, pdev->irq);
  2584. QPRINTK(qdev, IFUP, DEBUG,
  2585. "%s: context->name = %s.\n", __func__,
  2586. intr_context->name);
  2587. QPRINTK(qdev, IFUP, DEBUG,
  2588. "%s: dev_id = 0x%p.\n", __func__,
  2589. &qdev->rx_ring[0]);
  2590. status =
  2591. request_irq(pdev->irq, qlge_isr,
  2592. test_bit(QL_MSI_ENABLED,
  2593. &qdev->
  2594. flags) ? 0 : IRQF_SHARED,
  2595. intr_context->name, &qdev->rx_ring[0]);
  2596. if (status)
  2597. goto err_irq;
  2598. QPRINTK(qdev, IFUP, ERR,
  2599. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2600. i,
  2601. qdev->rx_ring[0].type ==
  2602. DEFAULT_Q ? "DEFAULT_Q" : "",
  2603. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2604. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2605. intr_context->name);
  2606. }
  2607. intr_context->hooked = 1;
  2608. }
  2609. return status;
  2610. err_irq:
  2611. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2612. ql_free_irq(qdev);
  2613. return status;
  2614. }
  2615. static int ql_start_rss(struct ql_adapter *qdev)
  2616. {
  2617. struct ricb *ricb = &qdev->ricb;
  2618. int status = 0;
  2619. int i;
  2620. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2621. memset((void *)ricb, 0, sizeof(ricb));
  2622. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2623. ricb->flags =
  2624. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2625. RSS_RT6);
  2626. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2627. /*
  2628. * Fill out the Indirection Table.
  2629. */
  2630. for (i = 0; i < 32; i++)
  2631. hash_id[i] = i & 1;
  2632. /*
  2633. * Random values for the IPv6 and IPv4 Hash Keys.
  2634. */
  2635. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2636. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2637. QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
  2638. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2639. if (status) {
  2640. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2641. return status;
  2642. }
  2643. QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
  2644. return status;
  2645. }
  2646. /* Initialize the frame-to-queue routing. */
  2647. static int ql_route_initialize(struct ql_adapter *qdev)
  2648. {
  2649. int status = 0;
  2650. int i;
  2651. /* Clear all the entries in the routing table. */
  2652. for (i = 0; i < 16; i++) {
  2653. status = ql_set_routing_reg(qdev, i, 0, 0);
  2654. if (status) {
  2655. QPRINTK(qdev, IFUP, ERR,
  2656. "Failed to init routing register for CAM packets.\n");
  2657. return status;
  2658. }
  2659. }
  2660. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2661. if (status) {
  2662. QPRINTK(qdev, IFUP, ERR,
  2663. "Failed to init routing register for error packets.\n");
  2664. return status;
  2665. }
  2666. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2667. if (status) {
  2668. QPRINTK(qdev, IFUP, ERR,
  2669. "Failed to init routing register for broadcast packets.\n");
  2670. return status;
  2671. }
  2672. /* If we have more than one inbound queue, then turn on RSS in the
  2673. * routing block.
  2674. */
  2675. if (qdev->rss_ring_count > 1) {
  2676. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2677. RT_IDX_RSS_MATCH, 1);
  2678. if (status) {
  2679. QPRINTK(qdev, IFUP, ERR,
  2680. "Failed to init routing register for MATCH RSS packets.\n");
  2681. return status;
  2682. }
  2683. }
  2684. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2685. RT_IDX_CAM_HIT, 1);
  2686. if (status) {
  2687. QPRINTK(qdev, IFUP, ERR,
  2688. "Failed to init routing register for CAM packets.\n");
  2689. return status;
  2690. }
  2691. return status;
  2692. }
  2693. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2694. {
  2695. u32 value, mask;
  2696. int i;
  2697. int status = 0;
  2698. /*
  2699. * Set up the System register to halt on errors.
  2700. */
  2701. value = SYS_EFE | SYS_FAE;
  2702. mask = value << 16;
  2703. ql_write32(qdev, SYS, mask | value);
  2704. /* Set the default queue. */
  2705. value = NIC_RCV_CFG_DFQ;
  2706. mask = NIC_RCV_CFG_DFQ_MASK;
  2707. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2708. /* Set the MPI interrupt to enabled. */
  2709. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2710. /* Enable the function, set pagesize, enable error checking. */
  2711. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2712. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2713. /* Set/clear header splitting. */
  2714. mask = FSC_VM_PAGESIZE_MASK |
  2715. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2716. ql_write32(qdev, FSC, mask | value);
  2717. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2718. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2719. /* Start up the rx queues. */
  2720. for (i = 0; i < qdev->rx_ring_count; i++) {
  2721. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2722. if (status) {
  2723. QPRINTK(qdev, IFUP, ERR,
  2724. "Failed to start rx ring[%d].\n", i);
  2725. return status;
  2726. }
  2727. }
  2728. /* If there is more than one inbound completion queue
  2729. * then download a RICB to configure RSS.
  2730. */
  2731. if (qdev->rss_ring_count > 1) {
  2732. status = ql_start_rss(qdev);
  2733. if (status) {
  2734. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2735. return status;
  2736. }
  2737. }
  2738. /* Start up the tx queues. */
  2739. for (i = 0; i < qdev->tx_ring_count; i++) {
  2740. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2741. if (status) {
  2742. QPRINTK(qdev, IFUP, ERR,
  2743. "Failed to start tx ring[%d].\n", i);
  2744. return status;
  2745. }
  2746. }
  2747. status = ql_port_initialize(qdev);
  2748. if (status) {
  2749. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2750. return status;
  2751. }
  2752. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2753. MAC_ADDR_TYPE_CAM_MAC, qdev->func);
  2754. if (status) {
  2755. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2756. return status;
  2757. }
  2758. status = ql_route_initialize(qdev);
  2759. if (status) {
  2760. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2761. return status;
  2762. }
  2763. /* Start NAPI for the RSS queues. */
  2764. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2765. QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
  2766. i);
  2767. napi_enable(&qdev->rx_ring[i].napi);
  2768. }
  2769. return status;
  2770. }
  2771. /* Issue soft reset to chip. */
  2772. static int ql_adapter_reset(struct ql_adapter *qdev)
  2773. {
  2774. u32 value;
  2775. int max_wait_time;
  2776. int status = 0;
  2777. int resetCnt = 0;
  2778. #define MAX_RESET_CNT 1
  2779. issueReset:
  2780. resetCnt++;
  2781. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2782. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2783. /* Wait for reset to complete. */
  2784. max_wait_time = 3;
  2785. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2786. max_wait_time);
  2787. do {
  2788. value = ql_read32(qdev, RST_FO);
  2789. if ((value & RST_FO_FR) == 0)
  2790. break;
  2791. ssleep(1);
  2792. } while ((--max_wait_time));
  2793. if (value & RST_FO_FR) {
  2794. QPRINTK(qdev, IFDOWN, ERR,
  2795. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2796. if (resetCnt < MAX_RESET_CNT)
  2797. goto issueReset;
  2798. }
  2799. if (max_wait_time == 0) {
  2800. status = -ETIMEDOUT;
  2801. QPRINTK(qdev, IFDOWN, ERR,
  2802. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2803. }
  2804. return status;
  2805. }
  2806. static void ql_display_dev_info(struct net_device *ndev)
  2807. {
  2808. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2809. QPRINTK(qdev, PROBE, INFO,
  2810. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2811. "XG Roll = %d, XG Rev = %d.\n",
  2812. qdev->func,
  2813. qdev->chip_rev_id & 0x0000000f,
  2814. qdev->chip_rev_id >> 4 & 0x0000000f,
  2815. qdev->chip_rev_id >> 8 & 0x0000000f,
  2816. qdev->chip_rev_id >> 12 & 0x0000000f);
  2817. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2818. }
  2819. static int ql_adapter_down(struct ql_adapter *qdev)
  2820. {
  2821. struct net_device *ndev = qdev->ndev;
  2822. int i, status = 0;
  2823. struct rx_ring *rx_ring;
  2824. netif_stop_queue(ndev);
  2825. netif_carrier_off(ndev);
  2826. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2827. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2828. cancel_delayed_work_sync(&qdev->mpi_work);
  2829. /* The default queue at index 0 is always processed in
  2830. * a workqueue.
  2831. */
  2832. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2833. /* The rest of the rx_rings are processed in
  2834. * a workqueue only if it's a single interrupt
  2835. * environment (MSI/Legacy).
  2836. */
  2837. for (i = 1; i < qdev->rx_ring_count; i++) {
  2838. rx_ring = &qdev->rx_ring[i];
  2839. /* Only the RSS rings use NAPI on multi irq
  2840. * environment. Outbound completion processing
  2841. * is done in interrupt context.
  2842. */
  2843. if (i >= qdev->rss_ring_first_cq_id) {
  2844. napi_disable(&rx_ring->napi);
  2845. } else {
  2846. cancel_delayed_work_sync(&rx_ring->rx_work);
  2847. }
  2848. }
  2849. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2850. ql_disable_interrupts(qdev);
  2851. ql_tx_ring_clean(qdev);
  2852. spin_lock(&qdev->hw_lock);
  2853. status = ql_adapter_reset(qdev);
  2854. if (status)
  2855. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2856. qdev->func);
  2857. spin_unlock(&qdev->hw_lock);
  2858. return status;
  2859. }
  2860. static int ql_adapter_up(struct ql_adapter *qdev)
  2861. {
  2862. int err = 0;
  2863. spin_lock(&qdev->hw_lock);
  2864. err = ql_adapter_initialize(qdev);
  2865. if (err) {
  2866. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2867. spin_unlock(&qdev->hw_lock);
  2868. goto err_init;
  2869. }
  2870. spin_unlock(&qdev->hw_lock);
  2871. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2872. ql_enable_interrupts(qdev);
  2873. ql_enable_all_completion_interrupts(qdev);
  2874. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2875. netif_carrier_on(qdev->ndev);
  2876. netif_start_queue(qdev->ndev);
  2877. }
  2878. return 0;
  2879. err_init:
  2880. ql_adapter_reset(qdev);
  2881. return err;
  2882. }
  2883. static int ql_cycle_adapter(struct ql_adapter *qdev)
  2884. {
  2885. int status;
  2886. status = ql_adapter_down(qdev);
  2887. if (status)
  2888. goto error;
  2889. status = ql_adapter_up(qdev);
  2890. if (status)
  2891. goto error;
  2892. return status;
  2893. error:
  2894. QPRINTK(qdev, IFUP, ALERT,
  2895. "Driver up/down cycle failed, closing device\n");
  2896. rtnl_lock();
  2897. dev_close(qdev->ndev);
  2898. rtnl_unlock();
  2899. return status;
  2900. }
  2901. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2902. {
  2903. ql_free_mem_resources(qdev);
  2904. ql_free_irq(qdev);
  2905. }
  2906. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2907. {
  2908. int status = 0;
  2909. if (ql_alloc_mem_resources(qdev)) {
  2910. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2911. return -ENOMEM;
  2912. }
  2913. status = ql_request_irq(qdev);
  2914. if (status)
  2915. goto err_irq;
  2916. return status;
  2917. err_irq:
  2918. ql_free_mem_resources(qdev);
  2919. return status;
  2920. }
  2921. static int qlge_close(struct net_device *ndev)
  2922. {
  2923. struct ql_adapter *qdev = netdev_priv(ndev);
  2924. /*
  2925. * Wait for device to recover from a reset.
  2926. * (Rarely happens, but possible.)
  2927. */
  2928. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2929. msleep(1);
  2930. ql_adapter_down(qdev);
  2931. ql_release_adapter_resources(qdev);
  2932. return 0;
  2933. }
  2934. static int ql_configure_rings(struct ql_adapter *qdev)
  2935. {
  2936. int i;
  2937. struct rx_ring *rx_ring;
  2938. struct tx_ring *tx_ring;
  2939. int cpu_cnt = num_online_cpus();
  2940. /*
  2941. * For each processor present we allocate one
  2942. * rx_ring for outbound completions, and one
  2943. * rx_ring for inbound completions. Plus there is
  2944. * always the one default queue. For the CPU
  2945. * counts we end up with the following rx_rings:
  2946. * rx_ring count =
  2947. * one default queue +
  2948. * (CPU count * outbound completion rx_ring) +
  2949. * (CPU count * inbound (RSS) completion rx_ring)
  2950. * To keep it simple we limit the total number of
  2951. * queues to < 32, so we truncate CPU to 8.
  2952. * This limitation can be removed when requested.
  2953. */
  2954. if (cpu_cnt > MAX_CPUS)
  2955. cpu_cnt = MAX_CPUS;
  2956. /*
  2957. * rx_ring[0] is always the default queue.
  2958. */
  2959. /* Allocate outbound completion ring for each CPU. */
  2960. qdev->tx_ring_count = cpu_cnt;
  2961. /* Allocate inbound completion (RSS) ring for each CPU. */
  2962. qdev->rss_ring_count = cpu_cnt;
  2963. /* cq_id for the first inbound ring handler. */
  2964. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  2965. /*
  2966. * qdev->rx_ring_count:
  2967. * Total number of rx_rings. This includes the one
  2968. * default queue, a number of outbound completion
  2969. * handler rx_rings, and the number of inbound
  2970. * completion handler rx_rings.
  2971. */
  2972. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  2973. for (i = 0; i < qdev->tx_ring_count; i++) {
  2974. tx_ring = &qdev->tx_ring[i];
  2975. memset((void *)tx_ring, 0, sizeof(tx_ring));
  2976. tx_ring->qdev = qdev;
  2977. tx_ring->wq_id = i;
  2978. tx_ring->wq_len = qdev->tx_ring_size;
  2979. tx_ring->wq_size =
  2980. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  2981. /*
  2982. * The completion queue ID for the tx rings start
  2983. * immediately after the default Q ID, which is zero.
  2984. */
  2985. tx_ring->cq_id = i + 1;
  2986. }
  2987. for (i = 0; i < qdev->rx_ring_count; i++) {
  2988. rx_ring = &qdev->rx_ring[i];
  2989. memset((void *)rx_ring, 0, sizeof(rx_ring));
  2990. rx_ring->qdev = qdev;
  2991. rx_ring->cq_id = i;
  2992. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  2993. if (i == 0) { /* Default queue at index 0. */
  2994. /*
  2995. * Default queue handles bcast/mcast plus
  2996. * async events. Needs buffers.
  2997. */
  2998. rx_ring->cq_len = qdev->rx_ring_size;
  2999. rx_ring->cq_size =
  3000. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3001. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3002. rx_ring->lbq_size =
  3003. rx_ring->lbq_len * sizeof(__le64);
  3004. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3005. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3006. rx_ring->sbq_size =
  3007. rx_ring->sbq_len * sizeof(__le64);
  3008. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3009. rx_ring->type = DEFAULT_Q;
  3010. } else if (i < qdev->rss_ring_first_cq_id) {
  3011. /*
  3012. * Outbound queue handles outbound completions only.
  3013. */
  3014. /* outbound cq is same size as tx_ring it services. */
  3015. rx_ring->cq_len = qdev->tx_ring_size;
  3016. rx_ring->cq_size =
  3017. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3018. rx_ring->lbq_len = 0;
  3019. rx_ring->lbq_size = 0;
  3020. rx_ring->lbq_buf_size = 0;
  3021. rx_ring->sbq_len = 0;
  3022. rx_ring->sbq_size = 0;
  3023. rx_ring->sbq_buf_size = 0;
  3024. rx_ring->type = TX_Q;
  3025. } else { /* Inbound completions (RSS) queues */
  3026. /*
  3027. * Inbound queues handle unicast frames only.
  3028. */
  3029. rx_ring->cq_len = qdev->rx_ring_size;
  3030. rx_ring->cq_size =
  3031. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3032. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3033. rx_ring->lbq_size =
  3034. rx_ring->lbq_len * sizeof(__le64);
  3035. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3036. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3037. rx_ring->sbq_size =
  3038. rx_ring->sbq_len * sizeof(__le64);
  3039. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3040. rx_ring->type = RX_Q;
  3041. }
  3042. }
  3043. return 0;
  3044. }
  3045. static int qlge_open(struct net_device *ndev)
  3046. {
  3047. int err = 0;
  3048. struct ql_adapter *qdev = netdev_priv(ndev);
  3049. err = ql_configure_rings(qdev);
  3050. if (err)
  3051. return err;
  3052. err = ql_get_adapter_resources(qdev);
  3053. if (err)
  3054. goto error_up;
  3055. err = ql_adapter_up(qdev);
  3056. if (err)
  3057. goto error_up;
  3058. return err;
  3059. error_up:
  3060. ql_release_adapter_resources(qdev);
  3061. return err;
  3062. }
  3063. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3064. {
  3065. struct ql_adapter *qdev = netdev_priv(ndev);
  3066. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3067. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3068. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3069. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3070. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3071. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3072. return 0;
  3073. } else
  3074. return -EINVAL;
  3075. ndev->mtu = new_mtu;
  3076. return 0;
  3077. }
  3078. static struct net_device_stats *qlge_get_stats(struct net_device
  3079. *ndev)
  3080. {
  3081. struct ql_adapter *qdev = netdev_priv(ndev);
  3082. return &qdev->stats;
  3083. }
  3084. static void qlge_set_multicast_list(struct net_device *ndev)
  3085. {
  3086. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3087. struct dev_mc_list *mc_ptr;
  3088. int i;
  3089. spin_lock(&qdev->hw_lock);
  3090. /*
  3091. * Set or clear promiscuous mode if a
  3092. * transition is taking place.
  3093. */
  3094. if (ndev->flags & IFF_PROMISC) {
  3095. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3096. if (ql_set_routing_reg
  3097. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3098. QPRINTK(qdev, HW, ERR,
  3099. "Failed to set promiscous mode.\n");
  3100. } else {
  3101. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3102. }
  3103. }
  3104. } else {
  3105. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3106. if (ql_set_routing_reg
  3107. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3108. QPRINTK(qdev, HW, ERR,
  3109. "Failed to clear promiscous mode.\n");
  3110. } else {
  3111. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3112. }
  3113. }
  3114. }
  3115. /*
  3116. * Set or clear all multicast mode if a
  3117. * transition is taking place.
  3118. */
  3119. if ((ndev->flags & IFF_ALLMULTI) ||
  3120. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3121. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3122. if (ql_set_routing_reg
  3123. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3124. QPRINTK(qdev, HW, ERR,
  3125. "Failed to set all-multi mode.\n");
  3126. } else {
  3127. set_bit(QL_ALLMULTI, &qdev->flags);
  3128. }
  3129. }
  3130. } else {
  3131. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3132. if (ql_set_routing_reg
  3133. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3134. QPRINTK(qdev, HW, ERR,
  3135. "Failed to clear all-multi mode.\n");
  3136. } else {
  3137. clear_bit(QL_ALLMULTI, &qdev->flags);
  3138. }
  3139. }
  3140. }
  3141. if (ndev->mc_count) {
  3142. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3143. i++, mc_ptr = mc_ptr->next)
  3144. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3145. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3146. QPRINTK(qdev, HW, ERR,
  3147. "Failed to loadmulticast address.\n");
  3148. goto exit;
  3149. }
  3150. if (ql_set_routing_reg
  3151. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3152. QPRINTK(qdev, HW, ERR,
  3153. "Failed to set multicast match mode.\n");
  3154. } else {
  3155. set_bit(QL_ALLMULTI, &qdev->flags);
  3156. }
  3157. }
  3158. exit:
  3159. spin_unlock(&qdev->hw_lock);
  3160. }
  3161. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3162. {
  3163. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3164. struct sockaddr *addr = p;
  3165. int ret = 0;
  3166. if (netif_running(ndev))
  3167. return -EBUSY;
  3168. if (!is_valid_ether_addr(addr->sa_data))
  3169. return -EADDRNOTAVAIL;
  3170. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3171. spin_lock(&qdev->hw_lock);
  3172. if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3173. MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
  3174. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3175. ret = -1;
  3176. }
  3177. spin_unlock(&qdev->hw_lock);
  3178. return ret;
  3179. }
  3180. static void qlge_tx_timeout(struct net_device *ndev)
  3181. {
  3182. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3183. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  3184. }
  3185. static void ql_asic_reset_work(struct work_struct *work)
  3186. {
  3187. struct ql_adapter *qdev =
  3188. container_of(work, struct ql_adapter, asic_reset_work.work);
  3189. ql_cycle_adapter(qdev);
  3190. }
  3191. static void ql_get_board_info(struct ql_adapter *qdev)
  3192. {
  3193. qdev->func =
  3194. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3195. if (qdev->func) {
  3196. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3197. qdev->port_link_up = STS_PL1;
  3198. qdev->port_init = STS_PI1;
  3199. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3200. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3201. } else {
  3202. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3203. qdev->port_link_up = STS_PL0;
  3204. qdev->port_init = STS_PI0;
  3205. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3206. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3207. }
  3208. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3209. }
  3210. static void ql_release_all(struct pci_dev *pdev)
  3211. {
  3212. struct net_device *ndev = pci_get_drvdata(pdev);
  3213. struct ql_adapter *qdev = netdev_priv(ndev);
  3214. if (qdev->workqueue) {
  3215. destroy_workqueue(qdev->workqueue);
  3216. qdev->workqueue = NULL;
  3217. }
  3218. if (qdev->q_workqueue) {
  3219. destroy_workqueue(qdev->q_workqueue);
  3220. qdev->q_workqueue = NULL;
  3221. }
  3222. if (qdev->reg_base)
  3223. iounmap(qdev->reg_base);
  3224. if (qdev->doorbell_area)
  3225. iounmap(qdev->doorbell_area);
  3226. pci_release_regions(pdev);
  3227. pci_set_drvdata(pdev, NULL);
  3228. }
  3229. static int __devinit ql_init_device(struct pci_dev *pdev,
  3230. struct net_device *ndev, int cards_found)
  3231. {
  3232. struct ql_adapter *qdev = netdev_priv(ndev);
  3233. int pos, err = 0;
  3234. u16 val16;
  3235. memset((void *)qdev, 0, sizeof(qdev));
  3236. err = pci_enable_device(pdev);
  3237. if (err) {
  3238. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3239. return err;
  3240. }
  3241. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3242. if (pos <= 0) {
  3243. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3244. "aborting.\n");
  3245. goto err_out;
  3246. } else {
  3247. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3248. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3249. val16 |= (PCI_EXP_DEVCTL_CERE |
  3250. PCI_EXP_DEVCTL_NFERE |
  3251. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3252. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3253. }
  3254. err = pci_request_regions(pdev, DRV_NAME);
  3255. if (err) {
  3256. dev_err(&pdev->dev, "PCI region request failed.\n");
  3257. goto err_out;
  3258. }
  3259. pci_set_master(pdev);
  3260. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3261. set_bit(QL_DMA64, &qdev->flags);
  3262. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3263. } else {
  3264. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3265. if (!err)
  3266. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3267. }
  3268. if (err) {
  3269. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3270. goto err_out;
  3271. }
  3272. pci_set_drvdata(pdev, ndev);
  3273. qdev->reg_base =
  3274. ioremap_nocache(pci_resource_start(pdev, 1),
  3275. pci_resource_len(pdev, 1));
  3276. if (!qdev->reg_base) {
  3277. dev_err(&pdev->dev, "Register mapping failed.\n");
  3278. err = -ENOMEM;
  3279. goto err_out;
  3280. }
  3281. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3282. qdev->doorbell_area =
  3283. ioremap_nocache(pci_resource_start(pdev, 3),
  3284. pci_resource_len(pdev, 3));
  3285. if (!qdev->doorbell_area) {
  3286. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3287. err = -ENOMEM;
  3288. goto err_out;
  3289. }
  3290. ql_get_board_info(qdev);
  3291. qdev->ndev = ndev;
  3292. qdev->pdev = pdev;
  3293. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3294. spin_lock_init(&qdev->hw_lock);
  3295. spin_lock_init(&qdev->stats_lock);
  3296. /* make sure the EEPROM is good */
  3297. err = ql_get_flash_params(qdev);
  3298. if (err) {
  3299. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3300. goto err_out;
  3301. }
  3302. if (!is_valid_ether_addr(qdev->flash.mac_addr))
  3303. goto err_out;
  3304. memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
  3305. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3306. /* Set up the default ring sizes. */
  3307. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3308. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3309. /* Set up the coalescing parameters. */
  3310. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3311. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3312. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3313. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3314. /*
  3315. * Set up the operating parameters.
  3316. */
  3317. qdev->rx_csum = 1;
  3318. qdev->q_workqueue = create_workqueue(ndev->name);
  3319. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3320. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3321. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3322. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3323. if (!cards_found) {
  3324. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3325. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3326. DRV_NAME, DRV_VERSION);
  3327. }
  3328. return 0;
  3329. err_out:
  3330. ql_release_all(pdev);
  3331. pci_disable_device(pdev);
  3332. return err;
  3333. }
  3334. static const struct net_device_ops qlge_netdev_ops = {
  3335. .ndo_open = qlge_open,
  3336. .ndo_stop = qlge_close,
  3337. .ndo_start_xmit = qlge_send,
  3338. .ndo_change_mtu = qlge_change_mtu,
  3339. .ndo_get_stats = qlge_get_stats,
  3340. .ndo_set_multicast_list = qlge_set_multicast_list,
  3341. .ndo_set_mac_address = qlge_set_mac_address,
  3342. .ndo_validate_addr = eth_validate_addr,
  3343. .ndo_tx_timeout = qlge_tx_timeout,
  3344. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3345. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3346. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3347. };
  3348. static int __devinit qlge_probe(struct pci_dev *pdev,
  3349. const struct pci_device_id *pci_entry)
  3350. {
  3351. struct net_device *ndev = NULL;
  3352. struct ql_adapter *qdev = NULL;
  3353. static int cards_found = 0;
  3354. int err = 0;
  3355. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3356. if (!ndev)
  3357. return -ENOMEM;
  3358. err = ql_init_device(pdev, ndev, cards_found);
  3359. if (err < 0) {
  3360. free_netdev(ndev);
  3361. return err;
  3362. }
  3363. qdev = netdev_priv(ndev);
  3364. SET_NETDEV_DEV(ndev, &pdev->dev);
  3365. ndev->features = (0
  3366. | NETIF_F_IP_CSUM
  3367. | NETIF_F_SG
  3368. | NETIF_F_TSO
  3369. | NETIF_F_TSO6
  3370. | NETIF_F_TSO_ECN
  3371. | NETIF_F_HW_VLAN_TX
  3372. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3373. if (test_bit(QL_DMA64, &qdev->flags))
  3374. ndev->features |= NETIF_F_HIGHDMA;
  3375. /*
  3376. * Set up net_device structure.
  3377. */
  3378. ndev->tx_queue_len = qdev->tx_ring_size;
  3379. ndev->irq = pdev->irq;
  3380. ndev->netdev_ops = &qlge_netdev_ops;
  3381. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3382. ndev->watchdog_timeo = 10 * HZ;
  3383. err = register_netdev(ndev);
  3384. if (err) {
  3385. dev_err(&pdev->dev, "net device registration failed.\n");
  3386. ql_release_all(pdev);
  3387. pci_disable_device(pdev);
  3388. return err;
  3389. }
  3390. netif_carrier_off(ndev);
  3391. netif_stop_queue(ndev);
  3392. ql_display_dev_info(ndev);
  3393. cards_found++;
  3394. return 0;
  3395. }
  3396. static void __devexit qlge_remove(struct pci_dev *pdev)
  3397. {
  3398. struct net_device *ndev = pci_get_drvdata(pdev);
  3399. unregister_netdev(ndev);
  3400. ql_release_all(pdev);
  3401. pci_disable_device(pdev);
  3402. free_netdev(ndev);
  3403. }
  3404. /*
  3405. * This callback is called by the PCI subsystem whenever
  3406. * a PCI bus error is detected.
  3407. */
  3408. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3409. enum pci_channel_state state)
  3410. {
  3411. struct net_device *ndev = pci_get_drvdata(pdev);
  3412. struct ql_adapter *qdev = netdev_priv(ndev);
  3413. if (netif_running(ndev))
  3414. ql_adapter_down(qdev);
  3415. pci_disable_device(pdev);
  3416. /* Request a slot reset. */
  3417. return PCI_ERS_RESULT_NEED_RESET;
  3418. }
  3419. /*
  3420. * This callback is called after the PCI buss has been reset.
  3421. * Basically, this tries to restart the card from scratch.
  3422. * This is a shortened version of the device probe/discovery code,
  3423. * it resembles the first-half of the () routine.
  3424. */
  3425. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3426. {
  3427. struct net_device *ndev = pci_get_drvdata(pdev);
  3428. struct ql_adapter *qdev = netdev_priv(ndev);
  3429. if (pci_enable_device(pdev)) {
  3430. QPRINTK(qdev, IFUP, ERR,
  3431. "Cannot re-enable PCI device after reset.\n");
  3432. return PCI_ERS_RESULT_DISCONNECT;
  3433. }
  3434. pci_set_master(pdev);
  3435. netif_carrier_off(ndev);
  3436. netif_stop_queue(ndev);
  3437. ql_adapter_reset(qdev);
  3438. /* Make sure the EEPROM is good */
  3439. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3440. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3441. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3442. return PCI_ERS_RESULT_DISCONNECT;
  3443. }
  3444. return PCI_ERS_RESULT_RECOVERED;
  3445. }
  3446. static void qlge_io_resume(struct pci_dev *pdev)
  3447. {
  3448. struct net_device *ndev = pci_get_drvdata(pdev);
  3449. struct ql_adapter *qdev = netdev_priv(ndev);
  3450. pci_set_master(pdev);
  3451. if (netif_running(ndev)) {
  3452. if (ql_adapter_up(qdev)) {
  3453. QPRINTK(qdev, IFUP, ERR,
  3454. "Device initialization failed after reset.\n");
  3455. return;
  3456. }
  3457. }
  3458. netif_device_attach(ndev);
  3459. }
  3460. static struct pci_error_handlers qlge_err_handler = {
  3461. .error_detected = qlge_io_error_detected,
  3462. .slot_reset = qlge_io_slot_reset,
  3463. .resume = qlge_io_resume,
  3464. };
  3465. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3466. {
  3467. struct net_device *ndev = pci_get_drvdata(pdev);
  3468. struct ql_adapter *qdev = netdev_priv(ndev);
  3469. int err, i;
  3470. netif_device_detach(ndev);
  3471. if (netif_running(ndev)) {
  3472. err = ql_adapter_down(qdev);
  3473. if (!err)
  3474. return err;
  3475. }
  3476. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  3477. netif_napi_del(&qdev->rx_ring[i].napi);
  3478. err = pci_save_state(pdev);
  3479. if (err)
  3480. return err;
  3481. pci_disable_device(pdev);
  3482. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3483. return 0;
  3484. }
  3485. #ifdef CONFIG_PM
  3486. static int qlge_resume(struct pci_dev *pdev)
  3487. {
  3488. struct net_device *ndev = pci_get_drvdata(pdev);
  3489. struct ql_adapter *qdev = netdev_priv(ndev);
  3490. int err;
  3491. pci_set_power_state(pdev, PCI_D0);
  3492. pci_restore_state(pdev);
  3493. err = pci_enable_device(pdev);
  3494. if (err) {
  3495. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3496. return err;
  3497. }
  3498. pci_set_master(pdev);
  3499. pci_enable_wake(pdev, PCI_D3hot, 0);
  3500. pci_enable_wake(pdev, PCI_D3cold, 0);
  3501. if (netif_running(ndev)) {
  3502. err = ql_adapter_up(qdev);
  3503. if (err)
  3504. return err;
  3505. }
  3506. netif_device_attach(ndev);
  3507. return 0;
  3508. }
  3509. #endif /* CONFIG_PM */
  3510. static void qlge_shutdown(struct pci_dev *pdev)
  3511. {
  3512. qlge_suspend(pdev, PMSG_SUSPEND);
  3513. }
  3514. static struct pci_driver qlge_driver = {
  3515. .name = DRV_NAME,
  3516. .id_table = qlge_pci_tbl,
  3517. .probe = qlge_probe,
  3518. .remove = __devexit_p(qlge_remove),
  3519. #ifdef CONFIG_PM
  3520. .suspend = qlge_suspend,
  3521. .resume = qlge_resume,
  3522. #endif
  3523. .shutdown = qlge_shutdown,
  3524. .err_handler = &qlge_err_handler
  3525. };
  3526. static int __init qlge_init_module(void)
  3527. {
  3528. return pci_register_driver(&qlge_driver);
  3529. }
  3530. static void __exit qlge_exit(void)
  3531. {
  3532. pci_unregister_driver(&qlge_driver);
  3533. }
  3534. module_init(qlge_init_module);
  3535. module_exit(qlge_exit);