perf_event.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/highmem.h>
  24. #include <linux/cpu.h>
  25. #include <linux/bitops.h>
  26. #include <asm/apic.h>
  27. #include <asm/stacktrace.h>
  28. #include <asm/nmi.h>
  29. static u64 perf_event_mask __read_mostly;
  30. struct event_constraint {
  31. union {
  32. unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  33. u64 idxmsk64;
  34. };
  35. u64 code;
  36. u64 cmask;
  37. int weight;
  38. };
  39. struct amd_nb {
  40. int nb_id; /* NorthBridge id */
  41. int refcnt; /* reference count */
  42. struct perf_event *owners[X86_PMC_IDX_MAX];
  43. struct event_constraint event_constraints[X86_PMC_IDX_MAX];
  44. };
  45. #define MAX_LBR_ENTRIES 16
  46. struct cpu_hw_events {
  47. /*
  48. * Generic x86 PMC bits
  49. */
  50. struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
  51. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  52. unsigned long interrupts;
  53. int enabled;
  54. int n_events;
  55. int n_added;
  56. int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
  57. u64 tags[X86_PMC_IDX_MAX];
  58. struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
  59. /*
  60. * Intel DebugStore bits
  61. */
  62. struct debug_store *ds;
  63. u64 pebs_enabled;
  64. /*
  65. * Intel LBR bits
  66. */
  67. int lbr_users;
  68. void *lbr_context;
  69. struct perf_branch_stack lbr_stack;
  70. struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
  71. /*
  72. * AMD specific bits
  73. */
  74. struct amd_nb *amd_nb;
  75. };
  76. #define __EVENT_CONSTRAINT(c, n, m, w) {\
  77. { .idxmsk64 = (n) }, \
  78. .code = (c), \
  79. .cmask = (m), \
  80. .weight = (w), \
  81. }
  82. #define EVENT_CONSTRAINT(c, n, m) \
  83. __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
  84. /*
  85. * Constraint on the Event code.
  86. */
  87. #define INTEL_EVENT_CONSTRAINT(c, n) \
  88. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
  89. /*
  90. * Constraint on the Event code + UMask + fixed-mask
  91. */
  92. #define FIXED_EVENT_CONSTRAINT(c, n) \
  93. EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
  94. /*
  95. * Constraint on the Event code + UMask
  96. */
  97. #define PEBS_EVENT_CONSTRAINT(c, n) \
  98. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
  99. #define EVENT_CONSTRAINT_END \
  100. EVENT_CONSTRAINT(0, 0, 0)
  101. #define for_each_event_constraint(e, c) \
  102. for ((e) = (c); (e)->cmask; (e)++)
  103. /*
  104. * struct x86_pmu - generic x86 pmu
  105. */
  106. struct x86_pmu {
  107. /*
  108. * Generic x86 PMC bits
  109. */
  110. const char *name;
  111. int version;
  112. int (*handle_irq)(struct pt_regs *);
  113. void (*disable_all)(void);
  114. void (*enable_all)(void);
  115. void (*enable)(struct perf_event *);
  116. void (*disable)(struct perf_event *);
  117. unsigned eventsel;
  118. unsigned perfctr;
  119. u64 (*event_map)(int);
  120. u64 (*raw_event)(u64);
  121. int max_events;
  122. int num_events;
  123. int num_events_fixed;
  124. int event_bits;
  125. u64 event_mask;
  126. int apic;
  127. u64 max_period;
  128. struct event_constraint *
  129. (*get_event_constraints)(struct cpu_hw_events *cpuc,
  130. struct perf_event *event);
  131. void (*put_event_constraints)(struct cpu_hw_events *cpuc,
  132. struct perf_event *event);
  133. struct event_constraint *event_constraints;
  134. void (*cpu_prepare)(int cpu);
  135. void (*cpu_starting)(int cpu);
  136. void (*cpu_dying)(int cpu);
  137. void (*cpu_dead)(int cpu);
  138. /*
  139. * Intel Arch Perfmon v2+
  140. */
  141. u64 intel_ctrl;
  142. /*
  143. * Intel DebugStore bits
  144. */
  145. int bts, pebs;
  146. int pebs_record_size;
  147. void (*drain_pebs)(struct pt_regs *regs);
  148. struct event_constraint *pebs_constraints;
  149. /*
  150. * Intel LBR
  151. */
  152. unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
  153. int lbr_nr; /* hardware stack size */
  154. int lbr_format; /* hardware format */
  155. };
  156. static struct x86_pmu x86_pmu __read_mostly;
  157. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  158. .enabled = 1,
  159. };
  160. static int x86_perf_event_set_period(struct perf_event *event);
  161. /*
  162. * Generalized hw caching related hw_event table, filled
  163. * in on a per model basis. A value of 0 means
  164. * 'not supported', -1 means 'hw_event makes no sense on
  165. * this CPU', any other value means the raw hw_event
  166. * ID.
  167. */
  168. #define C(x) PERF_COUNT_HW_CACHE_##x
  169. static u64 __read_mostly hw_cache_event_ids
  170. [PERF_COUNT_HW_CACHE_MAX]
  171. [PERF_COUNT_HW_CACHE_OP_MAX]
  172. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  173. /*
  174. * Propagate event elapsed time into the generic event.
  175. * Can only be executed on the CPU where the event is active.
  176. * Returns the delta events processed.
  177. */
  178. static u64
  179. x86_perf_event_update(struct perf_event *event)
  180. {
  181. struct hw_perf_event *hwc = &event->hw;
  182. int shift = 64 - x86_pmu.event_bits;
  183. u64 prev_raw_count, new_raw_count;
  184. int idx = hwc->idx;
  185. s64 delta;
  186. if (idx == X86_PMC_IDX_FIXED_BTS)
  187. return 0;
  188. /*
  189. * Careful: an NMI might modify the previous event value.
  190. *
  191. * Our tactic to handle this is to first atomically read and
  192. * exchange a new raw count - then add that new-prev delta
  193. * count to the generic event atomically:
  194. */
  195. again:
  196. prev_raw_count = atomic64_read(&hwc->prev_count);
  197. rdmsrl(hwc->event_base + idx, new_raw_count);
  198. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  199. new_raw_count) != prev_raw_count)
  200. goto again;
  201. /*
  202. * Now we have the new raw value and have updated the prev
  203. * timestamp already. We can now calculate the elapsed delta
  204. * (event-)time and add that to the generic event.
  205. *
  206. * Careful, not all hw sign-extends above the physical width
  207. * of the count.
  208. */
  209. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  210. delta >>= shift;
  211. atomic64_add(delta, &event->count);
  212. atomic64_sub(delta, &hwc->period_left);
  213. return new_raw_count;
  214. }
  215. static atomic_t active_events;
  216. static DEFINE_MUTEX(pmc_reserve_mutex);
  217. static bool reserve_pmc_hardware(void)
  218. {
  219. #ifdef CONFIG_X86_LOCAL_APIC
  220. int i;
  221. if (nmi_watchdog == NMI_LOCAL_APIC)
  222. disable_lapic_nmi_watchdog();
  223. for (i = 0; i < x86_pmu.num_events; i++) {
  224. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  225. goto perfctr_fail;
  226. }
  227. for (i = 0; i < x86_pmu.num_events; i++) {
  228. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  229. goto eventsel_fail;
  230. }
  231. #endif
  232. return true;
  233. #ifdef CONFIG_X86_LOCAL_APIC
  234. eventsel_fail:
  235. for (i--; i >= 0; i--)
  236. release_evntsel_nmi(x86_pmu.eventsel + i);
  237. i = x86_pmu.num_events;
  238. perfctr_fail:
  239. for (i--; i >= 0; i--)
  240. release_perfctr_nmi(x86_pmu.perfctr + i);
  241. if (nmi_watchdog == NMI_LOCAL_APIC)
  242. enable_lapic_nmi_watchdog();
  243. return false;
  244. #endif
  245. }
  246. static void release_pmc_hardware(void)
  247. {
  248. #ifdef CONFIG_X86_LOCAL_APIC
  249. int i;
  250. for (i = 0; i < x86_pmu.num_events; i++) {
  251. release_perfctr_nmi(x86_pmu.perfctr + i);
  252. release_evntsel_nmi(x86_pmu.eventsel + i);
  253. }
  254. if (nmi_watchdog == NMI_LOCAL_APIC)
  255. enable_lapic_nmi_watchdog();
  256. #endif
  257. }
  258. static int reserve_ds_buffers(void);
  259. static void release_ds_buffers(void);
  260. static void hw_perf_event_destroy(struct perf_event *event)
  261. {
  262. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  263. release_pmc_hardware();
  264. release_ds_buffers();
  265. mutex_unlock(&pmc_reserve_mutex);
  266. }
  267. }
  268. static inline int x86_pmu_initialized(void)
  269. {
  270. return x86_pmu.handle_irq != NULL;
  271. }
  272. static inline int
  273. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
  274. {
  275. unsigned int cache_type, cache_op, cache_result;
  276. u64 config, val;
  277. config = attr->config;
  278. cache_type = (config >> 0) & 0xff;
  279. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  280. return -EINVAL;
  281. cache_op = (config >> 8) & 0xff;
  282. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  283. return -EINVAL;
  284. cache_result = (config >> 16) & 0xff;
  285. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  286. return -EINVAL;
  287. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  288. if (val == 0)
  289. return -ENOENT;
  290. if (val == -1)
  291. return -EINVAL;
  292. hwc->config |= val;
  293. return 0;
  294. }
  295. /*
  296. * Setup the hardware configuration for a given attr_type
  297. */
  298. static int __hw_perf_event_init(struct perf_event *event)
  299. {
  300. struct perf_event_attr *attr = &event->attr;
  301. struct hw_perf_event *hwc = &event->hw;
  302. u64 config;
  303. int err;
  304. if (!x86_pmu_initialized())
  305. return -ENODEV;
  306. err = 0;
  307. if (!atomic_inc_not_zero(&active_events)) {
  308. mutex_lock(&pmc_reserve_mutex);
  309. if (atomic_read(&active_events) == 0) {
  310. if (!reserve_pmc_hardware())
  311. err = -EBUSY;
  312. else
  313. err = reserve_ds_buffers();
  314. }
  315. if (!err)
  316. atomic_inc(&active_events);
  317. mutex_unlock(&pmc_reserve_mutex);
  318. }
  319. if (err)
  320. return err;
  321. event->destroy = hw_perf_event_destroy;
  322. /*
  323. * Generate PMC IRQs:
  324. * (keep 'enabled' bit clear for now)
  325. */
  326. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  327. hwc->idx = -1;
  328. hwc->last_cpu = -1;
  329. hwc->last_tag = ~0ULL;
  330. /*
  331. * Count user and OS events unless requested not to.
  332. */
  333. if (!attr->exclude_user)
  334. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  335. if (!attr->exclude_kernel)
  336. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  337. if (!hwc->sample_period) {
  338. hwc->sample_period = x86_pmu.max_period;
  339. hwc->last_period = hwc->sample_period;
  340. atomic64_set(&hwc->period_left, hwc->sample_period);
  341. } else {
  342. /*
  343. * If we have a PMU initialized but no APIC
  344. * interrupts, we cannot sample hardware
  345. * events (user-space has to fall back and
  346. * sample via a hrtimer based software event):
  347. */
  348. if (!x86_pmu.apic)
  349. return -EOPNOTSUPP;
  350. }
  351. /*
  352. * Raw hw_event type provide the config in the hw_event structure
  353. */
  354. if (attr->type == PERF_TYPE_RAW) {
  355. hwc->config |= x86_pmu.raw_event(attr->config);
  356. if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
  357. perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  358. return -EACCES;
  359. return 0;
  360. }
  361. if (attr->type == PERF_TYPE_HW_CACHE)
  362. return set_ext_hw_attr(hwc, attr);
  363. if (attr->config >= x86_pmu.max_events)
  364. return -EINVAL;
  365. /*
  366. * The generic map:
  367. */
  368. config = x86_pmu.event_map(attr->config);
  369. if (config == 0)
  370. return -ENOENT;
  371. if (config == -1LL)
  372. return -EINVAL;
  373. /*
  374. * Branch tracing:
  375. */
  376. if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
  377. (hwc->sample_period == 1)) {
  378. /* BTS is not supported by this architecture. */
  379. if (!x86_pmu.bts)
  380. return -EOPNOTSUPP;
  381. /* BTS is currently only allowed for user-mode. */
  382. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  383. return -EOPNOTSUPP;
  384. }
  385. hwc->config |= config;
  386. return 0;
  387. }
  388. static void x86_pmu_disable_all(void)
  389. {
  390. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  391. int idx;
  392. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  393. u64 val;
  394. if (!test_bit(idx, cpuc->active_mask))
  395. continue;
  396. rdmsrl(x86_pmu.eventsel + idx, val);
  397. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  398. continue;
  399. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  400. wrmsrl(x86_pmu.eventsel + idx, val);
  401. }
  402. }
  403. void hw_perf_disable(void)
  404. {
  405. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  406. if (!x86_pmu_initialized())
  407. return;
  408. if (!cpuc->enabled)
  409. return;
  410. cpuc->n_added = 0;
  411. cpuc->enabled = 0;
  412. barrier();
  413. x86_pmu.disable_all();
  414. }
  415. static void x86_pmu_enable_all(void)
  416. {
  417. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  418. int idx;
  419. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  420. struct perf_event *event = cpuc->events[idx];
  421. u64 val;
  422. if (!test_bit(idx, cpuc->active_mask))
  423. continue;
  424. val = event->hw.config;
  425. val |= ARCH_PERFMON_EVENTSEL_ENABLE;
  426. wrmsrl(x86_pmu.eventsel + idx, val);
  427. }
  428. }
  429. static const struct pmu pmu;
  430. static inline int is_x86_event(struct perf_event *event)
  431. {
  432. return event->pmu == &pmu;
  433. }
  434. static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  435. {
  436. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  437. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  438. int i, j, w, wmax, num = 0;
  439. struct hw_perf_event *hwc;
  440. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  441. for (i = 0; i < n; i++) {
  442. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  443. constraints[i] = c;
  444. }
  445. /*
  446. * fastpath, try to reuse previous register
  447. */
  448. for (i = 0; i < n; i++) {
  449. hwc = &cpuc->event_list[i]->hw;
  450. c = constraints[i];
  451. /* never assigned */
  452. if (hwc->idx == -1)
  453. break;
  454. /* constraint still honored */
  455. if (!test_bit(hwc->idx, c->idxmsk))
  456. break;
  457. /* not already used */
  458. if (test_bit(hwc->idx, used_mask))
  459. break;
  460. __set_bit(hwc->idx, used_mask);
  461. if (assign)
  462. assign[i] = hwc->idx;
  463. }
  464. if (i == n)
  465. goto done;
  466. /*
  467. * begin slow path
  468. */
  469. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  470. /*
  471. * weight = number of possible counters
  472. *
  473. * 1 = most constrained, only works on one counter
  474. * wmax = least constrained, works on any counter
  475. *
  476. * assign events to counters starting with most
  477. * constrained events.
  478. */
  479. wmax = x86_pmu.num_events;
  480. /*
  481. * when fixed event counters are present,
  482. * wmax is incremented by 1 to account
  483. * for one more choice
  484. */
  485. if (x86_pmu.num_events_fixed)
  486. wmax++;
  487. for (w = 1, num = n; num && w <= wmax; w++) {
  488. /* for each event */
  489. for (i = 0; num && i < n; i++) {
  490. c = constraints[i];
  491. hwc = &cpuc->event_list[i]->hw;
  492. if (c->weight != w)
  493. continue;
  494. for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
  495. if (!test_bit(j, used_mask))
  496. break;
  497. }
  498. if (j == X86_PMC_IDX_MAX)
  499. break;
  500. __set_bit(j, used_mask);
  501. if (assign)
  502. assign[i] = j;
  503. num--;
  504. }
  505. }
  506. done:
  507. /*
  508. * scheduling failed or is just a simulation,
  509. * free resources if necessary
  510. */
  511. if (!assign || num) {
  512. for (i = 0; i < n; i++) {
  513. if (x86_pmu.put_event_constraints)
  514. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  515. }
  516. }
  517. return num ? -ENOSPC : 0;
  518. }
  519. /*
  520. * dogrp: true if must collect siblings events (group)
  521. * returns total number of events and error code
  522. */
  523. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  524. {
  525. struct perf_event *event;
  526. int n, max_count;
  527. max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
  528. /* current number of events already accepted */
  529. n = cpuc->n_events;
  530. if (is_x86_event(leader)) {
  531. if (n >= max_count)
  532. return -ENOSPC;
  533. cpuc->event_list[n] = leader;
  534. n++;
  535. }
  536. if (!dogrp)
  537. return n;
  538. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  539. if (!is_x86_event(event) ||
  540. event->state <= PERF_EVENT_STATE_OFF)
  541. continue;
  542. if (n >= max_count)
  543. return -ENOSPC;
  544. cpuc->event_list[n] = event;
  545. n++;
  546. }
  547. return n;
  548. }
  549. static inline void x86_assign_hw_event(struct perf_event *event,
  550. struct cpu_hw_events *cpuc, int i)
  551. {
  552. struct hw_perf_event *hwc = &event->hw;
  553. hwc->idx = cpuc->assign[i];
  554. hwc->last_cpu = smp_processor_id();
  555. hwc->last_tag = ++cpuc->tags[i];
  556. if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
  557. hwc->config_base = 0;
  558. hwc->event_base = 0;
  559. } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
  560. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  561. /*
  562. * We set it so that event_base + idx in wrmsr/rdmsr maps to
  563. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  564. */
  565. hwc->event_base =
  566. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  567. } else {
  568. hwc->config_base = x86_pmu.eventsel;
  569. hwc->event_base = x86_pmu.perfctr;
  570. }
  571. }
  572. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  573. struct cpu_hw_events *cpuc,
  574. int i)
  575. {
  576. return hwc->idx == cpuc->assign[i] &&
  577. hwc->last_cpu == smp_processor_id() &&
  578. hwc->last_tag == cpuc->tags[i];
  579. }
  580. static int x86_pmu_start(struct perf_event *event);
  581. static void x86_pmu_stop(struct perf_event *event);
  582. void hw_perf_enable(void)
  583. {
  584. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  585. struct perf_event *event;
  586. struct hw_perf_event *hwc;
  587. int i;
  588. if (!x86_pmu_initialized())
  589. return;
  590. if (cpuc->enabled)
  591. return;
  592. if (cpuc->n_added) {
  593. int n_running = cpuc->n_events - cpuc->n_added;
  594. /*
  595. * apply assignment obtained either from
  596. * hw_perf_group_sched_in() or x86_pmu_enable()
  597. *
  598. * step1: save events moving to new counters
  599. * step2: reprogram moved events into new counters
  600. */
  601. for (i = 0; i < n_running; i++) {
  602. event = cpuc->event_list[i];
  603. hwc = &event->hw;
  604. /*
  605. * we can avoid reprogramming counter if:
  606. * - assigned same counter as last time
  607. * - running on same CPU as last time
  608. * - no other event has used the counter since
  609. */
  610. if (hwc->idx == -1 ||
  611. match_prev_assignment(hwc, cpuc, i))
  612. continue;
  613. x86_pmu_stop(event);
  614. hwc->idx = -1;
  615. }
  616. for (i = 0; i < cpuc->n_events; i++) {
  617. event = cpuc->event_list[i];
  618. hwc = &event->hw;
  619. if (i < n_running &&
  620. match_prev_assignment(hwc, cpuc, i))
  621. continue;
  622. if (hwc->idx == -1)
  623. x86_assign_hw_event(event, cpuc, i);
  624. x86_pmu_start(event);
  625. }
  626. cpuc->n_added = 0;
  627. perf_events_lapic_init();
  628. }
  629. cpuc->enabled = 1;
  630. barrier();
  631. x86_pmu.enable_all();
  632. }
  633. static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
  634. {
  635. (void)checking_wrmsrl(hwc->config_base + hwc->idx,
  636. hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
  637. }
  638. static inline void x86_pmu_disable_event(struct perf_event *event)
  639. {
  640. struct hw_perf_event *hwc = &event->hw;
  641. (void)checking_wrmsrl(hwc->config_base + hwc->idx, hwc->config);
  642. }
  643. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  644. /*
  645. * Set the next IRQ period, based on the hwc->period_left value.
  646. * To be called with the event disabled in hw:
  647. */
  648. static int
  649. x86_perf_event_set_period(struct perf_event *event)
  650. {
  651. struct hw_perf_event *hwc = &event->hw;
  652. s64 left = atomic64_read(&hwc->period_left);
  653. s64 period = hwc->sample_period;
  654. int err, ret = 0, idx = hwc->idx;
  655. if (idx == X86_PMC_IDX_FIXED_BTS)
  656. return 0;
  657. /*
  658. * If we are way outside a reasonable range then just skip forward:
  659. */
  660. if (unlikely(left <= -period)) {
  661. left = period;
  662. atomic64_set(&hwc->period_left, left);
  663. hwc->last_period = period;
  664. ret = 1;
  665. }
  666. if (unlikely(left <= 0)) {
  667. left += period;
  668. atomic64_set(&hwc->period_left, left);
  669. hwc->last_period = period;
  670. ret = 1;
  671. }
  672. /*
  673. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  674. */
  675. if (unlikely(left < 2))
  676. left = 2;
  677. if (left > x86_pmu.max_period)
  678. left = x86_pmu.max_period;
  679. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  680. /*
  681. * The hw event starts counting from this event offset,
  682. * mark it to be able to extra future deltas:
  683. */
  684. atomic64_set(&hwc->prev_count, (u64)-left);
  685. err = checking_wrmsrl(hwc->event_base + idx,
  686. (u64)(-left) & x86_pmu.event_mask);
  687. perf_event_update_userpage(event);
  688. return ret;
  689. }
  690. static void x86_pmu_enable_event(struct perf_event *event)
  691. {
  692. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  693. if (cpuc->enabled)
  694. __x86_pmu_enable_event(&event->hw);
  695. }
  696. /*
  697. * activate a single event
  698. *
  699. * The event is added to the group of enabled events
  700. * but only if it can be scehduled with existing events.
  701. *
  702. * Called with PMU disabled. If successful and return value 1,
  703. * then guaranteed to call perf_enable() and hw_perf_enable()
  704. */
  705. static int x86_pmu_enable(struct perf_event *event)
  706. {
  707. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  708. struct hw_perf_event *hwc;
  709. int assign[X86_PMC_IDX_MAX];
  710. int n, n0, ret;
  711. hwc = &event->hw;
  712. n0 = cpuc->n_events;
  713. n = collect_events(cpuc, event, false);
  714. if (n < 0)
  715. return n;
  716. ret = x86_schedule_events(cpuc, n, assign);
  717. if (ret)
  718. return ret;
  719. /*
  720. * copy new assignment, now we know it is possible
  721. * will be used by hw_perf_enable()
  722. */
  723. memcpy(cpuc->assign, assign, n*sizeof(int));
  724. cpuc->n_events = n;
  725. cpuc->n_added += n - n0;
  726. return 0;
  727. }
  728. static int x86_pmu_start(struct perf_event *event)
  729. {
  730. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  731. int idx = event->hw.idx;
  732. if (idx == -1)
  733. return -EAGAIN;
  734. x86_perf_event_set_period(event);
  735. cpuc->events[idx] = event;
  736. __set_bit(idx, cpuc->active_mask);
  737. x86_pmu.enable(event);
  738. perf_event_update_userpage(event);
  739. return 0;
  740. }
  741. static void x86_pmu_unthrottle(struct perf_event *event)
  742. {
  743. int ret = x86_pmu_start(event);
  744. WARN_ON_ONCE(ret);
  745. }
  746. void perf_event_print_debug(void)
  747. {
  748. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  749. u64 pebs;
  750. struct cpu_hw_events *cpuc;
  751. unsigned long flags;
  752. int cpu, idx;
  753. if (!x86_pmu.num_events)
  754. return;
  755. local_irq_save(flags);
  756. cpu = smp_processor_id();
  757. cpuc = &per_cpu(cpu_hw_events, cpu);
  758. if (x86_pmu.version >= 2) {
  759. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  760. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  761. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  762. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  763. rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
  764. pr_info("\n");
  765. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  766. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  767. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  768. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  769. pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
  770. }
  771. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  772. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  773. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  774. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  775. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  776. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  777. cpu, idx, pmc_ctrl);
  778. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  779. cpu, idx, pmc_count);
  780. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  781. cpu, idx, prev_left);
  782. }
  783. for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
  784. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  785. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  786. cpu, idx, pmc_count);
  787. }
  788. local_irq_restore(flags);
  789. }
  790. static void x86_pmu_stop(struct perf_event *event)
  791. {
  792. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  793. struct hw_perf_event *hwc = &event->hw;
  794. int idx = hwc->idx;
  795. if (!__test_and_clear_bit(idx, cpuc->active_mask))
  796. return;
  797. x86_pmu.disable(event);
  798. /*
  799. * Drain the remaining delta count out of a event
  800. * that we are disabling:
  801. */
  802. x86_perf_event_update(event);
  803. cpuc->events[idx] = NULL;
  804. }
  805. static void x86_pmu_disable(struct perf_event *event)
  806. {
  807. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  808. int i;
  809. x86_pmu_stop(event);
  810. for (i = 0; i < cpuc->n_events; i++) {
  811. if (event == cpuc->event_list[i]) {
  812. if (x86_pmu.put_event_constraints)
  813. x86_pmu.put_event_constraints(cpuc, event);
  814. while (++i < cpuc->n_events)
  815. cpuc->event_list[i-1] = cpuc->event_list[i];
  816. --cpuc->n_events;
  817. break;
  818. }
  819. }
  820. perf_event_update_userpage(event);
  821. }
  822. static int x86_pmu_handle_irq(struct pt_regs *regs)
  823. {
  824. struct perf_sample_data data;
  825. struct cpu_hw_events *cpuc;
  826. struct perf_event *event;
  827. struct hw_perf_event *hwc;
  828. int idx, handled = 0;
  829. u64 val;
  830. perf_sample_data_init(&data, 0);
  831. cpuc = &__get_cpu_var(cpu_hw_events);
  832. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  833. if (!test_bit(idx, cpuc->active_mask))
  834. continue;
  835. event = cpuc->events[idx];
  836. hwc = &event->hw;
  837. val = x86_perf_event_update(event);
  838. if (val & (1ULL << (x86_pmu.event_bits - 1)))
  839. continue;
  840. /*
  841. * event overflow
  842. */
  843. handled = 1;
  844. data.period = event->hw.last_period;
  845. if (!x86_perf_event_set_period(event))
  846. continue;
  847. if (perf_event_overflow(event, 1, &data, regs))
  848. x86_pmu_stop(event);
  849. }
  850. if (handled)
  851. inc_irq_stat(apic_perf_irqs);
  852. return handled;
  853. }
  854. void smp_perf_pending_interrupt(struct pt_regs *regs)
  855. {
  856. irq_enter();
  857. ack_APIC_irq();
  858. inc_irq_stat(apic_pending_irqs);
  859. perf_event_do_pending();
  860. irq_exit();
  861. }
  862. void set_perf_event_pending(void)
  863. {
  864. #ifdef CONFIG_X86_LOCAL_APIC
  865. if (!x86_pmu.apic || !x86_pmu_initialized())
  866. return;
  867. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  868. #endif
  869. }
  870. void perf_events_lapic_init(void)
  871. {
  872. #ifdef CONFIG_X86_LOCAL_APIC
  873. if (!x86_pmu.apic || !x86_pmu_initialized())
  874. return;
  875. /*
  876. * Always use NMI for PMU
  877. */
  878. apic_write(APIC_LVTPC, APIC_DM_NMI);
  879. #endif
  880. }
  881. static int __kprobes
  882. perf_event_nmi_handler(struct notifier_block *self,
  883. unsigned long cmd, void *__args)
  884. {
  885. struct die_args *args = __args;
  886. struct pt_regs *regs;
  887. if (!atomic_read(&active_events))
  888. return NOTIFY_DONE;
  889. switch (cmd) {
  890. case DIE_NMI:
  891. case DIE_NMI_IPI:
  892. break;
  893. default:
  894. return NOTIFY_DONE;
  895. }
  896. regs = args->regs;
  897. #ifdef CONFIG_X86_LOCAL_APIC
  898. apic_write(APIC_LVTPC, APIC_DM_NMI);
  899. #endif
  900. /*
  901. * Can't rely on the handled return value to say it was our NMI, two
  902. * events could trigger 'simultaneously' raising two back-to-back NMIs.
  903. *
  904. * If the first NMI handles both, the latter will be empty and daze
  905. * the CPU.
  906. */
  907. x86_pmu.handle_irq(regs);
  908. return NOTIFY_STOP;
  909. }
  910. static __read_mostly struct notifier_block perf_event_nmi_notifier = {
  911. .notifier_call = perf_event_nmi_handler,
  912. .next = NULL,
  913. .priority = 1
  914. };
  915. static struct event_constraint unconstrained;
  916. static struct event_constraint emptyconstraint;
  917. static struct event_constraint *
  918. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  919. {
  920. struct event_constraint *c;
  921. if (x86_pmu.event_constraints) {
  922. for_each_event_constraint(c, x86_pmu.event_constraints) {
  923. if ((event->hw.config & c->cmask) == c->code)
  924. return c;
  925. }
  926. }
  927. return &unconstrained;
  928. }
  929. static int x86_event_sched_in(struct perf_event *event,
  930. struct perf_cpu_context *cpuctx)
  931. {
  932. int ret = 0;
  933. event->state = PERF_EVENT_STATE_ACTIVE;
  934. event->oncpu = smp_processor_id();
  935. event->tstamp_running += event->ctx->time - event->tstamp_stopped;
  936. if (!is_x86_event(event))
  937. ret = event->pmu->enable(event);
  938. if (!ret && !is_software_event(event))
  939. cpuctx->active_oncpu++;
  940. if (!ret && event->attr.exclusive)
  941. cpuctx->exclusive = 1;
  942. return ret;
  943. }
  944. static void x86_event_sched_out(struct perf_event *event,
  945. struct perf_cpu_context *cpuctx)
  946. {
  947. event->state = PERF_EVENT_STATE_INACTIVE;
  948. event->oncpu = -1;
  949. if (!is_x86_event(event))
  950. event->pmu->disable(event);
  951. event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
  952. if (!is_software_event(event))
  953. cpuctx->active_oncpu--;
  954. if (event->attr.exclusive || !cpuctx->active_oncpu)
  955. cpuctx->exclusive = 0;
  956. }
  957. /*
  958. * Called to enable a whole group of events.
  959. * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
  960. * Assumes the caller has disabled interrupts and has
  961. * frozen the PMU with hw_perf_save_disable.
  962. *
  963. * called with PMU disabled. If successful and return value 1,
  964. * then guaranteed to call perf_enable() and hw_perf_enable()
  965. */
  966. int hw_perf_group_sched_in(struct perf_event *leader,
  967. struct perf_cpu_context *cpuctx,
  968. struct perf_event_context *ctx)
  969. {
  970. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  971. struct perf_event *sub;
  972. int assign[X86_PMC_IDX_MAX];
  973. int n0, n1, ret;
  974. /* n0 = total number of events */
  975. n0 = collect_events(cpuc, leader, true);
  976. if (n0 < 0)
  977. return n0;
  978. ret = x86_schedule_events(cpuc, n0, assign);
  979. if (ret)
  980. return ret;
  981. ret = x86_event_sched_in(leader, cpuctx);
  982. if (ret)
  983. return ret;
  984. n1 = 1;
  985. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  986. if (sub->state > PERF_EVENT_STATE_OFF) {
  987. ret = x86_event_sched_in(sub, cpuctx);
  988. if (ret)
  989. goto undo;
  990. ++n1;
  991. }
  992. }
  993. /*
  994. * copy new assignment, now we know it is possible
  995. * will be used by hw_perf_enable()
  996. */
  997. memcpy(cpuc->assign, assign, n0*sizeof(int));
  998. cpuc->n_events = n0;
  999. cpuc->n_added += n1;
  1000. ctx->nr_active += n1;
  1001. /*
  1002. * 1 means successful and events are active
  1003. * This is not quite true because we defer
  1004. * actual activation until hw_perf_enable() but
  1005. * this way we* ensure caller won't try to enable
  1006. * individual events
  1007. */
  1008. return 1;
  1009. undo:
  1010. x86_event_sched_out(leader, cpuctx);
  1011. n0 = 1;
  1012. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1013. if (sub->state == PERF_EVENT_STATE_ACTIVE) {
  1014. x86_event_sched_out(sub, cpuctx);
  1015. if (++n0 == n1)
  1016. break;
  1017. }
  1018. }
  1019. return ret;
  1020. }
  1021. #include "perf_event_amd.c"
  1022. #include "perf_event_p6.c"
  1023. #include "perf_event_intel_lbr.c"
  1024. #include "perf_event_intel_ds.c"
  1025. #include "perf_event_intel.c"
  1026. static int __cpuinit
  1027. x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  1028. {
  1029. unsigned int cpu = (long)hcpu;
  1030. switch (action & ~CPU_TASKS_FROZEN) {
  1031. case CPU_UP_PREPARE:
  1032. if (x86_pmu.cpu_prepare)
  1033. x86_pmu.cpu_prepare(cpu);
  1034. break;
  1035. case CPU_STARTING:
  1036. if (x86_pmu.cpu_starting)
  1037. x86_pmu.cpu_starting(cpu);
  1038. break;
  1039. case CPU_DYING:
  1040. if (x86_pmu.cpu_dying)
  1041. x86_pmu.cpu_dying(cpu);
  1042. break;
  1043. case CPU_DEAD:
  1044. if (x86_pmu.cpu_dead)
  1045. x86_pmu.cpu_dead(cpu);
  1046. break;
  1047. default:
  1048. break;
  1049. }
  1050. return NOTIFY_OK;
  1051. }
  1052. static void __init pmu_check_apic(void)
  1053. {
  1054. if (cpu_has_apic)
  1055. return;
  1056. x86_pmu.apic = 0;
  1057. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1058. pr_info("no hardware sampling interrupt available.\n");
  1059. }
  1060. void __init init_hw_perf_events(void)
  1061. {
  1062. struct event_constraint *c;
  1063. int err;
  1064. pr_info("Performance Events: ");
  1065. switch (boot_cpu_data.x86_vendor) {
  1066. case X86_VENDOR_INTEL:
  1067. err = intel_pmu_init();
  1068. break;
  1069. case X86_VENDOR_AMD:
  1070. err = amd_pmu_init();
  1071. break;
  1072. default:
  1073. return;
  1074. }
  1075. if (err != 0) {
  1076. pr_cont("no PMU driver, software events only.\n");
  1077. return;
  1078. }
  1079. pmu_check_apic();
  1080. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1081. if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
  1082. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  1083. x86_pmu.num_events, X86_PMC_MAX_GENERIC);
  1084. x86_pmu.num_events = X86_PMC_MAX_GENERIC;
  1085. }
  1086. perf_event_mask = (1 << x86_pmu.num_events) - 1;
  1087. perf_max_events = x86_pmu.num_events;
  1088. if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
  1089. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  1090. x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
  1091. x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
  1092. }
  1093. perf_event_mask |=
  1094. ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
  1095. x86_pmu.intel_ctrl = perf_event_mask;
  1096. perf_events_lapic_init();
  1097. register_die_notifier(&perf_event_nmi_notifier);
  1098. unconstrained = (struct event_constraint)
  1099. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
  1100. 0, x86_pmu.num_events);
  1101. if (x86_pmu.event_constraints) {
  1102. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1103. if (c->cmask != INTEL_ARCH_FIXED_MASK)
  1104. continue;
  1105. c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
  1106. c->weight += x86_pmu.num_events;
  1107. }
  1108. }
  1109. pr_info("... version: %d\n", x86_pmu.version);
  1110. pr_info("... bit width: %d\n", x86_pmu.event_bits);
  1111. pr_info("... generic registers: %d\n", x86_pmu.num_events);
  1112. pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
  1113. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1114. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
  1115. pr_info("... event mask: %016Lx\n", perf_event_mask);
  1116. perf_cpu_notifier(x86_pmu_notifier);
  1117. }
  1118. static inline void x86_pmu_read(struct perf_event *event)
  1119. {
  1120. x86_perf_event_update(event);
  1121. }
  1122. static const struct pmu pmu = {
  1123. .enable = x86_pmu_enable,
  1124. .disable = x86_pmu_disable,
  1125. .start = x86_pmu_start,
  1126. .stop = x86_pmu_stop,
  1127. .read = x86_pmu_read,
  1128. .unthrottle = x86_pmu_unthrottle,
  1129. };
  1130. /*
  1131. * validate that we can schedule this event
  1132. */
  1133. static int validate_event(struct perf_event *event)
  1134. {
  1135. struct cpu_hw_events *fake_cpuc;
  1136. struct event_constraint *c;
  1137. int ret = 0;
  1138. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1139. if (!fake_cpuc)
  1140. return -ENOMEM;
  1141. c = x86_pmu.get_event_constraints(fake_cpuc, event);
  1142. if (!c || !c->weight)
  1143. ret = -ENOSPC;
  1144. if (x86_pmu.put_event_constraints)
  1145. x86_pmu.put_event_constraints(fake_cpuc, event);
  1146. kfree(fake_cpuc);
  1147. return ret;
  1148. }
  1149. /*
  1150. * validate a single event group
  1151. *
  1152. * validation include:
  1153. * - check events are compatible which each other
  1154. * - events do not compete for the same counter
  1155. * - number of events <= number of counters
  1156. *
  1157. * validation ensures the group can be loaded onto the
  1158. * PMU if it was the only group available.
  1159. */
  1160. static int validate_group(struct perf_event *event)
  1161. {
  1162. struct perf_event *leader = event->group_leader;
  1163. struct cpu_hw_events *fake_cpuc;
  1164. int ret, n;
  1165. ret = -ENOMEM;
  1166. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1167. if (!fake_cpuc)
  1168. goto out;
  1169. /*
  1170. * the event is not yet connected with its
  1171. * siblings therefore we must first collect
  1172. * existing siblings, then add the new event
  1173. * before we can simulate the scheduling
  1174. */
  1175. ret = -ENOSPC;
  1176. n = collect_events(fake_cpuc, leader, true);
  1177. if (n < 0)
  1178. goto out_free;
  1179. fake_cpuc->n_events = n;
  1180. n = collect_events(fake_cpuc, event, false);
  1181. if (n < 0)
  1182. goto out_free;
  1183. fake_cpuc->n_events = n;
  1184. ret = x86_schedule_events(fake_cpuc, n, NULL);
  1185. out_free:
  1186. kfree(fake_cpuc);
  1187. out:
  1188. return ret;
  1189. }
  1190. const struct pmu *hw_perf_event_init(struct perf_event *event)
  1191. {
  1192. const struct pmu *tmp;
  1193. int err;
  1194. err = __hw_perf_event_init(event);
  1195. if (!err) {
  1196. /*
  1197. * we temporarily connect event to its pmu
  1198. * such that validate_group() can classify
  1199. * it as an x86 event using is_x86_event()
  1200. */
  1201. tmp = event->pmu;
  1202. event->pmu = &pmu;
  1203. if (event->group_leader != event)
  1204. err = validate_group(event);
  1205. else
  1206. err = validate_event(event);
  1207. event->pmu = tmp;
  1208. }
  1209. if (err) {
  1210. if (event->destroy)
  1211. event->destroy(event);
  1212. return ERR_PTR(err);
  1213. }
  1214. return &pmu;
  1215. }
  1216. /*
  1217. * callchain support
  1218. */
  1219. static inline
  1220. void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  1221. {
  1222. if (entry->nr < PERF_MAX_STACK_DEPTH)
  1223. entry->ip[entry->nr++] = ip;
  1224. }
  1225. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
  1226. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
  1227. static void
  1228. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  1229. {
  1230. /* Ignore warnings */
  1231. }
  1232. static void backtrace_warning(void *data, char *msg)
  1233. {
  1234. /* Ignore warnings */
  1235. }
  1236. static int backtrace_stack(void *data, char *name)
  1237. {
  1238. return 0;
  1239. }
  1240. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1241. {
  1242. struct perf_callchain_entry *entry = data;
  1243. if (reliable)
  1244. callchain_store(entry, addr);
  1245. }
  1246. static const struct stacktrace_ops backtrace_ops = {
  1247. .warning = backtrace_warning,
  1248. .warning_symbol = backtrace_warning_symbol,
  1249. .stack = backtrace_stack,
  1250. .address = backtrace_address,
  1251. .walk_stack = print_context_stack_bp,
  1252. };
  1253. #include "../dumpstack.h"
  1254. static void
  1255. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1256. {
  1257. callchain_store(entry, PERF_CONTEXT_KERNEL);
  1258. callchain_store(entry, regs->ip);
  1259. dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
  1260. }
  1261. /*
  1262. * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
  1263. */
  1264. static unsigned long
  1265. copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
  1266. {
  1267. unsigned long offset, addr = (unsigned long)from;
  1268. int type = in_nmi() ? KM_NMI : KM_IRQ0;
  1269. unsigned long size, len = 0;
  1270. struct page *page;
  1271. void *map;
  1272. int ret;
  1273. do {
  1274. ret = __get_user_pages_fast(addr, 1, 0, &page);
  1275. if (!ret)
  1276. break;
  1277. offset = addr & (PAGE_SIZE - 1);
  1278. size = min(PAGE_SIZE - offset, n - len);
  1279. map = kmap_atomic(page, type);
  1280. memcpy(to, map+offset, size);
  1281. kunmap_atomic(map, type);
  1282. put_page(page);
  1283. len += size;
  1284. to += size;
  1285. addr += size;
  1286. } while (len < n);
  1287. return len;
  1288. }
  1289. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  1290. {
  1291. unsigned long bytes;
  1292. bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
  1293. return bytes == sizeof(*frame);
  1294. }
  1295. static void
  1296. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1297. {
  1298. struct stack_frame frame;
  1299. const void __user *fp;
  1300. if (!user_mode(regs))
  1301. regs = task_pt_regs(current);
  1302. fp = (void __user *)regs->bp;
  1303. callchain_store(entry, PERF_CONTEXT_USER);
  1304. callchain_store(entry, regs->ip);
  1305. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1306. frame.next_frame = NULL;
  1307. frame.return_address = 0;
  1308. if (!copy_stack_frame(fp, &frame))
  1309. break;
  1310. if ((unsigned long)fp < regs->sp)
  1311. break;
  1312. callchain_store(entry, frame.return_address);
  1313. fp = frame.next_frame;
  1314. }
  1315. }
  1316. static void
  1317. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1318. {
  1319. int is_user;
  1320. if (!regs)
  1321. return;
  1322. is_user = user_mode(regs);
  1323. if (is_user && current->state != TASK_RUNNING)
  1324. return;
  1325. if (!is_user)
  1326. perf_callchain_kernel(regs, entry);
  1327. if (current->mm)
  1328. perf_callchain_user(regs, entry);
  1329. }
  1330. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1331. {
  1332. struct perf_callchain_entry *entry;
  1333. if (in_nmi())
  1334. entry = &__get_cpu_var(pmc_nmi_entry);
  1335. else
  1336. entry = &__get_cpu_var(pmc_irq_entry);
  1337. entry->nr = 0;
  1338. perf_do_callchain(regs, entry);
  1339. return entry;
  1340. }