setup_percpu.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457
  1. #include <linux/kernel.h>
  2. #include <linux/module.h>
  3. #include <linux/init.h>
  4. #include <linux/bootmem.h>
  5. #include <linux/percpu.h>
  6. #include <linux/kexec.h>
  7. #include <linux/crash_dump.h>
  8. #include <linux/smp.h>
  9. #include <linux/topology.h>
  10. #include <linux/pfn.h>
  11. #include <asm/sections.h>
  12. #include <asm/processor.h>
  13. #include <asm/setup.h>
  14. #include <asm/mpspec.h>
  15. #include <asm/apicdef.h>
  16. #include <asm/highmem.h>
  17. #include <asm/proto.h>
  18. #include <asm/cpumask.h>
  19. #include <asm/cpu.h>
  20. #include <asm/stackprotector.h>
  21. #ifdef CONFIG_DEBUG_PER_CPU_MAPS
  22. # define DBG(x...) printk(KERN_DEBUG x)
  23. #else
  24. # define DBG(x...)
  25. #endif
  26. DEFINE_PER_CPU(int, cpu_number);
  27. EXPORT_PER_CPU_SYMBOL(cpu_number);
  28. #ifdef CONFIG_X86_64
  29. #define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load)
  30. #else
  31. #define BOOT_PERCPU_OFFSET 0
  32. #endif
  33. DEFINE_PER_CPU(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET;
  34. EXPORT_PER_CPU_SYMBOL(this_cpu_off);
  35. unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = {
  36. [0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET,
  37. };
  38. EXPORT_SYMBOL(__per_cpu_offset);
  39. /**
  40. * pcpu_need_numa - determine percpu allocation needs to consider NUMA
  41. *
  42. * If NUMA is not configured or there is only one NUMA node available,
  43. * there is no reason to consider NUMA. This function determines
  44. * whether percpu allocation should consider NUMA or not.
  45. *
  46. * RETURNS:
  47. * true if NUMA should be considered; otherwise, false.
  48. */
  49. static bool __init pcpu_need_numa(void)
  50. {
  51. #ifdef CONFIG_NEED_MULTIPLE_NODES
  52. pg_data_t *last = NULL;
  53. unsigned int cpu;
  54. for_each_possible_cpu(cpu) {
  55. int node = early_cpu_to_node(cpu);
  56. if (node_online(node) && NODE_DATA(node) &&
  57. last && last != NODE_DATA(node))
  58. return true;
  59. last = NODE_DATA(node);
  60. }
  61. #endif
  62. return false;
  63. }
  64. /**
  65. * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
  66. * @cpu: cpu to allocate for
  67. * @size: size allocation in bytes
  68. * @align: alignment
  69. *
  70. * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
  71. * does the right thing for NUMA regardless of the current
  72. * configuration.
  73. *
  74. * RETURNS:
  75. * Pointer to the allocated area on success, NULL on failure.
  76. */
  77. static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size,
  78. unsigned long align)
  79. {
  80. const unsigned long goal = __pa(MAX_DMA_ADDRESS);
  81. #ifdef CONFIG_NEED_MULTIPLE_NODES
  82. int node = early_cpu_to_node(cpu);
  83. void *ptr;
  84. if (!node_online(node) || !NODE_DATA(node)) {
  85. ptr = __alloc_bootmem_nopanic(size, align, goal);
  86. pr_info("cpu %d has no node %d or node-local memory\n",
  87. cpu, node);
  88. pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
  89. cpu, size, __pa(ptr));
  90. } else {
  91. ptr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
  92. size, align, goal);
  93. pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
  94. "%016lx\n", cpu, size, node, __pa(ptr));
  95. }
  96. return ptr;
  97. #else
  98. return __alloc_bootmem_nopanic(size, align, goal);
  99. #endif
  100. }
  101. /*
  102. * Remap allocator
  103. *
  104. * This allocator uses PMD page as unit. A PMD page is allocated for
  105. * each cpu and each is remapped into vmalloc area using PMD mapping.
  106. * As PMD page is quite large, only part of it is used for the first
  107. * chunk. Unused part is returned to the bootmem allocator.
  108. *
  109. * So, the PMD pages are mapped twice - once to the physical mapping
  110. * and to the vmalloc area for the first percpu chunk. The double
  111. * mapping does add one more PMD TLB entry pressure but still is much
  112. * better than only using 4k mappings while still being NUMA friendly.
  113. */
  114. #ifdef CONFIG_NEED_MULTIPLE_NODES
  115. static size_t pcpur_size __initdata;
  116. static void **pcpur_ptrs __initdata;
  117. static struct page * __init pcpur_get_page(unsigned int cpu, int pageno)
  118. {
  119. size_t off = (size_t)pageno << PAGE_SHIFT;
  120. if (off >= pcpur_size)
  121. return NULL;
  122. return virt_to_page(pcpur_ptrs[cpu] + off);
  123. }
  124. static ssize_t __init setup_pcpu_remap(size_t static_size)
  125. {
  126. static struct vm_struct vm;
  127. pg_data_t *last;
  128. size_t ptrs_size;
  129. unsigned int cpu;
  130. ssize_t ret;
  131. /*
  132. * If large page isn't supported, there's no benefit in doing
  133. * this. Also, on non-NUMA, embedding is better.
  134. */
  135. if (!cpu_has_pse || pcpu_need_numa())
  136. return -EINVAL;
  137. last = NULL;
  138. for_each_possible_cpu(cpu) {
  139. int node = early_cpu_to_node(cpu);
  140. if (node_online(node) && NODE_DATA(node) &&
  141. last && last != NODE_DATA(node))
  142. goto proceed;
  143. last = NODE_DATA(node);
  144. }
  145. return -EINVAL;
  146. proceed:
  147. /*
  148. * Currently supports only single page. Supporting multiple
  149. * pages won't be too difficult if it ever becomes necessary.
  150. */
  151. pcpur_size = PFN_ALIGN(static_size + PERCPU_DYNAMIC_RESERVE);
  152. if (pcpur_size > PMD_SIZE) {
  153. pr_warning("PERCPU: static data is larger than large page, "
  154. "can't use large page\n");
  155. return -EINVAL;
  156. }
  157. /* allocate pointer array and alloc large pages */
  158. ptrs_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpur_ptrs[0]));
  159. pcpur_ptrs = alloc_bootmem(ptrs_size);
  160. for_each_possible_cpu(cpu) {
  161. pcpur_ptrs[cpu] = pcpu_alloc_bootmem(cpu, PMD_SIZE, PMD_SIZE);
  162. if (!pcpur_ptrs[cpu])
  163. goto enomem;
  164. /*
  165. * Only use pcpur_size bytes and give back the rest.
  166. *
  167. * Ingo: The 2MB up-rounding bootmem is needed to make
  168. * sure the partial 2MB page is still fully RAM - it's
  169. * not well-specified to have a PAT-incompatible area
  170. * (unmapped RAM, device memory, etc.) in that hole.
  171. */
  172. free_bootmem(__pa(pcpur_ptrs[cpu] + pcpur_size),
  173. PMD_SIZE - pcpur_size);
  174. memcpy(pcpur_ptrs[cpu], __per_cpu_load, static_size);
  175. }
  176. /* allocate address and map */
  177. vm.flags = VM_ALLOC;
  178. vm.size = num_possible_cpus() * PMD_SIZE;
  179. vm_area_register_early(&vm, PMD_SIZE);
  180. for_each_possible_cpu(cpu) {
  181. pmd_t *pmd;
  182. pmd = populate_extra_pmd((unsigned long)vm.addr
  183. + cpu * PMD_SIZE);
  184. set_pmd(pmd, pfn_pmd(page_to_pfn(virt_to_page(pcpur_ptrs[cpu])),
  185. PAGE_KERNEL_LARGE));
  186. }
  187. /* we're ready, commit */
  188. pr_info("PERCPU: Remapped at %p with large pages, static data "
  189. "%zu bytes\n", vm.addr, static_size);
  190. ret = pcpu_setup_first_chunk(pcpur_get_page, static_size, PMD_SIZE,
  191. pcpur_size - static_size, vm.addr, NULL);
  192. goto out_free_ar;
  193. enomem:
  194. for_each_possible_cpu(cpu)
  195. if (pcpur_ptrs[cpu])
  196. free_bootmem(__pa(pcpur_ptrs[cpu]), PMD_SIZE);
  197. ret = -ENOMEM;
  198. out_free_ar:
  199. free_bootmem(__pa(pcpur_ptrs), ptrs_size);
  200. return ret;
  201. }
  202. #else
  203. static ssize_t __init setup_pcpu_remap(size_t static_size)
  204. {
  205. return -EINVAL;
  206. }
  207. #endif
  208. /*
  209. * Embedding allocator
  210. *
  211. * The first chunk is sized to just contain the static area plus
  212. * PERCPU_DYNAMIC_RESERVE and allocated as a contiguous area using
  213. * bootmem allocator and used as-is without being mapped into vmalloc
  214. * area. This enables the first chunk to piggy back on the linear
  215. * physical PMD mapping and doesn't add any additional pressure to
  216. * TLB.
  217. */
  218. static void *pcpue_ptr __initdata;
  219. static size_t pcpue_unit_size __initdata;
  220. static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
  221. {
  222. return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size
  223. + ((size_t)pageno << PAGE_SHIFT));
  224. }
  225. static ssize_t __init setup_pcpu_embed(size_t static_size)
  226. {
  227. unsigned int cpu;
  228. /*
  229. * If large page isn't supported, there's no benefit in doing
  230. * this. Also, embedding allocation doesn't play well with
  231. * NUMA.
  232. */
  233. if (!cpu_has_pse || pcpu_need_numa())
  234. return -EINVAL;
  235. /* allocate and copy */
  236. pcpue_unit_size = PFN_ALIGN(static_size + PERCPU_DYNAMIC_RESERVE);
  237. pcpue_unit_size = max_t(size_t, pcpue_unit_size, PCPU_MIN_UNIT_SIZE);
  238. pcpue_ptr = pcpu_alloc_bootmem(0, num_possible_cpus() * pcpue_unit_size,
  239. PAGE_SIZE);
  240. if (!pcpue_ptr)
  241. return -ENOMEM;
  242. for_each_possible_cpu(cpu)
  243. memcpy(pcpue_ptr + cpu * pcpue_unit_size, __per_cpu_load,
  244. static_size);
  245. /* we're ready, commit */
  246. pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
  247. pcpue_unit_size >> PAGE_SHIFT, pcpue_ptr, static_size);
  248. return pcpu_setup_first_chunk(pcpue_get_page, static_size,
  249. pcpue_unit_size,
  250. pcpue_unit_size - static_size, pcpue_ptr,
  251. NULL);
  252. }
  253. /*
  254. * 4k page allocator
  255. *
  256. * This is the basic allocator. Static percpu area is allocated
  257. * page-by-page and most of initialization is done by the generic
  258. * setup function.
  259. */
  260. static struct page **pcpu4k_pages __initdata;
  261. static int pcpu4k_nr_static_pages __initdata;
  262. static struct page * __init pcpu4k_get_page(unsigned int cpu, int pageno)
  263. {
  264. if (pageno < pcpu4k_nr_static_pages)
  265. return pcpu4k_pages[cpu * pcpu4k_nr_static_pages + pageno];
  266. return NULL;
  267. }
  268. static void __init pcpu4k_populate_pte(unsigned long addr)
  269. {
  270. populate_extra_pte(addr);
  271. }
  272. static ssize_t __init setup_pcpu_4k(size_t static_size)
  273. {
  274. size_t pages_size;
  275. unsigned int cpu;
  276. int i, j;
  277. ssize_t ret;
  278. pcpu4k_nr_static_pages = PFN_UP(static_size);
  279. /* unaligned allocations can't be freed, round up to page size */
  280. pages_size = PFN_ALIGN(pcpu4k_nr_static_pages * num_possible_cpus()
  281. * sizeof(pcpu4k_pages[0]));
  282. pcpu4k_pages = alloc_bootmem(pages_size);
  283. /* allocate and copy */
  284. j = 0;
  285. for_each_possible_cpu(cpu)
  286. for (i = 0; i < pcpu4k_nr_static_pages; i++) {
  287. void *ptr;
  288. ptr = pcpu_alloc_bootmem(cpu, PAGE_SIZE, PAGE_SIZE);
  289. if (!ptr)
  290. goto enomem;
  291. memcpy(ptr, __per_cpu_load + i * PAGE_SIZE, PAGE_SIZE);
  292. pcpu4k_pages[j++] = virt_to_page(ptr);
  293. }
  294. /* we're ready, commit */
  295. pr_info("PERCPU: Allocated %d 4k pages, static data %zu bytes\n",
  296. pcpu4k_nr_static_pages, static_size);
  297. ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size, -1, -1, NULL,
  298. pcpu4k_populate_pte);
  299. goto out_free_ar;
  300. enomem:
  301. while (--j >= 0)
  302. free_bootmem(__pa(page_address(pcpu4k_pages[j])), PAGE_SIZE);
  303. ret = -ENOMEM;
  304. out_free_ar:
  305. free_bootmem(__pa(pcpu4k_pages), pages_size);
  306. return ret;
  307. }
  308. static inline void setup_percpu_segment(int cpu)
  309. {
  310. #ifdef CONFIG_X86_32
  311. struct desc_struct gdt;
  312. pack_descriptor(&gdt, per_cpu_offset(cpu), 0xFFFFF,
  313. 0x2 | DESCTYPE_S, 0x8);
  314. gdt.s = 1;
  315. write_gdt_entry(get_cpu_gdt_table(cpu),
  316. GDT_ENTRY_PERCPU, &gdt, DESCTYPE_S);
  317. #endif
  318. }
  319. /*
  320. * Great future plan:
  321. * Declare PDA itself and support (irqstack,tss,pgd) as per cpu data.
  322. * Always point %gs to its beginning
  323. */
  324. void __init setup_per_cpu_areas(void)
  325. {
  326. size_t static_size = __per_cpu_end - __per_cpu_start;
  327. unsigned int cpu;
  328. unsigned long delta;
  329. size_t pcpu_unit_size;
  330. ssize_t ret;
  331. pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%d nr_node_ids:%d\n",
  332. NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids);
  333. /*
  334. * Allocate percpu area. If PSE is supported, try to make use
  335. * of large page mappings. Please read comments on top of
  336. * each allocator for details.
  337. */
  338. ret = setup_pcpu_remap(static_size);
  339. if (ret < 0)
  340. ret = setup_pcpu_embed(static_size);
  341. if (ret < 0)
  342. ret = setup_pcpu_4k(static_size);
  343. if (ret < 0)
  344. panic("cannot allocate static percpu area (%zu bytes, err=%zd)",
  345. static_size, ret);
  346. pcpu_unit_size = ret;
  347. /* alrighty, percpu areas up and running */
  348. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  349. for_each_possible_cpu(cpu) {
  350. per_cpu_offset(cpu) = delta + cpu * pcpu_unit_size;
  351. per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu);
  352. per_cpu(cpu_number, cpu) = cpu;
  353. setup_percpu_segment(cpu);
  354. setup_stack_canary_segment(cpu);
  355. /*
  356. * Copy data used in early init routines from the
  357. * initial arrays to the per cpu data areas. These
  358. * arrays then become expendable and the *_early_ptr's
  359. * are zeroed indicating that the static arrays are
  360. * gone.
  361. */
  362. #ifdef CONFIG_X86_LOCAL_APIC
  363. per_cpu(x86_cpu_to_apicid, cpu) =
  364. early_per_cpu_map(x86_cpu_to_apicid, cpu);
  365. per_cpu(x86_bios_cpu_apicid, cpu) =
  366. early_per_cpu_map(x86_bios_cpu_apicid, cpu);
  367. #endif
  368. #ifdef CONFIG_X86_64
  369. per_cpu(irq_stack_ptr, cpu) =
  370. per_cpu(irq_stack_union.irq_stack, cpu) +
  371. IRQ_STACK_SIZE - 64;
  372. #ifdef CONFIG_NUMA
  373. per_cpu(x86_cpu_to_node_map, cpu) =
  374. early_per_cpu_map(x86_cpu_to_node_map, cpu);
  375. #endif
  376. #endif
  377. /*
  378. * Up to this point, the boot CPU has been using .data.init
  379. * area. Reload any changed state for the boot CPU.
  380. */
  381. if (cpu == boot_cpu_id)
  382. switch_to_new_gdt(cpu);
  383. }
  384. /* indicate the early static arrays will soon be gone */
  385. #ifdef CONFIG_X86_LOCAL_APIC
  386. early_per_cpu_ptr(x86_cpu_to_apicid) = NULL;
  387. early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL;
  388. #endif
  389. #if defined(CONFIG_X86_64) && defined(CONFIG_NUMA)
  390. early_per_cpu_ptr(x86_cpu_to_node_map) = NULL;
  391. #endif
  392. /* Setup node to cpumask map */
  393. setup_node_to_cpumask_map();
  394. /* Setup cpu initialized, callin, callout masks */
  395. setup_cpu_local_masks();
  396. }