niu.c 212 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/io.h>
  25. #ifdef CONFIG_SPARC64
  26. #include <linux/of_device.h>
  27. #endif
  28. #include "niu.h"
  29. #define DRV_MODULE_NAME "niu"
  30. #define PFX DRV_MODULE_NAME ": "
  31. #define DRV_MODULE_VERSION "1.0"
  32. #define DRV_MODULE_RELDATE "Nov 14, 2008"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef DMA_44BIT_MASK
  40. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  41. #endif
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  46. }
  47. static void writeq(u64 val, void __iomem *reg)
  48. {
  49. writel(val & 0xffffffff, reg);
  50. writel(val >> 32, reg + 0x4UL);
  51. }
  52. #endif
  53. static struct pci_device_id niu_pci_tbl[] = {
  54. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  55. {}
  56. };
  57. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  58. #define NIU_TX_TIMEOUT (5 * HZ)
  59. #define nr64(reg) readq(np->regs + (reg))
  60. #define nw64(reg, val) writeq((val), np->regs + (reg))
  61. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  62. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  63. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  64. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  65. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  66. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  67. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  68. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  69. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  70. static int niu_debug;
  71. static int debug = -1;
  72. module_param(debug, int, 0);
  73. MODULE_PARM_DESC(debug, "NIU debug level");
  74. #define niudbg(TYPE, f, a...) \
  75. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  76. printk(KERN_DEBUG PFX f, ## a); \
  77. } while (0)
  78. #define niuinfo(TYPE, f, a...) \
  79. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  80. printk(KERN_INFO PFX f, ## a); \
  81. } while (0)
  82. #define niuwarn(TYPE, f, a...) \
  83. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  84. printk(KERN_WARNING PFX f, ## a); \
  85. } while (0)
  86. #define niu_lock_parent(np, flags) \
  87. spin_lock_irqsave(&np->parent->lock, flags)
  88. #define niu_unlock_parent(np, flags) \
  89. spin_unlock_irqrestore(&np->parent->lock, flags)
  90. static int serdes_init_10g_serdes(struct niu *np);
  91. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay)
  93. {
  94. while (--limit >= 0) {
  95. u64 val = nr64_mac(reg);
  96. if (!(val & bits))
  97. break;
  98. udelay(delay);
  99. }
  100. if (limit < 0)
  101. return -ENODEV;
  102. return 0;
  103. }
  104. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  105. u64 bits, int limit, int delay,
  106. const char *reg_name)
  107. {
  108. int err;
  109. nw64_mac(reg, bits);
  110. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  111. if (err)
  112. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  113. "would not clear, val[%llx]\n",
  114. np->dev->name, (unsigned long long) bits, reg_name,
  115. (unsigned long long) nr64_mac(reg));
  116. return err;
  117. }
  118. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  119. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  120. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  121. })
  122. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay)
  124. {
  125. while (--limit >= 0) {
  126. u64 val = nr64_ipp(reg);
  127. if (!(val & bits))
  128. break;
  129. udelay(delay);
  130. }
  131. if (limit < 0)
  132. return -ENODEV;
  133. return 0;
  134. }
  135. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  136. u64 bits, int limit, int delay,
  137. const char *reg_name)
  138. {
  139. int err;
  140. u64 val;
  141. val = nr64_ipp(reg);
  142. val |= bits;
  143. nw64_ipp(reg, val);
  144. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  145. if (err)
  146. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  147. "would not clear, val[%llx]\n",
  148. np->dev->name, (unsigned long long) bits, reg_name,
  149. (unsigned long long) nr64_ipp(reg));
  150. return err;
  151. }
  152. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  153. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  154. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  155. })
  156. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  157. u64 bits, int limit, int delay)
  158. {
  159. while (--limit >= 0) {
  160. u64 val = nr64(reg);
  161. if (!(val & bits))
  162. break;
  163. udelay(delay);
  164. }
  165. if (limit < 0)
  166. return -ENODEV;
  167. return 0;
  168. }
  169. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  170. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  171. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  172. })
  173. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  174. u64 bits, int limit, int delay,
  175. const char *reg_name)
  176. {
  177. int err;
  178. nw64(reg, bits);
  179. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  180. if (err)
  181. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  182. "would not clear, val[%llx]\n",
  183. np->dev->name, (unsigned long long) bits, reg_name,
  184. (unsigned long long) nr64(reg));
  185. return err;
  186. }
  187. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  188. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  189. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  190. })
  191. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  192. {
  193. u64 val = (u64) lp->timer;
  194. if (on)
  195. val |= LDG_IMGMT_ARM;
  196. nw64(LDG_IMGMT(lp->ldg_num), val);
  197. }
  198. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  199. {
  200. unsigned long mask_reg, bits;
  201. u64 val;
  202. if (ldn < 0 || ldn > LDN_MAX)
  203. return -EINVAL;
  204. if (ldn < 64) {
  205. mask_reg = LD_IM0(ldn);
  206. bits = LD_IM0_MASK;
  207. } else {
  208. mask_reg = LD_IM1(ldn - 64);
  209. bits = LD_IM1_MASK;
  210. }
  211. val = nr64(mask_reg);
  212. if (on)
  213. val &= ~bits;
  214. else
  215. val |= bits;
  216. nw64(mask_reg, val);
  217. return 0;
  218. }
  219. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  220. {
  221. struct niu_parent *parent = np->parent;
  222. int i;
  223. for (i = 0; i <= LDN_MAX; i++) {
  224. int err;
  225. if (parent->ldg_map[i] != lp->ldg_num)
  226. continue;
  227. err = niu_ldn_irq_enable(np, i, on);
  228. if (err)
  229. return err;
  230. }
  231. return 0;
  232. }
  233. static int niu_enable_interrupts(struct niu *np, int on)
  234. {
  235. int i;
  236. for (i = 0; i < np->num_ldg; i++) {
  237. struct niu_ldg *lp = &np->ldg[i];
  238. int err;
  239. err = niu_enable_ldn_in_ldg(np, lp, on);
  240. if (err)
  241. return err;
  242. }
  243. for (i = 0; i < np->num_ldg; i++)
  244. niu_ldg_rearm(np, &np->ldg[i], on);
  245. return 0;
  246. }
  247. static u32 phy_encode(u32 type, int port)
  248. {
  249. return (type << (port * 2));
  250. }
  251. static u32 phy_decode(u32 val, int port)
  252. {
  253. return (val >> (port * 2)) & PORT_TYPE_MASK;
  254. }
  255. static int mdio_wait(struct niu *np)
  256. {
  257. int limit = 1000;
  258. u64 val;
  259. while (--limit > 0) {
  260. val = nr64(MIF_FRAME_OUTPUT);
  261. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  262. return val & MIF_FRAME_OUTPUT_DATA;
  263. udelay(10);
  264. }
  265. return -ENODEV;
  266. }
  267. static int mdio_read(struct niu *np, int port, int dev, int reg)
  268. {
  269. int err;
  270. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  271. err = mdio_wait(np);
  272. if (err < 0)
  273. return err;
  274. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  275. return mdio_wait(np);
  276. }
  277. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  278. {
  279. int err;
  280. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  281. err = mdio_wait(np);
  282. if (err < 0)
  283. return err;
  284. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  285. err = mdio_wait(np);
  286. if (err < 0)
  287. return err;
  288. return 0;
  289. }
  290. static int mii_read(struct niu *np, int port, int reg)
  291. {
  292. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  293. return mdio_wait(np);
  294. }
  295. static int mii_write(struct niu *np, int port, int reg, int data)
  296. {
  297. int err;
  298. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  299. err = mdio_wait(np);
  300. if (err < 0)
  301. return err;
  302. return 0;
  303. }
  304. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  305. {
  306. int err;
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_TX_CFG_L(channel),
  309. val & 0xffff);
  310. if (!err)
  311. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  312. ESR2_TI_PLL_TX_CFG_H(channel),
  313. val >> 16);
  314. return err;
  315. }
  316. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  317. {
  318. int err;
  319. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  320. ESR2_TI_PLL_RX_CFG_L(channel),
  321. val & 0xffff);
  322. if (!err)
  323. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  324. ESR2_TI_PLL_RX_CFG_H(channel),
  325. val >> 16);
  326. return err;
  327. }
  328. /* Mode is always 10G fiber. */
  329. static int serdes_init_niu_10g_fiber(struct niu *np)
  330. {
  331. struct niu_link_config *lp = &np->link_config;
  332. u32 tx_cfg, rx_cfg;
  333. unsigned long i;
  334. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  335. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  336. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  337. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  338. if (lp->loopback_mode == LOOPBACK_PHY) {
  339. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  340. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  341. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  342. tx_cfg |= PLL_TX_CFG_ENTEST;
  343. rx_cfg |= PLL_RX_CFG_ENTEST;
  344. }
  345. /* Initialize all 4 lanes of the SERDES. */
  346. for (i = 0; i < 4; i++) {
  347. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  348. if (err)
  349. return err;
  350. }
  351. for (i = 0; i < 4; i++) {
  352. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  353. if (err)
  354. return err;
  355. }
  356. return 0;
  357. }
  358. static int serdes_init_niu_1g_serdes(struct niu *np)
  359. {
  360. struct niu_link_config *lp = &np->link_config;
  361. u16 pll_cfg, pll_sts;
  362. int max_retry = 100;
  363. u64 uninitialized_var(sig), mask, val;
  364. u32 tx_cfg, rx_cfg;
  365. unsigned long i;
  366. int err;
  367. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  368. PLL_TX_CFG_RATE_HALF);
  369. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  370. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  371. PLL_RX_CFG_RATE_HALF);
  372. if (np->port == 0)
  373. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  374. if (lp->loopback_mode == LOOPBACK_PHY) {
  375. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  376. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  377. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  378. tx_cfg |= PLL_TX_CFG_ENTEST;
  379. rx_cfg |= PLL_RX_CFG_ENTEST;
  380. }
  381. /* Initialize PLL for 1G */
  382. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  383. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  384. ESR2_TI_PLL_CFG_L, pll_cfg);
  385. if (err) {
  386. dev_err(np->device, PFX "NIU Port %d "
  387. "serdes_init_niu_1g_serdes: "
  388. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  389. return err;
  390. }
  391. pll_sts = PLL_CFG_ENPLL;
  392. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  393. ESR2_TI_PLL_STS_L, pll_sts);
  394. if (err) {
  395. dev_err(np->device, PFX "NIU Port %d "
  396. "serdes_init_niu_1g_serdes: "
  397. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  398. return err;
  399. }
  400. udelay(200);
  401. /* Initialize all 4 lanes of the SERDES. */
  402. for (i = 0; i < 4; i++) {
  403. err = esr2_set_tx_cfg(np, i, tx_cfg);
  404. if (err)
  405. return err;
  406. }
  407. for (i = 0; i < 4; i++) {
  408. err = esr2_set_rx_cfg(np, i, rx_cfg);
  409. if (err)
  410. return err;
  411. }
  412. switch (np->port) {
  413. case 0:
  414. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  415. mask = val;
  416. break;
  417. case 1:
  418. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  419. mask = val;
  420. break;
  421. default:
  422. return -EINVAL;
  423. }
  424. while (max_retry--) {
  425. sig = nr64(ESR_INT_SIGNALS);
  426. if ((sig & mask) == val)
  427. break;
  428. mdelay(500);
  429. }
  430. if ((sig & mask) != val) {
  431. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  432. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  433. return -ENODEV;
  434. }
  435. return 0;
  436. }
  437. static int serdes_init_niu_10g_serdes(struct niu *np)
  438. {
  439. struct niu_link_config *lp = &np->link_config;
  440. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  441. int max_retry = 100;
  442. u64 uninitialized_var(sig), mask, val;
  443. unsigned long i;
  444. int err;
  445. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  446. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  447. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  448. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  449. if (lp->loopback_mode == LOOPBACK_PHY) {
  450. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  451. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  452. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  453. tx_cfg |= PLL_TX_CFG_ENTEST;
  454. rx_cfg |= PLL_RX_CFG_ENTEST;
  455. }
  456. /* Initialize PLL for 10G */
  457. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  458. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  459. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  460. if (err) {
  461. dev_err(np->device, PFX "NIU Port %d "
  462. "serdes_init_niu_10g_serdes: "
  463. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  464. return err;
  465. }
  466. pll_sts = PLL_CFG_ENPLL;
  467. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  468. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  469. if (err) {
  470. dev_err(np->device, PFX "NIU Port %d "
  471. "serdes_init_niu_10g_serdes: "
  472. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  473. return err;
  474. }
  475. udelay(200);
  476. /* Initialize all 4 lanes of the SERDES. */
  477. for (i = 0; i < 4; i++) {
  478. err = esr2_set_tx_cfg(np, i, tx_cfg);
  479. if (err)
  480. return err;
  481. }
  482. for (i = 0; i < 4; i++) {
  483. err = esr2_set_rx_cfg(np, i, rx_cfg);
  484. if (err)
  485. return err;
  486. }
  487. /* check if serdes is ready */
  488. switch (np->port) {
  489. case 0:
  490. mask = ESR_INT_SIGNALS_P0_BITS;
  491. val = (ESR_INT_SRDY0_P0 |
  492. ESR_INT_DET0_P0 |
  493. ESR_INT_XSRDY_P0 |
  494. ESR_INT_XDP_P0_CH3 |
  495. ESR_INT_XDP_P0_CH2 |
  496. ESR_INT_XDP_P0_CH1 |
  497. ESR_INT_XDP_P0_CH0);
  498. break;
  499. case 1:
  500. mask = ESR_INT_SIGNALS_P1_BITS;
  501. val = (ESR_INT_SRDY0_P1 |
  502. ESR_INT_DET0_P1 |
  503. ESR_INT_XSRDY_P1 |
  504. ESR_INT_XDP_P1_CH3 |
  505. ESR_INT_XDP_P1_CH2 |
  506. ESR_INT_XDP_P1_CH1 |
  507. ESR_INT_XDP_P1_CH0);
  508. break;
  509. default:
  510. return -EINVAL;
  511. }
  512. while (max_retry--) {
  513. sig = nr64(ESR_INT_SIGNALS);
  514. if ((sig & mask) == val)
  515. break;
  516. mdelay(500);
  517. }
  518. if ((sig & mask) != val) {
  519. pr_info(PFX "NIU Port %u signal bits [%08x] are not "
  520. "[%08x] for 10G...trying 1G\n",
  521. np->port, (int) (sig & mask), (int) val);
  522. /* 10G failed, try initializing at 1G */
  523. err = serdes_init_niu_1g_serdes(np);
  524. if (!err) {
  525. np->flags &= ~NIU_FLAGS_10G;
  526. np->mac_xcvr = MAC_XCVR_PCS;
  527. } else {
  528. dev_err(np->device, PFX "Port %u 10G/1G SERDES "
  529. "Link Failed \n", np->port);
  530. return -ENODEV;
  531. }
  532. }
  533. return 0;
  534. }
  535. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  536. {
  537. int err;
  538. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  539. if (err >= 0) {
  540. *val = (err & 0xffff);
  541. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  542. ESR_RXTX_CTRL_H(chan));
  543. if (err >= 0)
  544. *val |= ((err & 0xffff) << 16);
  545. err = 0;
  546. }
  547. return err;
  548. }
  549. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  550. {
  551. int err;
  552. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  553. ESR_GLUE_CTRL0_L(chan));
  554. if (err >= 0) {
  555. *val = (err & 0xffff);
  556. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  557. ESR_GLUE_CTRL0_H(chan));
  558. if (err >= 0) {
  559. *val |= ((err & 0xffff) << 16);
  560. err = 0;
  561. }
  562. }
  563. return err;
  564. }
  565. static int esr_read_reset(struct niu *np, u32 *val)
  566. {
  567. int err;
  568. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  569. ESR_RXTX_RESET_CTRL_L);
  570. if (err >= 0) {
  571. *val = (err & 0xffff);
  572. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  573. ESR_RXTX_RESET_CTRL_H);
  574. if (err >= 0) {
  575. *val |= ((err & 0xffff) << 16);
  576. err = 0;
  577. }
  578. }
  579. return err;
  580. }
  581. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  582. {
  583. int err;
  584. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  585. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  586. if (!err)
  587. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  588. ESR_RXTX_CTRL_H(chan), (val >> 16));
  589. return err;
  590. }
  591. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  592. {
  593. int err;
  594. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  595. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  596. if (!err)
  597. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  598. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  599. return err;
  600. }
  601. static int esr_reset(struct niu *np)
  602. {
  603. u32 uninitialized_var(reset);
  604. int err;
  605. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  606. ESR_RXTX_RESET_CTRL_L, 0x0000);
  607. if (err)
  608. return err;
  609. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  610. ESR_RXTX_RESET_CTRL_H, 0xffff);
  611. if (err)
  612. return err;
  613. udelay(200);
  614. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  615. ESR_RXTX_RESET_CTRL_L, 0xffff);
  616. if (err)
  617. return err;
  618. udelay(200);
  619. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  620. ESR_RXTX_RESET_CTRL_H, 0x0000);
  621. if (err)
  622. return err;
  623. udelay(200);
  624. err = esr_read_reset(np, &reset);
  625. if (err)
  626. return err;
  627. if (reset != 0) {
  628. dev_err(np->device, PFX "Port %u ESR_RESET "
  629. "did not clear [%08x]\n",
  630. np->port, reset);
  631. return -ENODEV;
  632. }
  633. return 0;
  634. }
  635. static int serdes_init_10g(struct niu *np)
  636. {
  637. struct niu_link_config *lp = &np->link_config;
  638. unsigned long ctrl_reg, test_cfg_reg, i;
  639. u64 ctrl_val, test_cfg_val, sig, mask, val;
  640. int err;
  641. switch (np->port) {
  642. case 0:
  643. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  644. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  645. break;
  646. case 1:
  647. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  648. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  649. break;
  650. default:
  651. return -EINVAL;
  652. }
  653. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  654. ENET_SERDES_CTRL_SDET_1 |
  655. ENET_SERDES_CTRL_SDET_2 |
  656. ENET_SERDES_CTRL_SDET_3 |
  657. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  658. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  659. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  660. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  661. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  662. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  663. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  664. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  665. test_cfg_val = 0;
  666. if (lp->loopback_mode == LOOPBACK_PHY) {
  667. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  668. ENET_SERDES_TEST_MD_0_SHIFT) |
  669. (ENET_TEST_MD_PAD_LOOPBACK <<
  670. ENET_SERDES_TEST_MD_1_SHIFT) |
  671. (ENET_TEST_MD_PAD_LOOPBACK <<
  672. ENET_SERDES_TEST_MD_2_SHIFT) |
  673. (ENET_TEST_MD_PAD_LOOPBACK <<
  674. ENET_SERDES_TEST_MD_3_SHIFT));
  675. }
  676. nw64(ctrl_reg, ctrl_val);
  677. nw64(test_cfg_reg, test_cfg_val);
  678. /* Initialize all 4 lanes of the SERDES. */
  679. for (i = 0; i < 4; i++) {
  680. u32 rxtx_ctrl, glue0;
  681. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  682. if (err)
  683. return err;
  684. err = esr_read_glue0(np, i, &glue0);
  685. if (err)
  686. return err;
  687. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  688. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  689. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  690. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  691. ESR_GLUE_CTRL0_THCNT |
  692. ESR_GLUE_CTRL0_BLTIME);
  693. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  694. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  695. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  696. (BLTIME_300_CYCLES <<
  697. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  698. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  699. if (err)
  700. return err;
  701. err = esr_write_glue0(np, i, glue0);
  702. if (err)
  703. return err;
  704. }
  705. err = esr_reset(np);
  706. if (err)
  707. return err;
  708. sig = nr64(ESR_INT_SIGNALS);
  709. switch (np->port) {
  710. case 0:
  711. mask = ESR_INT_SIGNALS_P0_BITS;
  712. val = (ESR_INT_SRDY0_P0 |
  713. ESR_INT_DET0_P0 |
  714. ESR_INT_XSRDY_P0 |
  715. ESR_INT_XDP_P0_CH3 |
  716. ESR_INT_XDP_P0_CH2 |
  717. ESR_INT_XDP_P0_CH1 |
  718. ESR_INT_XDP_P0_CH0);
  719. break;
  720. case 1:
  721. mask = ESR_INT_SIGNALS_P1_BITS;
  722. val = (ESR_INT_SRDY0_P1 |
  723. ESR_INT_DET0_P1 |
  724. ESR_INT_XSRDY_P1 |
  725. ESR_INT_XDP_P1_CH3 |
  726. ESR_INT_XDP_P1_CH2 |
  727. ESR_INT_XDP_P1_CH1 |
  728. ESR_INT_XDP_P1_CH0);
  729. break;
  730. default:
  731. return -EINVAL;
  732. }
  733. if ((sig & mask) != val) {
  734. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  735. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  736. return 0;
  737. }
  738. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  739. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  740. return -ENODEV;
  741. }
  742. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  743. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  744. return 0;
  745. }
  746. static int serdes_init_1g(struct niu *np)
  747. {
  748. u64 val;
  749. val = nr64(ENET_SERDES_1_PLL_CFG);
  750. val &= ~ENET_SERDES_PLL_FBDIV2;
  751. switch (np->port) {
  752. case 0:
  753. val |= ENET_SERDES_PLL_HRATE0;
  754. break;
  755. case 1:
  756. val |= ENET_SERDES_PLL_HRATE1;
  757. break;
  758. case 2:
  759. val |= ENET_SERDES_PLL_HRATE2;
  760. break;
  761. case 3:
  762. val |= ENET_SERDES_PLL_HRATE3;
  763. break;
  764. default:
  765. return -EINVAL;
  766. }
  767. nw64(ENET_SERDES_1_PLL_CFG, val);
  768. return 0;
  769. }
  770. static int serdes_init_1g_serdes(struct niu *np)
  771. {
  772. struct niu_link_config *lp = &np->link_config;
  773. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  774. u64 ctrl_val, test_cfg_val, sig, mask, val;
  775. int err;
  776. u64 reset_val, val_rd;
  777. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  778. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  779. ENET_SERDES_PLL_FBDIV0;
  780. switch (np->port) {
  781. case 0:
  782. reset_val = ENET_SERDES_RESET_0;
  783. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  784. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  785. pll_cfg = ENET_SERDES_0_PLL_CFG;
  786. break;
  787. case 1:
  788. reset_val = ENET_SERDES_RESET_1;
  789. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  790. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  791. pll_cfg = ENET_SERDES_1_PLL_CFG;
  792. break;
  793. default:
  794. return -EINVAL;
  795. }
  796. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  797. ENET_SERDES_CTRL_SDET_1 |
  798. ENET_SERDES_CTRL_SDET_2 |
  799. ENET_SERDES_CTRL_SDET_3 |
  800. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  801. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  802. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  803. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  804. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  805. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  806. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  807. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  808. test_cfg_val = 0;
  809. if (lp->loopback_mode == LOOPBACK_PHY) {
  810. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  811. ENET_SERDES_TEST_MD_0_SHIFT) |
  812. (ENET_TEST_MD_PAD_LOOPBACK <<
  813. ENET_SERDES_TEST_MD_1_SHIFT) |
  814. (ENET_TEST_MD_PAD_LOOPBACK <<
  815. ENET_SERDES_TEST_MD_2_SHIFT) |
  816. (ENET_TEST_MD_PAD_LOOPBACK <<
  817. ENET_SERDES_TEST_MD_3_SHIFT));
  818. }
  819. nw64(ENET_SERDES_RESET, reset_val);
  820. mdelay(20);
  821. val_rd = nr64(ENET_SERDES_RESET);
  822. val_rd &= ~reset_val;
  823. nw64(pll_cfg, val);
  824. nw64(ctrl_reg, ctrl_val);
  825. nw64(test_cfg_reg, test_cfg_val);
  826. nw64(ENET_SERDES_RESET, val_rd);
  827. mdelay(2000);
  828. /* Initialize all 4 lanes of the SERDES. */
  829. for (i = 0; i < 4; i++) {
  830. u32 rxtx_ctrl, glue0;
  831. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  832. if (err)
  833. return err;
  834. err = esr_read_glue0(np, i, &glue0);
  835. if (err)
  836. return err;
  837. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  838. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  839. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  840. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  841. ESR_GLUE_CTRL0_THCNT |
  842. ESR_GLUE_CTRL0_BLTIME);
  843. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  844. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  845. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  846. (BLTIME_300_CYCLES <<
  847. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  848. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  849. if (err)
  850. return err;
  851. err = esr_write_glue0(np, i, glue0);
  852. if (err)
  853. return err;
  854. }
  855. sig = nr64(ESR_INT_SIGNALS);
  856. switch (np->port) {
  857. case 0:
  858. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  859. mask = val;
  860. break;
  861. case 1:
  862. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  863. mask = val;
  864. break;
  865. default:
  866. return -EINVAL;
  867. }
  868. if ((sig & mask) != val) {
  869. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  870. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  871. return -ENODEV;
  872. }
  873. return 0;
  874. }
  875. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  876. {
  877. struct niu_link_config *lp = &np->link_config;
  878. int link_up;
  879. u64 val;
  880. u16 current_speed;
  881. unsigned long flags;
  882. u8 current_duplex;
  883. link_up = 0;
  884. current_speed = SPEED_INVALID;
  885. current_duplex = DUPLEX_INVALID;
  886. spin_lock_irqsave(&np->lock, flags);
  887. val = nr64_pcs(PCS_MII_STAT);
  888. if (val & PCS_MII_STAT_LINK_STATUS) {
  889. link_up = 1;
  890. current_speed = SPEED_1000;
  891. current_duplex = DUPLEX_FULL;
  892. }
  893. lp->active_speed = current_speed;
  894. lp->active_duplex = current_duplex;
  895. spin_unlock_irqrestore(&np->lock, flags);
  896. *link_up_p = link_up;
  897. return 0;
  898. }
  899. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  900. {
  901. unsigned long flags;
  902. struct niu_link_config *lp = &np->link_config;
  903. int link_up = 0;
  904. int link_ok = 1;
  905. u64 val, val2;
  906. u16 current_speed;
  907. u8 current_duplex;
  908. if (!(np->flags & NIU_FLAGS_10G))
  909. return link_status_1g_serdes(np, link_up_p);
  910. current_speed = SPEED_INVALID;
  911. current_duplex = DUPLEX_INVALID;
  912. spin_lock_irqsave(&np->lock, flags);
  913. val = nr64_xpcs(XPCS_STATUS(0));
  914. val2 = nr64_mac(XMAC_INTER2);
  915. if (val2 & 0x01000000)
  916. link_ok = 0;
  917. if ((val & 0x1000ULL) && link_ok) {
  918. link_up = 1;
  919. current_speed = SPEED_10000;
  920. current_duplex = DUPLEX_FULL;
  921. }
  922. lp->active_speed = current_speed;
  923. lp->active_duplex = current_duplex;
  924. spin_unlock_irqrestore(&np->lock, flags);
  925. *link_up_p = link_up;
  926. return 0;
  927. }
  928. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  929. {
  930. struct niu_link_config *lp = &np->link_config;
  931. u16 current_speed, bmsr;
  932. unsigned long flags;
  933. u8 current_duplex;
  934. int err, link_up;
  935. link_up = 0;
  936. current_speed = SPEED_INVALID;
  937. current_duplex = DUPLEX_INVALID;
  938. spin_lock_irqsave(&np->lock, flags);
  939. err = -EINVAL;
  940. err = mii_read(np, np->phy_addr, MII_BMSR);
  941. if (err < 0)
  942. goto out;
  943. bmsr = err;
  944. if (bmsr & BMSR_LSTATUS) {
  945. u16 adv, lpa, common, estat;
  946. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  947. if (err < 0)
  948. goto out;
  949. adv = err;
  950. err = mii_read(np, np->phy_addr, MII_LPA);
  951. if (err < 0)
  952. goto out;
  953. lpa = err;
  954. common = adv & lpa;
  955. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  956. if (err < 0)
  957. goto out;
  958. estat = err;
  959. link_up = 1;
  960. current_speed = SPEED_1000;
  961. current_duplex = DUPLEX_FULL;
  962. }
  963. lp->active_speed = current_speed;
  964. lp->active_duplex = current_duplex;
  965. err = 0;
  966. out:
  967. spin_unlock_irqrestore(&np->lock, flags);
  968. *link_up_p = link_up;
  969. return err;
  970. }
  971. static int bcm8704_reset(struct niu *np)
  972. {
  973. int err, limit;
  974. err = mdio_read(np, np->phy_addr,
  975. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  976. if (err < 0)
  977. return err;
  978. err |= BMCR_RESET;
  979. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  980. MII_BMCR, err);
  981. if (err)
  982. return err;
  983. limit = 1000;
  984. while (--limit >= 0) {
  985. err = mdio_read(np, np->phy_addr,
  986. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  987. if (err < 0)
  988. return err;
  989. if (!(err & BMCR_RESET))
  990. break;
  991. }
  992. if (limit < 0) {
  993. dev_err(np->device, PFX "Port %u PHY will not reset "
  994. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  995. return -ENODEV;
  996. }
  997. return 0;
  998. }
  999. /* When written, certain PHY registers need to be read back twice
  1000. * in order for the bits to settle properly.
  1001. */
  1002. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1003. {
  1004. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1005. if (err < 0)
  1006. return err;
  1007. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1008. if (err < 0)
  1009. return err;
  1010. return 0;
  1011. }
  1012. static int bcm8706_init_user_dev3(struct niu *np)
  1013. {
  1014. int err;
  1015. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1016. BCM8704_USER_OPT_DIGITAL_CTRL);
  1017. if (err < 0)
  1018. return err;
  1019. err &= ~USER_ODIG_CTRL_GPIOS;
  1020. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1021. err |= USER_ODIG_CTRL_RESV2;
  1022. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1023. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1024. if (err)
  1025. return err;
  1026. mdelay(1000);
  1027. return 0;
  1028. }
  1029. static int bcm8704_init_user_dev3(struct niu *np)
  1030. {
  1031. int err;
  1032. err = mdio_write(np, np->phy_addr,
  1033. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1034. (USER_CONTROL_OPTXRST_LVL |
  1035. USER_CONTROL_OPBIASFLT_LVL |
  1036. USER_CONTROL_OBTMPFLT_LVL |
  1037. USER_CONTROL_OPPRFLT_LVL |
  1038. USER_CONTROL_OPTXFLT_LVL |
  1039. USER_CONTROL_OPRXLOS_LVL |
  1040. USER_CONTROL_OPRXFLT_LVL |
  1041. USER_CONTROL_OPTXON_LVL |
  1042. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1043. if (err)
  1044. return err;
  1045. err = mdio_write(np, np->phy_addr,
  1046. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1047. (USER_PMD_TX_CTL_XFP_CLKEN |
  1048. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1049. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1050. USER_PMD_TX_CTL_TSCK_LPWREN));
  1051. if (err)
  1052. return err;
  1053. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1054. if (err)
  1055. return err;
  1056. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1057. if (err)
  1058. return err;
  1059. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1060. BCM8704_USER_OPT_DIGITAL_CTRL);
  1061. if (err < 0)
  1062. return err;
  1063. err &= ~USER_ODIG_CTRL_GPIOS;
  1064. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1065. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1066. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1067. if (err)
  1068. return err;
  1069. mdelay(1000);
  1070. return 0;
  1071. }
  1072. static int mrvl88x2011_act_led(struct niu *np, int val)
  1073. {
  1074. int err;
  1075. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1076. MRVL88X2011_LED_8_TO_11_CTL);
  1077. if (err < 0)
  1078. return err;
  1079. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1080. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1081. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1082. MRVL88X2011_LED_8_TO_11_CTL, err);
  1083. }
  1084. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1085. {
  1086. int err;
  1087. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1088. MRVL88X2011_LED_BLINK_CTL);
  1089. if (err >= 0) {
  1090. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1091. err |= (rate << 4);
  1092. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1093. MRVL88X2011_LED_BLINK_CTL, err);
  1094. }
  1095. return err;
  1096. }
  1097. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1098. {
  1099. int err;
  1100. /* Set LED functions */
  1101. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1102. if (err)
  1103. return err;
  1104. /* led activity */
  1105. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1106. if (err)
  1107. return err;
  1108. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1109. MRVL88X2011_GENERAL_CTL);
  1110. if (err < 0)
  1111. return err;
  1112. err |= MRVL88X2011_ENA_XFPREFCLK;
  1113. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1114. MRVL88X2011_GENERAL_CTL, err);
  1115. if (err < 0)
  1116. return err;
  1117. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1118. MRVL88X2011_PMA_PMD_CTL_1);
  1119. if (err < 0)
  1120. return err;
  1121. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1122. err |= MRVL88X2011_LOOPBACK;
  1123. else
  1124. err &= ~MRVL88X2011_LOOPBACK;
  1125. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1126. MRVL88X2011_PMA_PMD_CTL_1, err);
  1127. if (err < 0)
  1128. return err;
  1129. /* Enable PMD */
  1130. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1131. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1132. }
  1133. static int xcvr_diag_bcm870x(struct niu *np)
  1134. {
  1135. u16 analog_stat0, tx_alarm_status;
  1136. int err = 0;
  1137. #if 1
  1138. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1139. MII_STAT1000);
  1140. if (err < 0)
  1141. return err;
  1142. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  1143. np->port, err);
  1144. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1145. if (err < 0)
  1146. return err;
  1147. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  1148. np->port, err);
  1149. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1150. MII_NWAYTEST);
  1151. if (err < 0)
  1152. return err;
  1153. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  1154. np->port, err);
  1155. #endif
  1156. /* XXX dig this out it might not be so useful XXX */
  1157. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1158. BCM8704_USER_ANALOG_STATUS0);
  1159. if (err < 0)
  1160. return err;
  1161. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1162. BCM8704_USER_ANALOG_STATUS0);
  1163. if (err < 0)
  1164. return err;
  1165. analog_stat0 = err;
  1166. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1167. BCM8704_USER_TX_ALARM_STATUS);
  1168. if (err < 0)
  1169. return err;
  1170. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1171. BCM8704_USER_TX_ALARM_STATUS);
  1172. if (err < 0)
  1173. return err;
  1174. tx_alarm_status = err;
  1175. if (analog_stat0 != 0x03fc) {
  1176. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1177. pr_info(PFX "Port %u cable not connected "
  1178. "or bad cable.\n", np->port);
  1179. } else if (analog_stat0 == 0x639c) {
  1180. pr_info(PFX "Port %u optical module is bad "
  1181. "or missing.\n", np->port);
  1182. }
  1183. }
  1184. return 0;
  1185. }
  1186. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1187. {
  1188. struct niu_link_config *lp = &np->link_config;
  1189. int err;
  1190. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1191. MII_BMCR);
  1192. if (err < 0)
  1193. return err;
  1194. err &= ~BMCR_LOOPBACK;
  1195. if (lp->loopback_mode == LOOPBACK_MAC)
  1196. err |= BMCR_LOOPBACK;
  1197. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1198. MII_BMCR, err);
  1199. if (err)
  1200. return err;
  1201. return 0;
  1202. }
  1203. static int xcvr_init_10g_bcm8706(struct niu *np)
  1204. {
  1205. int err = 0;
  1206. u64 val;
  1207. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1208. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1209. return err;
  1210. val = nr64_mac(XMAC_CONFIG);
  1211. val &= ~XMAC_CONFIG_LED_POLARITY;
  1212. val |= XMAC_CONFIG_FORCE_LED_ON;
  1213. nw64_mac(XMAC_CONFIG, val);
  1214. val = nr64(MIF_CONFIG);
  1215. val |= MIF_CONFIG_INDIRECT_MODE;
  1216. nw64(MIF_CONFIG, val);
  1217. err = bcm8704_reset(np);
  1218. if (err)
  1219. return err;
  1220. err = xcvr_10g_set_lb_bcm870x(np);
  1221. if (err)
  1222. return err;
  1223. err = bcm8706_init_user_dev3(np);
  1224. if (err)
  1225. return err;
  1226. err = xcvr_diag_bcm870x(np);
  1227. if (err)
  1228. return err;
  1229. return 0;
  1230. }
  1231. static int xcvr_init_10g_bcm8704(struct niu *np)
  1232. {
  1233. int err;
  1234. err = bcm8704_reset(np);
  1235. if (err)
  1236. return err;
  1237. err = bcm8704_init_user_dev3(np);
  1238. if (err)
  1239. return err;
  1240. err = xcvr_10g_set_lb_bcm870x(np);
  1241. if (err)
  1242. return err;
  1243. err = xcvr_diag_bcm870x(np);
  1244. if (err)
  1245. return err;
  1246. return 0;
  1247. }
  1248. static int xcvr_init_10g(struct niu *np)
  1249. {
  1250. int phy_id, err;
  1251. u64 val;
  1252. val = nr64_mac(XMAC_CONFIG);
  1253. val &= ~XMAC_CONFIG_LED_POLARITY;
  1254. val |= XMAC_CONFIG_FORCE_LED_ON;
  1255. nw64_mac(XMAC_CONFIG, val);
  1256. /* XXX shared resource, lock parent XXX */
  1257. val = nr64(MIF_CONFIG);
  1258. val |= MIF_CONFIG_INDIRECT_MODE;
  1259. nw64(MIF_CONFIG, val);
  1260. phy_id = phy_decode(np->parent->port_phy, np->port);
  1261. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1262. /* handle different phy types */
  1263. switch (phy_id & NIU_PHY_ID_MASK) {
  1264. case NIU_PHY_ID_MRVL88X2011:
  1265. err = xcvr_init_10g_mrvl88x2011(np);
  1266. break;
  1267. default: /* bcom 8704 */
  1268. err = xcvr_init_10g_bcm8704(np);
  1269. break;
  1270. }
  1271. return 0;
  1272. }
  1273. static int mii_reset(struct niu *np)
  1274. {
  1275. int limit, err;
  1276. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1277. if (err)
  1278. return err;
  1279. limit = 1000;
  1280. while (--limit >= 0) {
  1281. udelay(500);
  1282. err = mii_read(np, np->phy_addr, MII_BMCR);
  1283. if (err < 0)
  1284. return err;
  1285. if (!(err & BMCR_RESET))
  1286. break;
  1287. }
  1288. if (limit < 0) {
  1289. dev_err(np->device, PFX "Port %u MII would not reset, "
  1290. "bmcr[%04x]\n", np->port, err);
  1291. return -ENODEV;
  1292. }
  1293. return 0;
  1294. }
  1295. static int xcvr_init_1g_rgmii(struct niu *np)
  1296. {
  1297. int err;
  1298. u64 val;
  1299. u16 bmcr, bmsr, estat;
  1300. val = nr64(MIF_CONFIG);
  1301. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1302. nw64(MIF_CONFIG, val);
  1303. err = mii_reset(np);
  1304. if (err)
  1305. return err;
  1306. err = mii_read(np, np->phy_addr, MII_BMSR);
  1307. if (err < 0)
  1308. return err;
  1309. bmsr = err;
  1310. estat = 0;
  1311. if (bmsr & BMSR_ESTATEN) {
  1312. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1313. if (err < 0)
  1314. return err;
  1315. estat = err;
  1316. }
  1317. bmcr = 0;
  1318. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1319. if (err)
  1320. return err;
  1321. if (bmsr & BMSR_ESTATEN) {
  1322. u16 ctrl1000 = 0;
  1323. if (estat & ESTATUS_1000_TFULL)
  1324. ctrl1000 |= ADVERTISE_1000FULL;
  1325. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1326. if (err)
  1327. return err;
  1328. }
  1329. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1330. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1331. if (err)
  1332. return err;
  1333. err = mii_read(np, np->phy_addr, MII_BMCR);
  1334. if (err < 0)
  1335. return err;
  1336. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1337. err = mii_read(np, np->phy_addr, MII_BMSR);
  1338. if (err < 0)
  1339. return err;
  1340. return 0;
  1341. }
  1342. static int mii_init_common(struct niu *np)
  1343. {
  1344. struct niu_link_config *lp = &np->link_config;
  1345. u16 bmcr, bmsr, adv, estat;
  1346. int err;
  1347. err = mii_reset(np);
  1348. if (err)
  1349. return err;
  1350. err = mii_read(np, np->phy_addr, MII_BMSR);
  1351. if (err < 0)
  1352. return err;
  1353. bmsr = err;
  1354. estat = 0;
  1355. if (bmsr & BMSR_ESTATEN) {
  1356. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1357. if (err < 0)
  1358. return err;
  1359. estat = err;
  1360. }
  1361. bmcr = 0;
  1362. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1363. if (err)
  1364. return err;
  1365. if (lp->loopback_mode == LOOPBACK_MAC) {
  1366. bmcr |= BMCR_LOOPBACK;
  1367. if (lp->active_speed == SPEED_1000)
  1368. bmcr |= BMCR_SPEED1000;
  1369. if (lp->active_duplex == DUPLEX_FULL)
  1370. bmcr |= BMCR_FULLDPLX;
  1371. }
  1372. if (lp->loopback_mode == LOOPBACK_PHY) {
  1373. u16 aux;
  1374. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1375. BCM5464R_AUX_CTL_WRITE_1);
  1376. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1377. if (err)
  1378. return err;
  1379. }
  1380. /* XXX configurable XXX */
  1381. /* XXX for now don't advertise half-duplex or asym pause... XXX */
  1382. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1383. if (bmsr & BMSR_10FULL)
  1384. adv |= ADVERTISE_10FULL;
  1385. if (bmsr & BMSR_100FULL)
  1386. adv |= ADVERTISE_100FULL;
  1387. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1388. if (err)
  1389. return err;
  1390. if (bmsr & BMSR_ESTATEN) {
  1391. u16 ctrl1000 = 0;
  1392. if (estat & ESTATUS_1000_TFULL)
  1393. ctrl1000 |= ADVERTISE_1000FULL;
  1394. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1395. if (err)
  1396. return err;
  1397. }
  1398. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1399. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1400. if (err)
  1401. return err;
  1402. err = mii_read(np, np->phy_addr, MII_BMCR);
  1403. if (err < 0)
  1404. return err;
  1405. err = mii_read(np, np->phy_addr, MII_BMSR);
  1406. if (err < 0)
  1407. return err;
  1408. #if 0
  1409. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1410. np->port, bmcr, bmsr);
  1411. #endif
  1412. return 0;
  1413. }
  1414. static int xcvr_init_1g(struct niu *np)
  1415. {
  1416. u64 val;
  1417. /* XXX shared resource, lock parent XXX */
  1418. val = nr64(MIF_CONFIG);
  1419. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1420. nw64(MIF_CONFIG, val);
  1421. return mii_init_common(np);
  1422. }
  1423. static int niu_xcvr_init(struct niu *np)
  1424. {
  1425. const struct niu_phy_ops *ops = np->phy_ops;
  1426. int err;
  1427. err = 0;
  1428. if (ops->xcvr_init)
  1429. err = ops->xcvr_init(np);
  1430. return err;
  1431. }
  1432. static int niu_serdes_init(struct niu *np)
  1433. {
  1434. const struct niu_phy_ops *ops = np->phy_ops;
  1435. int err;
  1436. err = 0;
  1437. if (ops->serdes_init)
  1438. err = ops->serdes_init(np);
  1439. return err;
  1440. }
  1441. static void niu_init_xif(struct niu *);
  1442. static void niu_handle_led(struct niu *, int status);
  1443. static int niu_link_status_common(struct niu *np, int link_up)
  1444. {
  1445. struct niu_link_config *lp = &np->link_config;
  1446. struct net_device *dev = np->dev;
  1447. unsigned long flags;
  1448. if (!netif_carrier_ok(dev) && link_up) {
  1449. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  1450. dev->name,
  1451. (lp->active_speed == SPEED_10000 ?
  1452. "10Gb/sec" :
  1453. (lp->active_speed == SPEED_1000 ?
  1454. "1Gb/sec" :
  1455. (lp->active_speed == SPEED_100 ?
  1456. "100Mbit/sec" : "10Mbit/sec"))),
  1457. (lp->active_duplex == DUPLEX_FULL ?
  1458. "full" : "half"));
  1459. spin_lock_irqsave(&np->lock, flags);
  1460. niu_init_xif(np);
  1461. niu_handle_led(np, 1);
  1462. spin_unlock_irqrestore(&np->lock, flags);
  1463. netif_carrier_on(dev);
  1464. } else if (netif_carrier_ok(dev) && !link_up) {
  1465. niuwarn(LINK, "%s: Link is down\n", dev->name);
  1466. spin_lock_irqsave(&np->lock, flags);
  1467. niu_handle_led(np, 0);
  1468. spin_unlock_irqrestore(&np->lock, flags);
  1469. netif_carrier_off(dev);
  1470. }
  1471. return 0;
  1472. }
  1473. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1474. {
  1475. int err, link_up, pma_status, pcs_status;
  1476. link_up = 0;
  1477. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1478. MRVL88X2011_10G_PMD_STATUS_2);
  1479. if (err < 0)
  1480. goto out;
  1481. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1482. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1483. MRVL88X2011_PMA_PMD_STATUS_1);
  1484. if (err < 0)
  1485. goto out;
  1486. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1487. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1488. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1489. MRVL88X2011_PMA_PMD_STATUS_1);
  1490. if (err < 0)
  1491. goto out;
  1492. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1493. MRVL88X2011_PMA_PMD_STATUS_1);
  1494. if (err < 0)
  1495. goto out;
  1496. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1497. /* Check XGXS Register : 4.0018.[0-3,12] */
  1498. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1499. MRVL88X2011_10G_XGXS_LANE_STAT);
  1500. if (err < 0)
  1501. goto out;
  1502. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1503. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1504. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1505. 0x800))
  1506. link_up = (pma_status && pcs_status) ? 1 : 0;
  1507. np->link_config.active_speed = SPEED_10000;
  1508. np->link_config.active_duplex = DUPLEX_FULL;
  1509. err = 0;
  1510. out:
  1511. mrvl88x2011_act_led(np, (link_up ?
  1512. MRVL88X2011_LED_CTL_PCS_ACT :
  1513. MRVL88X2011_LED_CTL_OFF));
  1514. *link_up_p = link_up;
  1515. return err;
  1516. }
  1517. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1518. {
  1519. int err, link_up;
  1520. link_up = 0;
  1521. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1522. BCM8704_PMD_RCV_SIGDET);
  1523. if (err < 0)
  1524. goto out;
  1525. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1526. err = 0;
  1527. goto out;
  1528. }
  1529. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1530. BCM8704_PCS_10G_R_STATUS);
  1531. if (err < 0)
  1532. goto out;
  1533. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1534. err = 0;
  1535. goto out;
  1536. }
  1537. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1538. BCM8704_PHYXS_XGXS_LANE_STAT);
  1539. if (err < 0)
  1540. goto out;
  1541. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1542. PHYXS_XGXS_LANE_STAT_MAGIC |
  1543. PHYXS_XGXS_LANE_STAT_PATTEST |
  1544. PHYXS_XGXS_LANE_STAT_LANE3 |
  1545. PHYXS_XGXS_LANE_STAT_LANE2 |
  1546. PHYXS_XGXS_LANE_STAT_LANE1 |
  1547. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1548. err = 0;
  1549. np->link_config.active_speed = SPEED_INVALID;
  1550. np->link_config.active_duplex = DUPLEX_INVALID;
  1551. goto out;
  1552. }
  1553. link_up = 1;
  1554. np->link_config.active_speed = SPEED_10000;
  1555. np->link_config.active_duplex = DUPLEX_FULL;
  1556. err = 0;
  1557. out:
  1558. *link_up_p = link_up;
  1559. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  1560. err = 0;
  1561. return err;
  1562. }
  1563. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1564. {
  1565. int err, link_up;
  1566. link_up = 0;
  1567. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1568. BCM8704_PMD_RCV_SIGDET);
  1569. if (err < 0)
  1570. goto out;
  1571. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1572. err = 0;
  1573. goto out;
  1574. }
  1575. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1576. BCM8704_PCS_10G_R_STATUS);
  1577. if (err < 0)
  1578. goto out;
  1579. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1580. err = 0;
  1581. goto out;
  1582. }
  1583. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1584. BCM8704_PHYXS_XGXS_LANE_STAT);
  1585. if (err < 0)
  1586. goto out;
  1587. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1588. PHYXS_XGXS_LANE_STAT_MAGIC |
  1589. PHYXS_XGXS_LANE_STAT_LANE3 |
  1590. PHYXS_XGXS_LANE_STAT_LANE2 |
  1591. PHYXS_XGXS_LANE_STAT_LANE1 |
  1592. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1593. err = 0;
  1594. goto out;
  1595. }
  1596. link_up = 1;
  1597. np->link_config.active_speed = SPEED_10000;
  1598. np->link_config.active_duplex = DUPLEX_FULL;
  1599. err = 0;
  1600. out:
  1601. *link_up_p = link_up;
  1602. return err;
  1603. }
  1604. static int link_status_10g(struct niu *np, int *link_up_p)
  1605. {
  1606. unsigned long flags;
  1607. int err = -EINVAL;
  1608. spin_lock_irqsave(&np->lock, flags);
  1609. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1610. int phy_id;
  1611. phy_id = phy_decode(np->parent->port_phy, np->port);
  1612. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1613. /* handle different phy types */
  1614. switch (phy_id & NIU_PHY_ID_MASK) {
  1615. case NIU_PHY_ID_MRVL88X2011:
  1616. err = link_status_10g_mrvl(np, link_up_p);
  1617. break;
  1618. default: /* bcom 8704 */
  1619. err = link_status_10g_bcom(np, link_up_p);
  1620. break;
  1621. }
  1622. }
  1623. spin_unlock_irqrestore(&np->lock, flags);
  1624. return err;
  1625. }
  1626. static int niu_10g_phy_present(struct niu *np)
  1627. {
  1628. u64 sig, mask, val;
  1629. sig = nr64(ESR_INT_SIGNALS);
  1630. switch (np->port) {
  1631. case 0:
  1632. mask = ESR_INT_SIGNALS_P0_BITS;
  1633. val = (ESR_INT_SRDY0_P0 |
  1634. ESR_INT_DET0_P0 |
  1635. ESR_INT_XSRDY_P0 |
  1636. ESR_INT_XDP_P0_CH3 |
  1637. ESR_INT_XDP_P0_CH2 |
  1638. ESR_INT_XDP_P0_CH1 |
  1639. ESR_INT_XDP_P0_CH0);
  1640. break;
  1641. case 1:
  1642. mask = ESR_INT_SIGNALS_P1_BITS;
  1643. val = (ESR_INT_SRDY0_P1 |
  1644. ESR_INT_DET0_P1 |
  1645. ESR_INT_XSRDY_P1 |
  1646. ESR_INT_XDP_P1_CH3 |
  1647. ESR_INT_XDP_P1_CH2 |
  1648. ESR_INT_XDP_P1_CH1 |
  1649. ESR_INT_XDP_P1_CH0);
  1650. break;
  1651. default:
  1652. return 0;
  1653. }
  1654. if ((sig & mask) != val)
  1655. return 0;
  1656. return 1;
  1657. }
  1658. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1659. {
  1660. unsigned long flags;
  1661. int err = 0;
  1662. int phy_present;
  1663. int phy_present_prev;
  1664. spin_lock_irqsave(&np->lock, flags);
  1665. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1666. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1667. 1 : 0;
  1668. phy_present = niu_10g_phy_present(np);
  1669. if (phy_present != phy_present_prev) {
  1670. /* state change */
  1671. if (phy_present) {
  1672. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1673. if (np->phy_ops->xcvr_init)
  1674. err = np->phy_ops->xcvr_init(np);
  1675. if (err) {
  1676. /* debounce */
  1677. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1678. }
  1679. } else {
  1680. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1681. *link_up_p = 0;
  1682. niuwarn(LINK, "%s: Hotplug PHY Removed\n",
  1683. np->dev->name);
  1684. }
  1685. }
  1686. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT)
  1687. err = link_status_10g_bcm8706(np, link_up_p);
  1688. }
  1689. spin_unlock_irqrestore(&np->lock, flags);
  1690. return err;
  1691. }
  1692. static int link_status_1g(struct niu *np, int *link_up_p)
  1693. {
  1694. struct niu_link_config *lp = &np->link_config;
  1695. u16 current_speed, bmsr;
  1696. unsigned long flags;
  1697. u8 current_duplex;
  1698. int err, link_up;
  1699. link_up = 0;
  1700. current_speed = SPEED_INVALID;
  1701. current_duplex = DUPLEX_INVALID;
  1702. spin_lock_irqsave(&np->lock, flags);
  1703. err = -EINVAL;
  1704. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  1705. goto out;
  1706. err = mii_read(np, np->phy_addr, MII_BMSR);
  1707. if (err < 0)
  1708. goto out;
  1709. bmsr = err;
  1710. if (bmsr & BMSR_LSTATUS) {
  1711. u16 adv, lpa, common, estat;
  1712. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1713. if (err < 0)
  1714. goto out;
  1715. adv = err;
  1716. err = mii_read(np, np->phy_addr, MII_LPA);
  1717. if (err < 0)
  1718. goto out;
  1719. lpa = err;
  1720. common = adv & lpa;
  1721. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1722. if (err < 0)
  1723. goto out;
  1724. estat = err;
  1725. link_up = 1;
  1726. if (estat & (ESTATUS_1000_TFULL | ESTATUS_1000_THALF)) {
  1727. current_speed = SPEED_1000;
  1728. if (estat & ESTATUS_1000_TFULL)
  1729. current_duplex = DUPLEX_FULL;
  1730. else
  1731. current_duplex = DUPLEX_HALF;
  1732. } else {
  1733. if (common & ADVERTISE_100BASE4) {
  1734. current_speed = SPEED_100;
  1735. current_duplex = DUPLEX_HALF;
  1736. } else if (common & ADVERTISE_100FULL) {
  1737. current_speed = SPEED_100;
  1738. current_duplex = DUPLEX_FULL;
  1739. } else if (common & ADVERTISE_100HALF) {
  1740. current_speed = SPEED_100;
  1741. current_duplex = DUPLEX_HALF;
  1742. } else if (common & ADVERTISE_10FULL) {
  1743. current_speed = SPEED_10;
  1744. current_duplex = DUPLEX_FULL;
  1745. } else if (common & ADVERTISE_10HALF) {
  1746. current_speed = SPEED_10;
  1747. current_duplex = DUPLEX_HALF;
  1748. } else
  1749. link_up = 0;
  1750. }
  1751. }
  1752. lp->active_speed = current_speed;
  1753. lp->active_duplex = current_duplex;
  1754. err = 0;
  1755. out:
  1756. spin_unlock_irqrestore(&np->lock, flags);
  1757. *link_up_p = link_up;
  1758. return err;
  1759. }
  1760. static int niu_link_status(struct niu *np, int *link_up_p)
  1761. {
  1762. const struct niu_phy_ops *ops = np->phy_ops;
  1763. int err;
  1764. err = 0;
  1765. if (ops->link_status)
  1766. err = ops->link_status(np, link_up_p);
  1767. return err;
  1768. }
  1769. static void niu_timer(unsigned long __opaque)
  1770. {
  1771. struct niu *np = (struct niu *) __opaque;
  1772. unsigned long off;
  1773. int err, link_up;
  1774. err = niu_link_status(np, &link_up);
  1775. if (!err)
  1776. niu_link_status_common(np, link_up);
  1777. if (netif_carrier_ok(np->dev))
  1778. off = 5 * HZ;
  1779. else
  1780. off = 1 * HZ;
  1781. np->timer.expires = jiffies + off;
  1782. add_timer(&np->timer);
  1783. }
  1784. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1785. .serdes_init = serdes_init_10g_serdes,
  1786. .link_status = link_status_10g_serdes,
  1787. };
  1788. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1789. .serdes_init = serdes_init_niu_10g_serdes,
  1790. .link_status = link_status_10g_serdes,
  1791. };
  1792. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1793. .serdes_init = serdes_init_niu_1g_serdes,
  1794. .link_status = link_status_1g_serdes,
  1795. };
  1796. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1797. .xcvr_init = xcvr_init_1g_rgmii,
  1798. .link_status = link_status_1g_rgmii,
  1799. };
  1800. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1801. .serdes_init = serdes_init_niu_10g_fiber,
  1802. .xcvr_init = xcvr_init_10g,
  1803. .link_status = link_status_10g,
  1804. };
  1805. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1806. .serdes_init = serdes_init_10g,
  1807. .xcvr_init = xcvr_init_10g,
  1808. .link_status = link_status_10g,
  1809. };
  1810. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1811. .serdes_init = serdes_init_10g,
  1812. .xcvr_init = xcvr_init_10g_bcm8706,
  1813. .link_status = link_status_10g_hotplug,
  1814. };
  1815. static const struct niu_phy_ops phy_ops_10g_copper = {
  1816. .serdes_init = serdes_init_10g,
  1817. .link_status = link_status_10g, /* XXX */
  1818. };
  1819. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1820. .serdes_init = serdes_init_1g,
  1821. .xcvr_init = xcvr_init_1g,
  1822. .link_status = link_status_1g,
  1823. };
  1824. static const struct niu_phy_ops phy_ops_1g_copper = {
  1825. .xcvr_init = xcvr_init_1g,
  1826. .link_status = link_status_1g,
  1827. };
  1828. struct niu_phy_template {
  1829. const struct niu_phy_ops *ops;
  1830. u32 phy_addr_base;
  1831. };
  1832. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1833. .ops = &phy_ops_10g_fiber_niu,
  1834. .phy_addr_base = 16,
  1835. };
  1836. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1837. .ops = &phy_ops_10g_serdes_niu,
  1838. .phy_addr_base = 0,
  1839. };
  1840. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1841. .ops = &phy_ops_1g_serdes_niu,
  1842. .phy_addr_base = 0,
  1843. };
  1844. static const struct niu_phy_template phy_template_10g_fiber = {
  1845. .ops = &phy_ops_10g_fiber,
  1846. .phy_addr_base = 8,
  1847. };
  1848. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1849. .ops = &phy_ops_10g_fiber_hotplug,
  1850. .phy_addr_base = 8,
  1851. };
  1852. static const struct niu_phy_template phy_template_10g_copper = {
  1853. .ops = &phy_ops_10g_copper,
  1854. .phy_addr_base = 10,
  1855. };
  1856. static const struct niu_phy_template phy_template_1g_fiber = {
  1857. .ops = &phy_ops_1g_fiber,
  1858. .phy_addr_base = 0,
  1859. };
  1860. static const struct niu_phy_template phy_template_1g_copper = {
  1861. .ops = &phy_ops_1g_copper,
  1862. .phy_addr_base = 0,
  1863. };
  1864. static const struct niu_phy_template phy_template_1g_rgmii = {
  1865. .ops = &phy_ops_1g_rgmii,
  1866. .phy_addr_base = 0,
  1867. };
  1868. static const struct niu_phy_template phy_template_10g_serdes = {
  1869. .ops = &phy_ops_10g_serdes,
  1870. .phy_addr_base = 0,
  1871. };
  1872. static int niu_atca_port_num[4] = {
  1873. 0, 0, 11, 10
  1874. };
  1875. static int serdes_init_10g_serdes(struct niu *np)
  1876. {
  1877. struct niu_link_config *lp = &np->link_config;
  1878. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1879. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1880. int err;
  1881. u64 reset_val;
  1882. switch (np->port) {
  1883. case 0:
  1884. reset_val = ENET_SERDES_RESET_0;
  1885. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1886. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1887. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1888. break;
  1889. case 1:
  1890. reset_val = ENET_SERDES_RESET_1;
  1891. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1892. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1893. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1894. break;
  1895. default:
  1896. return -EINVAL;
  1897. }
  1898. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1899. ENET_SERDES_CTRL_SDET_1 |
  1900. ENET_SERDES_CTRL_SDET_2 |
  1901. ENET_SERDES_CTRL_SDET_3 |
  1902. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1903. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1904. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1905. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1906. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1907. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1908. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1909. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1910. test_cfg_val = 0;
  1911. if (lp->loopback_mode == LOOPBACK_PHY) {
  1912. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1913. ENET_SERDES_TEST_MD_0_SHIFT) |
  1914. (ENET_TEST_MD_PAD_LOOPBACK <<
  1915. ENET_SERDES_TEST_MD_1_SHIFT) |
  1916. (ENET_TEST_MD_PAD_LOOPBACK <<
  1917. ENET_SERDES_TEST_MD_2_SHIFT) |
  1918. (ENET_TEST_MD_PAD_LOOPBACK <<
  1919. ENET_SERDES_TEST_MD_3_SHIFT));
  1920. }
  1921. esr_reset(np);
  1922. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  1923. nw64(ctrl_reg, ctrl_val);
  1924. nw64(test_cfg_reg, test_cfg_val);
  1925. /* Initialize all 4 lanes of the SERDES. */
  1926. for (i = 0; i < 4; i++) {
  1927. u32 rxtx_ctrl, glue0;
  1928. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  1929. if (err)
  1930. return err;
  1931. err = esr_read_glue0(np, i, &glue0);
  1932. if (err)
  1933. return err;
  1934. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  1935. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  1936. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  1937. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  1938. ESR_GLUE_CTRL0_THCNT |
  1939. ESR_GLUE_CTRL0_BLTIME);
  1940. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  1941. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  1942. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  1943. (BLTIME_300_CYCLES <<
  1944. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  1945. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  1946. if (err)
  1947. return err;
  1948. err = esr_write_glue0(np, i, glue0);
  1949. if (err)
  1950. return err;
  1951. }
  1952. sig = nr64(ESR_INT_SIGNALS);
  1953. switch (np->port) {
  1954. case 0:
  1955. mask = ESR_INT_SIGNALS_P0_BITS;
  1956. val = (ESR_INT_SRDY0_P0 |
  1957. ESR_INT_DET0_P0 |
  1958. ESR_INT_XSRDY_P0 |
  1959. ESR_INT_XDP_P0_CH3 |
  1960. ESR_INT_XDP_P0_CH2 |
  1961. ESR_INT_XDP_P0_CH1 |
  1962. ESR_INT_XDP_P0_CH0);
  1963. break;
  1964. case 1:
  1965. mask = ESR_INT_SIGNALS_P1_BITS;
  1966. val = (ESR_INT_SRDY0_P1 |
  1967. ESR_INT_DET0_P1 |
  1968. ESR_INT_XSRDY_P1 |
  1969. ESR_INT_XDP_P1_CH3 |
  1970. ESR_INT_XDP_P1_CH2 |
  1971. ESR_INT_XDP_P1_CH1 |
  1972. ESR_INT_XDP_P1_CH0);
  1973. break;
  1974. default:
  1975. return -EINVAL;
  1976. }
  1977. if ((sig & mask) != val) {
  1978. int err;
  1979. err = serdes_init_1g_serdes(np);
  1980. if (!err) {
  1981. np->flags &= ~NIU_FLAGS_10G;
  1982. np->mac_xcvr = MAC_XCVR_PCS;
  1983. } else {
  1984. dev_err(np->device, PFX "Port %u 10G/1G SERDES Link Failed \n",
  1985. np->port);
  1986. return -ENODEV;
  1987. }
  1988. }
  1989. return 0;
  1990. }
  1991. static int niu_determine_phy_disposition(struct niu *np)
  1992. {
  1993. struct niu_parent *parent = np->parent;
  1994. u8 plat_type = parent->plat_type;
  1995. const struct niu_phy_template *tp;
  1996. u32 phy_addr_off = 0;
  1997. if (plat_type == PLAT_TYPE_NIU) {
  1998. switch (np->flags &
  1999. (NIU_FLAGS_10G |
  2000. NIU_FLAGS_FIBER |
  2001. NIU_FLAGS_XCVR_SERDES)) {
  2002. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2003. /* 10G Serdes */
  2004. tp = &phy_template_niu_10g_serdes;
  2005. break;
  2006. case NIU_FLAGS_XCVR_SERDES:
  2007. /* 1G Serdes */
  2008. tp = &phy_template_niu_1g_serdes;
  2009. break;
  2010. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2011. /* 10G Fiber */
  2012. default:
  2013. tp = &phy_template_niu_10g_fiber;
  2014. phy_addr_off += np->port;
  2015. break;
  2016. }
  2017. } else {
  2018. switch (np->flags &
  2019. (NIU_FLAGS_10G |
  2020. NIU_FLAGS_FIBER |
  2021. NIU_FLAGS_XCVR_SERDES)) {
  2022. case 0:
  2023. /* 1G copper */
  2024. tp = &phy_template_1g_copper;
  2025. if (plat_type == PLAT_TYPE_VF_P0)
  2026. phy_addr_off = 10;
  2027. else if (plat_type == PLAT_TYPE_VF_P1)
  2028. phy_addr_off = 26;
  2029. phy_addr_off += (np->port ^ 0x3);
  2030. break;
  2031. case NIU_FLAGS_10G:
  2032. /* 10G copper */
  2033. tp = &phy_template_1g_copper;
  2034. break;
  2035. case NIU_FLAGS_FIBER:
  2036. /* 1G fiber */
  2037. tp = &phy_template_1g_fiber;
  2038. break;
  2039. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2040. /* 10G fiber */
  2041. tp = &phy_template_10g_fiber;
  2042. if (plat_type == PLAT_TYPE_VF_P0 ||
  2043. plat_type == PLAT_TYPE_VF_P1)
  2044. phy_addr_off = 8;
  2045. phy_addr_off += np->port;
  2046. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2047. tp = &phy_template_10g_fiber_hotplug;
  2048. if (np->port == 0)
  2049. phy_addr_off = 8;
  2050. if (np->port == 1)
  2051. phy_addr_off = 12;
  2052. }
  2053. break;
  2054. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2055. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2056. case NIU_FLAGS_XCVR_SERDES:
  2057. switch(np->port) {
  2058. case 0:
  2059. case 1:
  2060. tp = &phy_template_10g_serdes;
  2061. break;
  2062. case 2:
  2063. case 3:
  2064. tp = &phy_template_1g_rgmii;
  2065. break;
  2066. default:
  2067. return -EINVAL;
  2068. break;
  2069. }
  2070. phy_addr_off = niu_atca_port_num[np->port];
  2071. break;
  2072. default:
  2073. return -EINVAL;
  2074. }
  2075. }
  2076. np->phy_ops = tp->ops;
  2077. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2078. return 0;
  2079. }
  2080. static int niu_init_link(struct niu *np)
  2081. {
  2082. struct niu_parent *parent = np->parent;
  2083. int err, ignore;
  2084. if (parent->plat_type == PLAT_TYPE_NIU) {
  2085. err = niu_xcvr_init(np);
  2086. if (err)
  2087. return err;
  2088. msleep(200);
  2089. }
  2090. err = niu_serdes_init(np);
  2091. if (err)
  2092. return err;
  2093. msleep(200);
  2094. err = niu_xcvr_init(np);
  2095. if (!err)
  2096. niu_link_status(np, &ignore);
  2097. return 0;
  2098. }
  2099. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2100. {
  2101. u16 reg0 = addr[4] << 8 | addr[5];
  2102. u16 reg1 = addr[2] << 8 | addr[3];
  2103. u16 reg2 = addr[0] << 8 | addr[1];
  2104. if (np->flags & NIU_FLAGS_XMAC) {
  2105. nw64_mac(XMAC_ADDR0, reg0);
  2106. nw64_mac(XMAC_ADDR1, reg1);
  2107. nw64_mac(XMAC_ADDR2, reg2);
  2108. } else {
  2109. nw64_mac(BMAC_ADDR0, reg0);
  2110. nw64_mac(BMAC_ADDR1, reg1);
  2111. nw64_mac(BMAC_ADDR2, reg2);
  2112. }
  2113. }
  2114. static int niu_num_alt_addr(struct niu *np)
  2115. {
  2116. if (np->flags & NIU_FLAGS_XMAC)
  2117. return XMAC_NUM_ALT_ADDR;
  2118. else
  2119. return BMAC_NUM_ALT_ADDR;
  2120. }
  2121. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2122. {
  2123. u16 reg0 = addr[4] << 8 | addr[5];
  2124. u16 reg1 = addr[2] << 8 | addr[3];
  2125. u16 reg2 = addr[0] << 8 | addr[1];
  2126. if (index >= niu_num_alt_addr(np))
  2127. return -EINVAL;
  2128. if (np->flags & NIU_FLAGS_XMAC) {
  2129. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2130. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2131. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2132. } else {
  2133. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2134. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2135. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2136. }
  2137. return 0;
  2138. }
  2139. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2140. {
  2141. unsigned long reg;
  2142. u64 val, mask;
  2143. if (index >= niu_num_alt_addr(np))
  2144. return -EINVAL;
  2145. if (np->flags & NIU_FLAGS_XMAC) {
  2146. reg = XMAC_ADDR_CMPEN;
  2147. mask = 1 << index;
  2148. } else {
  2149. reg = BMAC_ADDR_CMPEN;
  2150. mask = 1 << (index + 1);
  2151. }
  2152. val = nr64_mac(reg);
  2153. if (on)
  2154. val |= mask;
  2155. else
  2156. val &= ~mask;
  2157. nw64_mac(reg, val);
  2158. return 0;
  2159. }
  2160. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2161. int num, int mac_pref)
  2162. {
  2163. u64 val = nr64_mac(reg);
  2164. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2165. val |= num;
  2166. if (mac_pref)
  2167. val |= HOST_INFO_MPR;
  2168. nw64_mac(reg, val);
  2169. }
  2170. static int __set_rdc_table_num(struct niu *np,
  2171. int xmac_index, int bmac_index,
  2172. int rdc_table_num, int mac_pref)
  2173. {
  2174. unsigned long reg;
  2175. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2176. return -EINVAL;
  2177. if (np->flags & NIU_FLAGS_XMAC)
  2178. reg = XMAC_HOST_INFO(xmac_index);
  2179. else
  2180. reg = BMAC_HOST_INFO(bmac_index);
  2181. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2182. return 0;
  2183. }
  2184. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2185. int mac_pref)
  2186. {
  2187. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2188. }
  2189. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2190. int mac_pref)
  2191. {
  2192. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2193. }
  2194. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2195. int table_num, int mac_pref)
  2196. {
  2197. if (idx >= niu_num_alt_addr(np))
  2198. return -EINVAL;
  2199. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2200. }
  2201. static u64 vlan_entry_set_parity(u64 reg_val)
  2202. {
  2203. u64 port01_mask;
  2204. u64 port23_mask;
  2205. port01_mask = 0x00ff;
  2206. port23_mask = 0xff00;
  2207. if (hweight64(reg_val & port01_mask) & 1)
  2208. reg_val |= ENET_VLAN_TBL_PARITY0;
  2209. else
  2210. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2211. if (hweight64(reg_val & port23_mask) & 1)
  2212. reg_val |= ENET_VLAN_TBL_PARITY1;
  2213. else
  2214. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2215. return reg_val;
  2216. }
  2217. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2218. int port, int vpr, int rdc_table)
  2219. {
  2220. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2221. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2222. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2223. ENET_VLAN_TBL_SHIFT(port));
  2224. if (vpr)
  2225. reg_val |= (ENET_VLAN_TBL_VPR <<
  2226. ENET_VLAN_TBL_SHIFT(port));
  2227. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2228. reg_val = vlan_entry_set_parity(reg_val);
  2229. nw64(ENET_VLAN_TBL(index), reg_val);
  2230. }
  2231. static void vlan_tbl_clear(struct niu *np)
  2232. {
  2233. int i;
  2234. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2235. nw64(ENET_VLAN_TBL(i), 0);
  2236. }
  2237. static int tcam_wait_bit(struct niu *np, u64 bit)
  2238. {
  2239. int limit = 1000;
  2240. while (--limit > 0) {
  2241. if (nr64(TCAM_CTL) & bit)
  2242. break;
  2243. udelay(1);
  2244. }
  2245. if (limit < 0)
  2246. return -ENODEV;
  2247. return 0;
  2248. }
  2249. static int tcam_flush(struct niu *np, int index)
  2250. {
  2251. nw64(TCAM_KEY_0, 0x00);
  2252. nw64(TCAM_KEY_MASK_0, 0xff);
  2253. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2254. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2255. }
  2256. #if 0
  2257. static int tcam_read(struct niu *np, int index,
  2258. u64 *key, u64 *mask)
  2259. {
  2260. int err;
  2261. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2262. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2263. if (!err) {
  2264. key[0] = nr64(TCAM_KEY_0);
  2265. key[1] = nr64(TCAM_KEY_1);
  2266. key[2] = nr64(TCAM_KEY_2);
  2267. key[3] = nr64(TCAM_KEY_3);
  2268. mask[0] = nr64(TCAM_KEY_MASK_0);
  2269. mask[1] = nr64(TCAM_KEY_MASK_1);
  2270. mask[2] = nr64(TCAM_KEY_MASK_2);
  2271. mask[3] = nr64(TCAM_KEY_MASK_3);
  2272. }
  2273. return err;
  2274. }
  2275. #endif
  2276. static int tcam_write(struct niu *np, int index,
  2277. u64 *key, u64 *mask)
  2278. {
  2279. nw64(TCAM_KEY_0, key[0]);
  2280. nw64(TCAM_KEY_1, key[1]);
  2281. nw64(TCAM_KEY_2, key[2]);
  2282. nw64(TCAM_KEY_3, key[3]);
  2283. nw64(TCAM_KEY_MASK_0, mask[0]);
  2284. nw64(TCAM_KEY_MASK_1, mask[1]);
  2285. nw64(TCAM_KEY_MASK_2, mask[2]);
  2286. nw64(TCAM_KEY_MASK_3, mask[3]);
  2287. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2288. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2289. }
  2290. #if 0
  2291. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2292. {
  2293. int err;
  2294. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2295. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2296. if (!err)
  2297. *data = nr64(TCAM_KEY_1);
  2298. return err;
  2299. }
  2300. #endif
  2301. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2302. {
  2303. nw64(TCAM_KEY_1, assoc_data);
  2304. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2305. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2306. }
  2307. static void tcam_enable(struct niu *np, int on)
  2308. {
  2309. u64 val = nr64(FFLP_CFG_1);
  2310. if (on)
  2311. val &= ~FFLP_CFG_1_TCAM_DIS;
  2312. else
  2313. val |= FFLP_CFG_1_TCAM_DIS;
  2314. nw64(FFLP_CFG_1, val);
  2315. }
  2316. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2317. {
  2318. u64 val = nr64(FFLP_CFG_1);
  2319. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2320. FFLP_CFG_1_CAMLAT |
  2321. FFLP_CFG_1_CAMRATIO);
  2322. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2323. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2324. nw64(FFLP_CFG_1, val);
  2325. val = nr64(FFLP_CFG_1);
  2326. val |= FFLP_CFG_1_FFLPINITDONE;
  2327. nw64(FFLP_CFG_1, val);
  2328. }
  2329. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2330. int on)
  2331. {
  2332. unsigned long reg;
  2333. u64 val;
  2334. if (class < CLASS_CODE_ETHERTYPE1 ||
  2335. class > CLASS_CODE_ETHERTYPE2)
  2336. return -EINVAL;
  2337. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2338. val = nr64(reg);
  2339. if (on)
  2340. val |= L2_CLS_VLD;
  2341. else
  2342. val &= ~L2_CLS_VLD;
  2343. nw64(reg, val);
  2344. return 0;
  2345. }
  2346. #if 0
  2347. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2348. u64 ether_type)
  2349. {
  2350. unsigned long reg;
  2351. u64 val;
  2352. if (class < CLASS_CODE_ETHERTYPE1 ||
  2353. class > CLASS_CODE_ETHERTYPE2 ||
  2354. (ether_type & ~(u64)0xffff) != 0)
  2355. return -EINVAL;
  2356. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2357. val = nr64(reg);
  2358. val &= ~L2_CLS_ETYPE;
  2359. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2360. nw64(reg, val);
  2361. return 0;
  2362. }
  2363. #endif
  2364. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2365. int on)
  2366. {
  2367. unsigned long reg;
  2368. u64 val;
  2369. if (class < CLASS_CODE_USER_PROG1 ||
  2370. class > CLASS_CODE_USER_PROG4)
  2371. return -EINVAL;
  2372. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2373. val = nr64(reg);
  2374. if (on)
  2375. val |= L3_CLS_VALID;
  2376. else
  2377. val &= ~L3_CLS_VALID;
  2378. nw64(reg, val);
  2379. return 0;
  2380. }
  2381. #if 0
  2382. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2383. int ipv6, u64 protocol_id,
  2384. u64 tos_mask, u64 tos_val)
  2385. {
  2386. unsigned long reg;
  2387. u64 val;
  2388. if (class < CLASS_CODE_USER_PROG1 ||
  2389. class > CLASS_CODE_USER_PROG4 ||
  2390. (protocol_id & ~(u64)0xff) != 0 ||
  2391. (tos_mask & ~(u64)0xff) != 0 ||
  2392. (tos_val & ~(u64)0xff) != 0)
  2393. return -EINVAL;
  2394. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2395. val = nr64(reg);
  2396. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2397. L3_CLS_TOSMASK | L3_CLS_TOS);
  2398. if (ipv6)
  2399. val |= L3_CLS_IPVER;
  2400. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2401. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2402. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2403. nw64(reg, val);
  2404. return 0;
  2405. }
  2406. #endif
  2407. static int tcam_early_init(struct niu *np)
  2408. {
  2409. unsigned long i;
  2410. int err;
  2411. tcam_enable(np, 0);
  2412. tcam_set_lat_and_ratio(np,
  2413. DEFAULT_TCAM_LATENCY,
  2414. DEFAULT_TCAM_ACCESS_RATIO);
  2415. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2416. err = tcam_user_eth_class_enable(np, i, 0);
  2417. if (err)
  2418. return err;
  2419. }
  2420. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2421. err = tcam_user_ip_class_enable(np, i, 0);
  2422. if (err)
  2423. return err;
  2424. }
  2425. return 0;
  2426. }
  2427. static int tcam_flush_all(struct niu *np)
  2428. {
  2429. unsigned long i;
  2430. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2431. int err = tcam_flush(np, i);
  2432. if (err)
  2433. return err;
  2434. }
  2435. return 0;
  2436. }
  2437. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2438. {
  2439. return ((u64)index | (num_entries == 1 ?
  2440. HASH_TBL_ADDR_AUTOINC : 0));
  2441. }
  2442. #if 0
  2443. static int hash_read(struct niu *np, unsigned long partition,
  2444. unsigned long index, unsigned long num_entries,
  2445. u64 *data)
  2446. {
  2447. u64 val = hash_addr_regval(index, num_entries);
  2448. unsigned long i;
  2449. if (partition >= FCRAM_NUM_PARTITIONS ||
  2450. index + num_entries > FCRAM_SIZE)
  2451. return -EINVAL;
  2452. nw64(HASH_TBL_ADDR(partition), val);
  2453. for (i = 0; i < num_entries; i++)
  2454. data[i] = nr64(HASH_TBL_DATA(partition));
  2455. return 0;
  2456. }
  2457. #endif
  2458. static int hash_write(struct niu *np, unsigned long partition,
  2459. unsigned long index, unsigned long num_entries,
  2460. u64 *data)
  2461. {
  2462. u64 val = hash_addr_regval(index, num_entries);
  2463. unsigned long i;
  2464. if (partition >= FCRAM_NUM_PARTITIONS ||
  2465. index + (num_entries * 8) > FCRAM_SIZE)
  2466. return -EINVAL;
  2467. nw64(HASH_TBL_ADDR(partition), val);
  2468. for (i = 0; i < num_entries; i++)
  2469. nw64(HASH_TBL_DATA(partition), data[i]);
  2470. return 0;
  2471. }
  2472. static void fflp_reset(struct niu *np)
  2473. {
  2474. u64 val;
  2475. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2476. udelay(10);
  2477. nw64(FFLP_CFG_1, 0);
  2478. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2479. nw64(FFLP_CFG_1, val);
  2480. }
  2481. static void fflp_set_timings(struct niu *np)
  2482. {
  2483. u64 val = nr64(FFLP_CFG_1);
  2484. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2485. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2486. nw64(FFLP_CFG_1, val);
  2487. val = nr64(FFLP_CFG_1);
  2488. val |= FFLP_CFG_1_FFLPINITDONE;
  2489. nw64(FFLP_CFG_1, val);
  2490. val = nr64(FCRAM_REF_TMR);
  2491. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2492. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2493. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2494. nw64(FCRAM_REF_TMR, val);
  2495. }
  2496. static int fflp_set_partition(struct niu *np, u64 partition,
  2497. u64 mask, u64 base, int enable)
  2498. {
  2499. unsigned long reg;
  2500. u64 val;
  2501. if (partition >= FCRAM_NUM_PARTITIONS ||
  2502. (mask & ~(u64)0x1f) != 0 ||
  2503. (base & ~(u64)0x1f) != 0)
  2504. return -EINVAL;
  2505. reg = FLW_PRT_SEL(partition);
  2506. val = nr64(reg);
  2507. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2508. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2509. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2510. if (enable)
  2511. val |= FLW_PRT_SEL_EXT;
  2512. nw64(reg, val);
  2513. return 0;
  2514. }
  2515. static int fflp_disable_all_partitions(struct niu *np)
  2516. {
  2517. unsigned long i;
  2518. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2519. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2520. if (err)
  2521. return err;
  2522. }
  2523. return 0;
  2524. }
  2525. static void fflp_llcsnap_enable(struct niu *np, int on)
  2526. {
  2527. u64 val = nr64(FFLP_CFG_1);
  2528. if (on)
  2529. val |= FFLP_CFG_1_LLCSNAP;
  2530. else
  2531. val &= ~FFLP_CFG_1_LLCSNAP;
  2532. nw64(FFLP_CFG_1, val);
  2533. }
  2534. static void fflp_errors_enable(struct niu *np, int on)
  2535. {
  2536. u64 val = nr64(FFLP_CFG_1);
  2537. if (on)
  2538. val &= ~FFLP_CFG_1_ERRORDIS;
  2539. else
  2540. val |= FFLP_CFG_1_ERRORDIS;
  2541. nw64(FFLP_CFG_1, val);
  2542. }
  2543. static int fflp_hash_clear(struct niu *np)
  2544. {
  2545. struct fcram_hash_ipv4 ent;
  2546. unsigned long i;
  2547. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2548. memset(&ent, 0, sizeof(ent));
  2549. ent.header = HASH_HEADER_EXT;
  2550. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2551. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2552. if (err)
  2553. return err;
  2554. }
  2555. return 0;
  2556. }
  2557. static int fflp_early_init(struct niu *np)
  2558. {
  2559. struct niu_parent *parent;
  2560. unsigned long flags;
  2561. int err;
  2562. niu_lock_parent(np, flags);
  2563. parent = np->parent;
  2564. err = 0;
  2565. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2566. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  2567. np->port);
  2568. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2569. fflp_reset(np);
  2570. fflp_set_timings(np);
  2571. err = fflp_disable_all_partitions(np);
  2572. if (err) {
  2573. niudbg(PROBE, "fflp_disable_all_partitions "
  2574. "failed, err=%d\n", err);
  2575. goto out;
  2576. }
  2577. }
  2578. err = tcam_early_init(np);
  2579. if (err) {
  2580. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  2581. err);
  2582. goto out;
  2583. }
  2584. fflp_llcsnap_enable(np, 1);
  2585. fflp_errors_enable(np, 0);
  2586. nw64(H1POLY, 0);
  2587. nw64(H2POLY, 0);
  2588. err = tcam_flush_all(np);
  2589. if (err) {
  2590. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  2591. err);
  2592. goto out;
  2593. }
  2594. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2595. err = fflp_hash_clear(np);
  2596. if (err) {
  2597. niudbg(PROBE, "fflp_hash_clear failed, "
  2598. "err=%d\n", err);
  2599. goto out;
  2600. }
  2601. }
  2602. vlan_tbl_clear(np);
  2603. niudbg(PROBE, "fflp_early_init: Success\n");
  2604. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2605. }
  2606. out:
  2607. niu_unlock_parent(np, flags);
  2608. return err;
  2609. }
  2610. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2611. {
  2612. if (class_code < CLASS_CODE_USER_PROG1 ||
  2613. class_code > CLASS_CODE_SCTP_IPV6)
  2614. return -EINVAL;
  2615. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2616. return 0;
  2617. }
  2618. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2619. {
  2620. if (class_code < CLASS_CODE_USER_PROG1 ||
  2621. class_code > CLASS_CODE_SCTP_IPV6)
  2622. return -EINVAL;
  2623. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2624. return 0;
  2625. }
  2626. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2627. u32 offset, u32 size)
  2628. {
  2629. int i = skb_shinfo(skb)->nr_frags;
  2630. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2631. frag->page = page;
  2632. frag->page_offset = offset;
  2633. frag->size = size;
  2634. skb->len += size;
  2635. skb->data_len += size;
  2636. skb->truesize += size;
  2637. skb_shinfo(skb)->nr_frags = i + 1;
  2638. }
  2639. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2640. {
  2641. a >>= PAGE_SHIFT;
  2642. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2643. return (a & (MAX_RBR_RING_SIZE - 1));
  2644. }
  2645. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2646. struct page ***link)
  2647. {
  2648. unsigned int h = niu_hash_rxaddr(rp, addr);
  2649. struct page *p, **pp;
  2650. addr &= PAGE_MASK;
  2651. pp = &rp->rxhash[h];
  2652. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2653. if (p->index == addr) {
  2654. *link = pp;
  2655. break;
  2656. }
  2657. }
  2658. return p;
  2659. }
  2660. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2661. {
  2662. unsigned int h = niu_hash_rxaddr(rp, base);
  2663. page->index = base;
  2664. page->mapping = (struct address_space *) rp->rxhash[h];
  2665. rp->rxhash[h] = page;
  2666. }
  2667. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2668. gfp_t mask, int start_index)
  2669. {
  2670. struct page *page;
  2671. u64 addr;
  2672. int i;
  2673. page = alloc_page(mask);
  2674. if (!page)
  2675. return -ENOMEM;
  2676. addr = np->ops->map_page(np->device, page, 0,
  2677. PAGE_SIZE, DMA_FROM_DEVICE);
  2678. niu_hash_page(rp, page, addr);
  2679. if (rp->rbr_blocks_per_page > 1)
  2680. atomic_add(rp->rbr_blocks_per_page - 1,
  2681. &compound_head(page)->_count);
  2682. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2683. __le32 *rbr = &rp->rbr[start_index + i];
  2684. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2685. addr += rp->rbr_block_size;
  2686. }
  2687. return 0;
  2688. }
  2689. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2690. {
  2691. int index = rp->rbr_index;
  2692. rp->rbr_pending++;
  2693. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2694. int err = niu_rbr_add_page(np, rp, mask, index);
  2695. if (unlikely(err)) {
  2696. rp->rbr_pending--;
  2697. return;
  2698. }
  2699. rp->rbr_index += rp->rbr_blocks_per_page;
  2700. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2701. if (rp->rbr_index == rp->rbr_table_size)
  2702. rp->rbr_index = 0;
  2703. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2704. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2705. rp->rbr_pending = 0;
  2706. }
  2707. }
  2708. }
  2709. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2710. {
  2711. unsigned int index = rp->rcr_index;
  2712. int num_rcr = 0;
  2713. rp->rx_dropped++;
  2714. while (1) {
  2715. struct page *page, **link;
  2716. u64 addr, val;
  2717. u32 rcr_size;
  2718. num_rcr++;
  2719. val = le64_to_cpup(&rp->rcr[index]);
  2720. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2721. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2722. page = niu_find_rxpage(rp, addr, &link);
  2723. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2724. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2725. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2726. *link = (struct page *) page->mapping;
  2727. np->ops->unmap_page(np->device, page->index,
  2728. PAGE_SIZE, DMA_FROM_DEVICE);
  2729. page->index = 0;
  2730. page->mapping = NULL;
  2731. __free_page(page);
  2732. rp->rbr_refill_pending++;
  2733. }
  2734. index = NEXT_RCR(rp, index);
  2735. if (!(val & RCR_ENTRY_MULTI))
  2736. break;
  2737. }
  2738. rp->rcr_index = index;
  2739. return num_rcr;
  2740. }
  2741. static int niu_process_rx_pkt(struct niu *np, struct rx_ring_info *rp)
  2742. {
  2743. unsigned int index = rp->rcr_index;
  2744. struct sk_buff *skb;
  2745. int len, num_rcr;
  2746. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2747. if (unlikely(!skb))
  2748. return niu_rx_pkt_ignore(np, rp);
  2749. num_rcr = 0;
  2750. while (1) {
  2751. struct page *page, **link;
  2752. u32 rcr_size, append_size;
  2753. u64 addr, val, off;
  2754. num_rcr++;
  2755. val = le64_to_cpup(&rp->rcr[index]);
  2756. len = (val & RCR_ENTRY_L2_LEN) >>
  2757. RCR_ENTRY_L2_LEN_SHIFT;
  2758. len -= ETH_FCS_LEN;
  2759. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2760. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2761. page = niu_find_rxpage(rp, addr, &link);
  2762. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2763. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2764. off = addr & ~PAGE_MASK;
  2765. append_size = rcr_size;
  2766. if (num_rcr == 1) {
  2767. int ptype;
  2768. off += 2;
  2769. append_size -= 2;
  2770. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2771. if ((ptype == RCR_PKT_TYPE_TCP ||
  2772. ptype == RCR_PKT_TYPE_UDP) &&
  2773. !(val & (RCR_ENTRY_NOPORT |
  2774. RCR_ENTRY_ERROR)))
  2775. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2776. else
  2777. skb->ip_summed = CHECKSUM_NONE;
  2778. }
  2779. if (!(val & RCR_ENTRY_MULTI))
  2780. append_size = len - skb->len;
  2781. niu_rx_skb_append(skb, page, off, append_size);
  2782. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2783. *link = (struct page *) page->mapping;
  2784. np->ops->unmap_page(np->device, page->index,
  2785. PAGE_SIZE, DMA_FROM_DEVICE);
  2786. page->index = 0;
  2787. page->mapping = NULL;
  2788. rp->rbr_refill_pending++;
  2789. } else
  2790. get_page(page);
  2791. index = NEXT_RCR(rp, index);
  2792. if (!(val & RCR_ENTRY_MULTI))
  2793. break;
  2794. }
  2795. rp->rcr_index = index;
  2796. skb_reserve(skb, NET_IP_ALIGN);
  2797. __pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
  2798. rp->rx_packets++;
  2799. rp->rx_bytes += skb->len;
  2800. skb->protocol = eth_type_trans(skb, np->dev);
  2801. skb_record_rx_queue(skb, rp->rx_channel);
  2802. netif_receive_skb(skb);
  2803. return num_rcr;
  2804. }
  2805. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2806. {
  2807. int blocks_per_page = rp->rbr_blocks_per_page;
  2808. int err, index = rp->rbr_index;
  2809. err = 0;
  2810. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2811. err = niu_rbr_add_page(np, rp, mask, index);
  2812. if (err)
  2813. break;
  2814. index += blocks_per_page;
  2815. }
  2816. rp->rbr_index = index;
  2817. return err;
  2818. }
  2819. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2820. {
  2821. int i;
  2822. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2823. struct page *page;
  2824. page = rp->rxhash[i];
  2825. while (page) {
  2826. struct page *next = (struct page *) page->mapping;
  2827. u64 base = page->index;
  2828. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2829. DMA_FROM_DEVICE);
  2830. page->index = 0;
  2831. page->mapping = NULL;
  2832. __free_page(page);
  2833. page = next;
  2834. }
  2835. }
  2836. for (i = 0; i < rp->rbr_table_size; i++)
  2837. rp->rbr[i] = cpu_to_le32(0);
  2838. rp->rbr_index = 0;
  2839. }
  2840. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2841. {
  2842. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2843. struct sk_buff *skb = tb->skb;
  2844. struct tx_pkt_hdr *tp;
  2845. u64 tx_flags;
  2846. int i, len;
  2847. tp = (struct tx_pkt_hdr *) skb->data;
  2848. tx_flags = le64_to_cpup(&tp->flags);
  2849. rp->tx_packets++;
  2850. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2851. ((tx_flags & TXHDR_PAD) / 2));
  2852. len = skb_headlen(skb);
  2853. np->ops->unmap_single(np->device, tb->mapping,
  2854. len, DMA_TO_DEVICE);
  2855. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2856. rp->mark_pending--;
  2857. tb->skb = NULL;
  2858. do {
  2859. idx = NEXT_TX(rp, idx);
  2860. len -= MAX_TX_DESC_LEN;
  2861. } while (len > 0);
  2862. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2863. tb = &rp->tx_buffs[idx];
  2864. BUG_ON(tb->skb != NULL);
  2865. np->ops->unmap_page(np->device, tb->mapping,
  2866. skb_shinfo(skb)->frags[i].size,
  2867. DMA_TO_DEVICE);
  2868. idx = NEXT_TX(rp, idx);
  2869. }
  2870. dev_kfree_skb(skb);
  2871. return idx;
  2872. }
  2873. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2874. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2875. {
  2876. struct netdev_queue *txq;
  2877. u16 pkt_cnt, tmp;
  2878. int cons, index;
  2879. u64 cs;
  2880. index = (rp - np->tx_rings);
  2881. txq = netdev_get_tx_queue(np->dev, index);
  2882. cs = rp->tx_cs;
  2883. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2884. goto out;
  2885. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2886. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2887. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2888. rp->last_pkt_cnt = tmp;
  2889. cons = rp->cons;
  2890. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  2891. np->dev->name, pkt_cnt, cons);
  2892. while (pkt_cnt--)
  2893. cons = release_tx_packet(np, rp, cons);
  2894. rp->cons = cons;
  2895. smp_mb();
  2896. out:
  2897. if (unlikely(netif_tx_queue_stopped(txq) &&
  2898. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  2899. __netif_tx_lock(txq, smp_processor_id());
  2900. if (netif_tx_queue_stopped(txq) &&
  2901. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  2902. netif_tx_wake_queue(txq);
  2903. __netif_tx_unlock(txq);
  2904. }
  2905. }
  2906. static inline void niu_sync_rx_discard_stats(struct niu *np,
  2907. struct rx_ring_info *rp,
  2908. const int limit)
  2909. {
  2910. /* This elaborate scheme is needed for reading the RX discard
  2911. * counters, as they are only 16-bit and can overflow quickly,
  2912. * and because the overflow indication bit is not usable as
  2913. * the counter value does not wrap, but remains at max value
  2914. * 0xFFFF.
  2915. *
  2916. * In theory and in practice counters can be lost in between
  2917. * reading nr64() and clearing the counter nw64(). For this
  2918. * reason, the number of counter clearings nw64() is
  2919. * limited/reduced though the limit parameter.
  2920. */
  2921. int rx_channel = rp->rx_channel;
  2922. u32 misc, wred;
  2923. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  2924. * following discard events: IPP (Input Port Process),
  2925. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  2926. * Block Ring) prefetch buffer is empty.
  2927. */
  2928. misc = nr64(RXMISC(rx_channel));
  2929. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  2930. nw64(RXMISC(rx_channel), 0);
  2931. rp->rx_errors += misc & RXMISC_COUNT;
  2932. if (unlikely(misc & RXMISC_OFLOW))
  2933. dev_err(np->device, "rx-%d: Counter overflow "
  2934. "RXMISC discard\n", rx_channel);
  2935. niudbg(RX_ERR, "%s-rx-%d: MISC drop=%u over=%u\n",
  2936. np->dev->name, rx_channel, misc, misc-limit);
  2937. }
  2938. /* WRED (Weighted Random Early Discard) by hardware */
  2939. wred = nr64(RED_DIS_CNT(rx_channel));
  2940. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  2941. nw64(RED_DIS_CNT(rx_channel), 0);
  2942. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  2943. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  2944. dev_err(np->device, "rx-%d: Counter overflow "
  2945. "WRED discard\n", rx_channel);
  2946. niudbg(RX_ERR, "%s-rx-%d: WRED drop=%u over=%u\n",
  2947. np->dev->name, rx_channel, wred, wred-limit);
  2948. }
  2949. }
  2950. static int niu_rx_work(struct niu *np, struct rx_ring_info *rp, int budget)
  2951. {
  2952. int qlen, rcr_done = 0, work_done = 0;
  2953. struct rxdma_mailbox *mbox = rp->mbox;
  2954. u64 stat;
  2955. #if 1
  2956. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  2957. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  2958. #else
  2959. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  2960. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  2961. #endif
  2962. mbox->rx_dma_ctl_stat = 0;
  2963. mbox->rcrstat_a = 0;
  2964. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  2965. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  2966. rcr_done = work_done = 0;
  2967. qlen = min(qlen, budget);
  2968. while (work_done < qlen) {
  2969. rcr_done += niu_process_rx_pkt(np, rp);
  2970. work_done++;
  2971. }
  2972. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  2973. unsigned int i;
  2974. for (i = 0; i < rp->rbr_refill_pending; i++)
  2975. niu_rbr_refill(np, rp, GFP_ATOMIC);
  2976. rp->rbr_refill_pending = 0;
  2977. }
  2978. stat = (RX_DMA_CTL_STAT_MEX |
  2979. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  2980. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  2981. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  2982. /* Only sync discards stats when qlen indicate potential for drops */
  2983. if (qlen > 10)
  2984. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  2985. return work_done;
  2986. }
  2987. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  2988. {
  2989. u64 v0 = lp->v0;
  2990. u32 tx_vec = (v0 >> 32);
  2991. u32 rx_vec = (v0 & 0xffffffff);
  2992. int i, work_done = 0;
  2993. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  2994. np->dev->name, (unsigned long long) v0);
  2995. for (i = 0; i < np->num_tx_rings; i++) {
  2996. struct tx_ring_info *rp = &np->tx_rings[i];
  2997. if (tx_vec & (1 << rp->tx_channel))
  2998. niu_tx_work(np, rp);
  2999. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3000. }
  3001. for (i = 0; i < np->num_rx_rings; i++) {
  3002. struct rx_ring_info *rp = &np->rx_rings[i];
  3003. if (rx_vec & (1 << rp->rx_channel)) {
  3004. int this_work_done;
  3005. this_work_done = niu_rx_work(np, rp,
  3006. budget);
  3007. budget -= this_work_done;
  3008. work_done += this_work_done;
  3009. }
  3010. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3011. }
  3012. return work_done;
  3013. }
  3014. static int niu_poll(struct napi_struct *napi, int budget)
  3015. {
  3016. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3017. struct niu *np = lp->np;
  3018. int work_done;
  3019. work_done = niu_poll_core(np, lp, budget);
  3020. if (work_done < budget) {
  3021. napi_complete(napi);
  3022. niu_ldg_rearm(np, lp, 1);
  3023. }
  3024. return work_done;
  3025. }
  3026. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3027. u64 stat)
  3028. {
  3029. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  3030. np->dev->name, rp->rx_channel);
  3031. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3032. printk("RBR_TMOUT ");
  3033. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3034. printk("RSP_CNT ");
  3035. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3036. printk("BYTE_EN_BUS ");
  3037. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3038. printk("RSP_DAT ");
  3039. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3040. printk("RCR_ACK ");
  3041. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3042. printk("RCR_SHA_PAR ");
  3043. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3044. printk("RBR_PRE_PAR ");
  3045. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3046. printk("CONFIG ");
  3047. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3048. printk("RCRINCON ");
  3049. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3050. printk("RCRFULL ");
  3051. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3052. printk("RBRFULL ");
  3053. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3054. printk("RBRLOGPAGE ");
  3055. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3056. printk("CFIGLOGPAGE ");
  3057. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3058. printk("DC_FIDO ");
  3059. printk(")\n");
  3060. }
  3061. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3062. {
  3063. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3064. int err = 0;
  3065. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3066. RX_DMA_CTL_STAT_PORT_FATAL))
  3067. err = -EINVAL;
  3068. if (err) {
  3069. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  3070. np->dev->name, rp->rx_channel,
  3071. (unsigned long long) stat);
  3072. niu_log_rxchan_errors(np, rp, stat);
  3073. }
  3074. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3075. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3076. return err;
  3077. }
  3078. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3079. u64 cs)
  3080. {
  3081. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  3082. np->dev->name, rp->tx_channel);
  3083. if (cs & TX_CS_MBOX_ERR)
  3084. printk("MBOX ");
  3085. if (cs & TX_CS_PKT_SIZE_ERR)
  3086. printk("PKT_SIZE ");
  3087. if (cs & TX_CS_TX_RING_OFLOW)
  3088. printk("TX_RING_OFLOW ");
  3089. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3090. printk("PREF_BUF_PAR ");
  3091. if (cs & TX_CS_NACK_PREF)
  3092. printk("NACK_PREF ");
  3093. if (cs & TX_CS_NACK_PKT_RD)
  3094. printk("NACK_PKT_RD ");
  3095. if (cs & TX_CS_CONF_PART_ERR)
  3096. printk("CONF_PART ");
  3097. if (cs & TX_CS_PKT_PRT_ERR)
  3098. printk("PKT_PTR ");
  3099. printk(")\n");
  3100. }
  3101. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3102. {
  3103. u64 cs, logh, logl;
  3104. cs = nr64(TX_CS(rp->tx_channel));
  3105. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3106. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3107. dev_err(np->device, PFX "%s: TX channel %u error, "
  3108. "cs[%llx] logh[%llx] logl[%llx]\n",
  3109. np->dev->name, rp->tx_channel,
  3110. (unsigned long long) cs,
  3111. (unsigned long long) logh,
  3112. (unsigned long long) logl);
  3113. niu_log_txchan_errors(np, rp, cs);
  3114. return -ENODEV;
  3115. }
  3116. static int niu_mif_interrupt(struct niu *np)
  3117. {
  3118. u64 mif_status = nr64(MIF_STATUS);
  3119. int phy_mdint = 0;
  3120. if (np->flags & NIU_FLAGS_XMAC) {
  3121. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3122. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3123. phy_mdint = 1;
  3124. }
  3125. dev_err(np->device, PFX "%s: MIF interrupt, "
  3126. "stat[%llx] phy_mdint(%d)\n",
  3127. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  3128. return -ENODEV;
  3129. }
  3130. static void niu_xmac_interrupt(struct niu *np)
  3131. {
  3132. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3133. u64 val;
  3134. val = nr64_mac(XTXMAC_STATUS);
  3135. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3136. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3137. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3138. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3139. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3140. mp->tx_fifo_errors++;
  3141. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3142. mp->tx_overflow_errors++;
  3143. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3144. mp->tx_max_pkt_size_errors++;
  3145. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3146. mp->tx_underflow_errors++;
  3147. val = nr64_mac(XRXMAC_STATUS);
  3148. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3149. mp->rx_local_faults++;
  3150. if (val & XRXMAC_STATUS_RFLT_DET)
  3151. mp->rx_remote_faults++;
  3152. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3153. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3154. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3155. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3156. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3157. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3158. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3159. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3160. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3161. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3162. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3163. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3164. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3165. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3166. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3167. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3168. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3169. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3170. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3171. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3172. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3173. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3174. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3175. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3176. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3177. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3178. if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
  3179. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3180. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3181. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3182. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3183. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3184. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3185. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3186. if (val & XRXMAC_STATUS_RXUFLOW)
  3187. mp->rx_underflows++;
  3188. if (val & XRXMAC_STATUS_RXOFLOW)
  3189. mp->rx_overflows++;
  3190. val = nr64_mac(XMAC_FC_STAT);
  3191. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3192. mp->pause_off_state++;
  3193. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3194. mp->pause_on_state++;
  3195. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3196. mp->pause_received++;
  3197. }
  3198. static void niu_bmac_interrupt(struct niu *np)
  3199. {
  3200. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3201. u64 val;
  3202. val = nr64_mac(BTXMAC_STATUS);
  3203. if (val & BTXMAC_STATUS_UNDERRUN)
  3204. mp->tx_underflow_errors++;
  3205. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3206. mp->tx_max_pkt_size_errors++;
  3207. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3208. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3209. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3210. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3211. val = nr64_mac(BRXMAC_STATUS);
  3212. if (val & BRXMAC_STATUS_OVERFLOW)
  3213. mp->rx_overflows++;
  3214. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3215. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3216. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3217. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3218. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3219. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3220. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3221. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3222. val = nr64_mac(BMAC_CTRL_STATUS);
  3223. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3224. mp->pause_off_state++;
  3225. if (val & BMAC_CTRL_STATUS_PAUSE)
  3226. mp->pause_on_state++;
  3227. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3228. mp->pause_received++;
  3229. }
  3230. static int niu_mac_interrupt(struct niu *np)
  3231. {
  3232. if (np->flags & NIU_FLAGS_XMAC)
  3233. niu_xmac_interrupt(np);
  3234. else
  3235. niu_bmac_interrupt(np);
  3236. return 0;
  3237. }
  3238. static void niu_log_device_error(struct niu *np, u64 stat)
  3239. {
  3240. dev_err(np->device, PFX "%s: Core device errors ( ",
  3241. np->dev->name);
  3242. if (stat & SYS_ERR_MASK_META2)
  3243. printk("META2 ");
  3244. if (stat & SYS_ERR_MASK_META1)
  3245. printk("META1 ");
  3246. if (stat & SYS_ERR_MASK_PEU)
  3247. printk("PEU ");
  3248. if (stat & SYS_ERR_MASK_TXC)
  3249. printk("TXC ");
  3250. if (stat & SYS_ERR_MASK_RDMC)
  3251. printk("RDMC ");
  3252. if (stat & SYS_ERR_MASK_TDMC)
  3253. printk("TDMC ");
  3254. if (stat & SYS_ERR_MASK_ZCP)
  3255. printk("ZCP ");
  3256. if (stat & SYS_ERR_MASK_FFLP)
  3257. printk("FFLP ");
  3258. if (stat & SYS_ERR_MASK_IPP)
  3259. printk("IPP ");
  3260. if (stat & SYS_ERR_MASK_MAC)
  3261. printk("MAC ");
  3262. if (stat & SYS_ERR_MASK_SMX)
  3263. printk("SMX ");
  3264. printk(")\n");
  3265. }
  3266. static int niu_device_error(struct niu *np)
  3267. {
  3268. u64 stat = nr64(SYS_ERR_STAT);
  3269. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  3270. np->dev->name, (unsigned long long) stat);
  3271. niu_log_device_error(np, stat);
  3272. return -ENODEV;
  3273. }
  3274. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3275. u64 v0, u64 v1, u64 v2)
  3276. {
  3277. int i, err = 0;
  3278. lp->v0 = v0;
  3279. lp->v1 = v1;
  3280. lp->v2 = v2;
  3281. if (v1 & 0x00000000ffffffffULL) {
  3282. u32 rx_vec = (v1 & 0xffffffff);
  3283. for (i = 0; i < np->num_rx_rings; i++) {
  3284. struct rx_ring_info *rp = &np->rx_rings[i];
  3285. if (rx_vec & (1 << rp->rx_channel)) {
  3286. int r = niu_rx_error(np, rp);
  3287. if (r) {
  3288. err = r;
  3289. } else {
  3290. if (!v0)
  3291. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3292. RX_DMA_CTL_STAT_MEX);
  3293. }
  3294. }
  3295. }
  3296. }
  3297. if (v1 & 0x7fffffff00000000ULL) {
  3298. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3299. for (i = 0; i < np->num_tx_rings; i++) {
  3300. struct tx_ring_info *rp = &np->tx_rings[i];
  3301. if (tx_vec & (1 << rp->tx_channel)) {
  3302. int r = niu_tx_error(np, rp);
  3303. if (r)
  3304. err = r;
  3305. }
  3306. }
  3307. }
  3308. if ((v0 | v1) & 0x8000000000000000ULL) {
  3309. int r = niu_mif_interrupt(np);
  3310. if (r)
  3311. err = r;
  3312. }
  3313. if (v2) {
  3314. if (v2 & 0x01ef) {
  3315. int r = niu_mac_interrupt(np);
  3316. if (r)
  3317. err = r;
  3318. }
  3319. if (v2 & 0x0210) {
  3320. int r = niu_device_error(np);
  3321. if (r)
  3322. err = r;
  3323. }
  3324. }
  3325. if (err)
  3326. niu_enable_interrupts(np, 0);
  3327. return err;
  3328. }
  3329. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3330. int ldn)
  3331. {
  3332. struct rxdma_mailbox *mbox = rp->mbox;
  3333. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3334. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3335. RX_DMA_CTL_STAT_RCRTO);
  3336. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3337. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  3338. np->dev->name, (unsigned long long) stat);
  3339. }
  3340. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3341. int ldn)
  3342. {
  3343. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3344. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  3345. np->dev->name, (unsigned long long) rp->tx_cs);
  3346. }
  3347. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3348. {
  3349. struct niu_parent *parent = np->parent;
  3350. u32 rx_vec, tx_vec;
  3351. int i;
  3352. tx_vec = (v0 >> 32);
  3353. rx_vec = (v0 & 0xffffffff);
  3354. for (i = 0; i < np->num_rx_rings; i++) {
  3355. struct rx_ring_info *rp = &np->rx_rings[i];
  3356. int ldn = LDN_RXDMA(rp->rx_channel);
  3357. if (parent->ldg_map[ldn] != ldg)
  3358. continue;
  3359. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3360. if (rx_vec & (1 << rp->rx_channel))
  3361. niu_rxchan_intr(np, rp, ldn);
  3362. }
  3363. for (i = 0; i < np->num_tx_rings; i++) {
  3364. struct tx_ring_info *rp = &np->tx_rings[i];
  3365. int ldn = LDN_TXDMA(rp->tx_channel);
  3366. if (parent->ldg_map[ldn] != ldg)
  3367. continue;
  3368. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3369. if (tx_vec & (1 << rp->tx_channel))
  3370. niu_txchan_intr(np, rp, ldn);
  3371. }
  3372. }
  3373. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3374. u64 v0, u64 v1, u64 v2)
  3375. {
  3376. if (likely(napi_schedule_prep(&lp->napi))) {
  3377. lp->v0 = v0;
  3378. lp->v1 = v1;
  3379. lp->v2 = v2;
  3380. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3381. __napi_schedule(&lp->napi);
  3382. }
  3383. }
  3384. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3385. {
  3386. struct niu_ldg *lp = dev_id;
  3387. struct niu *np = lp->np;
  3388. int ldg = lp->ldg_num;
  3389. unsigned long flags;
  3390. u64 v0, v1, v2;
  3391. if (netif_msg_intr(np))
  3392. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  3393. lp, ldg);
  3394. spin_lock_irqsave(&np->lock, flags);
  3395. v0 = nr64(LDSV0(ldg));
  3396. v1 = nr64(LDSV1(ldg));
  3397. v2 = nr64(LDSV2(ldg));
  3398. if (netif_msg_intr(np))
  3399. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  3400. (unsigned long long) v0,
  3401. (unsigned long long) v1,
  3402. (unsigned long long) v2);
  3403. if (unlikely(!v0 && !v1 && !v2)) {
  3404. spin_unlock_irqrestore(&np->lock, flags);
  3405. return IRQ_NONE;
  3406. }
  3407. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3408. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3409. if (err)
  3410. goto out;
  3411. }
  3412. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3413. niu_schedule_napi(np, lp, v0, v1, v2);
  3414. else
  3415. niu_ldg_rearm(np, lp, 1);
  3416. out:
  3417. spin_unlock_irqrestore(&np->lock, flags);
  3418. return IRQ_HANDLED;
  3419. }
  3420. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3421. {
  3422. if (rp->mbox) {
  3423. np->ops->free_coherent(np->device,
  3424. sizeof(struct rxdma_mailbox),
  3425. rp->mbox, rp->mbox_dma);
  3426. rp->mbox = NULL;
  3427. }
  3428. if (rp->rcr) {
  3429. np->ops->free_coherent(np->device,
  3430. MAX_RCR_RING_SIZE * sizeof(__le64),
  3431. rp->rcr, rp->rcr_dma);
  3432. rp->rcr = NULL;
  3433. rp->rcr_table_size = 0;
  3434. rp->rcr_index = 0;
  3435. }
  3436. if (rp->rbr) {
  3437. niu_rbr_free(np, rp);
  3438. np->ops->free_coherent(np->device,
  3439. MAX_RBR_RING_SIZE * sizeof(__le32),
  3440. rp->rbr, rp->rbr_dma);
  3441. rp->rbr = NULL;
  3442. rp->rbr_table_size = 0;
  3443. rp->rbr_index = 0;
  3444. }
  3445. kfree(rp->rxhash);
  3446. rp->rxhash = NULL;
  3447. }
  3448. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3449. {
  3450. if (rp->mbox) {
  3451. np->ops->free_coherent(np->device,
  3452. sizeof(struct txdma_mailbox),
  3453. rp->mbox, rp->mbox_dma);
  3454. rp->mbox = NULL;
  3455. }
  3456. if (rp->descr) {
  3457. int i;
  3458. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3459. if (rp->tx_buffs[i].skb)
  3460. (void) release_tx_packet(np, rp, i);
  3461. }
  3462. np->ops->free_coherent(np->device,
  3463. MAX_TX_RING_SIZE * sizeof(__le64),
  3464. rp->descr, rp->descr_dma);
  3465. rp->descr = NULL;
  3466. rp->pending = 0;
  3467. rp->prod = 0;
  3468. rp->cons = 0;
  3469. rp->wrap_bit = 0;
  3470. }
  3471. }
  3472. static void niu_free_channels(struct niu *np)
  3473. {
  3474. int i;
  3475. if (np->rx_rings) {
  3476. for (i = 0; i < np->num_rx_rings; i++) {
  3477. struct rx_ring_info *rp = &np->rx_rings[i];
  3478. niu_free_rx_ring_info(np, rp);
  3479. }
  3480. kfree(np->rx_rings);
  3481. np->rx_rings = NULL;
  3482. np->num_rx_rings = 0;
  3483. }
  3484. if (np->tx_rings) {
  3485. for (i = 0; i < np->num_tx_rings; i++) {
  3486. struct tx_ring_info *rp = &np->tx_rings[i];
  3487. niu_free_tx_ring_info(np, rp);
  3488. }
  3489. kfree(np->tx_rings);
  3490. np->tx_rings = NULL;
  3491. np->num_tx_rings = 0;
  3492. }
  3493. }
  3494. static int niu_alloc_rx_ring_info(struct niu *np,
  3495. struct rx_ring_info *rp)
  3496. {
  3497. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3498. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3499. GFP_KERNEL);
  3500. if (!rp->rxhash)
  3501. return -ENOMEM;
  3502. rp->mbox = np->ops->alloc_coherent(np->device,
  3503. sizeof(struct rxdma_mailbox),
  3504. &rp->mbox_dma, GFP_KERNEL);
  3505. if (!rp->mbox)
  3506. return -ENOMEM;
  3507. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3508. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3509. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3510. return -EINVAL;
  3511. }
  3512. rp->rcr = np->ops->alloc_coherent(np->device,
  3513. MAX_RCR_RING_SIZE * sizeof(__le64),
  3514. &rp->rcr_dma, GFP_KERNEL);
  3515. if (!rp->rcr)
  3516. return -ENOMEM;
  3517. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3518. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3519. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  3520. return -EINVAL;
  3521. }
  3522. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3523. rp->rcr_index = 0;
  3524. rp->rbr = np->ops->alloc_coherent(np->device,
  3525. MAX_RBR_RING_SIZE * sizeof(__le32),
  3526. &rp->rbr_dma, GFP_KERNEL);
  3527. if (!rp->rbr)
  3528. return -ENOMEM;
  3529. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3530. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3531. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  3532. return -EINVAL;
  3533. }
  3534. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3535. rp->rbr_index = 0;
  3536. rp->rbr_pending = 0;
  3537. return 0;
  3538. }
  3539. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3540. {
  3541. int mtu = np->dev->mtu;
  3542. /* These values are recommended by the HW designers for fair
  3543. * utilization of DRR amongst the rings.
  3544. */
  3545. rp->max_burst = mtu + 32;
  3546. if (rp->max_burst > 4096)
  3547. rp->max_burst = 4096;
  3548. }
  3549. static int niu_alloc_tx_ring_info(struct niu *np,
  3550. struct tx_ring_info *rp)
  3551. {
  3552. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3553. rp->mbox = np->ops->alloc_coherent(np->device,
  3554. sizeof(struct txdma_mailbox),
  3555. &rp->mbox_dma, GFP_KERNEL);
  3556. if (!rp->mbox)
  3557. return -ENOMEM;
  3558. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3559. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3560. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3561. return -EINVAL;
  3562. }
  3563. rp->descr = np->ops->alloc_coherent(np->device,
  3564. MAX_TX_RING_SIZE * sizeof(__le64),
  3565. &rp->descr_dma, GFP_KERNEL);
  3566. if (!rp->descr)
  3567. return -ENOMEM;
  3568. if ((unsigned long)rp->descr & (64UL - 1)) {
  3569. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3570. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  3571. return -EINVAL;
  3572. }
  3573. rp->pending = MAX_TX_RING_SIZE;
  3574. rp->prod = 0;
  3575. rp->cons = 0;
  3576. rp->wrap_bit = 0;
  3577. /* XXX make these configurable... XXX */
  3578. rp->mark_freq = rp->pending / 4;
  3579. niu_set_max_burst(np, rp);
  3580. return 0;
  3581. }
  3582. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3583. {
  3584. u16 bss;
  3585. bss = min(PAGE_SHIFT, 15);
  3586. rp->rbr_block_size = 1 << bss;
  3587. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3588. rp->rbr_sizes[0] = 256;
  3589. rp->rbr_sizes[1] = 1024;
  3590. if (np->dev->mtu > ETH_DATA_LEN) {
  3591. switch (PAGE_SIZE) {
  3592. case 4 * 1024:
  3593. rp->rbr_sizes[2] = 4096;
  3594. break;
  3595. default:
  3596. rp->rbr_sizes[2] = 8192;
  3597. break;
  3598. }
  3599. } else {
  3600. rp->rbr_sizes[2] = 2048;
  3601. }
  3602. rp->rbr_sizes[3] = rp->rbr_block_size;
  3603. }
  3604. static int niu_alloc_channels(struct niu *np)
  3605. {
  3606. struct niu_parent *parent = np->parent;
  3607. int first_rx_channel, first_tx_channel;
  3608. int i, port, err;
  3609. port = np->port;
  3610. first_rx_channel = first_tx_channel = 0;
  3611. for (i = 0; i < port; i++) {
  3612. first_rx_channel += parent->rxchan_per_port[i];
  3613. first_tx_channel += parent->txchan_per_port[i];
  3614. }
  3615. np->num_rx_rings = parent->rxchan_per_port[port];
  3616. np->num_tx_rings = parent->txchan_per_port[port];
  3617. np->dev->real_num_tx_queues = np->num_tx_rings;
  3618. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  3619. GFP_KERNEL);
  3620. err = -ENOMEM;
  3621. if (!np->rx_rings)
  3622. goto out_err;
  3623. for (i = 0; i < np->num_rx_rings; i++) {
  3624. struct rx_ring_info *rp = &np->rx_rings[i];
  3625. rp->np = np;
  3626. rp->rx_channel = first_rx_channel + i;
  3627. err = niu_alloc_rx_ring_info(np, rp);
  3628. if (err)
  3629. goto out_err;
  3630. niu_size_rbr(np, rp);
  3631. /* XXX better defaults, configurable, etc... XXX */
  3632. rp->nonsyn_window = 64;
  3633. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3634. rp->syn_window = 64;
  3635. rp->syn_threshold = rp->rcr_table_size - 64;
  3636. rp->rcr_pkt_threshold = 16;
  3637. rp->rcr_timeout = 8;
  3638. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3639. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3640. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3641. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3642. if (err)
  3643. return err;
  3644. }
  3645. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  3646. GFP_KERNEL);
  3647. err = -ENOMEM;
  3648. if (!np->tx_rings)
  3649. goto out_err;
  3650. for (i = 0; i < np->num_tx_rings; i++) {
  3651. struct tx_ring_info *rp = &np->tx_rings[i];
  3652. rp->np = np;
  3653. rp->tx_channel = first_tx_channel + i;
  3654. err = niu_alloc_tx_ring_info(np, rp);
  3655. if (err)
  3656. goto out_err;
  3657. }
  3658. return 0;
  3659. out_err:
  3660. niu_free_channels(np);
  3661. return err;
  3662. }
  3663. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3664. {
  3665. int limit = 1000;
  3666. while (--limit > 0) {
  3667. u64 val = nr64(TX_CS(channel));
  3668. if (val & TX_CS_SNG_STATE)
  3669. return 0;
  3670. }
  3671. return -ENODEV;
  3672. }
  3673. static int niu_tx_channel_stop(struct niu *np, int channel)
  3674. {
  3675. u64 val = nr64(TX_CS(channel));
  3676. val |= TX_CS_STOP_N_GO;
  3677. nw64(TX_CS(channel), val);
  3678. return niu_tx_cs_sng_poll(np, channel);
  3679. }
  3680. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3681. {
  3682. int limit = 1000;
  3683. while (--limit > 0) {
  3684. u64 val = nr64(TX_CS(channel));
  3685. if (!(val & TX_CS_RST))
  3686. return 0;
  3687. }
  3688. return -ENODEV;
  3689. }
  3690. static int niu_tx_channel_reset(struct niu *np, int channel)
  3691. {
  3692. u64 val = nr64(TX_CS(channel));
  3693. int err;
  3694. val |= TX_CS_RST;
  3695. nw64(TX_CS(channel), val);
  3696. err = niu_tx_cs_reset_poll(np, channel);
  3697. if (!err)
  3698. nw64(TX_RING_KICK(channel), 0);
  3699. return err;
  3700. }
  3701. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3702. {
  3703. u64 val;
  3704. nw64(TX_LOG_MASK1(channel), 0);
  3705. nw64(TX_LOG_VAL1(channel), 0);
  3706. nw64(TX_LOG_MASK2(channel), 0);
  3707. nw64(TX_LOG_VAL2(channel), 0);
  3708. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3709. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3710. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3711. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3712. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3713. nw64(TX_LOG_PAGE_VLD(channel), val);
  3714. /* XXX TXDMA 32bit mode? XXX */
  3715. return 0;
  3716. }
  3717. static void niu_txc_enable_port(struct niu *np, int on)
  3718. {
  3719. unsigned long flags;
  3720. u64 val, mask;
  3721. niu_lock_parent(np, flags);
  3722. val = nr64(TXC_CONTROL);
  3723. mask = (u64)1 << np->port;
  3724. if (on) {
  3725. val |= TXC_CONTROL_ENABLE | mask;
  3726. } else {
  3727. val &= ~mask;
  3728. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3729. val &= ~TXC_CONTROL_ENABLE;
  3730. }
  3731. nw64(TXC_CONTROL, val);
  3732. niu_unlock_parent(np, flags);
  3733. }
  3734. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3735. {
  3736. unsigned long flags;
  3737. u64 val;
  3738. niu_lock_parent(np, flags);
  3739. val = nr64(TXC_INT_MASK);
  3740. val &= ~TXC_INT_MASK_VAL(np->port);
  3741. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3742. niu_unlock_parent(np, flags);
  3743. }
  3744. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3745. {
  3746. u64 val = 0;
  3747. if (on) {
  3748. int i;
  3749. for (i = 0; i < np->num_tx_rings; i++)
  3750. val |= (1 << np->tx_rings[i].tx_channel);
  3751. }
  3752. nw64(TXC_PORT_DMA(np->port), val);
  3753. }
  3754. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3755. {
  3756. int err, channel = rp->tx_channel;
  3757. u64 val, ring_len;
  3758. err = niu_tx_channel_stop(np, channel);
  3759. if (err)
  3760. return err;
  3761. err = niu_tx_channel_reset(np, channel);
  3762. if (err)
  3763. return err;
  3764. err = niu_tx_channel_lpage_init(np, channel);
  3765. if (err)
  3766. return err;
  3767. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3768. nw64(TX_ENT_MSK(channel), 0);
  3769. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3770. TX_RNG_CFIG_STADDR)) {
  3771. dev_err(np->device, PFX "%s: TX ring channel %d "
  3772. "DMA addr (%llx) is not aligned.\n",
  3773. np->dev->name, channel,
  3774. (unsigned long long) rp->descr_dma);
  3775. return -EINVAL;
  3776. }
  3777. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3778. * blocks. rp->pending is the number of TX descriptors in
  3779. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3780. * to get the proper value the chip wants.
  3781. */
  3782. ring_len = (rp->pending / 8);
  3783. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3784. rp->descr_dma);
  3785. nw64(TX_RNG_CFIG(channel), val);
  3786. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3787. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3788. dev_err(np->device, PFX "%s: TX ring channel %d "
  3789. "MBOX addr (%llx) is has illegal bits.\n",
  3790. np->dev->name, channel,
  3791. (unsigned long long) rp->mbox_dma);
  3792. return -EINVAL;
  3793. }
  3794. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3795. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3796. nw64(TX_CS(channel), 0);
  3797. rp->last_pkt_cnt = 0;
  3798. return 0;
  3799. }
  3800. static void niu_init_rdc_groups(struct niu *np)
  3801. {
  3802. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3803. int i, first_table_num = tp->first_table_num;
  3804. for (i = 0; i < tp->num_tables; i++) {
  3805. struct rdc_table *tbl = &tp->tables[i];
  3806. int this_table = first_table_num + i;
  3807. int slot;
  3808. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3809. nw64(RDC_TBL(this_table, slot),
  3810. tbl->rxdma_channel[slot]);
  3811. }
  3812. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3813. }
  3814. static void niu_init_drr_weight(struct niu *np)
  3815. {
  3816. int type = phy_decode(np->parent->port_phy, np->port);
  3817. u64 val;
  3818. switch (type) {
  3819. case PORT_TYPE_10G:
  3820. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3821. break;
  3822. case PORT_TYPE_1G:
  3823. default:
  3824. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3825. break;
  3826. }
  3827. nw64(PT_DRR_WT(np->port), val);
  3828. }
  3829. static int niu_init_hostinfo(struct niu *np)
  3830. {
  3831. struct niu_parent *parent = np->parent;
  3832. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3833. int i, err, num_alt = niu_num_alt_addr(np);
  3834. int first_rdc_table = tp->first_table_num;
  3835. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3836. if (err)
  3837. return err;
  3838. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3839. if (err)
  3840. return err;
  3841. for (i = 0; i < num_alt; i++) {
  3842. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3843. if (err)
  3844. return err;
  3845. }
  3846. return 0;
  3847. }
  3848. static int niu_rx_channel_reset(struct niu *np, int channel)
  3849. {
  3850. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3851. RXDMA_CFIG1_RST, 1000, 10,
  3852. "RXDMA_CFIG1");
  3853. }
  3854. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3855. {
  3856. u64 val;
  3857. nw64(RX_LOG_MASK1(channel), 0);
  3858. nw64(RX_LOG_VAL1(channel), 0);
  3859. nw64(RX_LOG_MASK2(channel), 0);
  3860. nw64(RX_LOG_VAL2(channel), 0);
  3861. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3862. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3863. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3864. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3865. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3866. nw64(RX_LOG_PAGE_VLD(channel), val);
  3867. return 0;
  3868. }
  3869. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3870. {
  3871. u64 val;
  3872. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3873. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3874. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3875. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3876. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3877. }
  3878. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3879. {
  3880. u64 val = 0;
  3881. switch (rp->rbr_block_size) {
  3882. case 4 * 1024:
  3883. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3884. break;
  3885. case 8 * 1024:
  3886. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3887. break;
  3888. case 16 * 1024:
  3889. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3890. break;
  3891. case 32 * 1024:
  3892. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3893. break;
  3894. default:
  3895. return -EINVAL;
  3896. }
  3897. val |= RBR_CFIG_B_VLD2;
  3898. switch (rp->rbr_sizes[2]) {
  3899. case 2 * 1024:
  3900. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3901. break;
  3902. case 4 * 1024:
  3903. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3904. break;
  3905. case 8 * 1024:
  3906. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3907. break;
  3908. case 16 * 1024:
  3909. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3910. break;
  3911. default:
  3912. return -EINVAL;
  3913. }
  3914. val |= RBR_CFIG_B_VLD1;
  3915. switch (rp->rbr_sizes[1]) {
  3916. case 1 * 1024:
  3917. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3918. break;
  3919. case 2 * 1024:
  3920. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3921. break;
  3922. case 4 * 1024:
  3923. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3924. break;
  3925. case 8 * 1024:
  3926. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3927. break;
  3928. default:
  3929. return -EINVAL;
  3930. }
  3931. val |= RBR_CFIG_B_VLD0;
  3932. switch (rp->rbr_sizes[0]) {
  3933. case 256:
  3934. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  3935. break;
  3936. case 512:
  3937. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  3938. break;
  3939. case 1 * 1024:
  3940. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  3941. break;
  3942. case 2 * 1024:
  3943. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  3944. break;
  3945. default:
  3946. return -EINVAL;
  3947. }
  3948. *ret = val;
  3949. return 0;
  3950. }
  3951. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  3952. {
  3953. u64 val = nr64(RXDMA_CFIG1(channel));
  3954. int limit;
  3955. if (on)
  3956. val |= RXDMA_CFIG1_EN;
  3957. else
  3958. val &= ~RXDMA_CFIG1_EN;
  3959. nw64(RXDMA_CFIG1(channel), val);
  3960. limit = 1000;
  3961. while (--limit > 0) {
  3962. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  3963. break;
  3964. udelay(10);
  3965. }
  3966. if (limit <= 0)
  3967. return -ENODEV;
  3968. return 0;
  3969. }
  3970. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3971. {
  3972. int err, channel = rp->rx_channel;
  3973. u64 val;
  3974. err = niu_rx_channel_reset(np, channel);
  3975. if (err)
  3976. return err;
  3977. err = niu_rx_channel_lpage_init(np, channel);
  3978. if (err)
  3979. return err;
  3980. niu_rx_channel_wred_init(np, rp);
  3981. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  3982. nw64(RX_DMA_CTL_STAT(channel),
  3983. (RX_DMA_CTL_STAT_MEX |
  3984. RX_DMA_CTL_STAT_RCRTHRES |
  3985. RX_DMA_CTL_STAT_RCRTO |
  3986. RX_DMA_CTL_STAT_RBR_EMPTY));
  3987. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  3988. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  3989. nw64(RBR_CFIG_A(channel),
  3990. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  3991. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  3992. err = niu_compute_rbr_cfig_b(rp, &val);
  3993. if (err)
  3994. return err;
  3995. nw64(RBR_CFIG_B(channel), val);
  3996. nw64(RCRCFIG_A(channel),
  3997. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  3998. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  3999. nw64(RCRCFIG_B(channel),
  4000. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4001. RCRCFIG_B_ENTOUT |
  4002. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4003. err = niu_enable_rx_channel(np, channel, 1);
  4004. if (err)
  4005. return err;
  4006. nw64(RBR_KICK(channel), rp->rbr_index);
  4007. val = nr64(RX_DMA_CTL_STAT(channel));
  4008. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4009. nw64(RX_DMA_CTL_STAT(channel), val);
  4010. return 0;
  4011. }
  4012. static int niu_init_rx_channels(struct niu *np)
  4013. {
  4014. unsigned long flags;
  4015. u64 seed = jiffies_64;
  4016. int err, i;
  4017. niu_lock_parent(np, flags);
  4018. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4019. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4020. niu_unlock_parent(np, flags);
  4021. /* XXX RXDMA 32bit mode? XXX */
  4022. niu_init_rdc_groups(np);
  4023. niu_init_drr_weight(np);
  4024. err = niu_init_hostinfo(np);
  4025. if (err)
  4026. return err;
  4027. for (i = 0; i < np->num_rx_rings; i++) {
  4028. struct rx_ring_info *rp = &np->rx_rings[i];
  4029. err = niu_init_one_rx_channel(np, rp);
  4030. if (err)
  4031. return err;
  4032. }
  4033. return 0;
  4034. }
  4035. static int niu_set_ip_frag_rule(struct niu *np)
  4036. {
  4037. struct niu_parent *parent = np->parent;
  4038. struct niu_classifier *cp = &np->clas;
  4039. struct niu_tcam_entry *tp;
  4040. int index, err;
  4041. /* XXX fix this allocation scheme XXX */
  4042. index = cp->tcam_index;
  4043. tp = &parent->tcam[index];
  4044. /* Note that the noport bit is the same in both ipv4 and
  4045. * ipv6 format TCAM entries.
  4046. */
  4047. memset(tp, 0, sizeof(*tp));
  4048. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4049. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4050. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4051. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4052. err = tcam_write(np, index, tp->key, tp->key_mask);
  4053. if (err)
  4054. return err;
  4055. err = tcam_assoc_write(np, index, tp->assoc_data);
  4056. if (err)
  4057. return err;
  4058. return 0;
  4059. }
  4060. static int niu_init_classifier_hw(struct niu *np)
  4061. {
  4062. struct niu_parent *parent = np->parent;
  4063. struct niu_classifier *cp = &np->clas;
  4064. int i, err;
  4065. nw64(H1POLY, cp->h1_init);
  4066. nw64(H2POLY, cp->h2_init);
  4067. err = niu_init_hostinfo(np);
  4068. if (err)
  4069. return err;
  4070. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4071. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4072. vlan_tbl_write(np, i, np->port,
  4073. vp->vlan_pref, vp->rdc_num);
  4074. }
  4075. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4076. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4077. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4078. ap->rdc_num, ap->mac_pref);
  4079. if (err)
  4080. return err;
  4081. }
  4082. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4083. int index = i - CLASS_CODE_USER_PROG1;
  4084. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4085. if (err)
  4086. return err;
  4087. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4088. if (err)
  4089. return err;
  4090. }
  4091. err = niu_set_ip_frag_rule(np);
  4092. if (err)
  4093. return err;
  4094. tcam_enable(np, 1);
  4095. return 0;
  4096. }
  4097. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4098. {
  4099. nw64(ZCP_RAM_DATA0, data[0]);
  4100. nw64(ZCP_RAM_DATA1, data[1]);
  4101. nw64(ZCP_RAM_DATA2, data[2]);
  4102. nw64(ZCP_RAM_DATA3, data[3]);
  4103. nw64(ZCP_RAM_DATA4, data[4]);
  4104. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4105. nw64(ZCP_RAM_ACC,
  4106. (ZCP_RAM_ACC_WRITE |
  4107. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4108. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4109. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4110. 1000, 100);
  4111. }
  4112. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4113. {
  4114. int err;
  4115. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4116. 1000, 100);
  4117. if (err) {
  4118. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  4119. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4120. (unsigned long long) nr64(ZCP_RAM_ACC));
  4121. return err;
  4122. }
  4123. nw64(ZCP_RAM_ACC,
  4124. (ZCP_RAM_ACC_READ |
  4125. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4126. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4127. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4128. 1000, 100);
  4129. if (err) {
  4130. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  4131. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4132. (unsigned long long) nr64(ZCP_RAM_ACC));
  4133. return err;
  4134. }
  4135. data[0] = nr64(ZCP_RAM_DATA0);
  4136. data[1] = nr64(ZCP_RAM_DATA1);
  4137. data[2] = nr64(ZCP_RAM_DATA2);
  4138. data[3] = nr64(ZCP_RAM_DATA3);
  4139. data[4] = nr64(ZCP_RAM_DATA4);
  4140. return 0;
  4141. }
  4142. static void niu_zcp_cfifo_reset(struct niu *np)
  4143. {
  4144. u64 val = nr64(RESET_CFIFO);
  4145. val |= RESET_CFIFO_RST(np->port);
  4146. nw64(RESET_CFIFO, val);
  4147. udelay(10);
  4148. val &= ~RESET_CFIFO_RST(np->port);
  4149. nw64(RESET_CFIFO, val);
  4150. }
  4151. static int niu_init_zcp(struct niu *np)
  4152. {
  4153. u64 data[5], rbuf[5];
  4154. int i, max, err;
  4155. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4156. if (np->port == 0 || np->port == 1)
  4157. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4158. else
  4159. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4160. } else
  4161. max = NIU_CFIFO_ENTRIES;
  4162. data[0] = 0;
  4163. data[1] = 0;
  4164. data[2] = 0;
  4165. data[3] = 0;
  4166. data[4] = 0;
  4167. for (i = 0; i < max; i++) {
  4168. err = niu_zcp_write(np, i, data);
  4169. if (err)
  4170. return err;
  4171. err = niu_zcp_read(np, i, rbuf);
  4172. if (err)
  4173. return err;
  4174. }
  4175. niu_zcp_cfifo_reset(np);
  4176. nw64(CFIFO_ECC(np->port), 0);
  4177. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4178. (void) nr64(ZCP_INT_STAT);
  4179. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4180. return 0;
  4181. }
  4182. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4183. {
  4184. u64 val = nr64_ipp(IPP_CFIG);
  4185. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4186. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4187. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4188. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4189. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4190. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4191. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4192. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4193. }
  4194. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4195. {
  4196. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4197. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4198. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4199. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4200. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4201. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4202. }
  4203. static int niu_ipp_reset(struct niu *np)
  4204. {
  4205. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4206. 1000, 100, "IPP_CFIG");
  4207. }
  4208. static int niu_init_ipp(struct niu *np)
  4209. {
  4210. u64 data[5], rbuf[5], val;
  4211. int i, max, err;
  4212. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4213. if (np->port == 0 || np->port == 1)
  4214. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4215. else
  4216. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4217. } else
  4218. max = NIU_DFIFO_ENTRIES;
  4219. data[0] = 0;
  4220. data[1] = 0;
  4221. data[2] = 0;
  4222. data[3] = 0;
  4223. data[4] = 0;
  4224. for (i = 0; i < max; i++) {
  4225. niu_ipp_write(np, i, data);
  4226. niu_ipp_read(np, i, rbuf);
  4227. }
  4228. (void) nr64_ipp(IPP_INT_STAT);
  4229. (void) nr64_ipp(IPP_INT_STAT);
  4230. err = niu_ipp_reset(np);
  4231. if (err)
  4232. return err;
  4233. (void) nr64_ipp(IPP_PKT_DIS);
  4234. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4235. (void) nr64_ipp(IPP_ECC);
  4236. (void) nr64_ipp(IPP_INT_STAT);
  4237. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4238. val = nr64_ipp(IPP_CFIG);
  4239. val &= ~IPP_CFIG_IP_MAX_PKT;
  4240. val |= (IPP_CFIG_IPP_ENABLE |
  4241. IPP_CFIG_DFIFO_ECC_EN |
  4242. IPP_CFIG_DROP_BAD_CRC |
  4243. IPP_CFIG_CKSUM_EN |
  4244. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4245. nw64_ipp(IPP_CFIG, val);
  4246. return 0;
  4247. }
  4248. static void niu_handle_led(struct niu *np, int status)
  4249. {
  4250. u64 val;
  4251. val = nr64_mac(XMAC_CONFIG);
  4252. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4253. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4254. if (status) {
  4255. val |= XMAC_CONFIG_LED_POLARITY;
  4256. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4257. } else {
  4258. val |= XMAC_CONFIG_FORCE_LED_ON;
  4259. val &= ~XMAC_CONFIG_LED_POLARITY;
  4260. }
  4261. }
  4262. nw64_mac(XMAC_CONFIG, val);
  4263. }
  4264. static void niu_init_xif_xmac(struct niu *np)
  4265. {
  4266. struct niu_link_config *lp = &np->link_config;
  4267. u64 val;
  4268. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4269. val = nr64(MIF_CONFIG);
  4270. val |= MIF_CONFIG_ATCA_GE;
  4271. nw64(MIF_CONFIG, val);
  4272. }
  4273. val = nr64_mac(XMAC_CONFIG);
  4274. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4275. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4276. if (lp->loopback_mode == LOOPBACK_MAC) {
  4277. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4278. val |= XMAC_CONFIG_LOOPBACK;
  4279. } else {
  4280. val &= ~XMAC_CONFIG_LOOPBACK;
  4281. }
  4282. if (np->flags & NIU_FLAGS_10G) {
  4283. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4284. } else {
  4285. val |= XMAC_CONFIG_LFS_DISABLE;
  4286. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4287. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4288. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4289. else
  4290. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4291. }
  4292. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4293. if (lp->active_speed == SPEED_100)
  4294. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4295. else
  4296. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4297. nw64_mac(XMAC_CONFIG, val);
  4298. val = nr64_mac(XMAC_CONFIG);
  4299. val &= ~XMAC_CONFIG_MODE_MASK;
  4300. if (np->flags & NIU_FLAGS_10G) {
  4301. val |= XMAC_CONFIG_MODE_XGMII;
  4302. } else {
  4303. if (lp->active_speed == SPEED_100)
  4304. val |= XMAC_CONFIG_MODE_MII;
  4305. else
  4306. val |= XMAC_CONFIG_MODE_GMII;
  4307. }
  4308. nw64_mac(XMAC_CONFIG, val);
  4309. }
  4310. static void niu_init_xif_bmac(struct niu *np)
  4311. {
  4312. struct niu_link_config *lp = &np->link_config;
  4313. u64 val;
  4314. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4315. if (lp->loopback_mode == LOOPBACK_MAC)
  4316. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4317. else
  4318. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4319. if (lp->active_speed == SPEED_1000)
  4320. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4321. else
  4322. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4323. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4324. BMAC_XIF_CONFIG_LED_POLARITY);
  4325. if (!(np->flags & NIU_FLAGS_10G) &&
  4326. !(np->flags & NIU_FLAGS_FIBER) &&
  4327. lp->active_speed == SPEED_100)
  4328. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4329. else
  4330. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4331. nw64_mac(BMAC_XIF_CONFIG, val);
  4332. }
  4333. static void niu_init_xif(struct niu *np)
  4334. {
  4335. if (np->flags & NIU_FLAGS_XMAC)
  4336. niu_init_xif_xmac(np);
  4337. else
  4338. niu_init_xif_bmac(np);
  4339. }
  4340. static void niu_pcs_mii_reset(struct niu *np)
  4341. {
  4342. int limit = 1000;
  4343. u64 val = nr64_pcs(PCS_MII_CTL);
  4344. val |= PCS_MII_CTL_RST;
  4345. nw64_pcs(PCS_MII_CTL, val);
  4346. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4347. udelay(100);
  4348. val = nr64_pcs(PCS_MII_CTL);
  4349. }
  4350. }
  4351. static void niu_xpcs_reset(struct niu *np)
  4352. {
  4353. int limit = 1000;
  4354. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4355. val |= XPCS_CONTROL1_RESET;
  4356. nw64_xpcs(XPCS_CONTROL1, val);
  4357. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4358. udelay(100);
  4359. val = nr64_xpcs(XPCS_CONTROL1);
  4360. }
  4361. }
  4362. static int niu_init_pcs(struct niu *np)
  4363. {
  4364. struct niu_link_config *lp = &np->link_config;
  4365. u64 val;
  4366. switch (np->flags & (NIU_FLAGS_10G |
  4367. NIU_FLAGS_FIBER |
  4368. NIU_FLAGS_XCVR_SERDES)) {
  4369. case NIU_FLAGS_FIBER:
  4370. /* 1G fiber */
  4371. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4372. nw64_pcs(PCS_DPATH_MODE, 0);
  4373. niu_pcs_mii_reset(np);
  4374. break;
  4375. case NIU_FLAGS_10G:
  4376. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4377. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4378. /* 10G SERDES */
  4379. if (!(np->flags & NIU_FLAGS_XMAC))
  4380. return -EINVAL;
  4381. /* 10G copper or fiber */
  4382. val = nr64_mac(XMAC_CONFIG);
  4383. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4384. nw64_mac(XMAC_CONFIG, val);
  4385. niu_xpcs_reset(np);
  4386. val = nr64_xpcs(XPCS_CONTROL1);
  4387. if (lp->loopback_mode == LOOPBACK_PHY)
  4388. val |= XPCS_CONTROL1_LOOPBACK;
  4389. else
  4390. val &= ~XPCS_CONTROL1_LOOPBACK;
  4391. nw64_xpcs(XPCS_CONTROL1, val);
  4392. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4393. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4394. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4395. break;
  4396. case NIU_FLAGS_XCVR_SERDES:
  4397. /* 1G SERDES */
  4398. niu_pcs_mii_reset(np);
  4399. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4400. nw64_pcs(PCS_DPATH_MODE, 0);
  4401. break;
  4402. case 0:
  4403. /* 1G copper */
  4404. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4405. /* 1G RGMII FIBER */
  4406. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4407. niu_pcs_mii_reset(np);
  4408. break;
  4409. default:
  4410. return -EINVAL;
  4411. }
  4412. return 0;
  4413. }
  4414. static int niu_reset_tx_xmac(struct niu *np)
  4415. {
  4416. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4417. (XTXMAC_SW_RST_REG_RS |
  4418. XTXMAC_SW_RST_SOFT_RST),
  4419. 1000, 100, "XTXMAC_SW_RST");
  4420. }
  4421. static int niu_reset_tx_bmac(struct niu *np)
  4422. {
  4423. int limit;
  4424. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4425. limit = 1000;
  4426. while (--limit >= 0) {
  4427. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4428. break;
  4429. udelay(100);
  4430. }
  4431. if (limit < 0) {
  4432. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  4433. "BTXMAC_SW_RST[%llx]\n",
  4434. np->port,
  4435. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4436. return -ENODEV;
  4437. }
  4438. return 0;
  4439. }
  4440. static int niu_reset_tx_mac(struct niu *np)
  4441. {
  4442. if (np->flags & NIU_FLAGS_XMAC)
  4443. return niu_reset_tx_xmac(np);
  4444. else
  4445. return niu_reset_tx_bmac(np);
  4446. }
  4447. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4448. {
  4449. u64 val;
  4450. val = nr64_mac(XMAC_MIN);
  4451. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4452. XMAC_MIN_RX_MIN_PKT_SIZE);
  4453. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4454. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4455. nw64_mac(XMAC_MIN, val);
  4456. nw64_mac(XMAC_MAX, max);
  4457. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4458. val = nr64_mac(XMAC_IPG);
  4459. if (np->flags & NIU_FLAGS_10G) {
  4460. val &= ~XMAC_IPG_IPG_XGMII;
  4461. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4462. } else {
  4463. val &= ~XMAC_IPG_IPG_MII_GMII;
  4464. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4465. }
  4466. nw64_mac(XMAC_IPG, val);
  4467. val = nr64_mac(XMAC_CONFIG);
  4468. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4469. XMAC_CONFIG_STRETCH_MODE |
  4470. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4471. XMAC_CONFIG_TX_ENABLE);
  4472. nw64_mac(XMAC_CONFIG, val);
  4473. nw64_mac(TXMAC_FRM_CNT, 0);
  4474. nw64_mac(TXMAC_BYTE_CNT, 0);
  4475. }
  4476. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4477. {
  4478. u64 val;
  4479. nw64_mac(BMAC_MIN_FRAME, min);
  4480. nw64_mac(BMAC_MAX_FRAME, max);
  4481. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4482. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4483. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4484. val = nr64_mac(BTXMAC_CONFIG);
  4485. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4486. BTXMAC_CONFIG_ENABLE);
  4487. nw64_mac(BTXMAC_CONFIG, val);
  4488. }
  4489. static void niu_init_tx_mac(struct niu *np)
  4490. {
  4491. u64 min, max;
  4492. min = 64;
  4493. if (np->dev->mtu > ETH_DATA_LEN)
  4494. max = 9216;
  4495. else
  4496. max = 1522;
  4497. /* The XMAC_MIN register only accepts values for TX min which
  4498. * have the low 3 bits cleared.
  4499. */
  4500. BUILD_BUG_ON(min & 0x7);
  4501. if (np->flags & NIU_FLAGS_XMAC)
  4502. niu_init_tx_xmac(np, min, max);
  4503. else
  4504. niu_init_tx_bmac(np, min, max);
  4505. }
  4506. static int niu_reset_rx_xmac(struct niu *np)
  4507. {
  4508. int limit;
  4509. nw64_mac(XRXMAC_SW_RST,
  4510. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4511. limit = 1000;
  4512. while (--limit >= 0) {
  4513. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4514. XRXMAC_SW_RST_SOFT_RST)))
  4515. break;
  4516. udelay(100);
  4517. }
  4518. if (limit < 0) {
  4519. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  4520. "XRXMAC_SW_RST[%llx]\n",
  4521. np->port,
  4522. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4523. return -ENODEV;
  4524. }
  4525. return 0;
  4526. }
  4527. static int niu_reset_rx_bmac(struct niu *np)
  4528. {
  4529. int limit;
  4530. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4531. limit = 1000;
  4532. while (--limit >= 0) {
  4533. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4534. break;
  4535. udelay(100);
  4536. }
  4537. if (limit < 0) {
  4538. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  4539. "BRXMAC_SW_RST[%llx]\n",
  4540. np->port,
  4541. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4542. return -ENODEV;
  4543. }
  4544. return 0;
  4545. }
  4546. static int niu_reset_rx_mac(struct niu *np)
  4547. {
  4548. if (np->flags & NIU_FLAGS_XMAC)
  4549. return niu_reset_rx_xmac(np);
  4550. else
  4551. return niu_reset_rx_bmac(np);
  4552. }
  4553. static void niu_init_rx_xmac(struct niu *np)
  4554. {
  4555. struct niu_parent *parent = np->parent;
  4556. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4557. int first_rdc_table = tp->first_table_num;
  4558. unsigned long i;
  4559. u64 val;
  4560. nw64_mac(XMAC_ADD_FILT0, 0);
  4561. nw64_mac(XMAC_ADD_FILT1, 0);
  4562. nw64_mac(XMAC_ADD_FILT2, 0);
  4563. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4564. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4565. for (i = 0; i < MAC_NUM_HASH; i++)
  4566. nw64_mac(XMAC_HASH_TBL(i), 0);
  4567. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4568. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4569. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4570. val = nr64_mac(XMAC_CONFIG);
  4571. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4572. XMAC_CONFIG_PROMISCUOUS |
  4573. XMAC_CONFIG_PROMISC_GROUP |
  4574. XMAC_CONFIG_ERR_CHK_DIS |
  4575. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4576. XMAC_CONFIG_RESERVED_MULTICAST |
  4577. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4578. XMAC_CONFIG_ADDR_FILTER_EN |
  4579. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4580. XMAC_CONFIG_STRIP_CRC |
  4581. XMAC_CONFIG_PASS_FLOW_CTRL |
  4582. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4583. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4584. nw64_mac(XMAC_CONFIG, val);
  4585. nw64_mac(RXMAC_BT_CNT, 0);
  4586. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4587. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4588. nw64_mac(RXMAC_FRAG_CNT, 0);
  4589. nw64_mac(RXMAC_HIST_CNT1, 0);
  4590. nw64_mac(RXMAC_HIST_CNT2, 0);
  4591. nw64_mac(RXMAC_HIST_CNT3, 0);
  4592. nw64_mac(RXMAC_HIST_CNT4, 0);
  4593. nw64_mac(RXMAC_HIST_CNT5, 0);
  4594. nw64_mac(RXMAC_HIST_CNT6, 0);
  4595. nw64_mac(RXMAC_HIST_CNT7, 0);
  4596. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4597. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4598. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4599. nw64_mac(LINK_FAULT_CNT, 0);
  4600. }
  4601. static void niu_init_rx_bmac(struct niu *np)
  4602. {
  4603. struct niu_parent *parent = np->parent;
  4604. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4605. int first_rdc_table = tp->first_table_num;
  4606. unsigned long i;
  4607. u64 val;
  4608. nw64_mac(BMAC_ADD_FILT0, 0);
  4609. nw64_mac(BMAC_ADD_FILT1, 0);
  4610. nw64_mac(BMAC_ADD_FILT2, 0);
  4611. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4612. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4613. for (i = 0; i < MAC_NUM_HASH; i++)
  4614. nw64_mac(BMAC_HASH_TBL(i), 0);
  4615. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4616. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4617. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4618. val = nr64_mac(BRXMAC_CONFIG);
  4619. val &= ~(BRXMAC_CONFIG_ENABLE |
  4620. BRXMAC_CONFIG_STRIP_PAD |
  4621. BRXMAC_CONFIG_STRIP_FCS |
  4622. BRXMAC_CONFIG_PROMISC |
  4623. BRXMAC_CONFIG_PROMISC_GRP |
  4624. BRXMAC_CONFIG_ADDR_FILT_EN |
  4625. BRXMAC_CONFIG_DISCARD_DIS);
  4626. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4627. nw64_mac(BRXMAC_CONFIG, val);
  4628. val = nr64_mac(BMAC_ADDR_CMPEN);
  4629. val |= BMAC_ADDR_CMPEN_EN0;
  4630. nw64_mac(BMAC_ADDR_CMPEN, val);
  4631. }
  4632. static void niu_init_rx_mac(struct niu *np)
  4633. {
  4634. niu_set_primary_mac(np, np->dev->dev_addr);
  4635. if (np->flags & NIU_FLAGS_XMAC)
  4636. niu_init_rx_xmac(np);
  4637. else
  4638. niu_init_rx_bmac(np);
  4639. }
  4640. static void niu_enable_tx_xmac(struct niu *np, int on)
  4641. {
  4642. u64 val = nr64_mac(XMAC_CONFIG);
  4643. if (on)
  4644. val |= XMAC_CONFIG_TX_ENABLE;
  4645. else
  4646. val &= ~XMAC_CONFIG_TX_ENABLE;
  4647. nw64_mac(XMAC_CONFIG, val);
  4648. }
  4649. static void niu_enable_tx_bmac(struct niu *np, int on)
  4650. {
  4651. u64 val = nr64_mac(BTXMAC_CONFIG);
  4652. if (on)
  4653. val |= BTXMAC_CONFIG_ENABLE;
  4654. else
  4655. val &= ~BTXMAC_CONFIG_ENABLE;
  4656. nw64_mac(BTXMAC_CONFIG, val);
  4657. }
  4658. static void niu_enable_tx_mac(struct niu *np, int on)
  4659. {
  4660. if (np->flags & NIU_FLAGS_XMAC)
  4661. niu_enable_tx_xmac(np, on);
  4662. else
  4663. niu_enable_tx_bmac(np, on);
  4664. }
  4665. static void niu_enable_rx_xmac(struct niu *np, int on)
  4666. {
  4667. u64 val = nr64_mac(XMAC_CONFIG);
  4668. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4669. XMAC_CONFIG_PROMISCUOUS);
  4670. if (np->flags & NIU_FLAGS_MCAST)
  4671. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4672. if (np->flags & NIU_FLAGS_PROMISC)
  4673. val |= XMAC_CONFIG_PROMISCUOUS;
  4674. if (on)
  4675. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4676. else
  4677. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4678. nw64_mac(XMAC_CONFIG, val);
  4679. }
  4680. static void niu_enable_rx_bmac(struct niu *np, int on)
  4681. {
  4682. u64 val = nr64_mac(BRXMAC_CONFIG);
  4683. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4684. BRXMAC_CONFIG_PROMISC);
  4685. if (np->flags & NIU_FLAGS_MCAST)
  4686. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4687. if (np->flags & NIU_FLAGS_PROMISC)
  4688. val |= BRXMAC_CONFIG_PROMISC;
  4689. if (on)
  4690. val |= BRXMAC_CONFIG_ENABLE;
  4691. else
  4692. val &= ~BRXMAC_CONFIG_ENABLE;
  4693. nw64_mac(BRXMAC_CONFIG, val);
  4694. }
  4695. static void niu_enable_rx_mac(struct niu *np, int on)
  4696. {
  4697. if (np->flags & NIU_FLAGS_XMAC)
  4698. niu_enable_rx_xmac(np, on);
  4699. else
  4700. niu_enable_rx_bmac(np, on);
  4701. }
  4702. static int niu_init_mac(struct niu *np)
  4703. {
  4704. int err;
  4705. niu_init_xif(np);
  4706. err = niu_init_pcs(np);
  4707. if (err)
  4708. return err;
  4709. err = niu_reset_tx_mac(np);
  4710. if (err)
  4711. return err;
  4712. niu_init_tx_mac(np);
  4713. err = niu_reset_rx_mac(np);
  4714. if (err)
  4715. return err;
  4716. niu_init_rx_mac(np);
  4717. /* This looks hookey but the RX MAC reset we just did will
  4718. * undo some of the state we setup in niu_init_tx_mac() so we
  4719. * have to call it again. In particular, the RX MAC reset will
  4720. * set the XMAC_MAX register back to it's default value.
  4721. */
  4722. niu_init_tx_mac(np);
  4723. niu_enable_tx_mac(np, 1);
  4724. niu_enable_rx_mac(np, 1);
  4725. return 0;
  4726. }
  4727. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4728. {
  4729. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4730. }
  4731. static void niu_stop_tx_channels(struct niu *np)
  4732. {
  4733. int i;
  4734. for (i = 0; i < np->num_tx_rings; i++) {
  4735. struct tx_ring_info *rp = &np->tx_rings[i];
  4736. niu_stop_one_tx_channel(np, rp);
  4737. }
  4738. }
  4739. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4740. {
  4741. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4742. }
  4743. static void niu_reset_tx_channels(struct niu *np)
  4744. {
  4745. int i;
  4746. for (i = 0; i < np->num_tx_rings; i++) {
  4747. struct tx_ring_info *rp = &np->tx_rings[i];
  4748. niu_reset_one_tx_channel(np, rp);
  4749. }
  4750. }
  4751. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4752. {
  4753. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4754. }
  4755. static void niu_stop_rx_channels(struct niu *np)
  4756. {
  4757. int i;
  4758. for (i = 0; i < np->num_rx_rings; i++) {
  4759. struct rx_ring_info *rp = &np->rx_rings[i];
  4760. niu_stop_one_rx_channel(np, rp);
  4761. }
  4762. }
  4763. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4764. {
  4765. int channel = rp->rx_channel;
  4766. (void) niu_rx_channel_reset(np, channel);
  4767. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4768. nw64(RX_DMA_CTL_STAT(channel), 0);
  4769. (void) niu_enable_rx_channel(np, channel, 0);
  4770. }
  4771. static void niu_reset_rx_channels(struct niu *np)
  4772. {
  4773. int i;
  4774. for (i = 0; i < np->num_rx_rings; i++) {
  4775. struct rx_ring_info *rp = &np->rx_rings[i];
  4776. niu_reset_one_rx_channel(np, rp);
  4777. }
  4778. }
  4779. static void niu_disable_ipp(struct niu *np)
  4780. {
  4781. u64 rd, wr, val;
  4782. int limit;
  4783. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4784. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4785. limit = 100;
  4786. while (--limit >= 0 && (rd != wr)) {
  4787. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4788. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4789. }
  4790. if (limit < 0 &&
  4791. (rd != 0 && wr != 1)) {
  4792. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  4793. "rd_ptr[%llx] wr_ptr[%llx]\n",
  4794. np->dev->name,
  4795. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  4796. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  4797. }
  4798. val = nr64_ipp(IPP_CFIG);
  4799. val &= ~(IPP_CFIG_IPP_ENABLE |
  4800. IPP_CFIG_DFIFO_ECC_EN |
  4801. IPP_CFIG_DROP_BAD_CRC |
  4802. IPP_CFIG_CKSUM_EN);
  4803. nw64_ipp(IPP_CFIG, val);
  4804. (void) niu_ipp_reset(np);
  4805. }
  4806. static int niu_init_hw(struct niu *np)
  4807. {
  4808. int i, err;
  4809. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  4810. niu_txc_enable_port(np, 1);
  4811. niu_txc_port_dma_enable(np, 1);
  4812. niu_txc_set_imask(np, 0);
  4813. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  4814. for (i = 0; i < np->num_tx_rings; i++) {
  4815. struct tx_ring_info *rp = &np->tx_rings[i];
  4816. err = niu_init_one_tx_channel(np, rp);
  4817. if (err)
  4818. return err;
  4819. }
  4820. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  4821. err = niu_init_rx_channels(np);
  4822. if (err)
  4823. goto out_uninit_tx_channels;
  4824. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  4825. err = niu_init_classifier_hw(np);
  4826. if (err)
  4827. goto out_uninit_rx_channels;
  4828. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  4829. err = niu_init_zcp(np);
  4830. if (err)
  4831. goto out_uninit_rx_channels;
  4832. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  4833. err = niu_init_ipp(np);
  4834. if (err)
  4835. goto out_uninit_rx_channels;
  4836. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  4837. err = niu_init_mac(np);
  4838. if (err)
  4839. goto out_uninit_ipp;
  4840. return 0;
  4841. out_uninit_ipp:
  4842. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  4843. niu_disable_ipp(np);
  4844. out_uninit_rx_channels:
  4845. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  4846. niu_stop_rx_channels(np);
  4847. niu_reset_rx_channels(np);
  4848. out_uninit_tx_channels:
  4849. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  4850. niu_stop_tx_channels(np);
  4851. niu_reset_tx_channels(np);
  4852. return err;
  4853. }
  4854. static void niu_stop_hw(struct niu *np)
  4855. {
  4856. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  4857. niu_enable_interrupts(np, 0);
  4858. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  4859. niu_enable_rx_mac(np, 0);
  4860. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  4861. niu_disable_ipp(np);
  4862. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  4863. niu_stop_tx_channels(np);
  4864. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  4865. niu_stop_rx_channels(np);
  4866. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  4867. niu_reset_tx_channels(np);
  4868. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  4869. niu_reset_rx_channels(np);
  4870. }
  4871. static void niu_set_irq_name(struct niu *np)
  4872. {
  4873. int port = np->port;
  4874. int i, j = 1;
  4875. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4876. if (port == 0) {
  4877. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4878. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4879. j = 3;
  4880. }
  4881. for (i = 0; i < np->num_ldg - j; i++) {
  4882. if (i < np->num_rx_rings)
  4883. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4884. np->dev->name, i);
  4885. else if (i < np->num_tx_rings + np->num_rx_rings)
  4886. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4887. i - np->num_rx_rings);
  4888. }
  4889. }
  4890. static int niu_request_irq(struct niu *np)
  4891. {
  4892. int i, j, err;
  4893. niu_set_irq_name(np);
  4894. err = 0;
  4895. for (i = 0; i < np->num_ldg; i++) {
  4896. struct niu_ldg *lp = &np->ldg[i];
  4897. err = request_irq(lp->irq, niu_interrupt,
  4898. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  4899. np->irq_name[i], lp);
  4900. if (err)
  4901. goto out_free_irqs;
  4902. }
  4903. return 0;
  4904. out_free_irqs:
  4905. for (j = 0; j < i; j++) {
  4906. struct niu_ldg *lp = &np->ldg[j];
  4907. free_irq(lp->irq, lp);
  4908. }
  4909. return err;
  4910. }
  4911. static void niu_free_irq(struct niu *np)
  4912. {
  4913. int i;
  4914. for (i = 0; i < np->num_ldg; i++) {
  4915. struct niu_ldg *lp = &np->ldg[i];
  4916. free_irq(lp->irq, lp);
  4917. }
  4918. }
  4919. static void niu_enable_napi(struct niu *np)
  4920. {
  4921. int i;
  4922. for (i = 0; i < np->num_ldg; i++)
  4923. napi_enable(&np->ldg[i].napi);
  4924. }
  4925. static void niu_disable_napi(struct niu *np)
  4926. {
  4927. int i;
  4928. for (i = 0; i < np->num_ldg; i++)
  4929. napi_disable(&np->ldg[i].napi);
  4930. }
  4931. static int niu_open(struct net_device *dev)
  4932. {
  4933. struct niu *np = netdev_priv(dev);
  4934. int err;
  4935. netif_carrier_off(dev);
  4936. err = niu_alloc_channels(np);
  4937. if (err)
  4938. goto out_err;
  4939. err = niu_enable_interrupts(np, 0);
  4940. if (err)
  4941. goto out_free_channels;
  4942. err = niu_request_irq(np);
  4943. if (err)
  4944. goto out_free_channels;
  4945. niu_enable_napi(np);
  4946. spin_lock_irq(&np->lock);
  4947. err = niu_init_hw(np);
  4948. if (!err) {
  4949. init_timer(&np->timer);
  4950. np->timer.expires = jiffies + HZ;
  4951. np->timer.data = (unsigned long) np;
  4952. np->timer.function = niu_timer;
  4953. err = niu_enable_interrupts(np, 1);
  4954. if (err)
  4955. niu_stop_hw(np);
  4956. }
  4957. spin_unlock_irq(&np->lock);
  4958. if (err) {
  4959. niu_disable_napi(np);
  4960. goto out_free_irq;
  4961. }
  4962. netif_tx_start_all_queues(dev);
  4963. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  4964. netif_carrier_on(dev);
  4965. add_timer(&np->timer);
  4966. return 0;
  4967. out_free_irq:
  4968. niu_free_irq(np);
  4969. out_free_channels:
  4970. niu_free_channels(np);
  4971. out_err:
  4972. return err;
  4973. }
  4974. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  4975. {
  4976. cancel_work_sync(&np->reset_task);
  4977. niu_disable_napi(np);
  4978. netif_tx_stop_all_queues(dev);
  4979. del_timer_sync(&np->timer);
  4980. spin_lock_irq(&np->lock);
  4981. niu_stop_hw(np);
  4982. spin_unlock_irq(&np->lock);
  4983. }
  4984. static int niu_close(struct net_device *dev)
  4985. {
  4986. struct niu *np = netdev_priv(dev);
  4987. niu_full_shutdown(np, dev);
  4988. niu_free_irq(np);
  4989. niu_free_channels(np);
  4990. niu_handle_led(np, 0);
  4991. return 0;
  4992. }
  4993. static void niu_sync_xmac_stats(struct niu *np)
  4994. {
  4995. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  4996. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  4997. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  4998. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  4999. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5000. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5001. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5002. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5003. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5004. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5005. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5006. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5007. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5008. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5009. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5010. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5011. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5012. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5013. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5014. }
  5015. static void niu_sync_bmac_stats(struct niu *np)
  5016. {
  5017. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5018. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5019. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5020. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5021. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5022. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5023. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5024. }
  5025. static void niu_sync_mac_stats(struct niu *np)
  5026. {
  5027. if (np->flags & NIU_FLAGS_XMAC)
  5028. niu_sync_xmac_stats(np);
  5029. else
  5030. niu_sync_bmac_stats(np);
  5031. }
  5032. static void niu_get_rx_stats(struct niu *np)
  5033. {
  5034. unsigned long pkts, dropped, errors, bytes;
  5035. int i;
  5036. pkts = dropped = errors = bytes = 0;
  5037. for (i = 0; i < np->num_rx_rings; i++) {
  5038. struct rx_ring_info *rp = &np->rx_rings[i];
  5039. niu_sync_rx_discard_stats(np, rp, 0);
  5040. pkts += rp->rx_packets;
  5041. bytes += rp->rx_bytes;
  5042. dropped += rp->rx_dropped;
  5043. errors += rp->rx_errors;
  5044. }
  5045. np->dev->stats.rx_packets = pkts;
  5046. np->dev->stats.rx_bytes = bytes;
  5047. np->dev->stats.rx_dropped = dropped;
  5048. np->dev->stats.rx_errors = errors;
  5049. }
  5050. static void niu_get_tx_stats(struct niu *np)
  5051. {
  5052. unsigned long pkts, errors, bytes;
  5053. int i;
  5054. pkts = errors = bytes = 0;
  5055. for (i = 0; i < np->num_tx_rings; i++) {
  5056. struct tx_ring_info *rp = &np->tx_rings[i];
  5057. pkts += rp->tx_packets;
  5058. bytes += rp->tx_bytes;
  5059. errors += rp->tx_errors;
  5060. }
  5061. np->dev->stats.tx_packets = pkts;
  5062. np->dev->stats.tx_bytes = bytes;
  5063. np->dev->stats.tx_errors = errors;
  5064. }
  5065. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  5066. {
  5067. struct niu *np = netdev_priv(dev);
  5068. niu_get_rx_stats(np);
  5069. niu_get_tx_stats(np);
  5070. return &dev->stats;
  5071. }
  5072. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5073. {
  5074. int i;
  5075. for (i = 0; i < 16; i++)
  5076. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5077. }
  5078. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5079. {
  5080. int i;
  5081. for (i = 0; i < 16; i++)
  5082. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5083. }
  5084. static void niu_load_hash(struct niu *np, u16 *hash)
  5085. {
  5086. if (np->flags & NIU_FLAGS_XMAC)
  5087. niu_load_hash_xmac(np, hash);
  5088. else
  5089. niu_load_hash_bmac(np, hash);
  5090. }
  5091. static void niu_set_rx_mode(struct net_device *dev)
  5092. {
  5093. struct niu *np = netdev_priv(dev);
  5094. int i, alt_cnt, err;
  5095. struct dev_addr_list *addr;
  5096. unsigned long flags;
  5097. u16 hash[16] = { 0, };
  5098. spin_lock_irqsave(&np->lock, flags);
  5099. niu_enable_rx_mac(np, 0);
  5100. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5101. if (dev->flags & IFF_PROMISC)
  5102. np->flags |= NIU_FLAGS_PROMISC;
  5103. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  5104. np->flags |= NIU_FLAGS_MCAST;
  5105. alt_cnt = dev->uc_count;
  5106. if (alt_cnt > niu_num_alt_addr(np)) {
  5107. alt_cnt = 0;
  5108. np->flags |= NIU_FLAGS_PROMISC;
  5109. }
  5110. if (alt_cnt) {
  5111. int index = 0;
  5112. for (addr = dev->uc_list; addr; addr = addr->next) {
  5113. err = niu_set_alt_mac(np, index,
  5114. addr->da_addr);
  5115. if (err)
  5116. printk(KERN_WARNING PFX "%s: Error %d "
  5117. "adding alt mac %d\n",
  5118. dev->name, err, index);
  5119. err = niu_enable_alt_mac(np, index, 1);
  5120. if (err)
  5121. printk(KERN_WARNING PFX "%s: Error %d "
  5122. "enabling alt mac %d\n",
  5123. dev->name, err, index);
  5124. index++;
  5125. }
  5126. } else {
  5127. int alt_start;
  5128. if (np->flags & NIU_FLAGS_XMAC)
  5129. alt_start = 0;
  5130. else
  5131. alt_start = 1;
  5132. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5133. err = niu_enable_alt_mac(np, i, 0);
  5134. if (err)
  5135. printk(KERN_WARNING PFX "%s: Error %d "
  5136. "disabling alt mac %d\n",
  5137. dev->name, err, i);
  5138. }
  5139. }
  5140. if (dev->flags & IFF_ALLMULTI) {
  5141. for (i = 0; i < 16; i++)
  5142. hash[i] = 0xffff;
  5143. } else if (dev->mc_count > 0) {
  5144. for (addr = dev->mc_list; addr; addr = addr->next) {
  5145. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  5146. crc >>= 24;
  5147. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5148. }
  5149. }
  5150. if (np->flags & NIU_FLAGS_MCAST)
  5151. niu_load_hash(np, hash);
  5152. niu_enable_rx_mac(np, 1);
  5153. spin_unlock_irqrestore(&np->lock, flags);
  5154. }
  5155. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5156. {
  5157. struct niu *np = netdev_priv(dev);
  5158. struct sockaddr *addr = p;
  5159. unsigned long flags;
  5160. if (!is_valid_ether_addr(addr->sa_data))
  5161. return -EINVAL;
  5162. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5163. if (!netif_running(dev))
  5164. return 0;
  5165. spin_lock_irqsave(&np->lock, flags);
  5166. niu_enable_rx_mac(np, 0);
  5167. niu_set_primary_mac(np, dev->dev_addr);
  5168. niu_enable_rx_mac(np, 1);
  5169. spin_unlock_irqrestore(&np->lock, flags);
  5170. return 0;
  5171. }
  5172. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5173. {
  5174. return -EOPNOTSUPP;
  5175. }
  5176. static void niu_netif_stop(struct niu *np)
  5177. {
  5178. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5179. niu_disable_napi(np);
  5180. netif_tx_disable(np->dev);
  5181. }
  5182. static void niu_netif_start(struct niu *np)
  5183. {
  5184. /* NOTE: unconditional netif_wake_queue is only appropriate
  5185. * so long as all callers are assured to have free tx slots
  5186. * (such as after niu_init_hw).
  5187. */
  5188. netif_tx_wake_all_queues(np->dev);
  5189. niu_enable_napi(np);
  5190. niu_enable_interrupts(np, 1);
  5191. }
  5192. static void niu_reset_buffers(struct niu *np)
  5193. {
  5194. int i, j, k, err;
  5195. if (np->rx_rings) {
  5196. for (i = 0; i < np->num_rx_rings; i++) {
  5197. struct rx_ring_info *rp = &np->rx_rings[i];
  5198. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5199. struct page *page;
  5200. page = rp->rxhash[j];
  5201. while (page) {
  5202. struct page *next =
  5203. (struct page *) page->mapping;
  5204. u64 base = page->index;
  5205. base = base >> RBR_DESCR_ADDR_SHIFT;
  5206. rp->rbr[k++] = cpu_to_le32(base);
  5207. page = next;
  5208. }
  5209. }
  5210. for (; k < MAX_RBR_RING_SIZE; k++) {
  5211. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5212. if (unlikely(err))
  5213. break;
  5214. }
  5215. rp->rbr_index = rp->rbr_table_size - 1;
  5216. rp->rcr_index = 0;
  5217. rp->rbr_pending = 0;
  5218. rp->rbr_refill_pending = 0;
  5219. }
  5220. }
  5221. if (np->tx_rings) {
  5222. for (i = 0; i < np->num_tx_rings; i++) {
  5223. struct tx_ring_info *rp = &np->tx_rings[i];
  5224. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5225. if (rp->tx_buffs[j].skb)
  5226. (void) release_tx_packet(np, rp, j);
  5227. }
  5228. rp->pending = MAX_TX_RING_SIZE;
  5229. rp->prod = 0;
  5230. rp->cons = 0;
  5231. rp->wrap_bit = 0;
  5232. }
  5233. }
  5234. }
  5235. static void niu_reset_task(struct work_struct *work)
  5236. {
  5237. struct niu *np = container_of(work, struct niu, reset_task);
  5238. unsigned long flags;
  5239. int err;
  5240. spin_lock_irqsave(&np->lock, flags);
  5241. if (!netif_running(np->dev)) {
  5242. spin_unlock_irqrestore(&np->lock, flags);
  5243. return;
  5244. }
  5245. spin_unlock_irqrestore(&np->lock, flags);
  5246. del_timer_sync(&np->timer);
  5247. niu_netif_stop(np);
  5248. spin_lock_irqsave(&np->lock, flags);
  5249. niu_stop_hw(np);
  5250. spin_unlock_irqrestore(&np->lock, flags);
  5251. niu_reset_buffers(np);
  5252. spin_lock_irqsave(&np->lock, flags);
  5253. err = niu_init_hw(np);
  5254. if (!err) {
  5255. np->timer.expires = jiffies + HZ;
  5256. add_timer(&np->timer);
  5257. niu_netif_start(np);
  5258. }
  5259. spin_unlock_irqrestore(&np->lock, flags);
  5260. }
  5261. static void niu_tx_timeout(struct net_device *dev)
  5262. {
  5263. struct niu *np = netdev_priv(dev);
  5264. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  5265. dev->name);
  5266. schedule_work(&np->reset_task);
  5267. }
  5268. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5269. u64 mapping, u64 len, u64 mark,
  5270. u64 n_frags)
  5271. {
  5272. __le64 *desc = &rp->descr[index];
  5273. *desc = cpu_to_le64(mark |
  5274. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5275. (len << TX_DESC_TR_LEN_SHIFT) |
  5276. (mapping & TX_DESC_SAD));
  5277. }
  5278. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5279. u64 pad_bytes, u64 len)
  5280. {
  5281. u16 eth_proto, eth_proto_inner;
  5282. u64 csum_bits, l3off, ihl, ret;
  5283. u8 ip_proto;
  5284. int ipv6;
  5285. eth_proto = be16_to_cpu(ehdr->h_proto);
  5286. eth_proto_inner = eth_proto;
  5287. if (eth_proto == ETH_P_8021Q) {
  5288. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5289. __be16 val = vp->h_vlan_encapsulated_proto;
  5290. eth_proto_inner = be16_to_cpu(val);
  5291. }
  5292. ipv6 = ihl = 0;
  5293. switch (skb->protocol) {
  5294. case cpu_to_be16(ETH_P_IP):
  5295. ip_proto = ip_hdr(skb)->protocol;
  5296. ihl = ip_hdr(skb)->ihl;
  5297. break;
  5298. case cpu_to_be16(ETH_P_IPV6):
  5299. ip_proto = ipv6_hdr(skb)->nexthdr;
  5300. ihl = (40 >> 2);
  5301. ipv6 = 1;
  5302. break;
  5303. default:
  5304. ip_proto = ihl = 0;
  5305. break;
  5306. }
  5307. csum_bits = TXHDR_CSUM_NONE;
  5308. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5309. u64 start, stuff;
  5310. csum_bits = (ip_proto == IPPROTO_TCP ?
  5311. TXHDR_CSUM_TCP :
  5312. (ip_proto == IPPROTO_UDP ?
  5313. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5314. start = skb_transport_offset(skb) -
  5315. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5316. stuff = start + skb->csum_offset;
  5317. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5318. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5319. }
  5320. l3off = skb_network_offset(skb) -
  5321. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5322. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5323. (len << TXHDR_LEN_SHIFT) |
  5324. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5325. (ihl << TXHDR_IHL_SHIFT) |
  5326. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5327. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5328. (ipv6 ? TXHDR_IP_VER : 0) |
  5329. csum_bits);
  5330. return ret;
  5331. }
  5332. static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5333. {
  5334. struct niu *np = netdev_priv(dev);
  5335. unsigned long align, headroom;
  5336. struct netdev_queue *txq;
  5337. struct tx_ring_info *rp;
  5338. struct tx_pkt_hdr *tp;
  5339. unsigned int len, nfg;
  5340. struct ethhdr *ehdr;
  5341. int prod, i, tlen;
  5342. u64 mapping, mrk;
  5343. i = skb_get_queue_mapping(skb);
  5344. rp = &np->tx_rings[i];
  5345. txq = netdev_get_tx_queue(dev, i);
  5346. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5347. netif_tx_stop_queue(txq);
  5348. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  5349. "queue awake!\n", dev->name);
  5350. rp->tx_errors++;
  5351. return NETDEV_TX_BUSY;
  5352. }
  5353. if (skb->len < ETH_ZLEN) {
  5354. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5355. if (skb_pad(skb, pad_bytes))
  5356. goto out;
  5357. skb_put(skb, pad_bytes);
  5358. }
  5359. len = sizeof(struct tx_pkt_hdr) + 15;
  5360. if (skb_headroom(skb) < len) {
  5361. struct sk_buff *skb_new;
  5362. skb_new = skb_realloc_headroom(skb, len);
  5363. if (!skb_new) {
  5364. rp->tx_errors++;
  5365. goto out_drop;
  5366. }
  5367. kfree_skb(skb);
  5368. skb = skb_new;
  5369. } else
  5370. skb_orphan(skb);
  5371. align = ((unsigned long) skb->data & (16 - 1));
  5372. headroom = align + sizeof(struct tx_pkt_hdr);
  5373. ehdr = (struct ethhdr *) skb->data;
  5374. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5375. len = skb->len - sizeof(struct tx_pkt_hdr);
  5376. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5377. tp->resv = 0;
  5378. len = skb_headlen(skb);
  5379. mapping = np->ops->map_single(np->device, skb->data,
  5380. len, DMA_TO_DEVICE);
  5381. prod = rp->prod;
  5382. rp->tx_buffs[prod].skb = skb;
  5383. rp->tx_buffs[prod].mapping = mapping;
  5384. mrk = TX_DESC_SOP;
  5385. if (++rp->mark_counter == rp->mark_freq) {
  5386. rp->mark_counter = 0;
  5387. mrk |= TX_DESC_MARK;
  5388. rp->mark_pending++;
  5389. }
  5390. tlen = len;
  5391. nfg = skb_shinfo(skb)->nr_frags;
  5392. while (tlen > 0) {
  5393. tlen -= MAX_TX_DESC_LEN;
  5394. nfg++;
  5395. }
  5396. while (len > 0) {
  5397. unsigned int this_len = len;
  5398. if (this_len > MAX_TX_DESC_LEN)
  5399. this_len = MAX_TX_DESC_LEN;
  5400. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5401. mrk = nfg = 0;
  5402. prod = NEXT_TX(rp, prod);
  5403. mapping += this_len;
  5404. len -= this_len;
  5405. }
  5406. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5407. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5408. len = frag->size;
  5409. mapping = np->ops->map_page(np->device, frag->page,
  5410. frag->page_offset, len,
  5411. DMA_TO_DEVICE);
  5412. rp->tx_buffs[prod].skb = NULL;
  5413. rp->tx_buffs[prod].mapping = mapping;
  5414. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5415. prod = NEXT_TX(rp, prod);
  5416. }
  5417. if (prod < rp->prod)
  5418. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5419. rp->prod = prod;
  5420. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5421. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5422. netif_tx_stop_queue(txq);
  5423. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5424. netif_tx_wake_queue(txq);
  5425. }
  5426. dev->trans_start = jiffies;
  5427. out:
  5428. return NETDEV_TX_OK;
  5429. out_drop:
  5430. rp->tx_errors++;
  5431. kfree_skb(skb);
  5432. goto out;
  5433. }
  5434. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5435. {
  5436. struct niu *np = netdev_priv(dev);
  5437. int err, orig_jumbo, new_jumbo;
  5438. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5439. return -EINVAL;
  5440. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5441. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5442. dev->mtu = new_mtu;
  5443. if (!netif_running(dev) ||
  5444. (orig_jumbo == new_jumbo))
  5445. return 0;
  5446. niu_full_shutdown(np, dev);
  5447. niu_free_channels(np);
  5448. niu_enable_napi(np);
  5449. err = niu_alloc_channels(np);
  5450. if (err)
  5451. return err;
  5452. spin_lock_irq(&np->lock);
  5453. err = niu_init_hw(np);
  5454. if (!err) {
  5455. init_timer(&np->timer);
  5456. np->timer.expires = jiffies + HZ;
  5457. np->timer.data = (unsigned long) np;
  5458. np->timer.function = niu_timer;
  5459. err = niu_enable_interrupts(np, 1);
  5460. if (err)
  5461. niu_stop_hw(np);
  5462. }
  5463. spin_unlock_irq(&np->lock);
  5464. if (!err) {
  5465. netif_tx_start_all_queues(dev);
  5466. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5467. netif_carrier_on(dev);
  5468. add_timer(&np->timer);
  5469. }
  5470. return err;
  5471. }
  5472. static void niu_get_drvinfo(struct net_device *dev,
  5473. struct ethtool_drvinfo *info)
  5474. {
  5475. struct niu *np = netdev_priv(dev);
  5476. struct niu_vpd *vpd = &np->vpd;
  5477. strcpy(info->driver, DRV_MODULE_NAME);
  5478. strcpy(info->version, DRV_MODULE_VERSION);
  5479. sprintf(info->fw_version, "%d.%d",
  5480. vpd->fcode_major, vpd->fcode_minor);
  5481. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5482. strcpy(info->bus_info, pci_name(np->pdev));
  5483. }
  5484. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5485. {
  5486. struct niu *np = netdev_priv(dev);
  5487. struct niu_link_config *lp;
  5488. lp = &np->link_config;
  5489. memset(cmd, 0, sizeof(*cmd));
  5490. cmd->phy_address = np->phy_addr;
  5491. cmd->supported = lp->supported;
  5492. cmd->advertising = lp->advertising;
  5493. cmd->autoneg = lp->autoneg;
  5494. cmd->speed = lp->active_speed;
  5495. cmd->duplex = lp->active_duplex;
  5496. return 0;
  5497. }
  5498. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5499. {
  5500. return -EINVAL;
  5501. }
  5502. static u32 niu_get_msglevel(struct net_device *dev)
  5503. {
  5504. struct niu *np = netdev_priv(dev);
  5505. return np->msg_enable;
  5506. }
  5507. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5508. {
  5509. struct niu *np = netdev_priv(dev);
  5510. np->msg_enable = value;
  5511. }
  5512. static int niu_get_eeprom_len(struct net_device *dev)
  5513. {
  5514. struct niu *np = netdev_priv(dev);
  5515. return np->eeprom_len;
  5516. }
  5517. static int niu_get_eeprom(struct net_device *dev,
  5518. struct ethtool_eeprom *eeprom, u8 *data)
  5519. {
  5520. struct niu *np = netdev_priv(dev);
  5521. u32 offset, len, val;
  5522. offset = eeprom->offset;
  5523. len = eeprom->len;
  5524. if (offset + len < offset)
  5525. return -EINVAL;
  5526. if (offset >= np->eeprom_len)
  5527. return -EINVAL;
  5528. if (offset + len > np->eeprom_len)
  5529. len = eeprom->len = np->eeprom_len - offset;
  5530. if (offset & 3) {
  5531. u32 b_offset, b_count;
  5532. b_offset = offset & 3;
  5533. b_count = 4 - b_offset;
  5534. if (b_count > len)
  5535. b_count = len;
  5536. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5537. memcpy(data, ((char *)&val) + b_offset, b_count);
  5538. data += b_count;
  5539. len -= b_count;
  5540. offset += b_count;
  5541. }
  5542. while (len >= 4) {
  5543. val = nr64(ESPC_NCR(offset / 4));
  5544. memcpy(data, &val, 4);
  5545. data += 4;
  5546. len -= 4;
  5547. offset += 4;
  5548. }
  5549. if (len) {
  5550. val = nr64(ESPC_NCR(offset / 4));
  5551. memcpy(data, &val, len);
  5552. }
  5553. return 0;
  5554. }
  5555. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5556. {
  5557. switch (flow_type) {
  5558. case TCP_V4_FLOW:
  5559. *class = CLASS_CODE_TCP_IPV4;
  5560. break;
  5561. case UDP_V4_FLOW:
  5562. *class = CLASS_CODE_UDP_IPV4;
  5563. break;
  5564. case AH_ESP_V4_FLOW:
  5565. *class = CLASS_CODE_AH_ESP_IPV4;
  5566. break;
  5567. case SCTP_V4_FLOW:
  5568. *class = CLASS_CODE_SCTP_IPV4;
  5569. break;
  5570. case TCP_V6_FLOW:
  5571. *class = CLASS_CODE_TCP_IPV6;
  5572. break;
  5573. case UDP_V6_FLOW:
  5574. *class = CLASS_CODE_UDP_IPV6;
  5575. break;
  5576. case AH_ESP_V6_FLOW:
  5577. *class = CLASS_CODE_AH_ESP_IPV6;
  5578. break;
  5579. case SCTP_V6_FLOW:
  5580. *class = CLASS_CODE_SCTP_IPV6;
  5581. break;
  5582. default:
  5583. return 0;
  5584. }
  5585. return 1;
  5586. }
  5587. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5588. {
  5589. u64 ethflow = 0;
  5590. if (flow_key & FLOW_KEY_PORT)
  5591. ethflow |= RXH_DEV_PORT;
  5592. if (flow_key & FLOW_KEY_L2DA)
  5593. ethflow |= RXH_L2DA;
  5594. if (flow_key & FLOW_KEY_VLAN)
  5595. ethflow |= RXH_VLAN;
  5596. if (flow_key & FLOW_KEY_IPSA)
  5597. ethflow |= RXH_IP_SRC;
  5598. if (flow_key & FLOW_KEY_IPDA)
  5599. ethflow |= RXH_IP_DST;
  5600. if (flow_key & FLOW_KEY_PROTO)
  5601. ethflow |= RXH_L3_PROTO;
  5602. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5603. ethflow |= RXH_L4_B_0_1;
  5604. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5605. ethflow |= RXH_L4_B_2_3;
  5606. return ethflow;
  5607. }
  5608. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5609. {
  5610. u64 key = 0;
  5611. if (ethflow & RXH_DEV_PORT)
  5612. key |= FLOW_KEY_PORT;
  5613. if (ethflow & RXH_L2DA)
  5614. key |= FLOW_KEY_L2DA;
  5615. if (ethflow & RXH_VLAN)
  5616. key |= FLOW_KEY_VLAN;
  5617. if (ethflow & RXH_IP_SRC)
  5618. key |= FLOW_KEY_IPSA;
  5619. if (ethflow & RXH_IP_DST)
  5620. key |= FLOW_KEY_IPDA;
  5621. if (ethflow & RXH_L3_PROTO)
  5622. key |= FLOW_KEY_PROTO;
  5623. if (ethflow & RXH_L4_B_0_1)
  5624. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5625. if (ethflow & RXH_L4_B_2_3)
  5626. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5627. *flow_key = key;
  5628. return 1;
  5629. }
  5630. static int niu_get_hash_opts(struct net_device *dev, struct ethtool_rxnfc *cmd)
  5631. {
  5632. struct niu *np = netdev_priv(dev);
  5633. u64 class;
  5634. cmd->data = 0;
  5635. if (!niu_ethflow_to_class(cmd->flow_type, &class))
  5636. return -EINVAL;
  5637. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5638. TCAM_KEY_DISC)
  5639. cmd->data = RXH_DISCARD;
  5640. else
  5641. cmd->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5642. CLASS_CODE_USER_PROG1]);
  5643. return 0;
  5644. }
  5645. static int niu_set_hash_opts(struct net_device *dev, struct ethtool_rxnfc *cmd)
  5646. {
  5647. struct niu *np = netdev_priv(dev);
  5648. u64 class;
  5649. u64 flow_key = 0;
  5650. unsigned long flags;
  5651. if (!niu_ethflow_to_class(cmd->flow_type, &class))
  5652. return -EINVAL;
  5653. if (class < CLASS_CODE_USER_PROG1 ||
  5654. class > CLASS_CODE_SCTP_IPV6)
  5655. return -EINVAL;
  5656. if (cmd->data & RXH_DISCARD) {
  5657. niu_lock_parent(np, flags);
  5658. flow_key = np->parent->tcam_key[class -
  5659. CLASS_CODE_USER_PROG1];
  5660. flow_key |= TCAM_KEY_DISC;
  5661. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  5662. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  5663. niu_unlock_parent(np, flags);
  5664. return 0;
  5665. } else {
  5666. /* Discard was set before, but is not set now */
  5667. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5668. TCAM_KEY_DISC) {
  5669. niu_lock_parent(np, flags);
  5670. flow_key = np->parent->tcam_key[class -
  5671. CLASS_CODE_USER_PROG1];
  5672. flow_key &= ~TCAM_KEY_DISC;
  5673. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  5674. flow_key);
  5675. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  5676. flow_key;
  5677. niu_unlock_parent(np, flags);
  5678. }
  5679. }
  5680. if (!niu_ethflow_to_flowkey(cmd->data, &flow_key))
  5681. return -EINVAL;
  5682. niu_lock_parent(np, flags);
  5683. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  5684. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  5685. niu_unlock_parent(np, flags);
  5686. return 0;
  5687. }
  5688. static const struct {
  5689. const char string[ETH_GSTRING_LEN];
  5690. } niu_xmac_stat_keys[] = {
  5691. { "tx_frames" },
  5692. { "tx_bytes" },
  5693. { "tx_fifo_errors" },
  5694. { "tx_overflow_errors" },
  5695. { "tx_max_pkt_size_errors" },
  5696. { "tx_underflow_errors" },
  5697. { "rx_local_faults" },
  5698. { "rx_remote_faults" },
  5699. { "rx_link_faults" },
  5700. { "rx_align_errors" },
  5701. { "rx_frags" },
  5702. { "rx_mcasts" },
  5703. { "rx_bcasts" },
  5704. { "rx_hist_cnt1" },
  5705. { "rx_hist_cnt2" },
  5706. { "rx_hist_cnt3" },
  5707. { "rx_hist_cnt4" },
  5708. { "rx_hist_cnt5" },
  5709. { "rx_hist_cnt6" },
  5710. { "rx_hist_cnt7" },
  5711. { "rx_octets" },
  5712. { "rx_code_violations" },
  5713. { "rx_len_errors" },
  5714. { "rx_crc_errors" },
  5715. { "rx_underflows" },
  5716. { "rx_overflows" },
  5717. { "pause_off_state" },
  5718. { "pause_on_state" },
  5719. { "pause_received" },
  5720. };
  5721. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  5722. static const struct {
  5723. const char string[ETH_GSTRING_LEN];
  5724. } niu_bmac_stat_keys[] = {
  5725. { "tx_underflow_errors" },
  5726. { "tx_max_pkt_size_errors" },
  5727. { "tx_bytes" },
  5728. { "tx_frames" },
  5729. { "rx_overflows" },
  5730. { "rx_frames" },
  5731. { "rx_align_errors" },
  5732. { "rx_crc_errors" },
  5733. { "rx_len_errors" },
  5734. { "pause_off_state" },
  5735. { "pause_on_state" },
  5736. { "pause_received" },
  5737. };
  5738. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  5739. static const struct {
  5740. const char string[ETH_GSTRING_LEN];
  5741. } niu_rxchan_stat_keys[] = {
  5742. { "rx_channel" },
  5743. { "rx_packets" },
  5744. { "rx_bytes" },
  5745. { "rx_dropped" },
  5746. { "rx_errors" },
  5747. };
  5748. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  5749. static const struct {
  5750. const char string[ETH_GSTRING_LEN];
  5751. } niu_txchan_stat_keys[] = {
  5752. { "tx_channel" },
  5753. { "tx_packets" },
  5754. { "tx_bytes" },
  5755. { "tx_errors" },
  5756. };
  5757. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  5758. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  5759. {
  5760. struct niu *np = netdev_priv(dev);
  5761. int i;
  5762. if (stringset != ETH_SS_STATS)
  5763. return;
  5764. if (np->flags & NIU_FLAGS_XMAC) {
  5765. memcpy(data, niu_xmac_stat_keys,
  5766. sizeof(niu_xmac_stat_keys));
  5767. data += sizeof(niu_xmac_stat_keys);
  5768. } else {
  5769. memcpy(data, niu_bmac_stat_keys,
  5770. sizeof(niu_bmac_stat_keys));
  5771. data += sizeof(niu_bmac_stat_keys);
  5772. }
  5773. for (i = 0; i < np->num_rx_rings; i++) {
  5774. memcpy(data, niu_rxchan_stat_keys,
  5775. sizeof(niu_rxchan_stat_keys));
  5776. data += sizeof(niu_rxchan_stat_keys);
  5777. }
  5778. for (i = 0; i < np->num_tx_rings; i++) {
  5779. memcpy(data, niu_txchan_stat_keys,
  5780. sizeof(niu_txchan_stat_keys));
  5781. data += sizeof(niu_txchan_stat_keys);
  5782. }
  5783. }
  5784. static int niu_get_stats_count(struct net_device *dev)
  5785. {
  5786. struct niu *np = netdev_priv(dev);
  5787. return ((np->flags & NIU_FLAGS_XMAC ?
  5788. NUM_XMAC_STAT_KEYS :
  5789. NUM_BMAC_STAT_KEYS) +
  5790. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  5791. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  5792. }
  5793. static void niu_get_ethtool_stats(struct net_device *dev,
  5794. struct ethtool_stats *stats, u64 *data)
  5795. {
  5796. struct niu *np = netdev_priv(dev);
  5797. int i;
  5798. niu_sync_mac_stats(np);
  5799. if (np->flags & NIU_FLAGS_XMAC) {
  5800. memcpy(data, &np->mac_stats.xmac,
  5801. sizeof(struct niu_xmac_stats));
  5802. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  5803. } else {
  5804. memcpy(data, &np->mac_stats.bmac,
  5805. sizeof(struct niu_bmac_stats));
  5806. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  5807. }
  5808. for (i = 0; i < np->num_rx_rings; i++) {
  5809. struct rx_ring_info *rp = &np->rx_rings[i];
  5810. niu_sync_rx_discard_stats(np, rp, 0);
  5811. data[0] = rp->rx_channel;
  5812. data[1] = rp->rx_packets;
  5813. data[2] = rp->rx_bytes;
  5814. data[3] = rp->rx_dropped;
  5815. data[4] = rp->rx_errors;
  5816. data += 5;
  5817. }
  5818. for (i = 0; i < np->num_tx_rings; i++) {
  5819. struct tx_ring_info *rp = &np->tx_rings[i];
  5820. data[0] = rp->tx_channel;
  5821. data[1] = rp->tx_packets;
  5822. data[2] = rp->tx_bytes;
  5823. data[3] = rp->tx_errors;
  5824. data += 4;
  5825. }
  5826. }
  5827. static u64 niu_led_state_save(struct niu *np)
  5828. {
  5829. if (np->flags & NIU_FLAGS_XMAC)
  5830. return nr64_mac(XMAC_CONFIG);
  5831. else
  5832. return nr64_mac(BMAC_XIF_CONFIG);
  5833. }
  5834. static void niu_led_state_restore(struct niu *np, u64 val)
  5835. {
  5836. if (np->flags & NIU_FLAGS_XMAC)
  5837. nw64_mac(XMAC_CONFIG, val);
  5838. else
  5839. nw64_mac(BMAC_XIF_CONFIG, val);
  5840. }
  5841. static void niu_force_led(struct niu *np, int on)
  5842. {
  5843. u64 val, reg, bit;
  5844. if (np->flags & NIU_FLAGS_XMAC) {
  5845. reg = XMAC_CONFIG;
  5846. bit = XMAC_CONFIG_FORCE_LED_ON;
  5847. } else {
  5848. reg = BMAC_XIF_CONFIG;
  5849. bit = BMAC_XIF_CONFIG_LINK_LED;
  5850. }
  5851. val = nr64_mac(reg);
  5852. if (on)
  5853. val |= bit;
  5854. else
  5855. val &= ~bit;
  5856. nw64_mac(reg, val);
  5857. }
  5858. static int niu_phys_id(struct net_device *dev, u32 data)
  5859. {
  5860. struct niu *np = netdev_priv(dev);
  5861. u64 orig_led_state;
  5862. int i;
  5863. if (!netif_running(dev))
  5864. return -EAGAIN;
  5865. if (data == 0)
  5866. data = 2;
  5867. orig_led_state = niu_led_state_save(np);
  5868. for (i = 0; i < (data * 2); i++) {
  5869. int on = ((i % 2) == 0);
  5870. niu_force_led(np, on);
  5871. if (msleep_interruptible(500))
  5872. break;
  5873. }
  5874. niu_led_state_restore(np, orig_led_state);
  5875. return 0;
  5876. }
  5877. static const struct ethtool_ops niu_ethtool_ops = {
  5878. .get_drvinfo = niu_get_drvinfo,
  5879. .get_link = ethtool_op_get_link,
  5880. .get_msglevel = niu_get_msglevel,
  5881. .set_msglevel = niu_set_msglevel,
  5882. .get_eeprom_len = niu_get_eeprom_len,
  5883. .get_eeprom = niu_get_eeprom,
  5884. .get_settings = niu_get_settings,
  5885. .set_settings = niu_set_settings,
  5886. .get_strings = niu_get_strings,
  5887. .get_stats_count = niu_get_stats_count,
  5888. .get_ethtool_stats = niu_get_ethtool_stats,
  5889. .phys_id = niu_phys_id,
  5890. .get_rxhash = niu_get_hash_opts,
  5891. .set_rxhash = niu_set_hash_opts,
  5892. };
  5893. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  5894. int ldg, int ldn)
  5895. {
  5896. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  5897. return -EINVAL;
  5898. if (ldn < 0 || ldn > LDN_MAX)
  5899. return -EINVAL;
  5900. parent->ldg_map[ldn] = ldg;
  5901. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  5902. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  5903. * the firmware, and we're not supposed to change them.
  5904. * Validate the mapping, because if it's wrong we probably
  5905. * won't get any interrupts and that's painful to debug.
  5906. */
  5907. if (nr64(LDG_NUM(ldn)) != ldg) {
  5908. dev_err(np->device, PFX "Port %u, mis-matched "
  5909. "LDG assignment "
  5910. "for ldn %d, should be %d is %llu\n",
  5911. np->port, ldn, ldg,
  5912. (unsigned long long) nr64(LDG_NUM(ldn)));
  5913. return -EINVAL;
  5914. }
  5915. } else
  5916. nw64(LDG_NUM(ldn), ldg);
  5917. return 0;
  5918. }
  5919. static int niu_set_ldg_timer_res(struct niu *np, int res)
  5920. {
  5921. if (res < 0 || res > LDG_TIMER_RES_VAL)
  5922. return -EINVAL;
  5923. nw64(LDG_TIMER_RES, res);
  5924. return 0;
  5925. }
  5926. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  5927. {
  5928. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  5929. (func < 0 || func > 3) ||
  5930. (vector < 0 || vector > 0x1f))
  5931. return -EINVAL;
  5932. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  5933. return 0;
  5934. }
  5935. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  5936. {
  5937. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  5938. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  5939. int limit;
  5940. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  5941. return -EINVAL;
  5942. frame = frame_base;
  5943. nw64(ESPC_PIO_STAT, frame);
  5944. limit = 64;
  5945. do {
  5946. udelay(5);
  5947. frame = nr64(ESPC_PIO_STAT);
  5948. if (frame & ESPC_PIO_STAT_READ_END)
  5949. break;
  5950. } while (limit--);
  5951. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  5952. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  5953. (unsigned long long) frame);
  5954. return -ENODEV;
  5955. }
  5956. frame = frame_base;
  5957. nw64(ESPC_PIO_STAT, frame);
  5958. limit = 64;
  5959. do {
  5960. udelay(5);
  5961. frame = nr64(ESPC_PIO_STAT);
  5962. if (frame & ESPC_PIO_STAT_READ_END)
  5963. break;
  5964. } while (limit--);
  5965. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  5966. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  5967. (unsigned long long) frame);
  5968. return -ENODEV;
  5969. }
  5970. frame = nr64(ESPC_PIO_STAT);
  5971. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  5972. }
  5973. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  5974. {
  5975. int err = niu_pci_eeprom_read(np, off);
  5976. u16 val;
  5977. if (err < 0)
  5978. return err;
  5979. val = (err << 8);
  5980. err = niu_pci_eeprom_read(np, off + 1);
  5981. if (err < 0)
  5982. return err;
  5983. val |= (err & 0xff);
  5984. return val;
  5985. }
  5986. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  5987. {
  5988. int err = niu_pci_eeprom_read(np, off);
  5989. u16 val;
  5990. if (err < 0)
  5991. return err;
  5992. val = (err & 0xff);
  5993. err = niu_pci_eeprom_read(np, off + 1);
  5994. if (err < 0)
  5995. return err;
  5996. val |= (err & 0xff) << 8;
  5997. return val;
  5998. }
  5999. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  6000. u32 off,
  6001. char *namebuf,
  6002. int namebuf_len)
  6003. {
  6004. int i;
  6005. for (i = 0; i < namebuf_len; i++) {
  6006. int err = niu_pci_eeprom_read(np, off + i);
  6007. if (err < 0)
  6008. return err;
  6009. *namebuf++ = err;
  6010. if (!err)
  6011. break;
  6012. }
  6013. if (i >= namebuf_len)
  6014. return -EINVAL;
  6015. return i + 1;
  6016. }
  6017. static void __devinit niu_vpd_parse_version(struct niu *np)
  6018. {
  6019. struct niu_vpd *vpd = &np->vpd;
  6020. int len = strlen(vpd->version) + 1;
  6021. const char *s = vpd->version;
  6022. int i;
  6023. for (i = 0; i < len - 5; i++) {
  6024. if (!strncmp(s + i, "FCode ", 5))
  6025. break;
  6026. }
  6027. if (i >= len - 5)
  6028. return;
  6029. s += i + 5;
  6030. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6031. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6032. vpd->fcode_major, vpd->fcode_minor);
  6033. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6034. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6035. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6036. np->flags |= NIU_FLAGS_VPD_VALID;
  6037. }
  6038. /* ESPC_PIO_EN_ENABLE must be set */
  6039. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6040. u32 start, u32 end)
  6041. {
  6042. unsigned int found_mask = 0;
  6043. #define FOUND_MASK_MODEL 0x00000001
  6044. #define FOUND_MASK_BMODEL 0x00000002
  6045. #define FOUND_MASK_VERS 0x00000004
  6046. #define FOUND_MASK_MAC 0x00000008
  6047. #define FOUND_MASK_NMAC 0x00000010
  6048. #define FOUND_MASK_PHY 0x00000020
  6049. #define FOUND_MASK_ALL 0x0000003f
  6050. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  6051. start, end);
  6052. while (start < end) {
  6053. int len, err, instance, type, prop_len;
  6054. char namebuf[64];
  6055. u8 *prop_buf;
  6056. int max_len;
  6057. if (found_mask == FOUND_MASK_ALL) {
  6058. niu_vpd_parse_version(np);
  6059. return 1;
  6060. }
  6061. err = niu_pci_eeprom_read(np, start + 2);
  6062. if (err < 0)
  6063. return err;
  6064. len = err;
  6065. start += 3;
  6066. instance = niu_pci_eeprom_read(np, start);
  6067. type = niu_pci_eeprom_read(np, start + 3);
  6068. prop_len = niu_pci_eeprom_read(np, start + 4);
  6069. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6070. if (err < 0)
  6071. return err;
  6072. prop_buf = NULL;
  6073. max_len = 0;
  6074. if (!strcmp(namebuf, "model")) {
  6075. prop_buf = np->vpd.model;
  6076. max_len = NIU_VPD_MODEL_MAX;
  6077. found_mask |= FOUND_MASK_MODEL;
  6078. } else if (!strcmp(namebuf, "board-model")) {
  6079. prop_buf = np->vpd.board_model;
  6080. max_len = NIU_VPD_BD_MODEL_MAX;
  6081. found_mask |= FOUND_MASK_BMODEL;
  6082. } else if (!strcmp(namebuf, "version")) {
  6083. prop_buf = np->vpd.version;
  6084. max_len = NIU_VPD_VERSION_MAX;
  6085. found_mask |= FOUND_MASK_VERS;
  6086. } else if (!strcmp(namebuf, "local-mac-address")) {
  6087. prop_buf = np->vpd.local_mac;
  6088. max_len = ETH_ALEN;
  6089. found_mask |= FOUND_MASK_MAC;
  6090. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6091. prop_buf = &np->vpd.mac_num;
  6092. max_len = 1;
  6093. found_mask |= FOUND_MASK_NMAC;
  6094. } else if (!strcmp(namebuf, "phy-type")) {
  6095. prop_buf = np->vpd.phy_type;
  6096. max_len = NIU_VPD_PHY_TYPE_MAX;
  6097. found_mask |= FOUND_MASK_PHY;
  6098. }
  6099. if (max_len && prop_len > max_len) {
  6100. dev_err(np->device, PFX "Property '%s' length (%d) is "
  6101. "too long.\n", namebuf, prop_len);
  6102. return -EINVAL;
  6103. }
  6104. if (prop_buf) {
  6105. u32 off = start + 5 + err;
  6106. int i;
  6107. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  6108. "len[%d]\n", namebuf, prop_len);
  6109. for (i = 0; i < prop_len; i++)
  6110. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6111. }
  6112. start += len;
  6113. }
  6114. return 0;
  6115. }
  6116. /* ESPC_PIO_EN_ENABLE must be set */
  6117. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6118. {
  6119. u32 offset;
  6120. int err;
  6121. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6122. if (err < 0)
  6123. return;
  6124. offset = err + 3;
  6125. while (start + offset < ESPC_EEPROM_SIZE) {
  6126. u32 here = start + offset;
  6127. u32 end;
  6128. err = niu_pci_eeprom_read(np, here);
  6129. if (err != 0x90)
  6130. return;
  6131. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6132. if (err < 0)
  6133. return;
  6134. here = start + offset + 3;
  6135. end = start + offset + err;
  6136. offset += err;
  6137. err = niu_pci_vpd_scan_props(np, here, end);
  6138. if (err < 0 || err == 1)
  6139. return;
  6140. }
  6141. }
  6142. /* ESPC_PIO_EN_ENABLE must be set */
  6143. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6144. {
  6145. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6146. int err;
  6147. while (start < end) {
  6148. ret = start;
  6149. /* ROM header signature? */
  6150. err = niu_pci_eeprom_read16(np, start + 0);
  6151. if (err != 0x55aa)
  6152. return 0;
  6153. /* Apply offset to PCI data structure. */
  6154. err = niu_pci_eeprom_read16(np, start + 23);
  6155. if (err < 0)
  6156. return 0;
  6157. start += err;
  6158. /* Check for "PCIR" signature. */
  6159. err = niu_pci_eeprom_read16(np, start + 0);
  6160. if (err != 0x5043)
  6161. return 0;
  6162. err = niu_pci_eeprom_read16(np, start + 2);
  6163. if (err != 0x4952)
  6164. return 0;
  6165. /* Check for OBP image type. */
  6166. err = niu_pci_eeprom_read(np, start + 20);
  6167. if (err < 0)
  6168. return 0;
  6169. if (err != 0x01) {
  6170. err = niu_pci_eeprom_read(np, ret + 2);
  6171. if (err < 0)
  6172. return 0;
  6173. start = ret + (err * 512);
  6174. continue;
  6175. }
  6176. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6177. if (err < 0)
  6178. return err;
  6179. ret += err;
  6180. err = niu_pci_eeprom_read(np, ret + 0);
  6181. if (err != 0x82)
  6182. return 0;
  6183. return ret;
  6184. }
  6185. return 0;
  6186. }
  6187. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6188. const char *phy_prop)
  6189. {
  6190. if (!strcmp(phy_prop, "mif")) {
  6191. /* 1G copper, MII */
  6192. np->flags &= ~(NIU_FLAGS_FIBER |
  6193. NIU_FLAGS_10G);
  6194. np->mac_xcvr = MAC_XCVR_MII;
  6195. } else if (!strcmp(phy_prop, "xgf")) {
  6196. /* 10G fiber, XPCS */
  6197. np->flags |= (NIU_FLAGS_10G |
  6198. NIU_FLAGS_FIBER);
  6199. np->mac_xcvr = MAC_XCVR_XPCS;
  6200. } else if (!strcmp(phy_prop, "pcs")) {
  6201. /* 1G fiber, PCS */
  6202. np->flags &= ~NIU_FLAGS_10G;
  6203. np->flags |= NIU_FLAGS_FIBER;
  6204. np->mac_xcvr = MAC_XCVR_PCS;
  6205. } else if (!strcmp(phy_prop, "xgc")) {
  6206. /* 10G copper, XPCS */
  6207. np->flags |= NIU_FLAGS_10G;
  6208. np->flags &= ~NIU_FLAGS_FIBER;
  6209. np->mac_xcvr = MAC_XCVR_XPCS;
  6210. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6211. /* 10G Serdes or 1G Serdes, default to 10G */
  6212. np->flags |= NIU_FLAGS_10G;
  6213. np->flags &= ~NIU_FLAGS_FIBER;
  6214. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6215. np->mac_xcvr = MAC_XCVR_XPCS;
  6216. } else {
  6217. return -EINVAL;
  6218. }
  6219. return 0;
  6220. }
  6221. static int niu_pci_vpd_get_nports(struct niu *np)
  6222. {
  6223. int ports = 0;
  6224. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6225. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6226. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6227. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6228. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6229. ports = 4;
  6230. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6231. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6232. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6233. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6234. ports = 2;
  6235. }
  6236. return ports;
  6237. }
  6238. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6239. {
  6240. struct net_device *dev = np->dev;
  6241. struct niu_vpd *vpd = &np->vpd;
  6242. u8 val8;
  6243. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6244. dev_err(np->device, PFX "VPD MAC invalid, "
  6245. "falling back to SPROM.\n");
  6246. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6247. return;
  6248. }
  6249. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6250. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6251. np->flags |= NIU_FLAGS_10G;
  6252. np->flags &= ~NIU_FLAGS_FIBER;
  6253. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6254. np->mac_xcvr = MAC_XCVR_PCS;
  6255. if (np->port > 1) {
  6256. np->flags |= NIU_FLAGS_FIBER;
  6257. np->flags &= ~NIU_FLAGS_10G;
  6258. }
  6259. if (np->flags & NIU_FLAGS_10G)
  6260. np->mac_xcvr = MAC_XCVR_XPCS;
  6261. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6262. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6263. NIU_FLAGS_HOTPLUG_PHY);
  6264. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6265. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  6266. np->vpd.phy_type);
  6267. dev_err(np->device, PFX "Falling back to SPROM.\n");
  6268. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6269. return;
  6270. }
  6271. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6272. val8 = dev->perm_addr[5];
  6273. dev->perm_addr[5] += np->port;
  6274. if (dev->perm_addr[5] < val8)
  6275. dev->perm_addr[4]++;
  6276. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6277. }
  6278. static int __devinit niu_pci_probe_sprom(struct niu *np)
  6279. {
  6280. struct net_device *dev = np->dev;
  6281. int len, i;
  6282. u64 val, sum;
  6283. u8 val8;
  6284. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6285. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6286. len = val / 4;
  6287. np->eeprom_len = len;
  6288. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  6289. sum = 0;
  6290. for (i = 0; i < len; i++) {
  6291. val = nr64(ESPC_NCR(i));
  6292. sum += (val >> 0) & 0xff;
  6293. sum += (val >> 8) & 0xff;
  6294. sum += (val >> 16) & 0xff;
  6295. sum += (val >> 24) & 0xff;
  6296. }
  6297. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6298. if ((sum & 0xff) != 0xab) {
  6299. dev_err(np->device, PFX "Bad SPROM checksum "
  6300. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  6301. return -EINVAL;
  6302. }
  6303. val = nr64(ESPC_PHY_TYPE);
  6304. switch (np->port) {
  6305. case 0:
  6306. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6307. ESPC_PHY_TYPE_PORT0_SHIFT;
  6308. break;
  6309. case 1:
  6310. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6311. ESPC_PHY_TYPE_PORT1_SHIFT;
  6312. break;
  6313. case 2:
  6314. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6315. ESPC_PHY_TYPE_PORT2_SHIFT;
  6316. break;
  6317. case 3:
  6318. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6319. ESPC_PHY_TYPE_PORT3_SHIFT;
  6320. break;
  6321. default:
  6322. dev_err(np->device, PFX "Bogus port number %u\n",
  6323. np->port);
  6324. return -EINVAL;
  6325. }
  6326. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  6327. switch (val8) {
  6328. case ESPC_PHY_TYPE_1G_COPPER:
  6329. /* 1G copper, MII */
  6330. np->flags &= ~(NIU_FLAGS_FIBER |
  6331. NIU_FLAGS_10G);
  6332. np->mac_xcvr = MAC_XCVR_MII;
  6333. break;
  6334. case ESPC_PHY_TYPE_1G_FIBER:
  6335. /* 1G fiber, PCS */
  6336. np->flags &= ~NIU_FLAGS_10G;
  6337. np->flags |= NIU_FLAGS_FIBER;
  6338. np->mac_xcvr = MAC_XCVR_PCS;
  6339. break;
  6340. case ESPC_PHY_TYPE_10G_COPPER:
  6341. /* 10G copper, XPCS */
  6342. np->flags |= NIU_FLAGS_10G;
  6343. np->flags &= ~NIU_FLAGS_FIBER;
  6344. np->mac_xcvr = MAC_XCVR_XPCS;
  6345. break;
  6346. case ESPC_PHY_TYPE_10G_FIBER:
  6347. /* 10G fiber, XPCS */
  6348. np->flags |= (NIU_FLAGS_10G |
  6349. NIU_FLAGS_FIBER);
  6350. np->mac_xcvr = MAC_XCVR_XPCS;
  6351. break;
  6352. default:
  6353. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  6354. return -EINVAL;
  6355. }
  6356. val = nr64(ESPC_MAC_ADDR0);
  6357. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  6358. (unsigned long long) val);
  6359. dev->perm_addr[0] = (val >> 0) & 0xff;
  6360. dev->perm_addr[1] = (val >> 8) & 0xff;
  6361. dev->perm_addr[2] = (val >> 16) & 0xff;
  6362. dev->perm_addr[3] = (val >> 24) & 0xff;
  6363. val = nr64(ESPC_MAC_ADDR1);
  6364. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  6365. (unsigned long long) val);
  6366. dev->perm_addr[4] = (val >> 0) & 0xff;
  6367. dev->perm_addr[5] = (val >> 8) & 0xff;
  6368. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  6369. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  6370. dev_err(np->device, PFX "[ \n");
  6371. for (i = 0; i < 6; i++)
  6372. printk("%02x ", dev->perm_addr[i]);
  6373. printk("]\n");
  6374. return -EINVAL;
  6375. }
  6376. val8 = dev->perm_addr[5];
  6377. dev->perm_addr[5] += np->port;
  6378. if (dev->perm_addr[5] < val8)
  6379. dev->perm_addr[4]++;
  6380. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6381. val = nr64(ESPC_MOD_STR_LEN);
  6382. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  6383. (unsigned long long) val);
  6384. if (val >= 8 * 4)
  6385. return -EINVAL;
  6386. for (i = 0; i < val; i += 4) {
  6387. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  6388. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  6389. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  6390. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  6391. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  6392. }
  6393. np->vpd.model[val] = '\0';
  6394. val = nr64(ESPC_BD_MOD_STR_LEN);
  6395. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  6396. (unsigned long long) val);
  6397. if (val >= 4 * 4)
  6398. return -EINVAL;
  6399. for (i = 0; i < val; i += 4) {
  6400. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  6401. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  6402. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  6403. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  6404. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  6405. }
  6406. np->vpd.board_model[val] = '\0';
  6407. np->vpd.mac_num =
  6408. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  6409. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  6410. np->vpd.mac_num);
  6411. return 0;
  6412. }
  6413. static int __devinit niu_get_and_validate_port(struct niu *np)
  6414. {
  6415. struct niu_parent *parent = np->parent;
  6416. if (np->port <= 1)
  6417. np->flags |= NIU_FLAGS_XMAC;
  6418. if (!parent->num_ports) {
  6419. if (parent->plat_type == PLAT_TYPE_NIU) {
  6420. parent->num_ports = 2;
  6421. } else {
  6422. parent->num_ports = niu_pci_vpd_get_nports(np);
  6423. if (!parent->num_ports) {
  6424. /* Fall back to SPROM as last resort.
  6425. * This will fail on most cards.
  6426. */
  6427. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  6428. ESPC_NUM_PORTS_MACS_VAL;
  6429. /* All of the current probing methods fail on
  6430. * Maramba on-board parts.
  6431. */
  6432. if (!parent->num_ports)
  6433. parent->num_ports = 4;
  6434. }
  6435. }
  6436. }
  6437. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  6438. np->port, parent->num_ports);
  6439. if (np->port >= parent->num_ports)
  6440. return -ENODEV;
  6441. return 0;
  6442. }
  6443. static int __devinit phy_record(struct niu_parent *parent,
  6444. struct phy_probe_info *p,
  6445. int dev_id_1, int dev_id_2, u8 phy_port,
  6446. int type)
  6447. {
  6448. u32 id = (dev_id_1 << 16) | dev_id_2;
  6449. u8 idx;
  6450. if (dev_id_1 < 0 || dev_id_2 < 0)
  6451. return 0;
  6452. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  6453. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  6454. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  6455. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  6456. return 0;
  6457. } else {
  6458. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  6459. return 0;
  6460. }
  6461. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  6462. parent->index, id,
  6463. (type == PHY_TYPE_PMA_PMD ?
  6464. "PMA/PMD" :
  6465. (type == PHY_TYPE_PCS ?
  6466. "PCS" : "MII")),
  6467. phy_port);
  6468. if (p->cur[type] >= NIU_MAX_PORTS) {
  6469. printk(KERN_ERR PFX "Too many PHY ports.\n");
  6470. return -EINVAL;
  6471. }
  6472. idx = p->cur[type];
  6473. p->phy_id[type][idx] = id;
  6474. p->phy_port[type][idx] = phy_port;
  6475. p->cur[type] = idx + 1;
  6476. return 0;
  6477. }
  6478. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  6479. {
  6480. int i;
  6481. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  6482. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  6483. return 1;
  6484. }
  6485. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  6486. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  6487. return 1;
  6488. }
  6489. return 0;
  6490. }
  6491. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  6492. {
  6493. int port, cnt;
  6494. cnt = 0;
  6495. *lowest = 32;
  6496. for (port = 8; port < 32; port++) {
  6497. if (port_has_10g(p, port)) {
  6498. if (!cnt)
  6499. *lowest = port;
  6500. cnt++;
  6501. }
  6502. }
  6503. return cnt;
  6504. }
  6505. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  6506. {
  6507. *lowest = 32;
  6508. if (p->cur[PHY_TYPE_MII])
  6509. *lowest = p->phy_port[PHY_TYPE_MII][0];
  6510. return p->cur[PHY_TYPE_MII];
  6511. }
  6512. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  6513. {
  6514. int num_ports = parent->num_ports;
  6515. int i;
  6516. for (i = 0; i < num_ports; i++) {
  6517. parent->rxchan_per_port[i] = (16 / num_ports);
  6518. parent->txchan_per_port[i] = (16 / num_ports);
  6519. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  6520. "[%u TX chans]\n",
  6521. parent->index, i,
  6522. parent->rxchan_per_port[i],
  6523. parent->txchan_per_port[i]);
  6524. }
  6525. }
  6526. static void __devinit niu_divide_channels(struct niu_parent *parent,
  6527. int num_10g, int num_1g)
  6528. {
  6529. int num_ports = parent->num_ports;
  6530. int rx_chans_per_10g, rx_chans_per_1g;
  6531. int tx_chans_per_10g, tx_chans_per_1g;
  6532. int i, tot_rx, tot_tx;
  6533. if (!num_10g || !num_1g) {
  6534. rx_chans_per_10g = rx_chans_per_1g =
  6535. (NIU_NUM_RXCHAN / num_ports);
  6536. tx_chans_per_10g = tx_chans_per_1g =
  6537. (NIU_NUM_TXCHAN / num_ports);
  6538. } else {
  6539. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  6540. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  6541. (rx_chans_per_1g * num_1g)) /
  6542. num_10g;
  6543. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  6544. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  6545. (tx_chans_per_1g * num_1g)) /
  6546. num_10g;
  6547. }
  6548. tot_rx = tot_tx = 0;
  6549. for (i = 0; i < num_ports; i++) {
  6550. int type = phy_decode(parent->port_phy, i);
  6551. if (type == PORT_TYPE_10G) {
  6552. parent->rxchan_per_port[i] = rx_chans_per_10g;
  6553. parent->txchan_per_port[i] = tx_chans_per_10g;
  6554. } else {
  6555. parent->rxchan_per_port[i] = rx_chans_per_1g;
  6556. parent->txchan_per_port[i] = tx_chans_per_1g;
  6557. }
  6558. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  6559. "[%u TX chans]\n",
  6560. parent->index, i,
  6561. parent->rxchan_per_port[i],
  6562. parent->txchan_per_port[i]);
  6563. tot_rx += parent->rxchan_per_port[i];
  6564. tot_tx += parent->txchan_per_port[i];
  6565. }
  6566. if (tot_rx > NIU_NUM_RXCHAN) {
  6567. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  6568. "resetting to one per port.\n",
  6569. parent->index, tot_rx);
  6570. for (i = 0; i < num_ports; i++)
  6571. parent->rxchan_per_port[i] = 1;
  6572. }
  6573. if (tot_tx > NIU_NUM_TXCHAN) {
  6574. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  6575. "resetting to one per port.\n",
  6576. parent->index, tot_tx);
  6577. for (i = 0; i < num_ports; i++)
  6578. parent->txchan_per_port[i] = 1;
  6579. }
  6580. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  6581. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  6582. "RX[%d] TX[%d]\n",
  6583. parent->index, tot_rx, tot_tx);
  6584. }
  6585. }
  6586. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  6587. int num_10g, int num_1g)
  6588. {
  6589. int i, num_ports = parent->num_ports;
  6590. int rdc_group, rdc_groups_per_port;
  6591. int rdc_channel_base;
  6592. rdc_group = 0;
  6593. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  6594. rdc_channel_base = 0;
  6595. for (i = 0; i < num_ports; i++) {
  6596. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  6597. int grp, num_channels = parent->rxchan_per_port[i];
  6598. int this_channel_offset;
  6599. tp->first_table_num = rdc_group;
  6600. tp->num_tables = rdc_groups_per_port;
  6601. this_channel_offset = 0;
  6602. for (grp = 0; grp < tp->num_tables; grp++) {
  6603. struct rdc_table *rt = &tp->tables[grp];
  6604. int slot;
  6605. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  6606. parent->index, i, tp->first_table_num + grp);
  6607. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  6608. rt->rxdma_channel[slot] =
  6609. rdc_channel_base + this_channel_offset;
  6610. printk("%d ", rt->rxdma_channel[slot]);
  6611. if (++this_channel_offset == num_channels)
  6612. this_channel_offset = 0;
  6613. }
  6614. printk("]\n");
  6615. }
  6616. parent->rdc_default[i] = rdc_channel_base;
  6617. rdc_channel_base += num_channels;
  6618. rdc_group += rdc_groups_per_port;
  6619. }
  6620. }
  6621. static int __devinit fill_phy_probe_info(struct niu *np,
  6622. struct niu_parent *parent,
  6623. struct phy_probe_info *info)
  6624. {
  6625. unsigned long flags;
  6626. int port, err;
  6627. memset(info, 0, sizeof(*info));
  6628. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  6629. niu_lock_parent(np, flags);
  6630. err = 0;
  6631. for (port = 8; port < 32; port++) {
  6632. int dev_id_1, dev_id_2;
  6633. dev_id_1 = mdio_read(np, port,
  6634. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  6635. dev_id_2 = mdio_read(np, port,
  6636. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  6637. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  6638. PHY_TYPE_PMA_PMD);
  6639. if (err)
  6640. break;
  6641. dev_id_1 = mdio_read(np, port,
  6642. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  6643. dev_id_2 = mdio_read(np, port,
  6644. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  6645. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  6646. PHY_TYPE_PCS);
  6647. if (err)
  6648. break;
  6649. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  6650. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  6651. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  6652. PHY_TYPE_MII);
  6653. if (err)
  6654. break;
  6655. }
  6656. niu_unlock_parent(np, flags);
  6657. return err;
  6658. }
  6659. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  6660. {
  6661. struct phy_probe_info *info = &parent->phy_probe_info;
  6662. int lowest_10g, lowest_1g;
  6663. int num_10g, num_1g;
  6664. u32 val;
  6665. int err;
  6666. num_10g = num_1g = 0;
  6667. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6668. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6669. num_10g = 0;
  6670. num_1g = 2;
  6671. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  6672. parent->num_ports = 4;
  6673. val = (phy_encode(PORT_TYPE_1G, 0) |
  6674. phy_encode(PORT_TYPE_1G, 1) |
  6675. phy_encode(PORT_TYPE_1G, 2) |
  6676. phy_encode(PORT_TYPE_1G, 3));
  6677. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6678. num_10g = 2;
  6679. num_1g = 0;
  6680. parent->num_ports = 2;
  6681. val = (phy_encode(PORT_TYPE_10G, 0) |
  6682. phy_encode(PORT_TYPE_10G, 1));
  6683. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  6684. (parent->plat_type == PLAT_TYPE_NIU)) {
  6685. /* this is the Monza case */
  6686. if (np->flags & NIU_FLAGS_10G) {
  6687. val = (phy_encode(PORT_TYPE_10G, 0) |
  6688. phy_encode(PORT_TYPE_10G, 1));
  6689. } else {
  6690. val = (phy_encode(PORT_TYPE_1G, 0) |
  6691. phy_encode(PORT_TYPE_1G, 1));
  6692. }
  6693. } else {
  6694. err = fill_phy_probe_info(np, parent, info);
  6695. if (err)
  6696. return err;
  6697. num_10g = count_10g_ports(info, &lowest_10g);
  6698. num_1g = count_1g_ports(info, &lowest_1g);
  6699. switch ((num_10g << 4) | num_1g) {
  6700. case 0x24:
  6701. if (lowest_1g == 10)
  6702. parent->plat_type = PLAT_TYPE_VF_P0;
  6703. else if (lowest_1g == 26)
  6704. parent->plat_type = PLAT_TYPE_VF_P1;
  6705. else
  6706. goto unknown_vg_1g_port;
  6707. /* fallthru */
  6708. case 0x22:
  6709. val = (phy_encode(PORT_TYPE_10G, 0) |
  6710. phy_encode(PORT_TYPE_10G, 1) |
  6711. phy_encode(PORT_TYPE_1G, 2) |
  6712. phy_encode(PORT_TYPE_1G, 3));
  6713. break;
  6714. case 0x20:
  6715. val = (phy_encode(PORT_TYPE_10G, 0) |
  6716. phy_encode(PORT_TYPE_10G, 1));
  6717. break;
  6718. case 0x10:
  6719. val = phy_encode(PORT_TYPE_10G, np->port);
  6720. break;
  6721. case 0x14:
  6722. if (lowest_1g == 10)
  6723. parent->plat_type = PLAT_TYPE_VF_P0;
  6724. else if (lowest_1g == 26)
  6725. parent->plat_type = PLAT_TYPE_VF_P1;
  6726. else
  6727. goto unknown_vg_1g_port;
  6728. /* fallthru */
  6729. case 0x13:
  6730. if ((lowest_10g & 0x7) == 0)
  6731. val = (phy_encode(PORT_TYPE_10G, 0) |
  6732. phy_encode(PORT_TYPE_1G, 1) |
  6733. phy_encode(PORT_TYPE_1G, 2) |
  6734. phy_encode(PORT_TYPE_1G, 3));
  6735. else
  6736. val = (phy_encode(PORT_TYPE_1G, 0) |
  6737. phy_encode(PORT_TYPE_10G, 1) |
  6738. phy_encode(PORT_TYPE_1G, 2) |
  6739. phy_encode(PORT_TYPE_1G, 3));
  6740. break;
  6741. case 0x04:
  6742. if (lowest_1g == 10)
  6743. parent->plat_type = PLAT_TYPE_VF_P0;
  6744. else if (lowest_1g == 26)
  6745. parent->plat_type = PLAT_TYPE_VF_P1;
  6746. else
  6747. goto unknown_vg_1g_port;
  6748. val = (phy_encode(PORT_TYPE_1G, 0) |
  6749. phy_encode(PORT_TYPE_1G, 1) |
  6750. phy_encode(PORT_TYPE_1G, 2) |
  6751. phy_encode(PORT_TYPE_1G, 3));
  6752. break;
  6753. default:
  6754. printk(KERN_ERR PFX "Unsupported port config "
  6755. "10G[%d] 1G[%d]\n",
  6756. num_10g, num_1g);
  6757. return -EINVAL;
  6758. }
  6759. }
  6760. parent->port_phy = val;
  6761. if (parent->plat_type == PLAT_TYPE_NIU)
  6762. niu_n2_divide_channels(parent);
  6763. else
  6764. niu_divide_channels(parent, num_10g, num_1g);
  6765. niu_divide_rdc_groups(parent, num_10g, num_1g);
  6766. return 0;
  6767. unknown_vg_1g_port:
  6768. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  6769. lowest_1g);
  6770. return -EINVAL;
  6771. }
  6772. static int __devinit niu_probe_ports(struct niu *np)
  6773. {
  6774. struct niu_parent *parent = np->parent;
  6775. int err, i;
  6776. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  6777. parent->port_phy);
  6778. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  6779. err = walk_phys(np, parent);
  6780. if (err)
  6781. return err;
  6782. niu_set_ldg_timer_res(np, 2);
  6783. for (i = 0; i <= LDN_MAX; i++)
  6784. niu_ldn_irq_enable(np, i, 0);
  6785. }
  6786. if (parent->port_phy == PORT_PHY_INVALID)
  6787. return -EINVAL;
  6788. return 0;
  6789. }
  6790. static int __devinit niu_classifier_swstate_init(struct niu *np)
  6791. {
  6792. struct niu_classifier *cp = &np->clas;
  6793. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  6794. np->parent->tcam_num_entries);
  6795. cp->tcam_index = (u16) np->port;
  6796. cp->h1_init = 0xffffffff;
  6797. cp->h2_init = 0xffff;
  6798. return fflp_early_init(np);
  6799. }
  6800. static void __devinit niu_link_config_init(struct niu *np)
  6801. {
  6802. struct niu_link_config *lp = &np->link_config;
  6803. lp->advertising = (ADVERTISED_10baseT_Half |
  6804. ADVERTISED_10baseT_Full |
  6805. ADVERTISED_100baseT_Half |
  6806. ADVERTISED_100baseT_Full |
  6807. ADVERTISED_1000baseT_Half |
  6808. ADVERTISED_1000baseT_Full |
  6809. ADVERTISED_10000baseT_Full |
  6810. ADVERTISED_Autoneg);
  6811. lp->speed = lp->active_speed = SPEED_INVALID;
  6812. lp->duplex = lp->active_duplex = DUPLEX_INVALID;
  6813. #if 0
  6814. lp->loopback_mode = LOOPBACK_MAC;
  6815. lp->active_speed = SPEED_10000;
  6816. lp->active_duplex = DUPLEX_FULL;
  6817. #else
  6818. lp->loopback_mode = LOOPBACK_DISABLED;
  6819. #endif
  6820. }
  6821. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  6822. {
  6823. switch (np->port) {
  6824. case 0:
  6825. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  6826. np->ipp_off = 0x00000;
  6827. np->pcs_off = 0x04000;
  6828. np->xpcs_off = 0x02000;
  6829. break;
  6830. case 1:
  6831. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  6832. np->ipp_off = 0x08000;
  6833. np->pcs_off = 0x0a000;
  6834. np->xpcs_off = 0x08000;
  6835. break;
  6836. case 2:
  6837. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  6838. np->ipp_off = 0x04000;
  6839. np->pcs_off = 0x0e000;
  6840. np->xpcs_off = ~0UL;
  6841. break;
  6842. case 3:
  6843. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  6844. np->ipp_off = 0x0c000;
  6845. np->pcs_off = 0x12000;
  6846. np->xpcs_off = ~0UL;
  6847. break;
  6848. default:
  6849. dev_err(np->device, PFX "Port %u is invalid, cannot "
  6850. "compute MAC block offset.\n", np->port);
  6851. return -EINVAL;
  6852. }
  6853. return 0;
  6854. }
  6855. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  6856. {
  6857. struct msix_entry msi_vec[NIU_NUM_LDG];
  6858. struct niu_parent *parent = np->parent;
  6859. struct pci_dev *pdev = np->pdev;
  6860. int i, num_irqs, err;
  6861. u8 first_ldg;
  6862. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  6863. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  6864. ldg_num_map[i] = first_ldg + i;
  6865. num_irqs = (parent->rxchan_per_port[np->port] +
  6866. parent->txchan_per_port[np->port] +
  6867. (np->port == 0 ? 3 : 1));
  6868. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  6869. retry:
  6870. for (i = 0; i < num_irqs; i++) {
  6871. msi_vec[i].vector = 0;
  6872. msi_vec[i].entry = i;
  6873. }
  6874. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  6875. if (err < 0) {
  6876. np->flags &= ~NIU_FLAGS_MSIX;
  6877. return;
  6878. }
  6879. if (err > 0) {
  6880. num_irqs = err;
  6881. goto retry;
  6882. }
  6883. np->flags |= NIU_FLAGS_MSIX;
  6884. for (i = 0; i < num_irqs; i++)
  6885. np->ldg[i].irq = msi_vec[i].vector;
  6886. np->num_ldg = num_irqs;
  6887. }
  6888. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  6889. {
  6890. #ifdef CONFIG_SPARC64
  6891. struct of_device *op = np->op;
  6892. const u32 *int_prop;
  6893. int i;
  6894. int_prop = of_get_property(op->node, "interrupts", NULL);
  6895. if (!int_prop)
  6896. return -ENODEV;
  6897. for (i = 0; i < op->num_irqs; i++) {
  6898. ldg_num_map[i] = int_prop[i];
  6899. np->ldg[i].irq = op->irqs[i];
  6900. }
  6901. np->num_ldg = op->num_irqs;
  6902. return 0;
  6903. #else
  6904. return -EINVAL;
  6905. #endif
  6906. }
  6907. static int __devinit niu_ldg_init(struct niu *np)
  6908. {
  6909. struct niu_parent *parent = np->parent;
  6910. u8 ldg_num_map[NIU_NUM_LDG];
  6911. int first_chan, num_chan;
  6912. int i, err, ldg_rotor;
  6913. u8 port;
  6914. np->num_ldg = 1;
  6915. np->ldg[0].irq = np->dev->irq;
  6916. if (parent->plat_type == PLAT_TYPE_NIU) {
  6917. err = niu_n2_irq_init(np, ldg_num_map);
  6918. if (err)
  6919. return err;
  6920. } else
  6921. niu_try_msix(np, ldg_num_map);
  6922. port = np->port;
  6923. for (i = 0; i < np->num_ldg; i++) {
  6924. struct niu_ldg *lp = &np->ldg[i];
  6925. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  6926. lp->np = np;
  6927. lp->ldg_num = ldg_num_map[i];
  6928. lp->timer = 2; /* XXX */
  6929. /* On N2 NIU the firmware has setup the SID mappings so they go
  6930. * to the correct values that will route the LDG to the proper
  6931. * interrupt in the NCU interrupt table.
  6932. */
  6933. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  6934. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  6935. if (err)
  6936. return err;
  6937. }
  6938. }
  6939. /* We adopt the LDG assignment ordering used by the N2 NIU
  6940. * 'interrupt' properties because that simplifies a lot of
  6941. * things. This ordering is:
  6942. *
  6943. * MAC
  6944. * MIF (if port zero)
  6945. * SYSERR (if port zero)
  6946. * RX channels
  6947. * TX channels
  6948. */
  6949. ldg_rotor = 0;
  6950. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  6951. LDN_MAC(port));
  6952. if (err)
  6953. return err;
  6954. ldg_rotor++;
  6955. if (ldg_rotor == np->num_ldg)
  6956. ldg_rotor = 0;
  6957. if (port == 0) {
  6958. err = niu_ldg_assign_ldn(np, parent,
  6959. ldg_num_map[ldg_rotor],
  6960. LDN_MIF);
  6961. if (err)
  6962. return err;
  6963. ldg_rotor++;
  6964. if (ldg_rotor == np->num_ldg)
  6965. ldg_rotor = 0;
  6966. err = niu_ldg_assign_ldn(np, parent,
  6967. ldg_num_map[ldg_rotor],
  6968. LDN_DEVICE_ERROR);
  6969. if (err)
  6970. return err;
  6971. ldg_rotor++;
  6972. if (ldg_rotor == np->num_ldg)
  6973. ldg_rotor = 0;
  6974. }
  6975. first_chan = 0;
  6976. for (i = 0; i < port; i++)
  6977. first_chan += parent->rxchan_per_port[port];
  6978. num_chan = parent->rxchan_per_port[port];
  6979. for (i = first_chan; i < (first_chan + num_chan); i++) {
  6980. err = niu_ldg_assign_ldn(np, parent,
  6981. ldg_num_map[ldg_rotor],
  6982. LDN_RXDMA(i));
  6983. if (err)
  6984. return err;
  6985. ldg_rotor++;
  6986. if (ldg_rotor == np->num_ldg)
  6987. ldg_rotor = 0;
  6988. }
  6989. first_chan = 0;
  6990. for (i = 0; i < port; i++)
  6991. first_chan += parent->txchan_per_port[port];
  6992. num_chan = parent->txchan_per_port[port];
  6993. for (i = first_chan; i < (first_chan + num_chan); i++) {
  6994. err = niu_ldg_assign_ldn(np, parent,
  6995. ldg_num_map[ldg_rotor],
  6996. LDN_TXDMA(i));
  6997. if (err)
  6998. return err;
  6999. ldg_rotor++;
  7000. if (ldg_rotor == np->num_ldg)
  7001. ldg_rotor = 0;
  7002. }
  7003. return 0;
  7004. }
  7005. static void __devexit niu_ldg_free(struct niu *np)
  7006. {
  7007. if (np->flags & NIU_FLAGS_MSIX)
  7008. pci_disable_msix(np->pdev);
  7009. }
  7010. static int __devinit niu_get_of_props(struct niu *np)
  7011. {
  7012. #ifdef CONFIG_SPARC64
  7013. struct net_device *dev = np->dev;
  7014. struct device_node *dp;
  7015. const char *phy_type;
  7016. const u8 *mac_addr;
  7017. const char *model;
  7018. int prop_len;
  7019. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7020. dp = np->op->node;
  7021. else
  7022. dp = pci_device_to_OF_node(np->pdev);
  7023. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7024. if (!phy_type) {
  7025. dev_err(np->device, PFX "%s: OF node lacks "
  7026. "phy-type property\n",
  7027. dp->full_name);
  7028. return -EINVAL;
  7029. }
  7030. if (!strcmp(phy_type, "none"))
  7031. return -ENODEV;
  7032. strcpy(np->vpd.phy_type, phy_type);
  7033. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7034. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  7035. dp->full_name, np->vpd.phy_type);
  7036. return -EINVAL;
  7037. }
  7038. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7039. if (!mac_addr) {
  7040. dev_err(np->device, PFX "%s: OF node lacks "
  7041. "local-mac-address property\n",
  7042. dp->full_name);
  7043. return -EINVAL;
  7044. }
  7045. if (prop_len != dev->addr_len) {
  7046. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  7047. "is wrong.\n",
  7048. dp->full_name, prop_len);
  7049. }
  7050. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7051. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7052. int i;
  7053. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  7054. dp->full_name);
  7055. dev_err(np->device, PFX "%s: [ \n",
  7056. dp->full_name);
  7057. for (i = 0; i < 6; i++)
  7058. printk("%02x ", dev->perm_addr[i]);
  7059. printk("]\n");
  7060. return -EINVAL;
  7061. }
  7062. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7063. model = of_get_property(dp, "model", &prop_len);
  7064. if (model)
  7065. strcpy(np->vpd.model, model);
  7066. return 0;
  7067. #else
  7068. return -EINVAL;
  7069. #endif
  7070. }
  7071. static int __devinit niu_get_invariants(struct niu *np)
  7072. {
  7073. int err, have_props;
  7074. u32 offset;
  7075. err = niu_get_of_props(np);
  7076. if (err == -ENODEV)
  7077. return err;
  7078. have_props = !err;
  7079. err = niu_init_mac_ipp_pcs_base(np);
  7080. if (err)
  7081. return err;
  7082. if (have_props) {
  7083. err = niu_get_and_validate_port(np);
  7084. if (err)
  7085. return err;
  7086. } else {
  7087. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7088. return -EINVAL;
  7089. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7090. offset = niu_pci_vpd_offset(np);
  7091. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  7092. offset);
  7093. if (offset)
  7094. niu_pci_vpd_fetch(np, offset);
  7095. nw64(ESPC_PIO_EN, 0);
  7096. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7097. niu_pci_vpd_validate(np);
  7098. err = niu_get_and_validate_port(np);
  7099. if (err)
  7100. return err;
  7101. }
  7102. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7103. err = niu_get_and_validate_port(np);
  7104. if (err)
  7105. return err;
  7106. err = niu_pci_probe_sprom(np);
  7107. if (err)
  7108. return err;
  7109. }
  7110. }
  7111. err = niu_probe_ports(np);
  7112. if (err)
  7113. return err;
  7114. niu_ldg_init(np);
  7115. niu_classifier_swstate_init(np);
  7116. niu_link_config_init(np);
  7117. err = niu_determine_phy_disposition(np);
  7118. if (!err)
  7119. err = niu_init_link(np);
  7120. return err;
  7121. }
  7122. static LIST_HEAD(niu_parent_list);
  7123. static DEFINE_MUTEX(niu_parent_lock);
  7124. static int niu_parent_index;
  7125. static ssize_t show_port_phy(struct device *dev,
  7126. struct device_attribute *attr, char *buf)
  7127. {
  7128. struct platform_device *plat_dev = to_platform_device(dev);
  7129. struct niu_parent *p = plat_dev->dev.platform_data;
  7130. u32 port_phy = p->port_phy;
  7131. char *orig_buf = buf;
  7132. int i;
  7133. if (port_phy == PORT_PHY_UNKNOWN ||
  7134. port_phy == PORT_PHY_INVALID)
  7135. return 0;
  7136. for (i = 0; i < p->num_ports; i++) {
  7137. const char *type_str;
  7138. int type;
  7139. type = phy_decode(port_phy, i);
  7140. if (type == PORT_TYPE_10G)
  7141. type_str = "10G";
  7142. else
  7143. type_str = "1G";
  7144. buf += sprintf(buf,
  7145. (i == 0) ? "%s" : " %s",
  7146. type_str);
  7147. }
  7148. buf += sprintf(buf, "\n");
  7149. return buf - orig_buf;
  7150. }
  7151. static ssize_t show_plat_type(struct device *dev,
  7152. struct device_attribute *attr, char *buf)
  7153. {
  7154. struct platform_device *plat_dev = to_platform_device(dev);
  7155. struct niu_parent *p = plat_dev->dev.platform_data;
  7156. const char *type_str;
  7157. switch (p->plat_type) {
  7158. case PLAT_TYPE_ATLAS:
  7159. type_str = "atlas";
  7160. break;
  7161. case PLAT_TYPE_NIU:
  7162. type_str = "niu";
  7163. break;
  7164. case PLAT_TYPE_VF_P0:
  7165. type_str = "vf_p0";
  7166. break;
  7167. case PLAT_TYPE_VF_P1:
  7168. type_str = "vf_p1";
  7169. break;
  7170. default:
  7171. type_str = "unknown";
  7172. break;
  7173. }
  7174. return sprintf(buf, "%s\n", type_str);
  7175. }
  7176. static ssize_t __show_chan_per_port(struct device *dev,
  7177. struct device_attribute *attr, char *buf,
  7178. int rx)
  7179. {
  7180. struct platform_device *plat_dev = to_platform_device(dev);
  7181. struct niu_parent *p = plat_dev->dev.platform_data;
  7182. char *orig_buf = buf;
  7183. u8 *arr;
  7184. int i;
  7185. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7186. for (i = 0; i < p->num_ports; i++) {
  7187. buf += sprintf(buf,
  7188. (i == 0) ? "%d" : " %d",
  7189. arr[i]);
  7190. }
  7191. buf += sprintf(buf, "\n");
  7192. return buf - orig_buf;
  7193. }
  7194. static ssize_t show_rxchan_per_port(struct device *dev,
  7195. struct device_attribute *attr, char *buf)
  7196. {
  7197. return __show_chan_per_port(dev, attr, buf, 1);
  7198. }
  7199. static ssize_t show_txchan_per_port(struct device *dev,
  7200. struct device_attribute *attr, char *buf)
  7201. {
  7202. return __show_chan_per_port(dev, attr, buf, 1);
  7203. }
  7204. static ssize_t show_num_ports(struct device *dev,
  7205. struct device_attribute *attr, char *buf)
  7206. {
  7207. struct platform_device *plat_dev = to_platform_device(dev);
  7208. struct niu_parent *p = plat_dev->dev.platform_data;
  7209. return sprintf(buf, "%d\n", p->num_ports);
  7210. }
  7211. static struct device_attribute niu_parent_attributes[] = {
  7212. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7213. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7214. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7215. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7216. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7217. {}
  7218. };
  7219. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7220. union niu_parent_id *id,
  7221. u8 ptype)
  7222. {
  7223. struct platform_device *plat_dev;
  7224. struct niu_parent *p;
  7225. int i;
  7226. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  7227. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  7228. NULL, 0);
  7229. if (!plat_dev)
  7230. return NULL;
  7231. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7232. int err = device_create_file(&plat_dev->dev,
  7233. &niu_parent_attributes[i]);
  7234. if (err)
  7235. goto fail_unregister;
  7236. }
  7237. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7238. if (!p)
  7239. goto fail_unregister;
  7240. p->index = niu_parent_index++;
  7241. plat_dev->dev.platform_data = p;
  7242. p->plat_dev = plat_dev;
  7243. memcpy(&p->id, id, sizeof(*id));
  7244. p->plat_type = ptype;
  7245. INIT_LIST_HEAD(&p->list);
  7246. atomic_set(&p->refcnt, 0);
  7247. list_add(&p->list, &niu_parent_list);
  7248. spin_lock_init(&p->lock);
  7249. p->rxdma_clock_divider = 7500;
  7250. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7251. if (p->plat_type == PLAT_TYPE_NIU)
  7252. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7253. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7254. int index = i - CLASS_CODE_USER_PROG1;
  7255. p->tcam_key[index] = TCAM_KEY_TSEL;
  7256. p->flow_key[index] = (FLOW_KEY_IPSA |
  7257. FLOW_KEY_IPDA |
  7258. FLOW_KEY_PROTO |
  7259. (FLOW_KEY_L4_BYTE12 <<
  7260. FLOW_KEY_L4_0_SHIFT) |
  7261. (FLOW_KEY_L4_BYTE12 <<
  7262. FLOW_KEY_L4_1_SHIFT));
  7263. }
  7264. for (i = 0; i < LDN_MAX + 1; i++)
  7265. p->ldg_map[i] = LDG_INVALID;
  7266. return p;
  7267. fail_unregister:
  7268. platform_device_unregister(plat_dev);
  7269. return NULL;
  7270. }
  7271. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  7272. union niu_parent_id *id,
  7273. u8 ptype)
  7274. {
  7275. struct niu_parent *p, *tmp;
  7276. int port = np->port;
  7277. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  7278. ptype, port);
  7279. mutex_lock(&niu_parent_lock);
  7280. p = NULL;
  7281. list_for_each_entry(tmp, &niu_parent_list, list) {
  7282. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7283. p = tmp;
  7284. break;
  7285. }
  7286. }
  7287. if (!p)
  7288. p = niu_new_parent(np, id, ptype);
  7289. if (p) {
  7290. char port_name[6];
  7291. int err;
  7292. sprintf(port_name, "port%d", port);
  7293. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7294. &np->device->kobj,
  7295. port_name);
  7296. if (!err) {
  7297. p->ports[port] = np;
  7298. atomic_inc(&p->refcnt);
  7299. }
  7300. }
  7301. mutex_unlock(&niu_parent_lock);
  7302. return p;
  7303. }
  7304. static void niu_put_parent(struct niu *np)
  7305. {
  7306. struct niu_parent *p = np->parent;
  7307. u8 port = np->port;
  7308. char port_name[6];
  7309. BUG_ON(!p || p->ports[port] != np);
  7310. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  7311. sprintf(port_name, "port%d", port);
  7312. mutex_lock(&niu_parent_lock);
  7313. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7314. p->ports[port] = NULL;
  7315. np->parent = NULL;
  7316. if (atomic_dec_and_test(&p->refcnt)) {
  7317. list_del(&p->list);
  7318. platform_device_unregister(p->plat_dev);
  7319. }
  7320. mutex_unlock(&niu_parent_lock);
  7321. }
  7322. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7323. u64 *handle, gfp_t flag)
  7324. {
  7325. dma_addr_t dh;
  7326. void *ret;
  7327. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7328. if (ret)
  7329. *handle = dh;
  7330. return ret;
  7331. }
  7332. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7333. void *cpu_addr, u64 handle)
  7334. {
  7335. dma_free_coherent(dev, size, cpu_addr, handle);
  7336. }
  7337. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7338. unsigned long offset, size_t size,
  7339. enum dma_data_direction direction)
  7340. {
  7341. return dma_map_page(dev, page, offset, size, direction);
  7342. }
  7343. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7344. size_t size, enum dma_data_direction direction)
  7345. {
  7346. dma_unmap_page(dev, dma_address, size, direction);
  7347. }
  7348. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7349. size_t size,
  7350. enum dma_data_direction direction)
  7351. {
  7352. return dma_map_single(dev, cpu_addr, size, direction);
  7353. }
  7354. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  7355. size_t size,
  7356. enum dma_data_direction direction)
  7357. {
  7358. dma_unmap_single(dev, dma_address, size, direction);
  7359. }
  7360. static const struct niu_ops niu_pci_ops = {
  7361. .alloc_coherent = niu_pci_alloc_coherent,
  7362. .free_coherent = niu_pci_free_coherent,
  7363. .map_page = niu_pci_map_page,
  7364. .unmap_page = niu_pci_unmap_page,
  7365. .map_single = niu_pci_map_single,
  7366. .unmap_single = niu_pci_unmap_single,
  7367. };
  7368. static void __devinit niu_driver_version(void)
  7369. {
  7370. static int niu_version_printed;
  7371. if (niu_version_printed++ == 0)
  7372. pr_info("%s", version);
  7373. }
  7374. static struct net_device * __devinit niu_alloc_and_init(
  7375. struct device *gen_dev, struct pci_dev *pdev,
  7376. struct of_device *op, const struct niu_ops *ops,
  7377. u8 port)
  7378. {
  7379. struct net_device *dev;
  7380. struct niu *np;
  7381. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  7382. if (!dev) {
  7383. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  7384. return NULL;
  7385. }
  7386. SET_NETDEV_DEV(dev, gen_dev);
  7387. np = netdev_priv(dev);
  7388. np->dev = dev;
  7389. np->pdev = pdev;
  7390. np->op = op;
  7391. np->device = gen_dev;
  7392. np->ops = ops;
  7393. np->msg_enable = niu_debug;
  7394. spin_lock_init(&np->lock);
  7395. INIT_WORK(&np->reset_task, niu_reset_task);
  7396. np->port = port;
  7397. return dev;
  7398. }
  7399. static const struct net_device_ops niu_netdev_ops = {
  7400. .ndo_open = niu_open,
  7401. .ndo_stop = niu_close,
  7402. .ndo_start_xmit = niu_start_xmit,
  7403. .ndo_get_stats = niu_get_stats,
  7404. .ndo_set_multicast_list = niu_set_rx_mode,
  7405. .ndo_validate_addr = eth_validate_addr,
  7406. .ndo_set_mac_address = niu_set_mac_addr,
  7407. .ndo_do_ioctl = niu_ioctl,
  7408. .ndo_tx_timeout = niu_tx_timeout,
  7409. .ndo_change_mtu = niu_change_mtu,
  7410. };
  7411. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  7412. {
  7413. dev->netdev_ops = &niu_netdev_ops;
  7414. dev->ethtool_ops = &niu_ethtool_ops;
  7415. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  7416. }
  7417. static void __devinit niu_device_announce(struct niu *np)
  7418. {
  7419. struct net_device *dev = np->dev;
  7420. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  7421. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  7422. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  7423. dev->name,
  7424. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  7425. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  7426. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  7427. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  7428. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  7429. np->vpd.phy_type);
  7430. } else {
  7431. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  7432. dev->name,
  7433. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  7434. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  7435. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  7436. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  7437. "COPPER")),
  7438. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  7439. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  7440. np->vpd.phy_type);
  7441. }
  7442. }
  7443. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  7444. const struct pci_device_id *ent)
  7445. {
  7446. union niu_parent_id parent_id;
  7447. struct net_device *dev;
  7448. struct niu *np;
  7449. int err, pos;
  7450. u64 dma_mask;
  7451. u16 val16;
  7452. niu_driver_version();
  7453. err = pci_enable_device(pdev);
  7454. if (err) {
  7455. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  7456. "aborting.\n");
  7457. return err;
  7458. }
  7459. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  7460. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  7461. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  7462. "base addresses, aborting.\n");
  7463. err = -ENODEV;
  7464. goto err_out_disable_pdev;
  7465. }
  7466. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  7467. if (err) {
  7468. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  7469. "aborting.\n");
  7470. goto err_out_disable_pdev;
  7471. }
  7472. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  7473. if (pos <= 0) {
  7474. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  7475. "aborting.\n");
  7476. goto err_out_free_res;
  7477. }
  7478. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  7479. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  7480. if (!dev) {
  7481. err = -ENOMEM;
  7482. goto err_out_free_res;
  7483. }
  7484. np = netdev_priv(dev);
  7485. memset(&parent_id, 0, sizeof(parent_id));
  7486. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  7487. parent_id.pci.bus = pdev->bus->number;
  7488. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  7489. np->parent = niu_get_parent(np, &parent_id,
  7490. PLAT_TYPE_ATLAS);
  7491. if (!np->parent) {
  7492. err = -ENOMEM;
  7493. goto err_out_free_dev;
  7494. }
  7495. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  7496. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  7497. val16 |= (PCI_EXP_DEVCTL_CERE |
  7498. PCI_EXP_DEVCTL_NFERE |
  7499. PCI_EXP_DEVCTL_FERE |
  7500. PCI_EXP_DEVCTL_URRE |
  7501. PCI_EXP_DEVCTL_RELAX_EN);
  7502. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  7503. dma_mask = DMA_44BIT_MASK;
  7504. err = pci_set_dma_mask(pdev, dma_mask);
  7505. if (!err) {
  7506. dev->features |= NETIF_F_HIGHDMA;
  7507. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  7508. if (err) {
  7509. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  7510. "DMA for consistent allocations, "
  7511. "aborting.\n");
  7512. goto err_out_release_parent;
  7513. }
  7514. }
  7515. if (err || dma_mask == DMA_32BIT_MASK) {
  7516. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  7517. if (err) {
  7518. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  7519. "aborting.\n");
  7520. goto err_out_release_parent;
  7521. }
  7522. }
  7523. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  7524. np->regs = pci_ioremap_bar(pdev, 0);
  7525. if (!np->regs) {
  7526. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  7527. "aborting.\n");
  7528. err = -ENOMEM;
  7529. goto err_out_release_parent;
  7530. }
  7531. pci_set_master(pdev);
  7532. pci_save_state(pdev);
  7533. dev->irq = pdev->irq;
  7534. niu_assign_netdev_ops(dev);
  7535. err = niu_get_invariants(np);
  7536. if (err) {
  7537. if (err != -ENODEV)
  7538. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  7539. "of chip, aborting.\n");
  7540. goto err_out_iounmap;
  7541. }
  7542. err = register_netdev(dev);
  7543. if (err) {
  7544. dev_err(&pdev->dev, PFX "Cannot register net device, "
  7545. "aborting.\n");
  7546. goto err_out_iounmap;
  7547. }
  7548. pci_set_drvdata(pdev, dev);
  7549. niu_device_announce(np);
  7550. return 0;
  7551. err_out_iounmap:
  7552. if (np->regs) {
  7553. iounmap(np->regs);
  7554. np->regs = NULL;
  7555. }
  7556. err_out_release_parent:
  7557. niu_put_parent(np);
  7558. err_out_free_dev:
  7559. free_netdev(dev);
  7560. err_out_free_res:
  7561. pci_release_regions(pdev);
  7562. err_out_disable_pdev:
  7563. pci_disable_device(pdev);
  7564. pci_set_drvdata(pdev, NULL);
  7565. return err;
  7566. }
  7567. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  7568. {
  7569. struct net_device *dev = pci_get_drvdata(pdev);
  7570. if (dev) {
  7571. struct niu *np = netdev_priv(dev);
  7572. unregister_netdev(dev);
  7573. if (np->regs) {
  7574. iounmap(np->regs);
  7575. np->regs = NULL;
  7576. }
  7577. niu_ldg_free(np);
  7578. niu_put_parent(np);
  7579. free_netdev(dev);
  7580. pci_release_regions(pdev);
  7581. pci_disable_device(pdev);
  7582. pci_set_drvdata(pdev, NULL);
  7583. }
  7584. }
  7585. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  7586. {
  7587. struct net_device *dev = pci_get_drvdata(pdev);
  7588. struct niu *np = netdev_priv(dev);
  7589. unsigned long flags;
  7590. if (!netif_running(dev))
  7591. return 0;
  7592. flush_scheduled_work();
  7593. niu_netif_stop(np);
  7594. del_timer_sync(&np->timer);
  7595. spin_lock_irqsave(&np->lock, flags);
  7596. niu_enable_interrupts(np, 0);
  7597. spin_unlock_irqrestore(&np->lock, flags);
  7598. netif_device_detach(dev);
  7599. spin_lock_irqsave(&np->lock, flags);
  7600. niu_stop_hw(np);
  7601. spin_unlock_irqrestore(&np->lock, flags);
  7602. pci_save_state(pdev);
  7603. return 0;
  7604. }
  7605. static int niu_resume(struct pci_dev *pdev)
  7606. {
  7607. struct net_device *dev = pci_get_drvdata(pdev);
  7608. struct niu *np = netdev_priv(dev);
  7609. unsigned long flags;
  7610. int err;
  7611. if (!netif_running(dev))
  7612. return 0;
  7613. pci_restore_state(pdev);
  7614. netif_device_attach(dev);
  7615. spin_lock_irqsave(&np->lock, flags);
  7616. err = niu_init_hw(np);
  7617. if (!err) {
  7618. np->timer.expires = jiffies + HZ;
  7619. add_timer(&np->timer);
  7620. niu_netif_start(np);
  7621. }
  7622. spin_unlock_irqrestore(&np->lock, flags);
  7623. return err;
  7624. }
  7625. static struct pci_driver niu_pci_driver = {
  7626. .name = DRV_MODULE_NAME,
  7627. .id_table = niu_pci_tbl,
  7628. .probe = niu_pci_init_one,
  7629. .remove = __devexit_p(niu_pci_remove_one),
  7630. .suspend = niu_suspend,
  7631. .resume = niu_resume,
  7632. };
  7633. #ifdef CONFIG_SPARC64
  7634. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  7635. u64 *dma_addr, gfp_t flag)
  7636. {
  7637. unsigned long order = get_order(size);
  7638. unsigned long page = __get_free_pages(flag, order);
  7639. if (page == 0UL)
  7640. return NULL;
  7641. memset((char *)page, 0, PAGE_SIZE << order);
  7642. *dma_addr = __pa(page);
  7643. return (void *) page;
  7644. }
  7645. static void niu_phys_free_coherent(struct device *dev, size_t size,
  7646. void *cpu_addr, u64 handle)
  7647. {
  7648. unsigned long order = get_order(size);
  7649. free_pages((unsigned long) cpu_addr, order);
  7650. }
  7651. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  7652. unsigned long offset, size_t size,
  7653. enum dma_data_direction direction)
  7654. {
  7655. return page_to_phys(page) + offset;
  7656. }
  7657. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  7658. size_t size, enum dma_data_direction direction)
  7659. {
  7660. /* Nothing to do. */
  7661. }
  7662. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  7663. size_t size,
  7664. enum dma_data_direction direction)
  7665. {
  7666. return __pa(cpu_addr);
  7667. }
  7668. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  7669. size_t size,
  7670. enum dma_data_direction direction)
  7671. {
  7672. /* Nothing to do. */
  7673. }
  7674. static const struct niu_ops niu_phys_ops = {
  7675. .alloc_coherent = niu_phys_alloc_coherent,
  7676. .free_coherent = niu_phys_free_coherent,
  7677. .map_page = niu_phys_map_page,
  7678. .unmap_page = niu_phys_unmap_page,
  7679. .map_single = niu_phys_map_single,
  7680. .unmap_single = niu_phys_unmap_single,
  7681. };
  7682. static unsigned long res_size(struct resource *r)
  7683. {
  7684. return r->end - r->start + 1UL;
  7685. }
  7686. static int __devinit niu_of_probe(struct of_device *op,
  7687. const struct of_device_id *match)
  7688. {
  7689. union niu_parent_id parent_id;
  7690. struct net_device *dev;
  7691. struct niu *np;
  7692. const u32 *reg;
  7693. int err;
  7694. niu_driver_version();
  7695. reg = of_get_property(op->node, "reg", NULL);
  7696. if (!reg) {
  7697. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  7698. op->node->full_name);
  7699. return -ENODEV;
  7700. }
  7701. dev = niu_alloc_and_init(&op->dev, NULL, op,
  7702. &niu_phys_ops, reg[0] & 0x1);
  7703. if (!dev) {
  7704. err = -ENOMEM;
  7705. goto err_out;
  7706. }
  7707. np = netdev_priv(dev);
  7708. memset(&parent_id, 0, sizeof(parent_id));
  7709. parent_id.of = of_get_parent(op->node);
  7710. np->parent = niu_get_parent(np, &parent_id,
  7711. PLAT_TYPE_NIU);
  7712. if (!np->parent) {
  7713. err = -ENOMEM;
  7714. goto err_out_free_dev;
  7715. }
  7716. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  7717. np->regs = of_ioremap(&op->resource[1], 0,
  7718. res_size(&op->resource[1]),
  7719. "niu regs");
  7720. if (!np->regs) {
  7721. dev_err(&op->dev, PFX "Cannot map device registers, "
  7722. "aborting.\n");
  7723. err = -ENOMEM;
  7724. goto err_out_release_parent;
  7725. }
  7726. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  7727. res_size(&op->resource[2]),
  7728. "niu vregs-1");
  7729. if (!np->vir_regs_1) {
  7730. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  7731. "aborting.\n");
  7732. err = -ENOMEM;
  7733. goto err_out_iounmap;
  7734. }
  7735. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  7736. res_size(&op->resource[3]),
  7737. "niu vregs-2");
  7738. if (!np->vir_regs_2) {
  7739. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  7740. "aborting.\n");
  7741. err = -ENOMEM;
  7742. goto err_out_iounmap;
  7743. }
  7744. niu_assign_netdev_ops(dev);
  7745. err = niu_get_invariants(np);
  7746. if (err) {
  7747. if (err != -ENODEV)
  7748. dev_err(&op->dev, PFX "Problem fetching invariants "
  7749. "of chip, aborting.\n");
  7750. goto err_out_iounmap;
  7751. }
  7752. err = register_netdev(dev);
  7753. if (err) {
  7754. dev_err(&op->dev, PFX "Cannot register net device, "
  7755. "aborting.\n");
  7756. goto err_out_iounmap;
  7757. }
  7758. dev_set_drvdata(&op->dev, dev);
  7759. niu_device_announce(np);
  7760. return 0;
  7761. err_out_iounmap:
  7762. if (np->vir_regs_1) {
  7763. of_iounmap(&op->resource[2], np->vir_regs_1,
  7764. res_size(&op->resource[2]));
  7765. np->vir_regs_1 = NULL;
  7766. }
  7767. if (np->vir_regs_2) {
  7768. of_iounmap(&op->resource[3], np->vir_regs_2,
  7769. res_size(&op->resource[3]));
  7770. np->vir_regs_2 = NULL;
  7771. }
  7772. if (np->regs) {
  7773. of_iounmap(&op->resource[1], np->regs,
  7774. res_size(&op->resource[1]));
  7775. np->regs = NULL;
  7776. }
  7777. err_out_release_parent:
  7778. niu_put_parent(np);
  7779. err_out_free_dev:
  7780. free_netdev(dev);
  7781. err_out:
  7782. return err;
  7783. }
  7784. static int __devexit niu_of_remove(struct of_device *op)
  7785. {
  7786. struct net_device *dev = dev_get_drvdata(&op->dev);
  7787. if (dev) {
  7788. struct niu *np = netdev_priv(dev);
  7789. unregister_netdev(dev);
  7790. if (np->vir_regs_1) {
  7791. of_iounmap(&op->resource[2], np->vir_regs_1,
  7792. res_size(&op->resource[2]));
  7793. np->vir_regs_1 = NULL;
  7794. }
  7795. if (np->vir_regs_2) {
  7796. of_iounmap(&op->resource[3], np->vir_regs_2,
  7797. res_size(&op->resource[3]));
  7798. np->vir_regs_2 = NULL;
  7799. }
  7800. if (np->regs) {
  7801. of_iounmap(&op->resource[1], np->regs,
  7802. res_size(&op->resource[1]));
  7803. np->regs = NULL;
  7804. }
  7805. niu_ldg_free(np);
  7806. niu_put_parent(np);
  7807. free_netdev(dev);
  7808. dev_set_drvdata(&op->dev, NULL);
  7809. }
  7810. return 0;
  7811. }
  7812. static const struct of_device_id niu_match[] = {
  7813. {
  7814. .name = "network",
  7815. .compatible = "SUNW,niusl",
  7816. },
  7817. {},
  7818. };
  7819. MODULE_DEVICE_TABLE(of, niu_match);
  7820. static struct of_platform_driver niu_of_driver = {
  7821. .name = "niu",
  7822. .match_table = niu_match,
  7823. .probe = niu_of_probe,
  7824. .remove = __devexit_p(niu_of_remove),
  7825. };
  7826. #endif /* CONFIG_SPARC64 */
  7827. static int __init niu_init(void)
  7828. {
  7829. int err = 0;
  7830. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  7831. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  7832. #ifdef CONFIG_SPARC64
  7833. err = of_register_driver(&niu_of_driver, &of_bus_type);
  7834. #endif
  7835. if (!err) {
  7836. err = pci_register_driver(&niu_pci_driver);
  7837. #ifdef CONFIG_SPARC64
  7838. if (err)
  7839. of_unregister_driver(&niu_of_driver);
  7840. #endif
  7841. }
  7842. return err;
  7843. }
  7844. static void __exit niu_exit(void)
  7845. {
  7846. pci_unregister_driver(&niu_pci_driver);
  7847. #ifdef CONFIG_SPARC64
  7848. of_unregister_driver(&niu_of_driver);
  7849. #endif
  7850. }
  7851. module_init(niu_init);
  7852. module_exit(niu_exit);