process.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. /* $Id: process.c,v 1.28 2004/05/05 16:54:23 lethal Exp $
  2. *
  3. * linux/arch/sh/kernel/process.c
  4. *
  5. * Copyright (C) 1995 Linus Torvalds
  6. *
  7. * SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of process handling..
  11. */
  12. #include <linux/module.h>
  13. #include <linux/unistd.h>
  14. #include <linux/mm.h>
  15. #include <linux/elfcore.h>
  16. #include <linux/slab.h>
  17. #include <linux/a.out.h>
  18. #include <linux/ptrace.h>
  19. #include <linux/platform.h>
  20. #include <linux/kallsyms.h>
  21. #include <asm/io.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/mmu_context.h>
  24. #include <asm/elf.h>
  25. #if defined(CONFIG_SH_HS7751RVOIP)
  26. #include <asm/hs7751rvoip/hs7751rvoip.h>
  27. #elif defined(CONFIG_SH_RTS7751R2D)
  28. #include <asm/rts7751r2d/rts7751r2d.h>
  29. #endif
  30. static int hlt_counter=0;
  31. int ubc_usercnt = 0;
  32. #define HARD_IDLE_TIMEOUT (HZ / 3)
  33. void disable_hlt(void)
  34. {
  35. hlt_counter++;
  36. }
  37. EXPORT_SYMBOL(disable_hlt);
  38. void enable_hlt(void)
  39. {
  40. hlt_counter--;
  41. }
  42. EXPORT_SYMBOL(enable_hlt);
  43. void cpu_idle(void)
  44. {
  45. /* endless idle loop with no priority at all */
  46. while (1) {
  47. if (hlt_counter) {
  48. while (!need_resched())
  49. cpu_relax();
  50. } else {
  51. while (!need_resched())
  52. cpu_sleep();
  53. }
  54. preempt_enable_no_resched();
  55. schedule();
  56. preempt_disable();
  57. }
  58. }
  59. void machine_restart(char * __unused)
  60. {
  61. /* SR.BL=1 and invoke address error to let CPU reset (manual reset) */
  62. asm volatile("ldc %0, sr\n\t"
  63. "mov.l @%1, %0" : : "r" (0x10000000), "r" (0x80000001));
  64. }
  65. void machine_halt(void)
  66. {
  67. #if defined(CONFIG_SH_HS7751RVOIP)
  68. unsigned short value;
  69. value = ctrl_inw(PA_OUTPORTR);
  70. ctrl_outw((value & 0xffdf), PA_OUTPORTR);
  71. #elif defined(CONFIG_SH_RTS7751R2D)
  72. ctrl_outw(0x0001, PA_POWOFF);
  73. #endif
  74. while (1)
  75. cpu_sleep();
  76. }
  77. void machine_power_off(void)
  78. {
  79. #if defined(CONFIG_SH_HS7751RVOIP)
  80. unsigned short value;
  81. value = ctrl_inw(PA_OUTPORTR);
  82. ctrl_outw((value & 0xffdf), PA_OUTPORTR);
  83. #elif defined(CONFIG_SH_RTS7751R2D)
  84. ctrl_outw(0x0001, PA_POWOFF);
  85. #endif
  86. }
  87. void show_regs(struct pt_regs * regs)
  88. {
  89. printk("\n");
  90. printk("Pid : %d, Comm: %20s\n", current->pid, current->comm);
  91. print_symbol("PC is at %s\n", regs->pc);
  92. printk("PC : %08lx SP : %08lx SR : %08lx ",
  93. regs->pc, regs->regs[15], regs->sr);
  94. #ifdef CONFIG_MMU
  95. printk("TEA : %08x ", ctrl_inl(MMU_TEA));
  96. #else
  97. printk(" ");
  98. #endif
  99. printk("%s\n", print_tainted());
  100. printk("R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
  101. regs->regs[0],regs->regs[1],
  102. regs->regs[2],regs->regs[3]);
  103. printk("R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
  104. regs->regs[4],regs->regs[5],
  105. regs->regs[6],regs->regs[7]);
  106. printk("R8 : %08lx R9 : %08lx R10 : %08lx R11 : %08lx\n",
  107. regs->regs[8],regs->regs[9],
  108. regs->regs[10],regs->regs[11]);
  109. printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
  110. regs->regs[12],regs->regs[13],
  111. regs->regs[14]);
  112. printk("MACH: %08lx MACL: %08lx GBR : %08lx PR : %08lx\n",
  113. regs->mach, regs->macl, regs->gbr, regs->pr);
  114. /*
  115. * If we're in kernel mode, dump the stack too..
  116. */
  117. if (!user_mode(regs)) {
  118. extern void show_task(unsigned long *sp);
  119. unsigned long sp = regs->regs[15];
  120. show_task((unsigned long *)sp);
  121. }
  122. }
  123. /*
  124. * Create a kernel thread
  125. */
  126. /*
  127. * This is the mechanism for creating a new kernel thread.
  128. *
  129. */
  130. extern void kernel_thread_helper(void);
  131. __asm__(".align 5\n"
  132. "kernel_thread_helper:\n\t"
  133. "jsr @r5\n\t"
  134. " nop\n\t"
  135. "mov.l 1f, r1\n\t"
  136. "jsr @r1\n\t"
  137. " mov r0, r4\n\t"
  138. ".align 2\n\t"
  139. "1:.long do_exit");
  140. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  141. { /* Don't use this in BL=1(cli). Or else, CPU resets! */
  142. struct pt_regs regs;
  143. memset(&regs, 0, sizeof(regs));
  144. regs.regs[4] = (unsigned long) arg;
  145. regs.regs[5] = (unsigned long) fn;
  146. regs.pc = (unsigned long) kernel_thread_helper;
  147. regs.sr = (1 << 30);
  148. /* Ok, create the new process.. */
  149. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  150. }
  151. /*
  152. * Free current thread data structures etc..
  153. */
  154. void exit_thread(void)
  155. {
  156. if (current->thread.ubc_pc) {
  157. current->thread.ubc_pc = 0;
  158. ubc_usercnt -= 1;
  159. }
  160. }
  161. void flush_thread(void)
  162. {
  163. #if defined(CONFIG_SH_FPU)
  164. struct task_struct *tsk = current;
  165. /* Forget lazy FPU state */
  166. clear_fpu(tsk, task_pt_regs(tsk));
  167. clear_used_math();
  168. #endif
  169. }
  170. void release_thread(struct task_struct *dead_task)
  171. {
  172. /* do nothing */
  173. }
  174. /* Fill in the fpu structure for a core dump.. */
  175. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
  176. {
  177. int fpvalid = 0;
  178. #if defined(CONFIG_SH_FPU)
  179. struct task_struct *tsk = current;
  180. fpvalid = !!tsk_used_math(tsk);
  181. if (fpvalid) {
  182. unlazy_fpu(tsk, regs);
  183. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  184. }
  185. #endif
  186. return fpvalid;
  187. }
  188. /*
  189. * Capture the user space registers if the task is not running (in user space)
  190. */
  191. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  192. {
  193. struct pt_regs ptregs;
  194. ptregs = *task_pt_regs(tsk);
  195. elf_core_copy_regs(regs, &ptregs);
  196. return 1;
  197. }
  198. int
  199. dump_task_fpu (struct task_struct *tsk, elf_fpregset_t *fpu)
  200. {
  201. int fpvalid = 0;
  202. #if defined(CONFIG_SH_FPU)
  203. fpvalid = !!tsk_used_math(tsk);
  204. if (fpvalid) {
  205. unlazy_fpu(tsk, task_pt_regs(tsk));
  206. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  207. }
  208. #endif
  209. return fpvalid;
  210. }
  211. asmlinkage void ret_from_fork(void);
  212. int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
  213. unsigned long unused,
  214. struct task_struct *p, struct pt_regs *regs)
  215. {
  216. struct pt_regs *childregs;
  217. #if defined(CONFIG_SH_FPU)
  218. struct task_struct *tsk = current;
  219. unlazy_fpu(tsk, regs);
  220. p->thread.fpu = tsk->thread.fpu;
  221. copy_to_stopped_child_used_math(p);
  222. #endif
  223. childregs = task_pt_regs(p);
  224. *childregs = *regs;
  225. if (user_mode(regs)) {
  226. childregs->regs[15] = usp;
  227. } else {
  228. childregs->regs[15] = (unsigned long)p->thread_info + THREAD_SIZE;
  229. }
  230. if (clone_flags & CLONE_SETTLS) {
  231. childregs->gbr = childregs->regs[0];
  232. }
  233. childregs->regs[0] = 0; /* Set return value for child */
  234. p->thread.sp = (unsigned long) childregs;
  235. p->thread.pc = (unsigned long) ret_from_fork;
  236. p->thread.ubc_pc = 0;
  237. return 0;
  238. }
  239. /* Tracing by user break controller. */
  240. static void
  241. ubc_set_tracing(int asid, unsigned long pc)
  242. {
  243. ctrl_outl(pc, UBC_BARA);
  244. /* We don't have any ASID settings for the SH-2! */
  245. if (cpu_data->type != CPU_SH7604)
  246. ctrl_outb(asid, UBC_BASRA);
  247. ctrl_outl(0, UBC_BAMRA);
  248. if (cpu_data->type == CPU_SH7729) {
  249. ctrl_outw(BBR_INST | BBR_READ | BBR_CPU, UBC_BBRA);
  250. ctrl_outl(BRCR_PCBA | BRCR_PCTE, UBC_BRCR);
  251. } else {
  252. ctrl_outw(BBR_INST | BBR_READ, UBC_BBRA);
  253. ctrl_outw(BRCR_PCBA, UBC_BRCR);
  254. }
  255. }
  256. /*
  257. * switch_to(x,y) should switch tasks from x to y.
  258. *
  259. */
  260. struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next)
  261. {
  262. #if defined(CONFIG_SH_FPU)
  263. unlazy_fpu(prev, task_pt_regs(prev));
  264. #endif
  265. #ifdef CONFIG_PREEMPT
  266. {
  267. unsigned long flags;
  268. struct pt_regs *regs;
  269. local_irq_save(flags);
  270. regs = task_pt_regs(prev);
  271. if (user_mode(regs) && regs->regs[15] >= 0xc0000000) {
  272. int offset = (int)regs->regs[15];
  273. /* Reset stack pointer: clear critical region mark */
  274. regs->regs[15] = regs->regs[1];
  275. if (regs->pc < regs->regs[0])
  276. /* Go to rewind point */
  277. regs->pc = regs->regs[0] + offset;
  278. }
  279. local_irq_restore(flags);
  280. }
  281. #endif
  282. /*
  283. * Restore the kernel mode register
  284. * k7 (r7_bank1)
  285. */
  286. asm volatile("ldc %0, r7_bank"
  287. : /* no output */
  288. : "r" (task_thread_info(next)));
  289. #ifdef CONFIG_MMU
  290. /* If no tasks are using the UBC, we're done */
  291. if (ubc_usercnt == 0)
  292. /* If no tasks are using the UBC, we're done */;
  293. else if (next->thread.ubc_pc && next->mm) {
  294. ubc_set_tracing(next->mm->context & MMU_CONTEXT_ASID_MASK,
  295. next->thread.ubc_pc);
  296. } else {
  297. ctrl_outw(0, UBC_BBRA);
  298. ctrl_outw(0, UBC_BBRB);
  299. }
  300. #endif
  301. return prev;
  302. }
  303. asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
  304. unsigned long r6, unsigned long r7,
  305. struct pt_regs regs)
  306. {
  307. #ifdef CONFIG_MMU
  308. return do_fork(SIGCHLD, regs.regs[15], &regs, 0, NULL, NULL);
  309. #else
  310. /* fork almost works, enough to trick you into looking elsewhere :-( */
  311. return -EINVAL;
  312. #endif
  313. }
  314. asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
  315. unsigned long parent_tidptr,
  316. unsigned long child_tidptr,
  317. struct pt_regs regs)
  318. {
  319. if (!newsp)
  320. newsp = regs.regs[15];
  321. return do_fork(clone_flags, newsp, &regs, 0,
  322. (int __user *)parent_tidptr, (int __user *)child_tidptr);
  323. }
  324. /*
  325. * This is trivial, and on the face of it looks like it
  326. * could equally well be done in user mode.
  327. *
  328. * Not so, for quite unobvious reasons - register pressure.
  329. * In user mode vfork() cannot have a stack frame, and if
  330. * done by calling the "clone()" system call directly, you
  331. * do not have enough call-clobbered registers to hold all
  332. * the information you need.
  333. */
  334. asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
  335. unsigned long r6, unsigned long r7,
  336. struct pt_regs regs)
  337. {
  338. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.regs[15], &regs,
  339. 0, NULL, NULL);
  340. }
  341. /*
  342. * sys_execve() executes a new program.
  343. */
  344. asmlinkage int sys_execve(char *ufilename, char **uargv,
  345. char **uenvp, unsigned long r7,
  346. struct pt_regs regs)
  347. {
  348. int error;
  349. char *filename;
  350. filename = getname((char __user *)ufilename);
  351. error = PTR_ERR(filename);
  352. if (IS_ERR(filename))
  353. goto out;
  354. error = do_execve(filename,
  355. (char __user * __user *)uargv,
  356. (char __user * __user *)uenvp,
  357. &regs);
  358. if (error == 0) {
  359. task_lock(current);
  360. current->ptrace &= ~PT_DTRACE;
  361. task_unlock(current);
  362. }
  363. putname(filename);
  364. out:
  365. return error;
  366. }
  367. unsigned long get_wchan(struct task_struct *p)
  368. {
  369. unsigned long schedule_frame;
  370. unsigned long pc;
  371. if (!p || p == current || p->state == TASK_RUNNING)
  372. return 0;
  373. /*
  374. * The same comment as on the Alpha applies here, too ...
  375. */
  376. pc = thread_saved_pc(p);
  377. if (in_sched_functions(pc)) {
  378. schedule_frame = ((unsigned long *)(long)p->thread.sp)[1];
  379. return (unsigned long)((unsigned long *)schedule_frame)[1];
  380. }
  381. return pc;
  382. }
  383. asmlinkage void break_point_trap(unsigned long r4, unsigned long r5,
  384. unsigned long r6, unsigned long r7,
  385. struct pt_regs regs)
  386. {
  387. /* Clear tracing. */
  388. ctrl_outw(0, UBC_BBRA);
  389. ctrl_outw(0, UBC_BBRB);
  390. current->thread.ubc_pc = 0;
  391. ubc_usercnt -= 1;
  392. force_sig(SIGTRAP, current);
  393. }
  394. asmlinkage void break_point_trap_software(unsigned long r4, unsigned long r5,
  395. unsigned long r6, unsigned long r7,
  396. struct pt_regs regs)
  397. {
  398. regs.pc -= 2;
  399. force_sig(SIGTRAP, current);
  400. }