sched.c 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/completion.h>
  30. #include <linux/kernel_stat.h>
  31. #include <linux/security.h>
  32. #include <linux/notifier.h>
  33. #include <linux/profile.h>
  34. #include <linux/suspend.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/delay.h>
  37. #include <linux/smp.h>
  38. #include <linux/threads.h>
  39. #include <linux/timer.h>
  40. #include <linux/rcupdate.h>
  41. #include <linux/cpu.h>
  42. #include <linux/cpuset.h>
  43. #include <linux/percpu.h>
  44. #include <linux/kthread.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/syscalls.h>
  47. #include <linux/times.h>
  48. #include <linux/acct.h>
  49. #include <asm/tlb.h>
  50. #include <asm/unistd.h>
  51. /*
  52. * Convert user-nice values [ -20 ... 0 ... 19 ]
  53. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  54. * and back.
  55. */
  56. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  57. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  58. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  59. /*
  60. * 'User priority' is the nice value converted to something we
  61. * can work with better when scaling various scheduler parameters,
  62. * it's a [ 0 ... 39 ] range.
  63. */
  64. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  65. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  66. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  67. /*
  68. * Some helpers for converting nanosecond timing to jiffy resolution
  69. */
  70. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  71. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  72. /*
  73. * These are the 'tuning knobs' of the scheduler:
  74. *
  75. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  76. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  77. * Timeslices get refilled after they expire.
  78. */
  79. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  80. #define DEF_TIMESLICE (100 * HZ / 1000)
  81. #define ON_RUNQUEUE_WEIGHT 30
  82. #define CHILD_PENALTY 95
  83. #define PARENT_PENALTY 100
  84. #define EXIT_WEIGHT 3
  85. #define PRIO_BONUS_RATIO 25
  86. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  87. #define INTERACTIVE_DELTA 2
  88. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  89. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  90. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  91. /*
  92. * If a task is 'interactive' then we reinsert it in the active
  93. * array after it has expired its current timeslice. (it will not
  94. * continue to run immediately, it will still roundrobin with
  95. * other interactive tasks.)
  96. *
  97. * This part scales the interactivity limit depending on niceness.
  98. *
  99. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  100. * Here are a few examples of different nice levels:
  101. *
  102. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  103. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  104. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  105. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  106. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  107. *
  108. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  109. * priority range a task can explore, a value of '1' means the
  110. * task is rated interactive.)
  111. *
  112. * Ie. nice +19 tasks can never get 'interactive' enough to be
  113. * reinserted into the active array. And only heavily CPU-hog nice -20
  114. * tasks will be expired. Default nice 0 tasks are somewhere between,
  115. * it takes some effort for them to get interactive, but it's not
  116. * too hard.
  117. */
  118. #define CURRENT_BONUS(p) \
  119. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  120. MAX_SLEEP_AVG)
  121. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  122. #ifdef CONFIG_SMP
  123. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  124. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  125. num_online_cpus())
  126. #else
  127. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  128. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  129. #endif
  130. #define SCALE(v1,v1_max,v2_max) \
  131. (v1) * (v2_max) / (v1_max)
  132. #define DELTA(p) \
  133. (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
  134. #define TASK_INTERACTIVE(p) \
  135. ((p)->prio <= (p)->static_prio - DELTA(p))
  136. #define INTERACTIVE_SLEEP(p) \
  137. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  138. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  139. #define TASK_PREEMPTS_CURR(p, rq) \
  140. ((p)->prio < (rq)->curr->prio)
  141. /*
  142. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  143. * to time slice values: [800ms ... 100ms ... 5ms]
  144. *
  145. * The higher a thread's priority, the bigger timeslices
  146. * it gets during one round of execution. But even the lowest
  147. * priority thread gets MIN_TIMESLICE worth of execution time.
  148. */
  149. #define SCALE_PRIO(x, prio) \
  150. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
  151. static inline unsigned int task_timeslice(task_t *p)
  152. {
  153. if (p->static_prio < NICE_TO_PRIO(0))
  154. return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
  155. else
  156. return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
  157. }
  158. #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
  159. < (long long) (sd)->cache_hot_time)
  160. /*
  161. * These are the runqueue data structures:
  162. */
  163. #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
  164. typedef struct runqueue runqueue_t;
  165. struct prio_array {
  166. unsigned int nr_active;
  167. unsigned long bitmap[BITMAP_SIZE];
  168. struct list_head queue[MAX_PRIO];
  169. };
  170. /*
  171. * This is the main, per-CPU runqueue data structure.
  172. *
  173. * Locking rule: those places that want to lock multiple runqueues
  174. * (such as the load balancing or the thread migration code), lock
  175. * acquire operations must be ordered by ascending &runqueue.
  176. */
  177. struct runqueue {
  178. spinlock_t lock;
  179. /*
  180. * nr_running and cpu_load should be in the same cacheline because
  181. * remote CPUs use both these fields when doing load calculation.
  182. */
  183. unsigned long nr_running;
  184. #ifdef CONFIG_SMP
  185. unsigned long cpu_load[3];
  186. #endif
  187. unsigned long long nr_switches;
  188. /*
  189. * This is part of a global counter where only the total sum
  190. * over all CPUs matters. A task can increase this counter on
  191. * one CPU and if it got migrated afterwards it may decrease
  192. * it on another CPU. Always updated under the runqueue lock:
  193. */
  194. unsigned long nr_uninterruptible;
  195. unsigned long expired_timestamp;
  196. unsigned long long timestamp_last_tick;
  197. task_t *curr, *idle;
  198. struct mm_struct *prev_mm;
  199. prio_array_t *active, *expired, arrays[2];
  200. int best_expired_prio;
  201. atomic_t nr_iowait;
  202. #ifdef CONFIG_SMP
  203. struct sched_domain *sd;
  204. /* For active balancing */
  205. int active_balance;
  206. int push_cpu;
  207. task_t *migration_thread;
  208. struct list_head migration_queue;
  209. #endif
  210. #ifdef CONFIG_SCHEDSTATS
  211. /* latency stats */
  212. struct sched_info rq_sched_info;
  213. /* sys_sched_yield() stats */
  214. unsigned long yld_exp_empty;
  215. unsigned long yld_act_empty;
  216. unsigned long yld_both_empty;
  217. unsigned long yld_cnt;
  218. /* schedule() stats */
  219. unsigned long sched_switch;
  220. unsigned long sched_cnt;
  221. unsigned long sched_goidle;
  222. /* try_to_wake_up() stats */
  223. unsigned long ttwu_cnt;
  224. unsigned long ttwu_local;
  225. #endif
  226. };
  227. static DEFINE_PER_CPU(struct runqueue, runqueues);
  228. #define for_each_domain(cpu, domain) \
  229. for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
  230. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  231. #define this_rq() (&__get_cpu_var(runqueues))
  232. #define task_rq(p) cpu_rq(task_cpu(p))
  233. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  234. /*
  235. * Default context-switch locking:
  236. */
  237. #ifndef prepare_arch_switch
  238. # define prepare_arch_switch(rq, next) do { } while (0)
  239. # define finish_arch_switch(rq, next) spin_unlock_irq(&(rq)->lock)
  240. # define task_running(rq, p) ((rq)->curr == (p))
  241. #endif
  242. /*
  243. * task_rq_lock - lock the runqueue a given task resides on and disable
  244. * interrupts. Note the ordering: we can safely lookup the task_rq without
  245. * explicitly disabling preemption.
  246. */
  247. static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
  248. __acquires(rq->lock)
  249. {
  250. struct runqueue *rq;
  251. repeat_lock_task:
  252. local_irq_save(*flags);
  253. rq = task_rq(p);
  254. spin_lock(&rq->lock);
  255. if (unlikely(rq != task_rq(p))) {
  256. spin_unlock_irqrestore(&rq->lock, *flags);
  257. goto repeat_lock_task;
  258. }
  259. return rq;
  260. }
  261. static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
  262. __releases(rq->lock)
  263. {
  264. spin_unlock_irqrestore(&rq->lock, *flags);
  265. }
  266. #ifdef CONFIG_SCHEDSTATS
  267. /*
  268. * bump this up when changing the output format or the meaning of an existing
  269. * format, so that tools can adapt (or abort)
  270. */
  271. #define SCHEDSTAT_VERSION 11
  272. static int show_schedstat(struct seq_file *seq, void *v)
  273. {
  274. int cpu;
  275. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  276. seq_printf(seq, "timestamp %lu\n", jiffies);
  277. for_each_online_cpu(cpu) {
  278. runqueue_t *rq = cpu_rq(cpu);
  279. #ifdef CONFIG_SMP
  280. struct sched_domain *sd;
  281. int dcnt = 0;
  282. #endif
  283. /* runqueue-specific stats */
  284. seq_printf(seq,
  285. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  286. cpu, rq->yld_both_empty,
  287. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  288. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  289. rq->ttwu_cnt, rq->ttwu_local,
  290. rq->rq_sched_info.cpu_time,
  291. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  292. seq_printf(seq, "\n");
  293. #ifdef CONFIG_SMP
  294. /* domain-specific stats */
  295. for_each_domain(cpu, sd) {
  296. enum idle_type itype;
  297. char mask_str[NR_CPUS];
  298. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  299. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  300. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  301. itype++) {
  302. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
  303. sd->lb_cnt[itype],
  304. sd->lb_balanced[itype],
  305. sd->lb_failed[itype],
  306. sd->lb_imbalance[itype],
  307. sd->lb_gained[itype],
  308. sd->lb_hot_gained[itype],
  309. sd->lb_nobusyq[itype],
  310. sd->lb_nobusyg[itype]);
  311. }
  312. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n",
  313. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  314. sd->sbe_pushed, sd->sbe_attempts,
  315. sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
  316. }
  317. #endif
  318. }
  319. return 0;
  320. }
  321. static int schedstat_open(struct inode *inode, struct file *file)
  322. {
  323. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  324. char *buf = kmalloc(size, GFP_KERNEL);
  325. struct seq_file *m;
  326. int res;
  327. if (!buf)
  328. return -ENOMEM;
  329. res = single_open(file, show_schedstat, NULL);
  330. if (!res) {
  331. m = file->private_data;
  332. m->buf = buf;
  333. m->size = size;
  334. } else
  335. kfree(buf);
  336. return res;
  337. }
  338. struct file_operations proc_schedstat_operations = {
  339. .open = schedstat_open,
  340. .read = seq_read,
  341. .llseek = seq_lseek,
  342. .release = single_release,
  343. };
  344. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  345. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  346. #else /* !CONFIG_SCHEDSTATS */
  347. # define schedstat_inc(rq, field) do { } while (0)
  348. # define schedstat_add(rq, field, amt) do { } while (0)
  349. #endif
  350. /*
  351. * rq_lock - lock a given runqueue and disable interrupts.
  352. */
  353. static inline runqueue_t *this_rq_lock(void)
  354. __acquires(rq->lock)
  355. {
  356. runqueue_t *rq;
  357. local_irq_disable();
  358. rq = this_rq();
  359. spin_lock(&rq->lock);
  360. return rq;
  361. }
  362. #ifdef CONFIG_SCHEDSTATS
  363. /*
  364. * Called when a process is dequeued from the active array and given
  365. * the cpu. We should note that with the exception of interactive
  366. * tasks, the expired queue will become the active queue after the active
  367. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  368. * expired queue. (Interactive tasks may be requeued directly to the
  369. * active queue, thus delaying tasks in the expired queue from running;
  370. * see scheduler_tick()).
  371. *
  372. * This function is only called from sched_info_arrive(), rather than
  373. * dequeue_task(). Even though a task may be queued and dequeued multiple
  374. * times as it is shuffled about, we're really interested in knowing how
  375. * long it was from the *first* time it was queued to the time that it
  376. * finally hit a cpu.
  377. */
  378. static inline void sched_info_dequeued(task_t *t)
  379. {
  380. t->sched_info.last_queued = 0;
  381. }
  382. /*
  383. * Called when a task finally hits the cpu. We can now calculate how
  384. * long it was waiting to run. We also note when it began so that we
  385. * can keep stats on how long its timeslice is.
  386. */
  387. static inline void sched_info_arrive(task_t *t)
  388. {
  389. unsigned long now = jiffies, diff = 0;
  390. struct runqueue *rq = task_rq(t);
  391. if (t->sched_info.last_queued)
  392. diff = now - t->sched_info.last_queued;
  393. sched_info_dequeued(t);
  394. t->sched_info.run_delay += diff;
  395. t->sched_info.last_arrival = now;
  396. t->sched_info.pcnt++;
  397. if (!rq)
  398. return;
  399. rq->rq_sched_info.run_delay += diff;
  400. rq->rq_sched_info.pcnt++;
  401. }
  402. /*
  403. * Called when a process is queued into either the active or expired
  404. * array. The time is noted and later used to determine how long we
  405. * had to wait for us to reach the cpu. Since the expired queue will
  406. * become the active queue after active queue is empty, without dequeuing
  407. * and requeuing any tasks, we are interested in queuing to either. It
  408. * is unusual but not impossible for tasks to be dequeued and immediately
  409. * requeued in the same or another array: this can happen in sched_yield(),
  410. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  411. * to runqueue.
  412. *
  413. * This function is only called from enqueue_task(), but also only updates
  414. * the timestamp if it is already not set. It's assumed that
  415. * sched_info_dequeued() will clear that stamp when appropriate.
  416. */
  417. static inline void sched_info_queued(task_t *t)
  418. {
  419. if (!t->sched_info.last_queued)
  420. t->sched_info.last_queued = jiffies;
  421. }
  422. /*
  423. * Called when a process ceases being the active-running process, either
  424. * voluntarily or involuntarily. Now we can calculate how long we ran.
  425. */
  426. static inline void sched_info_depart(task_t *t)
  427. {
  428. struct runqueue *rq = task_rq(t);
  429. unsigned long diff = jiffies - t->sched_info.last_arrival;
  430. t->sched_info.cpu_time += diff;
  431. if (rq)
  432. rq->rq_sched_info.cpu_time += diff;
  433. }
  434. /*
  435. * Called when tasks are switched involuntarily due, typically, to expiring
  436. * their time slice. (This may also be called when switching to or from
  437. * the idle task.) We are only called when prev != next.
  438. */
  439. static inline void sched_info_switch(task_t *prev, task_t *next)
  440. {
  441. struct runqueue *rq = task_rq(prev);
  442. /*
  443. * prev now departs the cpu. It's not interesting to record
  444. * stats about how efficient we were at scheduling the idle
  445. * process, however.
  446. */
  447. if (prev != rq->idle)
  448. sched_info_depart(prev);
  449. if (next != rq->idle)
  450. sched_info_arrive(next);
  451. }
  452. #else
  453. #define sched_info_queued(t) do { } while (0)
  454. #define sched_info_switch(t, next) do { } while (0)
  455. #endif /* CONFIG_SCHEDSTATS */
  456. /*
  457. * Adding/removing a task to/from a priority array:
  458. */
  459. static void dequeue_task(struct task_struct *p, prio_array_t *array)
  460. {
  461. array->nr_active--;
  462. list_del(&p->run_list);
  463. if (list_empty(array->queue + p->prio))
  464. __clear_bit(p->prio, array->bitmap);
  465. }
  466. static void enqueue_task(struct task_struct *p, prio_array_t *array)
  467. {
  468. sched_info_queued(p);
  469. list_add_tail(&p->run_list, array->queue + p->prio);
  470. __set_bit(p->prio, array->bitmap);
  471. array->nr_active++;
  472. p->array = array;
  473. }
  474. /*
  475. * Put task to the end of the run list without the overhead of dequeue
  476. * followed by enqueue.
  477. */
  478. static void requeue_task(struct task_struct *p, prio_array_t *array)
  479. {
  480. list_move_tail(&p->run_list, array->queue + p->prio);
  481. }
  482. static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
  483. {
  484. list_add(&p->run_list, array->queue + p->prio);
  485. __set_bit(p->prio, array->bitmap);
  486. array->nr_active++;
  487. p->array = array;
  488. }
  489. /*
  490. * effective_prio - return the priority that is based on the static
  491. * priority but is modified by bonuses/penalties.
  492. *
  493. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  494. * into the -5 ... 0 ... +5 bonus/penalty range.
  495. *
  496. * We use 25% of the full 0...39 priority range so that:
  497. *
  498. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  499. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  500. *
  501. * Both properties are important to certain workloads.
  502. */
  503. static int effective_prio(task_t *p)
  504. {
  505. int bonus, prio;
  506. if (rt_task(p))
  507. return p->prio;
  508. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  509. prio = p->static_prio - bonus;
  510. if (prio < MAX_RT_PRIO)
  511. prio = MAX_RT_PRIO;
  512. if (prio > MAX_PRIO-1)
  513. prio = MAX_PRIO-1;
  514. return prio;
  515. }
  516. /*
  517. * __activate_task - move a task to the runqueue.
  518. */
  519. static inline void __activate_task(task_t *p, runqueue_t *rq)
  520. {
  521. enqueue_task(p, rq->active);
  522. rq->nr_running++;
  523. }
  524. /*
  525. * __activate_idle_task - move idle task to the _front_ of runqueue.
  526. */
  527. static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
  528. {
  529. enqueue_task_head(p, rq->active);
  530. rq->nr_running++;
  531. }
  532. static void recalc_task_prio(task_t *p, unsigned long long now)
  533. {
  534. /* Caller must always ensure 'now >= p->timestamp' */
  535. unsigned long long __sleep_time = now - p->timestamp;
  536. unsigned long sleep_time;
  537. if (__sleep_time > NS_MAX_SLEEP_AVG)
  538. sleep_time = NS_MAX_SLEEP_AVG;
  539. else
  540. sleep_time = (unsigned long)__sleep_time;
  541. if (likely(sleep_time > 0)) {
  542. /*
  543. * User tasks that sleep a long time are categorised as
  544. * idle and will get just interactive status to stay active &
  545. * prevent them suddenly becoming cpu hogs and starving
  546. * other processes.
  547. */
  548. if (p->mm && p->activated != -1 &&
  549. sleep_time > INTERACTIVE_SLEEP(p)) {
  550. p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
  551. DEF_TIMESLICE);
  552. } else {
  553. /*
  554. * The lower the sleep avg a task has the more
  555. * rapidly it will rise with sleep time.
  556. */
  557. sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
  558. /*
  559. * Tasks waking from uninterruptible sleep are
  560. * limited in their sleep_avg rise as they
  561. * are likely to be waiting on I/O
  562. */
  563. if (p->activated == -1 && p->mm) {
  564. if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
  565. sleep_time = 0;
  566. else if (p->sleep_avg + sleep_time >=
  567. INTERACTIVE_SLEEP(p)) {
  568. p->sleep_avg = INTERACTIVE_SLEEP(p);
  569. sleep_time = 0;
  570. }
  571. }
  572. /*
  573. * This code gives a bonus to interactive tasks.
  574. *
  575. * The boost works by updating the 'average sleep time'
  576. * value here, based on ->timestamp. The more time a
  577. * task spends sleeping, the higher the average gets -
  578. * and the higher the priority boost gets as well.
  579. */
  580. p->sleep_avg += sleep_time;
  581. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  582. p->sleep_avg = NS_MAX_SLEEP_AVG;
  583. }
  584. }
  585. p->prio = effective_prio(p);
  586. }
  587. /*
  588. * activate_task - move a task to the runqueue and do priority recalculation
  589. *
  590. * Update all the scheduling statistics stuff. (sleep average
  591. * calculation, priority modifiers, etc.)
  592. */
  593. static void activate_task(task_t *p, runqueue_t *rq, int local)
  594. {
  595. unsigned long long now;
  596. now = sched_clock();
  597. #ifdef CONFIG_SMP
  598. if (!local) {
  599. /* Compensate for drifting sched_clock */
  600. runqueue_t *this_rq = this_rq();
  601. now = (now - this_rq->timestamp_last_tick)
  602. + rq->timestamp_last_tick;
  603. }
  604. #endif
  605. recalc_task_prio(p, now);
  606. /*
  607. * This checks to make sure it's not an uninterruptible task
  608. * that is now waking up.
  609. */
  610. if (!p->activated) {
  611. /*
  612. * Tasks which were woken up by interrupts (ie. hw events)
  613. * are most likely of interactive nature. So we give them
  614. * the credit of extending their sleep time to the period
  615. * of time they spend on the runqueue, waiting for execution
  616. * on a CPU, first time around:
  617. */
  618. if (in_interrupt())
  619. p->activated = 2;
  620. else {
  621. /*
  622. * Normal first-time wakeups get a credit too for
  623. * on-runqueue time, but it will be weighted down:
  624. */
  625. p->activated = 1;
  626. }
  627. }
  628. p->timestamp = now;
  629. __activate_task(p, rq);
  630. }
  631. /*
  632. * deactivate_task - remove a task from the runqueue.
  633. */
  634. static void deactivate_task(struct task_struct *p, runqueue_t *rq)
  635. {
  636. rq->nr_running--;
  637. dequeue_task(p, p->array);
  638. p->array = NULL;
  639. }
  640. /*
  641. * resched_task - mark a task 'to be rescheduled now'.
  642. *
  643. * On UP this means the setting of the need_resched flag, on SMP it
  644. * might also involve a cross-CPU call to trigger the scheduler on
  645. * the target CPU.
  646. */
  647. #ifdef CONFIG_SMP
  648. static void resched_task(task_t *p)
  649. {
  650. int need_resched, nrpolling;
  651. assert_spin_locked(&task_rq(p)->lock);
  652. /* minimise the chance of sending an interrupt to poll_idle() */
  653. nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
  654. need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
  655. nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
  656. if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
  657. smp_send_reschedule(task_cpu(p));
  658. }
  659. #else
  660. static inline void resched_task(task_t *p)
  661. {
  662. set_tsk_need_resched(p);
  663. }
  664. #endif
  665. /**
  666. * task_curr - is this task currently executing on a CPU?
  667. * @p: the task in question.
  668. */
  669. inline int task_curr(const task_t *p)
  670. {
  671. return cpu_curr(task_cpu(p)) == p;
  672. }
  673. #ifdef CONFIG_SMP
  674. enum request_type {
  675. REQ_MOVE_TASK,
  676. REQ_SET_DOMAIN,
  677. };
  678. typedef struct {
  679. struct list_head list;
  680. enum request_type type;
  681. /* For REQ_MOVE_TASK */
  682. task_t *task;
  683. int dest_cpu;
  684. /* For REQ_SET_DOMAIN */
  685. struct sched_domain *sd;
  686. struct completion done;
  687. } migration_req_t;
  688. /*
  689. * The task's runqueue lock must be held.
  690. * Returns true if you have to wait for migration thread.
  691. */
  692. static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
  693. {
  694. runqueue_t *rq = task_rq(p);
  695. /*
  696. * If the task is not on a runqueue (and not running), then
  697. * it is sufficient to simply update the task's cpu field.
  698. */
  699. if (!p->array && !task_running(rq, p)) {
  700. set_task_cpu(p, dest_cpu);
  701. return 0;
  702. }
  703. init_completion(&req->done);
  704. req->type = REQ_MOVE_TASK;
  705. req->task = p;
  706. req->dest_cpu = dest_cpu;
  707. list_add(&req->list, &rq->migration_queue);
  708. return 1;
  709. }
  710. /*
  711. * wait_task_inactive - wait for a thread to unschedule.
  712. *
  713. * The caller must ensure that the task *will* unschedule sometime soon,
  714. * else this function might spin for a *long* time. This function can't
  715. * be called with interrupts off, or it may introduce deadlock with
  716. * smp_call_function() if an IPI is sent by the same process we are
  717. * waiting to become inactive.
  718. */
  719. void wait_task_inactive(task_t * p)
  720. {
  721. unsigned long flags;
  722. runqueue_t *rq;
  723. int preempted;
  724. repeat:
  725. rq = task_rq_lock(p, &flags);
  726. /* Must be off runqueue entirely, not preempted. */
  727. if (unlikely(p->array || task_running(rq, p))) {
  728. /* If it's preempted, we yield. It could be a while. */
  729. preempted = !task_running(rq, p);
  730. task_rq_unlock(rq, &flags);
  731. cpu_relax();
  732. if (preempted)
  733. yield();
  734. goto repeat;
  735. }
  736. task_rq_unlock(rq, &flags);
  737. }
  738. /***
  739. * kick_process - kick a running thread to enter/exit the kernel
  740. * @p: the to-be-kicked thread
  741. *
  742. * Cause a process which is running on another CPU to enter
  743. * kernel-mode, without any delay. (to get signals handled.)
  744. *
  745. * NOTE: this function doesnt have to take the runqueue lock,
  746. * because all it wants to ensure is that the remote task enters
  747. * the kernel. If the IPI races and the task has been migrated
  748. * to another CPU then no harm is done and the purpose has been
  749. * achieved as well.
  750. */
  751. void kick_process(task_t *p)
  752. {
  753. int cpu;
  754. preempt_disable();
  755. cpu = task_cpu(p);
  756. if ((cpu != smp_processor_id()) && task_curr(p))
  757. smp_send_reschedule(cpu);
  758. preempt_enable();
  759. }
  760. /*
  761. * Return a low guess at the load of a migration-source cpu.
  762. *
  763. * We want to under-estimate the load of migration sources, to
  764. * balance conservatively.
  765. */
  766. static inline unsigned long source_load(int cpu, int type)
  767. {
  768. runqueue_t *rq = cpu_rq(cpu);
  769. unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
  770. if (type == 0)
  771. return load_now;
  772. return min(rq->cpu_load[type-1], load_now);
  773. }
  774. /*
  775. * Return a high guess at the load of a migration-target cpu
  776. */
  777. static inline unsigned long target_load(int cpu, int type)
  778. {
  779. runqueue_t *rq = cpu_rq(cpu);
  780. unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
  781. if (type == 0)
  782. return load_now;
  783. return max(rq->cpu_load[type-1], load_now);
  784. }
  785. #endif
  786. /*
  787. * wake_idle() will wake a task on an idle cpu if task->cpu is
  788. * not idle and an idle cpu is available. The span of cpus to
  789. * search starts with cpus closest then further out as needed,
  790. * so we always favor a closer, idle cpu.
  791. *
  792. * Returns the CPU we should wake onto.
  793. */
  794. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  795. static int wake_idle(int cpu, task_t *p)
  796. {
  797. cpumask_t tmp;
  798. struct sched_domain *sd;
  799. int i;
  800. if (idle_cpu(cpu))
  801. return cpu;
  802. for_each_domain(cpu, sd) {
  803. if (sd->flags & SD_WAKE_IDLE) {
  804. cpus_and(tmp, sd->span, p->cpus_allowed);
  805. for_each_cpu_mask(i, tmp) {
  806. if (idle_cpu(i))
  807. return i;
  808. }
  809. }
  810. else
  811. break;
  812. }
  813. return cpu;
  814. }
  815. #else
  816. static inline int wake_idle(int cpu, task_t *p)
  817. {
  818. return cpu;
  819. }
  820. #endif
  821. /***
  822. * try_to_wake_up - wake up a thread
  823. * @p: the to-be-woken-up thread
  824. * @state: the mask of task states that can be woken
  825. * @sync: do a synchronous wakeup?
  826. *
  827. * Put it on the run-queue if it's not already there. The "current"
  828. * thread is always on the run-queue (except when the actual
  829. * re-schedule is in progress), and as such you're allowed to do
  830. * the simpler "current->state = TASK_RUNNING" to mark yourself
  831. * runnable without the overhead of this.
  832. *
  833. * returns failure only if the task is already active.
  834. */
  835. static int try_to_wake_up(task_t * p, unsigned int state, int sync)
  836. {
  837. int cpu, this_cpu, success = 0;
  838. unsigned long flags;
  839. long old_state;
  840. runqueue_t *rq;
  841. #ifdef CONFIG_SMP
  842. unsigned long load, this_load;
  843. struct sched_domain *sd, *this_sd = NULL;
  844. int new_cpu;
  845. #endif
  846. rq = task_rq_lock(p, &flags);
  847. old_state = p->state;
  848. if (!(old_state & state))
  849. goto out;
  850. if (p->array)
  851. goto out_running;
  852. cpu = task_cpu(p);
  853. this_cpu = smp_processor_id();
  854. #ifdef CONFIG_SMP
  855. if (unlikely(task_running(rq, p)))
  856. goto out_activate;
  857. new_cpu = cpu;
  858. schedstat_inc(rq, ttwu_cnt);
  859. if (cpu == this_cpu) {
  860. schedstat_inc(rq, ttwu_local);
  861. goto out_set_cpu;
  862. }
  863. for_each_domain(this_cpu, sd) {
  864. if (cpu_isset(cpu, sd->span)) {
  865. schedstat_inc(sd, ttwu_wake_remote);
  866. this_sd = sd;
  867. break;
  868. }
  869. }
  870. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  871. goto out_set_cpu;
  872. /*
  873. * Check for affine wakeup and passive balancing possibilities.
  874. */
  875. if (this_sd) {
  876. int idx = this_sd->wake_idx;
  877. unsigned int imbalance;
  878. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  879. load = source_load(cpu, idx);
  880. this_load = target_load(this_cpu, idx);
  881. new_cpu = this_cpu; /* Wake to this CPU if we can */
  882. if (this_sd->flags & SD_WAKE_AFFINE) {
  883. unsigned long tl = this_load;
  884. /*
  885. * If sync wakeup then subtract the (maximum possible)
  886. * effect of the currently running task from the load
  887. * of the current CPU:
  888. */
  889. if (sync)
  890. tl -= SCHED_LOAD_SCALE;
  891. if ((tl <= load &&
  892. tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
  893. 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
  894. /*
  895. * This domain has SD_WAKE_AFFINE and
  896. * p is cache cold in this domain, and
  897. * there is no bad imbalance.
  898. */
  899. schedstat_inc(this_sd, ttwu_move_affine);
  900. goto out_set_cpu;
  901. }
  902. }
  903. /*
  904. * Start passive balancing when half the imbalance_pct
  905. * limit is reached.
  906. */
  907. if (this_sd->flags & SD_WAKE_BALANCE) {
  908. if (imbalance*this_load <= 100*load) {
  909. schedstat_inc(this_sd, ttwu_move_balance);
  910. goto out_set_cpu;
  911. }
  912. }
  913. }
  914. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  915. out_set_cpu:
  916. new_cpu = wake_idle(new_cpu, p);
  917. if (new_cpu != cpu) {
  918. set_task_cpu(p, new_cpu);
  919. task_rq_unlock(rq, &flags);
  920. /* might preempt at this point */
  921. rq = task_rq_lock(p, &flags);
  922. old_state = p->state;
  923. if (!(old_state & state))
  924. goto out;
  925. if (p->array)
  926. goto out_running;
  927. this_cpu = smp_processor_id();
  928. cpu = task_cpu(p);
  929. }
  930. out_activate:
  931. #endif /* CONFIG_SMP */
  932. if (old_state == TASK_UNINTERRUPTIBLE) {
  933. rq->nr_uninterruptible--;
  934. /*
  935. * Tasks on involuntary sleep don't earn
  936. * sleep_avg beyond just interactive state.
  937. */
  938. p->activated = -1;
  939. }
  940. /*
  941. * Sync wakeups (i.e. those types of wakeups where the waker
  942. * has indicated that it will leave the CPU in short order)
  943. * don't trigger a preemption, if the woken up task will run on
  944. * this cpu. (in this case the 'I will reschedule' promise of
  945. * the waker guarantees that the freshly woken up task is going
  946. * to be considered on this CPU.)
  947. */
  948. activate_task(p, rq, cpu == this_cpu);
  949. if (!sync || cpu != this_cpu) {
  950. if (TASK_PREEMPTS_CURR(p, rq))
  951. resched_task(rq->curr);
  952. }
  953. success = 1;
  954. out_running:
  955. p->state = TASK_RUNNING;
  956. out:
  957. task_rq_unlock(rq, &flags);
  958. return success;
  959. }
  960. int fastcall wake_up_process(task_t * p)
  961. {
  962. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  963. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  964. }
  965. EXPORT_SYMBOL(wake_up_process);
  966. int fastcall wake_up_state(task_t *p, unsigned int state)
  967. {
  968. return try_to_wake_up(p, state, 0);
  969. }
  970. #ifdef CONFIG_SMP
  971. static int find_idlest_cpu(struct task_struct *p, int this_cpu,
  972. struct sched_domain *sd);
  973. #endif
  974. /*
  975. * Perform scheduler related setup for a newly forked process p.
  976. * p is forked by current.
  977. */
  978. void fastcall sched_fork(task_t *p)
  979. {
  980. /*
  981. * We mark the process as running here, but have not actually
  982. * inserted it onto the runqueue yet. This guarantees that
  983. * nobody will actually run it, and a signal or other external
  984. * event cannot wake it up and insert it on the runqueue either.
  985. */
  986. p->state = TASK_RUNNING;
  987. INIT_LIST_HEAD(&p->run_list);
  988. p->array = NULL;
  989. spin_lock_init(&p->switch_lock);
  990. #ifdef CONFIG_SCHEDSTATS
  991. memset(&p->sched_info, 0, sizeof(p->sched_info));
  992. #endif
  993. #ifdef CONFIG_PREEMPT
  994. /*
  995. * During context-switch we hold precisely one spinlock, which
  996. * schedule_tail drops. (in the common case it's this_rq()->lock,
  997. * but it also can be p->switch_lock.) So we compensate with a count
  998. * of 1. Also, we want to start with kernel preemption disabled.
  999. */
  1000. p->thread_info->preempt_count = 1;
  1001. #endif
  1002. /*
  1003. * Share the timeslice between parent and child, thus the
  1004. * total amount of pending timeslices in the system doesn't change,
  1005. * resulting in more scheduling fairness.
  1006. */
  1007. local_irq_disable();
  1008. p->time_slice = (current->time_slice + 1) >> 1;
  1009. /*
  1010. * The remainder of the first timeslice might be recovered by
  1011. * the parent if the child exits early enough.
  1012. */
  1013. p->first_time_slice = 1;
  1014. current->time_slice >>= 1;
  1015. p->timestamp = sched_clock();
  1016. if (unlikely(!current->time_slice)) {
  1017. /*
  1018. * This case is rare, it happens when the parent has only
  1019. * a single jiffy left from its timeslice. Taking the
  1020. * runqueue lock is not a problem.
  1021. */
  1022. current->time_slice = 1;
  1023. preempt_disable();
  1024. scheduler_tick();
  1025. local_irq_enable();
  1026. preempt_enable();
  1027. } else
  1028. local_irq_enable();
  1029. }
  1030. /*
  1031. * wake_up_new_task - wake up a newly created task for the first time.
  1032. *
  1033. * This function will do some initial scheduler statistics housekeeping
  1034. * that must be done for every newly created context, then puts the task
  1035. * on the runqueue and wakes it.
  1036. */
  1037. void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
  1038. {
  1039. unsigned long flags;
  1040. int this_cpu, cpu;
  1041. runqueue_t *rq, *this_rq;
  1042. rq = task_rq_lock(p, &flags);
  1043. cpu = task_cpu(p);
  1044. this_cpu = smp_processor_id();
  1045. BUG_ON(p->state != TASK_RUNNING);
  1046. /*
  1047. * We decrease the sleep average of forking parents
  1048. * and children as well, to keep max-interactive tasks
  1049. * from forking tasks that are max-interactive. The parent
  1050. * (current) is done further down, under its lock.
  1051. */
  1052. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1053. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1054. p->prio = effective_prio(p);
  1055. if (likely(cpu == this_cpu)) {
  1056. if (!(clone_flags & CLONE_VM)) {
  1057. /*
  1058. * The VM isn't cloned, so we're in a good position to
  1059. * do child-runs-first in anticipation of an exec. This
  1060. * usually avoids a lot of COW overhead.
  1061. */
  1062. if (unlikely(!current->array))
  1063. __activate_task(p, rq);
  1064. else {
  1065. p->prio = current->prio;
  1066. list_add_tail(&p->run_list, &current->run_list);
  1067. p->array = current->array;
  1068. p->array->nr_active++;
  1069. rq->nr_running++;
  1070. }
  1071. set_need_resched();
  1072. } else
  1073. /* Run child last */
  1074. __activate_task(p, rq);
  1075. /*
  1076. * We skip the following code due to cpu == this_cpu
  1077. *
  1078. * task_rq_unlock(rq, &flags);
  1079. * this_rq = task_rq_lock(current, &flags);
  1080. */
  1081. this_rq = rq;
  1082. } else {
  1083. this_rq = cpu_rq(this_cpu);
  1084. /*
  1085. * Not the local CPU - must adjust timestamp. This should
  1086. * get optimised away in the !CONFIG_SMP case.
  1087. */
  1088. p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
  1089. + rq->timestamp_last_tick;
  1090. __activate_task(p, rq);
  1091. if (TASK_PREEMPTS_CURR(p, rq))
  1092. resched_task(rq->curr);
  1093. /*
  1094. * Parent and child are on different CPUs, now get the
  1095. * parent runqueue to update the parent's ->sleep_avg:
  1096. */
  1097. task_rq_unlock(rq, &flags);
  1098. this_rq = task_rq_lock(current, &flags);
  1099. }
  1100. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1101. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1102. task_rq_unlock(this_rq, &flags);
  1103. }
  1104. /*
  1105. * Potentially available exiting-child timeslices are
  1106. * retrieved here - this way the parent does not get
  1107. * penalized for creating too many threads.
  1108. *
  1109. * (this cannot be used to 'generate' timeslices
  1110. * artificially, because any timeslice recovered here
  1111. * was given away by the parent in the first place.)
  1112. */
  1113. void fastcall sched_exit(task_t * p)
  1114. {
  1115. unsigned long flags;
  1116. runqueue_t *rq;
  1117. /*
  1118. * If the child was a (relative-) CPU hog then decrease
  1119. * the sleep_avg of the parent as well.
  1120. */
  1121. rq = task_rq_lock(p->parent, &flags);
  1122. if (p->first_time_slice) {
  1123. p->parent->time_slice += p->time_slice;
  1124. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1125. p->parent->time_slice = task_timeslice(p);
  1126. }
  1127. if (p->sleep_avg < p->parent->sleep_avg)
  1128. p->parent->sleep_avg = p->parent->sleep_avg /
  1129. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1130. (EXIT_WEIGHT + 1);
  1131. task_rq_unlock(rq, &flags);
  1132. }
  1133. /**
  1134. * finish_task_switch - clean up after a task-switch
  1135. * @prev: the thread we just switched away from.
  1136. *
  1137. * We enter this with the runqueue still locked, and finish_arch_switch()
  1138. * will unlock it along with doing any other architecture-specific cleanup
  1139. * actions.
  1140. *
  1141. * Note that we may have delayed dropping an mm in context_switch(). If
  1142. * so, we finish that here outside of the runqueue lock. (Doing it
  1143. * with the lock held can cause deadlocks; see schedule() for
  1144. * details.)
  1145. */
  1146. static inline void finish_task_switch(task_t *prev)
  1147. __releases(rq->lock)
  1148. {
  1149. runqueue_t *rq = this_rq();
  1150. struct mm_struct *mm = rq->prev_mm;
  1151. unsigned long prev_task_flags;
  1152. rq->prev_mm = NULL;
  1153. /*
  1154. * A task struct has one reference for the use as "current".
  1155. * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
  1156. * calls schedule one last time. The schedule call will never return,
  1157. * and the scheduled task must drop that reference.
  1158. * The test for EXIT_ZOMBIE must occur while the runqueue locks are
  1159. * still held, otherwise prev could be scheduled on another cpu, die
  1160. * there before we look at prev->state, and then the reference would
  1161. * be dropped twice.
  1162. * Manfred Spraul <manfred@colorfullife.com>
  1163. */
  1164. prev_task_flags = prev->flags;
  1165. finish_arch_switch(rq, prev);
  1166. if (mm)
  1167. mmdrop(mm);
  1168. if (unlikely(prev_task_flags & PF_DEAD))
  1169. put_task_struct(prev);
  1170. }
  1171. /**
  1172. * schedule_tail - first thing a freshly forked thread must call.
  1173. * @prev: the thread we just switched away from.
  1174. */
  1175. asmlinkage void schedule_tail(task_t *prev)
  1176. __releases(rq->lock)
  1177. {
  1178. finish_task_switch(prev);
  1179. if (current->set_child_tid)
  1180. put_user(current->pid, current->set_child_tid);
  1181. }
  1182. /*
  1183. * context_switch - switch to the new MM and the new
  1184. * thread's register state.
  1185. */
  1186. static inline
  1187. task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
  1188. {
  1189. struct mm_struct *mm = next->mm;
  1190. struct mm_struct *oldmm = prev->active_mm;
  1191. if (unlikely(!mm)) {
  1192. next->active_mm = oldmm;
  1193. atomic_inc(&oldmm->mm_count);
  1194. enter_lazy_tlb(oldmm, next);
  1195. } else
  1196. switch_mm(oldmm, mm, next);
  1197. if (unlikely(!prev->mm)) {
  1198. prev->active_mm = NULL;
  1199. WARN_ON(rq->prev_mm);
  1200. rq->prev_mm = oldmm;
  1201. }
  1202. /* Here we just switch the register state and the stack. */
  1203. switch_to(prev, next, prev);
  1204. return prev;
  1205. }
  1206. /*
  1207. * nr_running, nr_uninterruptible and nr_context_switches:
  1208. *
  1209. * externally visible scheduler statistics: current number of runnable
  1210. * threads, current number of uninterruptible-sleeping threads, total
  1211. * number of context switches performed since bootup.
  1212. */
  1213. unsigned long nr_running(void)
  1214. {
  1215. unsigned long i, sum = 0;
  1216. for_each_online_cpu(i)
  1217. sum += cpu_rq(i)->nr_running;
  1218. return sum;
  1219. }
  1220. unsigned long nr_uninterruptible(void)
  1221. {
  1222. unsigned long i, sum = 0;
  1223. for_each_cpu(i)
  1224. sum += cpu_rq(i)->nr_uninterruptible;
  1225. /*
  1226. * Since we read the counters lockless, it might be slightly
  1227. * inaccurate. Do not allow it to go below zero though:
  1228. */
  1229. if (unlikely((long)sum < 0))
  1230. sum = 0;
  1231. return sum;
  1232. }
  1233. unsigned long long nr_context_switches(void)
  1234. {
  1235. unsigned long long i, sum = 0;
  1236. for_each_cpu(i)
  1237. sum += cpu_rq(i)->nr_switches;
  1238. return sum;
  1239. }
  1240. unsigned long nr_iowait(void)
  1241. {
  1242. unsigned long i, sum = 0;
  1243. for_each_cpu(i)
  1244. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1245. return sum;
  1246. }
  1247. #ifdef CONFIG_SMP
  1248. /*
  1249. * double_rq_lock - safely lock two runqueues
  1250. *
  1251. * Note this does not disable interrupts like task_rq_lock,
  1252. * you need to do so manually before calling.
  1253. */
  1254. static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
  1255. __acquires(rq1->lock)
  1256. __acquires(rq2->lock)
  1257. {
  1258. if (rq1 == rq2) {
  1259. spin_lock(&rq1->lock);
  1260. __acquire(rq2->lock); /* Fake it out ;) */
  1261. } else {
  1262. if (rq1 < rq2) {
  1263. spin_lock(&rq1->lock);
  1264. spin_lock(&rq2->lock);
  1265. } else {
  1266. spin_lock(&rq2->lock);
  1267. spin_lock(&rq1->lock);
  1268. }
  1269. }
  1270. }
  1271. /*
  1272. * double_rq_unlock - safely unlock two runqueues
  1273. *
  1274. * Note this does not restore interrupts like task_rq_unlock,
  1275. * you need to do so manually after calling.
  1276. */
  1277. static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
  1278. __releases(rq1->lock)
  1279. __releases(rq2->lock)
  1280. {
  1281. spin_unlock(&rq1->lock);
  1282. if (rq1 != rq2)
  1283. spin_unlock(&rq2->lock);
  1284. else
  1285. __release(rq2->lock);
  1286. }
  1287. /*
  1288. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1289. */
  1290. static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
  1291. __releases(this_rq->lock)
  1292. __acquires(busiest->lock)
  1293. __acquires(this_rq->lock)
  1294. {
  1295. if (unlikely(!spin_trylock(&busiest->lock))) {
  1296. if (busiest < this_rq) {
  1297. spin_unlock(&this_rq->lock);
  1298. spin_lock(&busiest->lock);
  1299. spin_lock(&this_rq->lock);
  1300. } else
  1301. spin_lock(&busiest->lock);
  1302. }
  1303. }
  1304. /*
  1305. * find_idlest_cpu - find the least busy runqueue.
  1306. */
  1307. static int find_idlest_cpu(struct task_struct *p, int this_cpu,
  1308. struct sched_domain *sd)
  1309. {
  1310. unsigned long load, min_load, this_load;
  1311. int i, min_cpu;
  1312. cpumask_t mask;
  1313. min_cpu = UINT_MAX;
  1314. min_load = ULONG_MAX;
  1315. cpus_and(mask, sd->span, p->cpus_allowed);
  1316. for_each_cpu_mask(i, mask) {
  1317. load = target_load(i, sd->wake_idx);
  1318. if (load < min_load) {
  1319. min_cpu = i;
  1320. min_load = load;
  1321. /* break out early on an idle CPU: */
  1322. if (!min_load)
  1323. break;
  1324. }
  1325. }
  1326. /* add +1 to account for the new task */
  1327. this_load = source_load(this_cpu, sd->wake_idx) + SCHED_LOAD_SCALE;
  1328. /*
  1329. * Would with the addition of the new task to the
  1330. * current CPU there be an imbalance between this
  1331. * CPU and the idlest CPU?
  1332. *
  1333. * Use half of the balancing threshold - new-context is
  1334. * a good opportunity to balance.
  1335. */
  1336. if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
  1337. return min_cpu;
  1338. return this_cpu;
  1339. }
  1340. /*
  1341. * If dest_cpu is allowed for this process, migrate the task to it.
  1342. * This is accomplished by forcing the cpu_allowed mask to only
  1343. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1344. * the cpu_allowed mask is restored.
  1345. */
  1346. static void sched_migrate_task(task_t *p, int dest_cpu)
  1347. {
  1348. migration_req_t req;
  1349. runqueue_t *rq;
  1350. unsigned long flags;
  1351. rq = task_rq_lock(p, &flags);
  1352. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1353. || unlikely(cpu_is_offline(dest_cpu)))
  1354. goto out;
  1355. /* force the process onto the specified CPU */
  1356. if (migrate_task(p, dest_cpu, &req)) {
  1357. /* Need to wait for migration thread (might exit: take ref). */
  1358. struct task_struct *mt = rq->migration_thread;
  1359. get_task_struct(mt);
  1360. task_rq_unlock(rq, &flags);
  1361. wake_up_process(mt);
  1362. put_task_struct(mt);
  1363. wait_for_completion(&req.done);
  1364. return;
  1365. }
  1366. out:
  1367. task_rq_unlock(rq, &flags);
  1368. }
  1369. /*
  1370. * sched_exec(): find the highest-level, exec-balance-capable
  1371. * domain and try to migrate the task to the least loaded CPU.
  1372. *
  1373. * execve() is a valuable balancing opportunity, because at this point
  1374. * the task has the smallest effective memory and cache footprint.
  1375. */
  1376. void sched_exec(void)
  1377. {
  1378. struct sched_domain *tmp, *sd = NULL;
  1379. int new_cpu, this_cpu = get_cpu();
  1380. /* Prefer the current CPU if there's only this task running */
  1381. if (this_rq()->nr_running <= 1)
  1382. goto out;
  1383. for_each_domain(this_cpu, tmp)
  1384. if (tmp->flags & SD_BALANCE_EXEC)
  1385. sd = tmp;
  1386. if (sd) {
  1387. schedstat_inc(sd, sbe_attempts);
  1388. new_cpu = find_idlest_cpu(current, this_cpu, sd);
  1389. if (new_cpu != this_cpu) {
  1390. schedstat_inc(sd, sbe_pushed);
  1391. put_cpu();
  1392. sched_migrate_task(current, new_cpu);
  1393. return;
  1394. }
  1395. }
  1396. out:
  1397. put_cpu();
  1398. }
  1399. /*
  1400. * pull_task - move a task from a remote runqueue to the local runqueue.
  1401. * Both runqueues must be locked.
  1402. */
  1403. static inline
  1404. void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
  1405. runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
  1406. {
  1407. dequeue_task(p, src_array);
  1408. src_rq->nr_running--;
  1409. set_task_cpu(p, this_cpu);
  1410. this_rq->nr_running++;
  1411. enqueue_task(p, this_array);
  1412. p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
  1413. + this_rq->timestamp_last_tick;
  1414. /*
  1415. * Note that idle threads have a prio of MAX_PRIO, for this test
  1416. * to be always true for them.
  1417. */
  1418. if (TASK_PREEMPTS_CURR(p, this_rq))
  1419. resched_task(this_rq->curr);
  1420. }
  1421. /*
  1422. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1423. */
  1424. static inline
  1425. int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
  1426. struct sched_domain *sd, enum idle_type idle, int *all_pinned)
  1427. {
  1428. /*
  1429. * We do not migrate tasks that are:
  1430. * 1) running (obviously), or
  1431. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1432. * 3) are cache-hot on their current CPU.
  1433. */
  1434. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1435. return 0;
  1436. *all_pinned = 0;
  1437. if (task_running(rq, p))
  1438. return 0;
  1439. /*
  1440. * Aggressive migration if:
  1441. * 1) task is cache cold, or
  1442. * 2) too many balance attempts have failed.
  1443. */
  1444. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1445. return 1;
  1446. if (task_hot(p, rq->timestamp_last_tick, sd))
  1447. return 0;
  1448. return 1;
  1449. }
  1450. /*
  1451. * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
  1452. * as part of a balancing operation within "domain". Returns the number of
  1453. * tasks moved.
  1454. *
  1455. * Called with both runqueues locked.
  1456. */
  1457. static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
  1458. unsigned long max_nr_move, struct sched_domain *sd,
  1459. enum idle_type idle, int *all_pinned)
  1460. {
  1461. prio_array_t *array, *dst_array;
  1462. struct list_head *head, *curr;
  1463. int idx, pulled = 0, pinned = 0;
  1464. task_t *tmp;
  1465. if (max_nr_move == 0)
  1466. goto out;
  1467. pinned = 1;
  1468. /*
  1469. * We first consider expired tasks. Those will likely not be
  1470. * executed in the near future, and they are most likely to
  1471. * be cache-cold, thus switching CPUs has the least effect
  1472. * on them.
  1473. */
  1474. if (busiest->expired->nr_active) {
  1475. array = busiest->expired;
  1476. dst_array = this_rq->expired;
  1477. } else {
  1478. array = busiest->active;
  1479. dst_array = this_rq->active;
  1480. }
  1481. new_array:
  1482. /* Start searching at priority 0: */
  1483. idx = 0;
  1484. skip_bitmap:
  1485. if (!idx)
  1486. idx = sched_find_first_bit(array->bitmap);
  1487. else
  1488. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1489. if (idx >= MAX_PRIO) {
  1490. if (array == busiest->expired && busiest->active->nr_active) {
  1491. array = busiest->active;
  1492. dst_array = this_rq->active;
  1493. goto new_array;
  1494. }
  1495. goto out;
  1496. }
  1497. head = array->queue + idx;
  1498. curr = head->prev;
  1499. skip_queue:
  1500. tmp = list_entry(curr, task_t, run_list);
  1501. curr = curr->prev;
  1502. if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1503. if (curr != head)
  1504. goto skip_queue;
  1505. idx++;
  1506. goto skip_bitmap;
  1507. }
  1508. #ifdef CONFIG_SCHEDSTATS
  1509. if (task_hot(tmp, busiest->timestamp_last_tick, sd))
  1510. schedstat_inc(sd, lb_hot_gained[idle]);
  1511. #endif
  1512. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1513. pulled++;
  1514. /* We only want to steal up to the prescribed number of tasks. */
  1515. if (pulled < max_nr_move) {
  1516. if (curr != head)
  1517. goto skip_queue;
  1518. idx++;
  1519. goto skip_bitmap;
  1520. }
  1521. out:
  1522. /*
  1523. * Right now, this is the only place pull_task() is called,
  1524. * so we can safely collect pull_task() stats here rather than
  1525. * inside pull_task().
  1526. */
  1527. schedstat_add(sd, lb_gained[idle], pulled);
  1528. if (all_pinned)
  1529. *all_pinned = pinned;
  1530. return pulled;
  1531. }
  1532. /*
  1533. * find_busiest_group finds and returns the busiest CPU group within the
  1534. * domain. It calculates and returns the number of tasks which should be
  1535. * moved to restore balance via the imbalance parameter.
  1536. */
  1537. static struct sched_group *
  1538. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1539. unsigned long *imbalance, enum idle_type idle)
  1540. {
  1541. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1542. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1543. int load_idx;
  1544. max_load = this_load = total_load = total_pwr = 0;
  1545. if (idle == NOT_IDLE)
  1546. load_idx = sd->busy_idx;
  1547. else if (idle == NEWLY_IDLE)
  1548. load_idx = sd->newidle_idx;
  1549. else
  1550. load_idx = sd->idle_idx;
  1551. do {
  1552. unsigned long load;
  1553. int local_group;
  1554. int i;
  1555. local_group = cpu_isset(this_cpu, group->cpumask);
  1556. /* Tally up the load of all CPUs in the group */
  1557. avg_load = 0;
  1558. for_each_cpu_mask(i, group->cpumask) {
  1559. /* Bias balancing toward cpus of our domain */
  1560. if (local_group)
  1561. load = target_load(i, load_idx);
  1562. else
  1563. load = source_load(i, load_idx);
  1564. avg_load += load;
  1565. }
  1566. total_load += avg_load;
  1567. total_pwr += group->cpu_power;
  1568. /* Adjust by relative CPU power of the group */
  1569. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1570. if (local_group) {
  1571. this_load = avg_load;
  1572. this = group;
  1573. goto nextgroup;
  1574. } else if (avg_load > max_load) {
  1575. max_load = avg_load;
  1576. busiest = group;
  1577. }
  1578. nextgroup:
  1579. group = group->next;
  1580. } while (group != sd->groups);
  1581. if (!busiest || this_load >= max_load)
  1582. goto out_balanced;
  1583. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  1584. if (this_load >= avg_load ||
  1585. 100*max_load <= sd->imbalance_pct*this_load)
  1586. goto out_balanced;
  1587. /*
  1588. * We're trying to get all the cpus to the average_load, so we don't
  1589. * want to push ourselves above the average load, nor do we wish to
  1590. * reduce the max loaded cpu below the average load, as either of these
  1591. * actions would just result in more rebalancing later, and ping-pong
  1592. * tasks around. Thus we look for the minimum possible imbalance.
  1593. * Negative imbalances (*we* are more loaded than anyone else) will
  1594. * be counted as no imbalance for these purposes -- we can't fix that
  1595. * by pulling tasks to us. Be careful of negative numbers as they'll
  1596. * appear as very large values with unsigned longs.
  1597. */
  1598. /* How much load to actually move to equalise the imbalance */
  1599. *imbalance = min((max_load - avg_load) * busiest->cpu_power,
  1600. (avg_load - this_load) * this->cpu_power)
  1601. / SCHED_LOAD_SCALE;
  1602. if (*imbalance < SCHED_LOAD_SCALE) {
  1603. unsigned long pwr_now = 0, pwr_move = 0;
  1604. unsigned long tmp;
  1605. if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
  1606. *imbalance = 1;
  1607. return busiest;
  1608. }
  1609. /*
  1610. * OK, we don't have enough imbalance to justify moving tasks,
  1611. * however we may be able to increase total CPU power used by
  1612. * moving them.
  1613. */
  1614. pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
  1615. pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
  1616. pwr_now /= SCHED_LOAD_SCALE;
  1617. /* Amount of load we'd subtract */
  1618. tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
  1619. if (max_load > tmp)
  1620. pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
  1621. max_load - tmp);
  1622. /* Amount of load we'd add */
  1623. if (max_load*busiest->cpu_power <
  1624. SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
  1625. tmp = max_load*busiest->cpu_power/this->cpu_power;
  1626. else
  1627. tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
  1628. pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
  1629. pwr_move /= SCHED_LOAD_SCALE;
  1630. /* Move if we gain throughput */
  1631. if (pwr_move <= pwr_now)
  1632. goto out_balanced;
  1633. *imbalance = 1;
  1634. return busiest;
  1635. }
  1636. /* Get rid of the scaling factor, rounding down as we divide */
  1637. *imbalance = *imbalance / SCHED_LOAD_SCALE;
  1638. return busiest;
  1639. out_balanced:
  1640. *imbalance = 0;
  1641. return NULL;
  1642. }
  1643. /*
  1644. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  1645. */
  1646. static runqueue_t *find_busiest_queue(struct sched_group *group)
  1647. {
  1648. unsigned long load, max_load = 0;
  1649. runqueue_t *busiest = NULL;
  1650. int i;
  1651. for_each_cpu_mask(i, group->cpumask) {
  1652. load = source_load(i, 0);
  1653. if (load > max_load) {
  1654. max_load = load;
  1655. busiest = cpu_rq(i);
  1656. }
  1657. }
  1658. return busiest;
  1659. }
  1660. /*
  1661. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  1662. * tasks if there is an imbalance.
  1663. *
  1664. * Called with this_rq unlocked.
  1665. */
  1666. static int load_balance(int this_cpu, runqueue_t *this_rq,
  1667. struct sched_domain *sd, enum idle_type idle)
  1668. {
  1669. struct sched_group *group;
  1670. runqueue_t *busiest;
  1671. unsigned long imbalance;
  1672. int nr_moved, all_pinned;
  1673. int active_balance = 0;
  1674. spin_lock(&this_rq->lock);
  1675. schedstat_inc(sd, lb_cnt[idle]);
  1676. group = find_busiest_group(sd, this_cpu, &imbalance, idle);
  1677. if (!group) {
  1678. schedstat_inc(sd, lb_nobusyg[idle]);
  1679. goto out_balanced;
  1680. }
  1681. busiest = find_busiest_queue(group);
  1682. if (!busiest) {
  1683. schedstat_inc(sd, lb_nobusyq[idle]);
  1684. goto out_balanced;
  1685. }
  1686. BUG_ON(busiest == this_rq);
  1687. schedstat_add(sd, lb_imbalance[idle], imbalance);
  1688. nr_moved = 0;
  1689. if (busiest->nr_running > 1) {
  1690. /*
  1691. * Attempt to move tasks. If find_busiest_group has found
  1692. * an imbalance but busiest->nr_running <= 1, the group is
  1693. * still unbalanced. nr_moved simply stays zero, so it is
  1694. * correctly treated as an imbalance.
  1695. */
  1696. double_lock_balance(this_rq, busiest);
  1697. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  1698. imbalance, sd, idle,
  1699. &all_pinned);
  1700. spin_unlock(&busiest->lock);
  1701. /* All tasks on this runqueue were pinned by CPU affinity */
  1702. if (unlikely(all_pinned))
  1703. goto out_balanced;
  1704. }
  1705. spin_unlock(&this_rq->lock);
  1706. if (!nr_moved) {
  1707. schedstat_inc(sd, lb_failed[idle]);
  1708. sd->nr_balance_failed++;
  1709. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  1710. spin_lock(&busiest->lock);
  1711. if (!busiest->active_balance) {
  1712. busiest->active_balance = 1;
  1713. busiest->push_cpu = this_cpu;
  1714. active_balance = 1;
  1715. }
  1716. spin_unlock(&busiest->lock);
  1717. if (active_balance)
  1718. wake_up_process(busiest->migration_thread);
  1719. /*
  1720. * We've kicked active balancing, reset the failure
  1721. * counter.
  1722. */
  1723. sd->nr_balance_failed = sd->cache_nice_tries+1;
  1724. }
  1725. } else
  1726. sd->nr_balance_failed = 0;
  1727. if (likely(!active_balance)) {
  1728. /* We were unbalanced, so reset the balancing interval */
  1729. sd->balance_interval = sd->min_interval;
  1730. } else {
  1731. /*
  1732. * If we've begun active balancing, start to back off. This
  1733. * case may not be covered by the all_pinned logic if there
  1734. * is only 1 task on the busy runqueue (because we don't call
  1735. * move_tasks).
  1736. */
  1737. if (sd->balance_interval < sd->max_interval)
  1738. sd->balance_interval *= 2;
  1739. }
  1740. return nr_moved;
  1741. out_balanced:
  1742. spin_unlock(&this_rq->lock);
  1743. schedstat_inc(sd, lb_balanced[idle]);
  1744. sd->nr_balance_failed = 0;
  1745. /* tune up the balancing interval */
  1746. if (sd->balance_interval < sd->max_interval)
  1747. sd->balance_interval *= 2;
  1748. return 0;
  1749. }
  1750. /*
  1751. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  1752. * tasks if there is an imbalance.
  1753. *
  1754. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  1755. * this_rq is locked.
  1756. */
  1757. static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
  1758. struct sched_domain *sd)
  1759. {
  1760. struct sched_group *group;
  1761. runqueue_t *busiest = NULL;
  1762. unsigned long imbalance;
  1763. int nr_moved = 0;
  1764. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  1765. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
  1766. if (!group) {
  1767. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  1768. goto out_balanced;
  1769. }
  1770. busiest = find_busiest_queue(group);
  1771. if (!busiest) {
  1772. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  1773. goto out_balanced;
  1774. }
  1775. BUG_ON(busiest == this_rq);
  1776. /* Attempt to move tasks */
  1777. double_lock_balance(this_rq, busiest);
  1778. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  1779. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  1780. imbalance, sd, NEWLY_IDLE, NULL);
  1781. if (!nr_moved)
  1782. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  1783. else
  1784. sd->nr_balance_failed = 0;
  1785. spin_unlock(&busiest->lock);
  1786. return nr_moved;
  1787. out_balanced:
  1788. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  1789. sd->nr_balance_failed = 0;
  1790. return 0;
  1791. }
  1792. /*
  1793. * idle_balance is called by schedule() if this_cpu is about to become
  1794. * idle. Attempts to pull tasks from other CPUs.
  1795. */
  1796. static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
  1797. {
  1798. struct sched_domain *sd;
  1799. for_each_domain(this_cpu, sd) {
  1800. if (sd->flags & SD_BALANCE_NEWIDLE) {
  1801. if (load_balance_newidle(this_cpu, this_rq, sd)) {
  1802. /* We've pulled tasks over so stop searching */
  1803. break;
  1804. }
  1805. }
  1806. }
  1807. }
  1808. /*
  1809. * active_load_balance is run by migration threads. It pushes running tasks
  1810. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  1811. * running on each physical CPU where possible, and avoids physical /
  1812. * logical imbalances.
  1813. *
  1814. * Called with busiest_rq locked.
  1815. */
  1816. static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
  1817. {
  1818. struct sched_domain *sd;
  1819. runqueue_t *target_rq;
  1820. int target_cpu = busiest_rq->push_cpu;
  1821. if (busiest_rq->nr_running <= 1)
  1822. /* no task to move */
  1823. return;
  1824. target_rq = cpu_rq(target_cpu);
  1825. /*
  1826. * This condition is "impossible", if it occurs
  1827. * we need to fix it. Originally reported by
  1828. * Bjorn Helgaas on a 128-cpu setup.
  1829. */
  1830. BUG_ON(busiest_rq == target_rq);
  1831. /* move a task from busiest_rq to target_rq */
  1832. double_lock_balance(busiest_rq, target_rq);
  1833. /* Search for an sd spanning us and the target CPU. */
  1834. for_each_domain(target_cpu, sd)
  1835. if ((sd->flags & SD_LOAD_BALANCE) &&
  1836. cpu_isset(busiest_cpu, sd->span))
  1837. break;
  1838. if (unlikely(sd == NULL))
  1839. goto out;
  1840. schedstat_inc(sd, alb_cnt);
  1841. if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
  1842. schedstat_inc(sd, alb_pushed);
  1843. else
  1844. schedstat_inc(sd, alb_failed);
  1845. out:
  1846. spin_unlock(&target_rq->lock);
  1847. }
  1848. /*
  1849. * rebalance_tick will get called every timer tick, on every CPU.
  1850. *
  1851. * It checks each scheduling domain to see if it is due to be balanced,
  1852. * and initiates a balancing operation if so.
  1853. *
  1854. * Balancing parameters are set up in arch_init_sched_domains.
  1855. */
  1856. /* Don't have all balancing operations going off at once */
  1857. #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
  1858. static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
  1859. enum idle_type idle)
  1860. {
  1861. unsigned long old_load, this_load;
  1862. unsigned long j = jiffies + CPU_OFFSET(this_cpu);
  1863. struct sched_domain *sd;
  1864. int i;
  1865. this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
  1866. /* Update our load */
  1867. for (i = 0; i < 3; i++) {
  1868. unsigned long new_load = this_load;
  1869. int scale = 1 << i;
  1870. old_load = this_rq->cpu_load[i];
  1871. /*
  1872. * Round up the averaging division if load is increasing. This
  1873. * prevents us from getting stuck on 9 if the load is 10, for
  1874. * example.
  1875. */
  1876. if (new_load > old_load)
  1877. new_load += scale-1;
  1878. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
  1879. }
  1880. for_each_domain(this_cpu, sd) {
  1881. unsigned long interval;
  1882. if (!(sd->flags & SD_LOAD_BALANCE))
  1883. continue;
  1884. interval = sd->balance_interval;
  1885. if (idle != SCHED_IDLE)
  1886. interval *= sd->busy_factor;
  1887. /* scale ms to jiffies */
  1888. interval = msecs_to_jiffies(interval);
  1889. if (unlikely(!interval))
  1890. interval = 1;
  1891. if (j - sd->last_balance >= interval) {
  1892. if (load_balance(this_cpu, this_rq, sd, idle)) {
  1893. /* We've pulled tasks over so no longer idle */
  1894. idle = NOT_IDLE;
  1895. }
  1896. sd->last_balance += interval;
  1897. }
  1898. }
  1899. }
  1900. #else
  1901. /*
  1902. * on UP we do not need to balance between CPUs:
  1903. */
  1904. static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
  1905. {
  1906. }
  1907. static inline void idle_balance(int cpu, runqueue_t *rq)
  1908. {
  1909. }
  1910. #endif
  1911. static inline int wake_priority_sleeper(runqueue_t *rq)
  1912. {
  1913. int ret = 0;
  1914. #ifdef CONFIG_SCHED_SMT
  1915. spin_lock(&rq->lock);
  1916. /*
  1917. * If an SMT sibling task has been put to sleep for priority
  1918. * reasons reschedule the idle task to see if it can now run.
  1919. */
  1920. if (rq->nr_running) {
  1921. resched_task(rq->idle);
  1922. ret = 1;
  1923. }
  1924. spin_unlock(&rq->lock);
  1925. #endif
  1926. return ret;
  1927. }
  1928. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1929. EXPORT_PER_CPU_SYMBOL(kstat);
  1930. /*
  1931. * This is called on clock ticks and on context switches.
  1932. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  1933. */
  1934. static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
  1935. unsigned long long now)
  1936. {
  1937. unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
  1938. p->sched_time += now - last;
  1939. }
  1940. /*
  1941. * Return current->sched_time plus any more ns on the sched_clock
  1942. * that have not yet been banked.
  1943. */
  1944. unsigned long long current_sched_time(const task_t *tsk)
  1945. {
  1946. unsigned long long ns;
  1947. unsigned long flags;
  1948. local_irq_save(flags);
  1949. ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
  1950. ns = tsk->sched_time + (sched_clock() - ns);
  1951. local_irq_restore(flags);
  1952. return ns;
  1953. }
  1954. /*
  1955. * We place interactive tasks back into the active array, if possible.
  1956. *
  1957. * To guarantee that this does not starve expired tasks we ignore the
  1958. * interactivity of a task if the first expired task had to wait more
  1959. * than a 'reasonable' amount of time. This deadline timeout is
  1960. * load-dependent, as the frequency of array switched decreases with
  1961. * increasing number of running tasks. We also ignore the interactivity
  1962. * if a better static_prio task has expired:
  1963. */
  1964. #define EXPIRED_STARVING(rq) \
  1965. ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
  1966. (jiffies - (rq)->expired_timestamp >= \
  1967. STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
  1968. ((rq)->curr->static_prio > (rq)->best_expired_prio))
  1969. /*
  1970. * Account user cpu time to a process.
  1971. * @p: the process that the cpu time gets accounted to
  1972. * @hardirq_offset: the offset to subtract from hardirq_count()
  1973. * @cputime: the cpu time spent in user space since the last update
  1974. */
  1975. void account_user_time(struct task_struct *p, cputime_t cputime)
  1976. {
  1977. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1978. cputime64_t tmp;
  1979. p->utime = cputime_add(p->utime, cputime);
  1980. /* Add user time to cpustat. */
  1981. tmp = cputime_to_cputime64(cputime);
  1982. if (TASK_NICE(p) > 0)
  1983. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  1984. else
  1985. cpustat->user = cputime64_add(cpustat->user, tmp);
  1986. }
  1987. /*
  1988. * Account system cpu time to a process.
  1989. * @p: the process that the cpu time gets accounted to
  1990. * @hardirq_offset: the offset to subtract from hardirq_count()
  1991. * @cputime: the cpu time spent in kernel space since the last update
  1992. */
  1993. void account_system_time(struct task_struct *p, int hardirq_offset,
  1994. cputime_t cputime)
  1995. {
  1996. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1997. runqueue_t *rq = this_rq();
  1998. cputime64_t tmp;
  1999. p->stime = cputime_add(p->stime, cputime);
  2000. /* Add system time to cpustat. */
  2001. tmp = cputime_to_cputime64(cputime);
  2002. if (hardirq_count() - hardirq_offset)
  2003. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2004. else if (softirq_count())
  2005. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2006. else if (p != rq->idle)
  2007. cpustat->system = cputime64_add(cpustat->system, tmp);
  2008. else if (atomic_read(&rq->nr_iowait) > 0)
  2009. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2010. else
  2011. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2012. /* Account for system time used */
  2013. acct_update_integrals(p);
  2014. /* Update rss highwater mark */
  2015. update_mem_hiwater(p);
  2016. }
  2017. /*
  2018. * Account for involuntary wait time.
  2019. * @p: the process from which the cpu time has been stolen
  2020. * @steal: the cpu time spent in involuntary wait
  2021. */
  2022. void account_steal_time(struct task_struct *p, cputime_t steal)
  2023. {
  2024. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2025. cputime64_t tmp = cputime_to_cputime64(steal);
  2026. runqueue_t *rq = this_rq();
  2027. if (p == rq->idle) {
  2028. p->stime = cputime_add(p->stime, steal);
  2029. if (atomic_read(&rq->nr_iowait) > 0)
  2030. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2031. else
  2032. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2033. } else
  2034. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2035. }
  2036. /*
  2037. * This function gets called by the timer code, with HZ frequency.
  2038. * We call it with interrupts disabled.
  2039. *
  2040. * It also gets called by the fork code, when changing the parent's
  2041. * timeslices.
  2042. */
  2043. void scheduler_tick(void)
  2044. {
  2045. int cpu = smp_processor_id();
  2046. runqueue_t *rq = this_rq();
  2047. task_t *p = current;
  2048. unsigned long long now = sched_clock();
  2049. update_cpu_clock(p, rq, now);
  2050. rq->timestamp_last_tick = now;
  2051. if (p == rq->idle) {
  2052. if (wake_priority_sleeper(rq))
  2053. goto out;
  2054. rebalance_tick(cpu, rq, SCHED_IDLE);
  2055. return;
  2056. }
  2057. /* Task might have expired already, but not scheduled off yet */
  2058. if (p->array != rq->active) {
  2059. set_tsk_need_resched(p);
  2060. goto out;
  2061. }
  2062. spin_lock(&rq->lock);
  2063. /*
  2064. * The task was running during this tick - update the
  2065. * time slice counter. Note: we do not update a thread's
  2066. * priority until it either goes to sleep or uses up its
  2067. * timeslice. This makes it possible for interactive tasks
  2068. * to use up their timeslices at their highest priority levels.
  2069. */
  2070. if (rt_task(p)) {
  2071. /*
  2072. * RR tasks need a special form of timeslice management.
  2073. * FIFO tasks have no timeslices.
  2074. */
  2075. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2076. p->time_slice = task_timeslice(p);
  2077. p->first_time_slice = 0;
  2078. set_tsk_need_resched(p);
  2079. /* put it at the end of the queue: */
  2080. requeue_task(p, rq->active);
  2081. }
  2082. goto out_unlock;
  2083. }
  2084. if (!--p->time_slice) {
  2085. dequeue_task(p, rq->active);
  2086. set_tsk_need_resched(p);
  2087. p->prio = effective_prio(p);
  2088. p->time_slice = task_timeslice(p);
  2089. p->first_time_slice = 0;
  2090. if (!rq->expired_timestamp)
  2091. rq->expired_timestamp = jiffies;
  2092. if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
  2093. enqueue_task(p, rq->expired);
  2094. if (p->static_prio < rq->best_expired_prio)
  2095. rq->best_expired_prio = p->static_prio;
  2096. } else
  2097. enqueue_task(p, rq->active);
  2098. } else {
  2099. /*
  2100. * Prevent a too long timeslice allowing a task to monopolize
  2101. * the CPU. We do this by splitting up the timeslice into
  2102. * smaller pieces.
  2103. *
  2104. * Note: this does not mean the task's timeslices expire or
  2105. * get lost in any way, they just might be preempted by
  2106. * another task of equal priority. (one with higher
  2107. * priority would have preempted this task already.) We
  2108. * requeue this task to the end of the list on this priority
  2109. * level, which is in essence a round-robin of tasks with
  2110. * equal priority.
  2111. *
  2112. * This only applies to tasks in the interactive
  2113. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2114. */
  2115. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2116. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2117. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2118. (p->array == rq->active)) {
  2119. requeue_task(p, rq->active);
  2120. set_tsk_need_resched(p);
  2121. }
  2122. }
  2123. out_unlock:
  2124. spin_unlock(&rq->lock);
  2125. out:
  2126. rebalance_tick(cpu, rq, NOT_IDLE);
  2127. }
  2128. #ifdef CONFIG_SCHED_SMT
  2129. static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
  2130. {
  2131. struct sched_domain *sd = this_rq->sd;
  2132. cpumask_t sibling_map;
  2133. int i;
  2134. if (!(sd->flags & SD_SHARE_CPUPOWER))
  2135. return;
  2136. /*
  2137. * Unlock the current runqueue because we have to lock in
  2138. * CPU order to avoid deadlocks. Caller knows that we might
  2139. * unlock. We keep IRQs disabled.
  2140. */
  2141. spin_unlock(&this_rq->lock);
  2142. sibling_map = sd->span;
  2143. for_each_cpu_mask(i, sibling_map)
  2144. spin_lock(&cpu_rq(i)->lock);
  2145. /*
  2146. * We clear this CPU from the mask. This both simplifies the
  2147. * inner loop and keps this_rq locked when we exit:
  2148. */
  2149. cpu_clear(this_cpu, sibling_map);
  2150. for_each_cpu_mask(i, sibling_map) {
  2151. runqueue_t *smt_rq = cpu_rq(i);
  2152. /*
  2153. * If an SMT sibling task is sleeping due to priority
  2154. * reasons wake it up now.
  2155. */
  2156. if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
  2157. resched_task(smt_rq->idle);
  2158. }
  2159. for_each_cpu_mask(i, sibling_map)
  2160. spin_unlock(&cpu_rq(i)->lock);
  2161. /*
  2162. * We exit with this_cpu's rq still held and IRQs
  2163. * still disabled:
  2164. */
  2165. }
  2166. static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
  2167. {
  2168. struct sched_domain *sd = this_rq->sd;
  2169. cpumask_t sibling_map;
  2170. prio_array_t *array;
  2171. int ret = 0, i;
  2172. task_t *p;
  2173. if (!(sd->flags & SD_SHARE_CPUPOWER))
  2174. return 0;
  2175. /*
  2176. * The same locking rules and details apply as for
  2177. * wake_sleeping_dependent():
  2178. */
  2179. spin_unlock(&this_rq->lock);
  2180. sibling_map = sd->span;
  2181. for_each_cpu_mask(i, sibling_map)
  2182. spin_lock(&cpu_rq(i)->lock);
  2183. cpu_clear(this_cpu, sibling_map);
  2184. /*
  2185. * Establish next task to be run - it might have gone away because
  2186. * we released the runqueue lock above:
  2187. */
  2188. if (!this_rq->nr_running)
  2189. goto out_unlock;
  2190. array = this_rq->active;
  2191. if (!array->nr_active)
  2192. array = this_rq->expired;
  2193. BUG_ON(!array->nr_active);
  2194. p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
  2195. task_t, run_list);
  2196. for_each_cpu_mask(i, sibling_map) {
  2197. runqueue_t *smt_rq = cpu_rq(i);
  2198. task_t *smt_curr = smt_rq->curr;
  2199. /*
  2200. * If a user task with lower static priority than the
  2201. * running task on the SMT sibling is trying to schedule,
  2202. * delay it till there is proportionately less timeslice
  2203. * left of the sibling task to prevent a lower priority
  2204. * task from using an unfair proportion of the
  2205. * physical cpu's resources. -ck
  2206. */
  2207. if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
  2208. task_timeslice(p) || rt_task(smt_curr)) &&
  2209. p->mm && smt_curr->mm && !rt_task(p))
  2210. ret = 1;
  2211. /*
  2212. * Reschedule a lower priority task on the SMT sibling,
  2213. * or wake it up if it has been put to sleep for priority
  2214. * reasons.
  2215. */
  2216. if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
  2217. task_timeslice(smt_curr) || rt_task(p)) &&
  2218. smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
  2219. (smt_curr == smt_rq->idle && smt_rq->nr_running))
  2220. resched_task(smt_curr);
  2221. }
  2222. out_unlock:
  2223. for_each_cpu_mask(i, sibling_map)
  2224. spin_unlock(&cpu_rq(i)->lock);
  2225. return ret;
  2226. }
  2227. #else
  2228. static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
  2229. {
  2230. }
  2231. static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
  2232. {
  2233. return 0;
  2234. }
  2235. #endif
  2236. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2237. void fastcall add_preempt_count(int val)
  2238. {
  2239. /*
  2240. * Underflow?
  2241. */
  2242. BUG_ON((preempt_count() < 0));
  2243. preempt_count() += val;
  2244. /*
  2245. * Spinlock count overflowing soon?
  2246. */
  2247. BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
  2248. }
  2249. EXPORT_SYMBOL(add_preempt_count);
  2250. void fastcall sub_preempt_count(int val)
  2251. {
  2252. /*
  2253. * Underflow?
  2254. */
  2255. BUG_ON(val > preempt_count());
  2256. /*
  2257. * Is the spinlock portion underflowing?
  2258. */
  2259. BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
  2260. preempt_count() -= val;
  2261. }
  2262. EXPORT_SYMBOL(sub_preempt_count);
  2263. #endif
  2264. /*
  2265. * schedule() is the main scheduler function.
  2266. */
  2267. asmlinkage void __sched schedule(void)
  2268. {
  2269. long *switch_count;
  2270. task_t *prev, *next;
  2271. runqueue_t *rq;
  2272. prio_array_t *array;
  2273. struct list_head *queue;
  2274. unsigned long long now;
  2275. unsigned long run_time;
  2276. int cpu, idx;
  2277. /*
  2278. * Test if we are atomic. Since do_exit() needs to call into
  2279. * schedule() atomically, we ignore that path for now.
  2280. * Otherwise, whine if we are scheduling when we should not be.
  2281. */
  2282. if (likely(!current->exit_state)) {
  2283. if (unlikely(in_atomic())) {
  2284. printk(KERN_ERR "scheduling while atomic: "
  2285. "%s/0x%08x/%d\n",
  2286. current->comm, preempt_count(), current->pid);
  2287. dump_stack();
  2288. }
  2289. }
  2290. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2291. need_resched:
  2292. preempt_disable();
  2293. prev = current;
  2294. release_kernel_lock(prev);
  2295. need_resched_nonpreemptible:
  2296. rq = this_rq();
  2297. /*
  2298. * The idle thread is not allowed to schedule!
  2299. * Remove this check after it has been exercised a bit.
  2300. */
  2301. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  2302. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  2303. dump_stack();
  2304. }
  2305. schedstat_inc(rq, sched_cnt);
  2306. now = sched_clock();
  2307. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  2308. run_time = now - prev->timestamp;
  2309. if (unlikely((long long)(now - prev->timestamp) < 0))
  2310. run_time = 0;
  2311. } else
  2312. run_time = NS_MAX_SLEEP_AVG;
  2313. /*
  2314. * Tasks charged proportionately less run_time at high sleep_avg to
  2315. * delay them losing their interactive status
  2316. */
  2317. run_time /= (CURRENT_BONUS(prev) ? : 1);
  2318. spin_lock_irq(&rq->lock);
  2319. if (unlikely(prev->flags & PF_DEAD))
  2320. prev->state = EXIT_DEAD;
  2321. switch_count = &prev->nivcsw;
  2322. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2323. switch_count = &prev->nvcsw;
  2324. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2325. unlikely(signal_pending(prev))))
  2326. prev->state = TASK_RUNNING;
  2327. else {
  2328. if (prev->state == TASK_UNINTERRUPTIBLE)
  2329. rq->nr_uninterruptible++;
  2330. deactivate_task(prev, rq);
  2331. }
  2332. }
  2333. cpu = smp_processor_id();
  2334. if (unlikely(!rq->nr_running)) {
  2335. go_idle:
  2336. idle_balance(cpu, rq);
  2337. if (!rq->nr_running) {
  2338. next = rq->idle;
  2339. rq->expired_timestamp = 0;
  2340. wake_sleeping_dependent(cpu, rq);
  2341. /*
  2342. * wake_sleeping_dependent() might have released
  2343. * the runqueue, so break out if we got new
  2344. * tasks meanwhile:
  2345. */
  2346. if (!rq->nr_running)
  2347. goto switch_tasks;
  2348. }
  2349. } else {
  2350. if (dependent_sleeper(cpu, rq)) {
  2351. next = rq->idle;
  2352. goto switch_tasks;
  2353. }
  2354. /*
  2355. * dependent_sleeper() releases and reacquires the runqueue
  2356. * lock, hence go into the idle loop if the rq went
  2357. * empty meanwhile:
  2358. */
  2359. if (unlikely(!rq->nr_running))
  2360. goto go_idle;
  2361. }
  2362. array = rq->active;
  2363. if (unlikely(!array->nr_active)) {
  2364. /*
  2365. * Switch the active and expired arrays.
  2366. */
  2367. schedstat_inc(rq, sched_switch);
  2368. rq->active = rq->expired;
  2369. rq->expired = array;
  2370. array = rq->active;
  2371. rq->expired_timestamp = 0;
  2372. rq->best_expired_prio = MAX_PRIO;
  2373. }
  2374. idx = sched_find_first_bit(array->bitmap);
  2375. queue = array->queue + idx;
  2376. next = list_entry(queue->next, task_t, run_list);
  2377. if (!rt_task(next) && next->activated > 0) {
  2378. unsigned long long delta = now - next->timestamp;
  2379. if (unlikely((long long)(now - next->timestamp) < 0))
  2380. delta = 0;
  2381. if (next->activated == 1)
  2382. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  2383. array = next->array;
  2384. dequeue_task(next, array);
  2385. recalc_task_prio(next, next->timestamp + delta);
  2386. enqueue_task(next, array);
  2387. }
  2388. next->activated = 0;
  2389. switch_tasks:
  2390. if (next == rq->idle)
  2391. schedstat_inc(rq, sched_goidle);
  2392. prefetch(next);
  2393. clear_tsk_need_resched(prev);
  2394. rcu_qsctr_inc(task_cpu(prev));
  2395. update_cpu_clock(prev, rq, now);
  2396. prev->sleep_avg -= run_time;
  2397. if ((long)prev->sleep_avg <= 0)
  2398. prev->sleep_avg = 0;
  2399. prev->timestamp = prev->last_ran = now;
  2400. sched_info_switch(prev, next);
  2401. if (likely(prev != next)) {
  2402. next->timestamp = now;
  2403. rq->nr_switches++;
  2404. rq->curr = next;
  2405. ++*switch_count;
  2406. prepare_arch_switch(rq, next);
  2407. prev = context_switch(rq, prev, next);
  2408. barrier();
  2409. finish_task_switch(prev);
  2410. } else
  2411. spin_unlock_irq(&rq->lock);
  2412. prev = current;
  2413. if (unlikely(reacquire_kernel_lock(prev) < 0))
  2414. goto need_resched_nonpreemptible;
  2415. preempt_enable_no_resched();
  2416. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2417. goto need_resched;
  2418. }
  2419. EXPORT_SYMBOL(schedule);
  2420. #ifdef CONFIG_PREEMPT
  2421. /*
  2422. * this is is the entry point to schedule() from in-kernel preemption
  2423. * off of preempt_enable. Kernel preemptions off return from interrupt
  2424. * occur there and call schedule directly.
  2425. */
  2426. asmlinkage void __sched preempt_schedule(void)
  2427. {
  2428. struct thread_info *ti = current_thread_info();
  2429. #ifdef CONFIG_PREEMPT_BKL
  2430. struct task_struct *task = current;
  2431. int saved_lock_depth;
  2432. #endif
  2433. /*
  2434. * If there is a non-zero preempt_count or interrupts are disabled,
  2435. * we do not want to preempt the current task. Just return..
  2436. */
  2437. if (unlikely(ti->preempt_count || irqs_disabled()))
  2438. return;
  2439. need_resched:
  2440. add_preempt_count(PREEMPT_ACTIVE);
  2441. /*
  2442. * We keep the big kernel semaphore locked, but we
  2443. * clear ->lock_depth so that schedule() doesnt
  2444. * auto-release the semaphore:
  2445. */
  2446. #ifdef CONFIG_PREEMPT_BKL
  2447. saved_lock_depth = task->lock_depth;
  2448. task->lock_depth = -1;
  2449. #endif
  2450. schedule();
  2451. #ifdef CONFIG_PREEMPT_BKL
  2452. task->lock_depth = saved_lock_depth;
  2453. #endif
  2454. sub_preempt_count(PREEMPT_ACTIVE);
  2455. /* we could miss a preemption opportunity between schedule and now */
  2456. barrier();
  2457. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2458. goto need_resched;
  2459. }
  2460. EXPORT_SYMBOL(preempt_schedule);
  2461. /*
  2462. * this is is the entry point to schedule() from kernel preemption
  2463. * off of irq context.
  2464. * Note, that this is called and return with irqs disabled. This will
  2465. * protect us against recursive calling from irq.
  2466. */
  2467. asmlinkage void __sched preempt_schedule_irq(void)
  2468. {
  2469. struct thread_info *ti = current_thread_info();
  2470. #ifdef CONFIG_PREEMPT_BKL
  2471. struct task_struct *task = current;
  2472. int saved_lock_depth;
  2473. #endif
  2474. /* Catch callers which need to be fixed*/
  2475. BUG_ON(ti->preempt_count || !irqs_disabled());
  2476. need_resched:
  2477. add_preempt_count(PREEMPT_ACTIVE);
  2478. /*
  2479. * We keep the big kernel semaphore locked, but we
  2480. * clear ->lock_depth so that schedule() doesnt
  2481. * auto-release the semaphore:
  2482. */
  2483. #ifdef CONFIG_PREEMPT_BKL
  2484. saved_lock_depth = task->lock_depth;
  2485. task->lock_depth = -1;
  2486. #endif
  2487. local_irq_enable();
  2488. schedule();
  2489. local_irq_disable();
  2490. #ifdef CONFIG_PREEMPT_BKL
  2491. task->lock_depth = saved_lock_depth;
  2492. #endif
  2493. sub_preempt_count(PREEMPT_ACTIVE);
  2494. /* we could miss a preemption opportunity between schedule and now */
  2495. barrier();
  2496. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2497. goto need_resched;
  2498. }
  2499. #endif /* CONFIG_PREEMPT */
  2500. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
  2501. {
  2502. task_t *p = curr->private;
  2503. return try_to_wake_up(p, mode, sync);
  2504. }
  2505. EXPORT_SYMBOL(default_wake_function);
  2506. /*
  2507. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2508. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2509. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2510. *
  2511. * There are circumstances in which we can try to wake a task which has already
  2512. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2513. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2514. */
  2515. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2516. int nr_exclusive, int sync, void *key)
  2517. {
  2518. struct list_head *tmp, *next;
  2519. list_for_each_safe(tmp, next, &q->task_list) {
  2520. wait_queue_t *curr;
  2521. unsigned flags;
  2522. curr = list_entry(tmp, wait_queue_t, task_list);
  2523. flags = curr->flags;
  2524. if (curr->func(curr, mode, sync, key) &&
  2525. (flags & WQ_FLAG_EXCLUSIVE) &&
  2526. !--nr_exclusive)
  2527. break;
  2528. }
  2529. }
  2530. /**
  2531. * __wake_up - wake up threads blocked on a waitqueue.
  2532. * @q: the waitqueue
  2533. * @mode: which threads
  2534. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2535. * @key: is directly passed to the wakeup function
  2536. */
  2537. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  2538. int nr_exclusive, void *key)
  2539. {
  2540. unsigned long flags;
  2541. spin_lock_irqsave(&q->lock, flags);
  2542. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2543. spin_unlock_irqrestore(&q->lock, flags);
  2544. }
  2545. EXPORT_SYMBOL(__wake_up);
  2546. /*
  2547. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2548. */
  2549. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  2550. {
  2551. __wake_up_common(q, mode, 1, 0, NULL);
  2552. }
  2553. /**
  2554. * __wake_up_sync - wake up threads blocked on a waitqueue.
  2555. * @q: the waitqueue
  2556. * @mode: which threads
  2557. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2558. *
  2559. * The sync wakeup differs that the waker knows that it will schedule
  2560. * away soon, so while the target thread will be woken up, it will not
  2561. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2562. * with each other. This can prevent needless bouncing between CPUs.
  2563. *
  2564. * On UP it can prevent extra preemption.
  2565. */
  2566. void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2567. {
  2568. unsigned long flags;
  2569. int sync = 1;
  2570. if (unlikely(!q))
  2571. return;
  2572. if (unlikely(!nr_exclusive))
  2573. sync = 0;
  2574. spin_lock_irqsave(&q->lock, flags);
  2575. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  2576. spin_unlock_irqrestore(&q->lock, flags);
  2577. }
  2578. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2579. void fastcall complete(struct completion *x)
  2580. {
  2581. unsigned long flags;
  2582. spin_lock_irqsave(&x->wait.lock, flags);
  2583. x->done++;
  2584. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2585. 1, 0, NULL);
  2586. spin_unlock_irqrestore(&x->wait.lock, flags);
  2587. }
  2588. EXPORT_SYMBOL(complete);
  2589. void fastcall complete_all(struct completion *x)
  2590. {
  2591. unsigned long flags;
  2592. spin_lock_irqsave(&x->wait.lock, flags);
  2593. x->done += UINT_MAX/2;
  2594. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2595. 0, 0, NULL);
  2596. spin_unlock_irqrestore(&x->wait.lock, flags);
  2597. }
  2598. EXPORT_SYMBOL(complete_all);
  2599. void fastcall __sched wait_for_completion(struct completion *x)
  2600. {
  2601. might_sleep();
  2602. spin_lock_irq(&x->wait.lock);
  2603. if (!x->done) {
  2604. DECLARE_WAITQUEUE(wait, current);
  2605. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2606. __add_wait_queue_tail(&x->wait, &wait);
  2607. do {
  2608. __set_current_state(TASK_UNINTERRUPTIBLE);
  2609. spin_unlock_irq(&x->wait.lock);
  2610. schedule();
  2611. spin_lock_irq(&x->wait.lock);
  2612. } while (!x->done);
  2613. __remove_wait_queue(&x->wait, &wait);
  2614. }
  2615. x->done--;
  2616. spin_unlock_irq(&x->wait.lock);
  2617. }
  2618. EXPORT_SYMBOL(wait_for_completion);
  2619. unsigned long fastcall __sched
  2620. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2621. {
  2622. might_sleep();
  2623. spin_lock_irq(&x->wait.lock);
  2624. if (!x->done) {
  2625. DECLARE_WAITQUEUE(wait, current);
  2626. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2627. __add_wait_queue_tail(&x->wait, &wait);
  2628. do {
  2629. __set_current_state(TASK_UNINTERRUPTIBLE);
  2630. spin_unlock_irq(&x->wait.lock);
  2631. timeout = schedule_timeout(timeout);
  2632. spin_lock_irq(&x->wait.lock);
  2633. if (!timeout) {
  2634. __remove_wait_queue(&x->wait, &wait);
  2635. goto out;
  2636. }
  2637. } while (!x->done);
  2638. __remove_wait_queue(&x->wait, &wait);
  2639. }
  2640. x->done--;
  2641. out:
  2642. spin_unlock_irq(&x->wait.lock);
  2643. return timeout;
  2644. }
  2645. EXPORT_SYMBOL(wait_for_completion_timeout);
  2646. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  2647. {
  2648. int ret = 0;
  2649. might_sleep();
  2650. spin_lock_irq(&x->wait.lock);
  2651. if (!x->done) {
  2652. DECLARE_WAITQUEUE(wait, current);
  2653. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2654. __add_wait_queue_tail(&x->wait, &wait);
  2655. do {
  2656. if (signal_pending(current)) {
  2657. ret = -ERESTARTSYS;
  2658. __remove_wait_queue(&x->wait, &wait);
  2659. goto out;
  2660. }
  2661. __set_current_state(TASK_INTERRUPTIBLE);
  2662. spin_unlock_irq(&x->wait.lock);
  2663. schedule();
  2664. spin_lock_irq(&x->wait.lock);
  2665. } while (!x->done);
  2666. __remove_wait_queue(&x->wait, &wait);
  2667. }
  2668. x->done--;
  2669. out:
  2670. spin_unlock_irq(&x->wait.lock);
  2671. return ret;
  2672. }
  2673. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2674. unsigned long fastcall __sched
  2675. wait_for_completion_interruptible_timeout(struct completion *x,
  2676. unsigned long timeout)
  2677. {
  2678. might_sleep();
  2679. spin_lock_irq(&x->wait.lock);
  2680. if (!x->done) {
  2681. DECLARE_WAITQUEUE(wait, current);
  2682. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2683. __add_wait_queue_tail(&x->wait, &wait);
  2684. do {
  2685. if (signal_pending(current)) {
  2686. timeout = -ERESTARTSYS;
  2687. __remove_wait_queue(&x->wait, &wait);
  2688. goto out;
  2689. }
  2690. __set_current_state(TASK_INTERRUPTIBLE);
  2691. spin_unlock_irq(&x->wait.lock);
  2692. timeout = schedule_timeout(timeout);
  2693. spin_lock_irq(&x->wait.lock);
  2694. if (!timeout) {
  2695. __remove_wait_queue(&x->wait, &wait);
  2696. goto out;
  2697. }
  2698. } while (!x->done);
  2699. __remove_wait_queue(&x->wait, &wait);
  2700. }
  2701. x->done--;
  2702. out:
  2703. spin_unlock_irq(&x->wait.lock);
  2704. return timeout;
  2705. }
  2706. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2707. #define SLEEP_ON_VAR \
  2708. unsigned long flags; \
  2709. wait_queue_t wait; \
  2710. init_waitqueue_entry(&wait, current);
  2711. #define SLEEP_ON_HEAD \
  2712. spin_lock_irqsave(&q->lock,flags); \
  2713. __add_wait_queue(q, &wait); \
  2714. spin_unlock(&q->lock);
  2715. #define SLEEP_ON_TAIL \
  2716. spin_lock_irq(&q->lock); \
  2717. __remove_wait_queue(q, &wait); \
  2718. spin_unlock_irqrestore(&q->lock, flags);
  2719. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  2720. {
  2721. SLEEP_ON_VAR
  2722. current->state = TASK_INTERRUPTIBLE;
  2723. SLEEP_ON_HEAD
  2724. schedule();
  2725. SLEEP_ON_TAIL
  2726. }
  2727. EXPORT_SYMBOL(interruptible_sleep_on);
  2728. long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2729. {
  2730. SLEEP_ON_VAR
  2731. current->state = TASK_INTERRUPTIBLE;
  2732. SLEEP_ON_HEAD
  2733. timeout = schedule_timeout(timeout);
  2734. SLEEP_ON_TAIL
  2735. return timeout;
  2736. }
  2737. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2738. void fastcall __sched sleep_on(wait_queue_head_t *q)
  2739. {
  2740. SLEEP_ON_VAR
  2741. current->state = TASK_UNINTERRUPTIBLE;
  2742. SLEEP_ON_HEAD
  2743. schedule();
  2744. SLEEP_ON_TAIL
  2745. }
  2746. EXPORT_SYMBOL(sleep_on);
  2747. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2748. {
  2749. SLEEP_ON_VAR
  2750. current->state = TASK_UNINTERRUPTIBLE;
  2751. SLEEP_ON_HEAD
  2752. timeout = schedule_timeout(timeout);
  2753. SLEEP_ON_TAIL
  2754. return timeout;
  2755. }
  2756. EXPORT_SYMBOL(sleep_on_timeout);
  2757. void set_user_nice(task_t *p, long nice)
  2758. {
  2759. unsigned long flags;
  2760. prio_array_t *array;
  2761. runqueue_t *rq;
  2762. int old_prio, new_prio, delta;
  2763. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  2764. return;
  2765. /*
  2766. * We have to be careful, if called from sys_setpriority(),
  2767. * the task might be in the middle of scheduling on another CPU.
  2768. */
  2769. rq = task_rq_lock(p, &flags);
  2770. /*
  2771. * The RT priorities are set via sched_setscheduler(), but we still
  2772. * allow the 'normal' nice value to be set - but as expected
  2773. * it wont have any effect on scheduling until the task is
  2774. * not SCHED_NORMAL:
  2775. */
  2776. if (rt_task(p)) {
  2777. p->static_prio = NICE_TO_PRIO(nice);
  2778. goto out_unlock;
  2779. }
  2780. array = p->array;
  2781. if (array)
  2782. dequeue_task(p, array);
  2783. old_prio = p->prio;
  2784. new_prio = NICE_TO_PRIO(nice);
  2785. delta = new_prio - old_prio;
  2786. p->static_prio = NICE_TO_PRIO(nice);
  2787. p->prio += delta;
  2788. if (array) {
  2789. enqueue_task(p, array);
  2790. /*
  2791. * If the task increased its priority or is running and
  2792. * lowered its priority, then reschedule its CPU:
  2793. */
  2794. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2795. resched_task(rq->curr);
  2796. }
  2797. out_unlock:
  2798. task_rq_unlock(rq, &flags);
  2799. }
  2800. EXPORT_SYMBOL(set_user_nice);
  2801. /*
  2802. * can_nice - check if a task can reduce its nice value
  2803. * @p: task
  2804. * @nice: nice value
  2805. */
  2806. int can_nice(const task_t *p, const int nice)
  2807. {
  2808. /* convert nice value [19,-20] to rlimit style value [0,39] */
  2809. int nice_rlim = 19 - nice;
  2810. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  2811. capable(CAP_SYS_NICE));
  2812. }
  2813. #ifdef __ARCH_WANT_SYS_NICE
  2814. /*
  2815. * sys_nice - change the priority of the current process.
  2816. * @increment: priority increment
  2817. *
  2818. * sys_setpriority is a more generic, but much slower function that
  2819. * does similar things.
  2820. */
  2821. asmlinkage long sys_nice(int increment)
  2822. {
  2823. int retval;
  2824. long nice;
  2825. /*
  2826. * Setpriority might change our priority at the same moment.
  2827. * We don't have to worry. Conceptually one call occurs first
  2828. * and we have a single winner.
  2829. */
  2830. if (increment < -40)
  2831. increment = -40;
  2832. if (increment > 40)
  2833. increment = 40;
  2834. nice = PRIO_TO_NICE(current->static_prio) + increment;
  2835. if (nice < -20)
  2836. nice = -20;
  2837. if (nice > 19)
  2838. nice = 19;
  2839. if (increment < 0 && !can_nice(current, nice))
  2840. return -EPERM;
  2841. retval = security_task_setnice(current, nice);
  2842. if (retval)
  2843. return retval;
  2844. set_user_nice(current, nice);
  2845. return 0;
  2846. }
  2847. #endif
  2848. /**
  2849. * task_prio - return the priority value of a given task.
  2850. * @p: the task in question.
  2851. *
  2852. * This is the priority value as seen by users in /proc.
  2853. * RT tasks are offset by -200. Normal tasks are centered
  2854. * around 0, value goes from -16 to +15.
  2855. */
  2856. int task_prio(const task_t *p)
  2857. {
  2858. return p->prio - MAX_RT_PRIO;
  2859. }
  2860. /**
  2861. * task_nice - return the nice value of a given task.
  2862. * @p: the task in question.
  2863. */
  2864. int task_nice(const task_t *p)
  2865. {
  2866. return TASK_NICE(p);
  2867. }
  2868. /*
  2869. * The only users of task_nice are binfmt_elf and binfmt_elf32.
  2870. * binfmt_elf is no longer modular, but binfmt_elf32 still is.
  2871. * Therefore, task_nice is needed if there is a compat_mode.
  2872. */
  2873. #ifdef CONFIG_COMPAT
  2874. EXPORT_SYMBOL_GPL(task_nice);
  2875. #endif
  2876. /**
  2877. * idle_cpu - is a given cpu idle currently?
  2878. * @cpu: the processor in question.
  2879. */
  2880. int idle_cpu(int cpu)
  2881. {
  2882. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  2883. }
  2884. EXPORT_SYMBOL_GPL(idle_cpu);
  2885. /**
  2886. * idle_task - return the idle task for a given cpu.
  2887. * @cpu: the processor in question.
  2888. */
  2889. task_t *idle_task(int cpu)
  2890. {
  2891. return cpu_rq(cpu)->idle;
  2892. }
  2893. /**
  2894. * find_process_by_pid - find a process with a matching PID value.
  2895. * @pid: the pid in question.
  2896. */
  2897. static inline task_t *find_process_by_pid(pid_t pid)
  2898. {
  2899. return pid ? find_task_by_pid(pid) : current;
  2900. }
  2901. /* Actually do priority change: must hold rq lock. */
  2902. static void __setscheduler(struct task_struct *p, int policy, int prio)
  2903. {
  2904. BUG_ON(p->array);
  2905. p->policy = policy;
  2906. p->rt_priority = prio;
  2907. if (policy != SCHED_NORMAL)
  2908. p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
  2909. else
  2910. p->prio = p->static_prio;
  2911. }
  2912. /**
  2913. * sched_setscheduler - change the scheduling policy and/or RT priority of
  2914. * a thread.
  2915. * @p: the task in question.
  2916. * @policy: new policy.
  2917. * @param: structure containing the new RT priority.
  2918. */
  2919. int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
  2920. {
  2921. int retval;
  2922. int oldprio, oldpolicy = -1;
  2923. prio_array_t *array;
  2924. unsigned long flags;
  2925. runqueue_t *rq;
  2926. recheck:
  2927. /* double check policy once rq lock held */
  2928. if (policy < 0)
  2929. policy = oldpolicy = p->policy;
  2930. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  2931. policy != SCHED_NORMAL)
  2932. return -EINVAL;
  2933. /*
  2934. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2935. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
  2936. */
  2937. if (param->sched_priority < 0 ||
  2938. param->sched_priority > MAX_USER_RT_PRIO-1)
  2939. return -EINVAL;
  2940. if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
  2941. return -EINVAL;
  2942. if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
  2943. param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
  2944. !capable(CAP_SYS_NICE))
  2945. return -EPERM;
  2946. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  2947. !capable(CAP_SYS_NICE))
  2948. return -EPERM;
  2949. retval = security_task_setscheduler(p, policy, param);
  2950. if (retval)
  2951. return retval;
  2952. /*
  2953. * To be able to change p->policy safely, the apropriate
  2954. * runqueue lock must be held.
  2955. */
  2956. rq = task_rq_lock(p, &flags);
  2957. /* recheck policy now with rq lock held */
  2958. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2959. policy = oldpolicy = -1;
  2960. task_rq_unlock(rq, &flags);
  2961. goto recheck;
  2962. }
  2963. array = p->array;
  2964. if (array)
  2965. deactivate_task(p, rq);
  2966. oldprio = p->prio;
  2967. __setscheduler(p, policy, param->sched_priority);
  2968. if (array) {
  2969. __activate_task(p, rq);
  2970. /*
  2971. * Reschedule if we are currently running on this runqueue and
  2972. * our priority decreased, or if we are not currently running on
  2973. * this runqueue and our priority is higher than the current's
  2974. */
  2975. if (task_running(rq, p)) {
  2976. if (p->prio > oldprio)
  2977. resched_task(rq->curr);
  2978. } else if (TASK_PREEMPTS_CURR(p, rq))
  2979. resched_task(rq->curr);
  2980. }
  2981. task_rq_unlock(rq, &flags);
  2982. return 0;
  2983. }
  2984. EXPORT_SYMBOL_GPL(sched_setscheduler);
  2985. static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  2986. {
  2987. int retval;
  2988. struct sched_param lparam;
  2989. struct task_struct *p;
  2990. if (!param || pid < 0)
  2991. return -EINVAL;
  2992. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  2993. return -EFAULT;
  2994. read_lock_irq(&tasklist_lock);
  2995. p = find_process_by_pid(pid);
  2996. if (!p) {
  2997. read_unlock_irq(&tasklist_lock);
  2998. return -ESRCH;
  2999. }
  3000. retval = sched_setscheduler(p, policy, &lparam);
  3001. read_unlock_irq(&tasklist_lock);
  3002. return retval;
  3003. }
  3004. /**
  3005. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3006. * @pid: the pid in question.
  3007. * @policy: new policy.
  3008. * @param: structure containing the new RT priority.
  3009. */
  3010. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3011. struct sched_param __user *param)
  3012. {
  3013. return do_sched_setscheduler(pid, policy, param);
  3014. }
  3015. /**
  3016. * sys_sched_setparam - set/change the RT priority of a thread
  3017. * @pid: the pid in question.
  3018. * @param: structure containing the new RT priority.
  3019. */
  3020. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3021. {
  3022. return do_sched_setscheduler(pid, -1, param);
  3023. }
  3024. /**
  3025. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3026. * @pid: the pid in question.
  3027. */
  3028. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3029. {
  3030. int retval = -EINVAL;
  3031. task_t *p;
  3032. if (pid < 0)
  3033. goto out_nounlock;
  3034. retval = -ESRCH;
  3035. read_lock(&tasklist_lock);
  3036. p = find_process_by_pid(pid);
  3037. if (p) {
  3038. retval = security_task_getscheduler(p);
  3039. if (!retval)
  3040. retval = p->policy;
  3041. }
  3042. read_unlock(&tasklist_lock);
  3043. out_nounlock:
  3044. return retval;
  3045. }
  3046. /**
  3047. * sys_sched_getscheduler - get the RT priority of a thread
  3048. * @pid: the pid in question.
  3049. * @param: structure containing the RT priority.
  3050. */
  3051. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3052. {
  3053. struct sched_param lp;
  3054. int retval = -EINVAL;
  3055. task_t *p;
  3056. if (!param || pid < 0)
  3057. goto out_nounlock;
  3058. read_lock(&tasklist_lock);
  3059. p = find_process_by_pid(pid);
  3060. retval = -ESRCH;
  3061. if (!p)
  3062. goto out_unlock;
  3063. retval = security_task_getscheduler(p);
  3064. if (retval)
  3065. goto out_unlock;
  3066. lp.sched_priority = p->rt_priority;
  3067. read_unlock(&tasklist_lock);
  3068. /*
  3069. * This one might sleep, we cannot do it with a spinlock held ...
  3070. */
  3071. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3072. out_nounlock:
  3073. return retval;
  3074. out_unlock:
  3075. read_unlock(&tasklist_lock);
  3076. return retval;
  3077. }
  3078. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3079. {
  3080. task_t *p;
  3081. int retval;
  3082. cpumask_t cpus_allowed;
  3083. lock_cpu_hotplug();
  3084. read_lock(&tasklist_lock);
  3085. p = find_process_by_pid(pid);
  3086. if (!p) {
  3087. read_unlock(&tasklist_lock);
  3088. unlock_cpu_hotplug();
  3089. return -ESRCH;
  3090. }
  3091. /*
  3092. * It is not safe to call set_cpus_allowed with the
  3093. * tasklist_lock held. We will bump the task_struct's
  3094. * usage count and then drop tasklist_lock.
  3095. */
  3096. get_task_struct(p);
  3097. read_unlock(&tasklist_lock);
  3098. retval = -EPERM;
  3099. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3100. !capable(CAP_SYS_NICE))
  3101. goto out_unlock;
  3102. cpus_allowed = cpuset_cpus_allowed(p);
  3103. cpus_and(new_mask, new_mask, cpus_allowed);
  3104. retval = set_cpus_allowed(p, new_mask);
  3105. out_unlock:
  3106. put_task_struct(p);
  3107. unlock_cpu_hotplug();
  3108. return retval;
  3109. }
  3110. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3111. cpumask_t *new_mask)
  3112. {
  3113. if (len < sizeof(cpumask_t)) {
  3114. memset(new_mask, 0, sizeof(cpumask_t));
  3115. } else if (len > sizeof(cpumask_t)) {
  3116. len = sizeof(cpumask_t);
  3117. }
  3118. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3119. }
  3120. /**
  3121. * sys_sched_setaffinity - set the cpu affinity of a process
  3122. * @pid: pid of the process
  3123. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3124. * @user_mask_ptr: user-space pointer to the new cpu mask
  3125. */
  3126. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3127. unsigned long __user *user_mask_ptr)
  3128. {
  3129. cpumask_t new_mask;
  3130. int retval;
  3131. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3132. if (retval)
  3133. return retval;
  3134. return sched_setaffinity(pid, new_mask);
  3135. }
  3136. /*
  3137. * Represents all cpu's present in the system
  3138. * In systems capable of hotplug, this map could dynamically grow
  3139. * as new cpu's are detected in the system via any platform specific
  3140. * method, such as ACPI for e.g.
  3141. */
  3142. cpumask_t cpu_present_map;
  3143. EXPORT_SYMBOL(cpu_present_map);
  3144. #ifndef CONFIG_SMP
  3145. cpumask_t cpu_online_map = CPU_MASK_ALL;
  3146. cpumask_t cpu_possible_map = CPU_MASK_ALL;
  3147. #endif
  3148. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3149. {
  3150. int retval;
  3151. task_t *p;
  3152. lock_cpu_hotplug();
  3153. read_lock(&tasklist_lock);
  3154. retval = -ESRCH;
  3155. p = find_process_by_pid(pid);
  3156. if (!p)
  3157. goto out_unlock;
  3158. retval = 0;
  3159. cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
  3160. out_unlock:
  3161. read_unlock(&tasklist_lock);
  3162. unlock_cpu_hotplug();
  3163. if (retval)
  3164. return retval;
  3165. return 0;
  3166. }
  3167. /**
  3168. * sys_sched_getaffinity - get the cpu affinity of a process
  3169. * @pid: pid of the process
  3170. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3171. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3172. */
  3173. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3174. unsigned long __user *user_mask_ptr)
  3175. {
  3176. int ret;
  3177. cpumask_t mask;
  3178. if (len < sizeof(cpumask_t))
  3179. return -EINVAL;
  3180. ret = sched_getaffinity(pid, &mask);
  3181. if (ret < 0)
  3182. return ret;
  3183. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3184. return -EFAULT;
  3185. return sizeof(cpumask_t);
  3186. }
  3187. /**
  3188. * sys_sched_yield - yield the current processor to other threads.
  3189. *
  3190. * this function yields the current CPU by moving the calling thread
  3191. * to the expired array. If there are no other threads running on this
  3192. * CPU then this function will return.
  3193. */
  3194. asmlinkage long sys_sched_yield(void)
  3195. {
  3196. runqueue_t *rq = this_rq_lock();
  3197. prio_array_t *array = current->array;
  3198. prio_array_t *target = rq->expired;
  3199. schedstat_inc(rq, yld_cnt);
  3200. /*
  3201. * We implement yielding by moving the task into the expired
  3202. * queue.
  3203. *
  3204. * (special rule: RT tasks will just roundrobin in the active
  3205. * array.)
  3206. */
  3207. if (rt_task(current))
  3208. target = rq->active;
  3209. if (current->array->nr_active == 1) {
  3210. schedstat_inc(rq, yld_act_empty);
  3211. if (!rq->expired->nr_active)
  3212. schedstat_inc(rq, yld_both_empty);
  3213. } else if (!rq->expired->nr_active)
  3214. schedstat_inc(rq, yld_exp_empty);
  3215. if (array != target) {
  3216. dequeue_task(current, array);
  3217. enqueue_task(current, target);
  3218. } else
  3219. /*
  3220. * requeue_task is cheaper so perform that if possible.
  3221. */
  3222. requeue_task(current, array);
  3223. /*
  3224. * Since we are going to call schedule() anyway, there's
  3225. * no need to preempt or enable interrupts:
  3226. */
  3227. __release(rq->lock);
  3228. _raw_spin_unlock(&rq->lock);
  3229. preempt_enable_no_resched();
  3230. schedule();
  3231. return 0;
  3232. }
  3233. static inline void __cond_resched(void)
  3234. {
  3235. do {
  3236. add_preempt_count(PREEMPT_ACTIVE);
  3237. schedule();
  3238. sub_preempt_count(PREEMPT_ACTIVE);
  3239. } while (need_resched());
  3240. }
  3241. int __sched cond_resched(void)
  3242. {
  3243. if (need_resched()) {
  3244. __cond_resched();
  3245. return 1;
  3246. }
  3247. return 0;
  3248. }
  3249. EXPORT_SYMBOL(cond_resched);
  3250. /*
  3251. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3252. * call schedule, and on return reacquire the lock.
  3253. *
  3254. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3255. * operations here to prevent schedule() from being called twice (once via
  3256. * spin_unlock(), once by hand).
  3257. */
  3258. int cond_resched_lock(spinlock_t * lock)
  3259. {
  3260. int ret = 0;
  3261. if (need_lockbreak(lock)) {
  3262. spin_unlock(lock);
  3263. cpu_relax();
  3264. ret = 1;
  3265. spin_lock(lock);
  3266. }
  3267. if (need_resched()) {
  3268. _raw_spin_unlock(lock);
  3269. preempt_enable_no_resched();
  3270. __cond_resched();
  3271. ret = 1;
  3272. spin_lock(lock);
  3273. }
  3274. return ret;
  3275. }
  3276. EXPORT_SYMBOL(cond_resched_lock);
  3277. int __sched cond_resched_softirq(void)
  3278. {
  3279. BUG_ON(!in_softirq());
  3280. if (need_resched()) {
  3281. __local_bh_enable();
  3282. __cond_resched();
  3283. local_bh_disable();
  3284. return 1;
  3285. }
  3286. return 0;
  3287. }
  3288. EXPORT_SYMBOL(cond_resched_softirq);
  3289. /**
  3290. * yield - yield the current processor to other threads.
  3291. *
  3292. * this is a shortcut for kernel-space yielding - it marks the
  3293. * thread runnable and calls sys_sched_yield().
  3294. */
  3295. void __sched yield(void)
  3296. {
  3297. set_current_state(TASK_RUNNING);
  3298. sys_sched_yield();
  3299. }
  3300. EXPORT_SYMBOL(yield);
  3301. /*
  3302. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3303. * that process accounting knows that this is a task in IO wait state.
  3304. *
  3305. * But don't do that if it is a deliberate, throttling IO wait (this task
  3306. * has set its backing_dev_info: the queue against which it should throttle)
  3307. */
  3308. void __sched io_schedule(void)
  3309. {
  3310. struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
  3311. atomic_inc(&rq->nr_iowait);
  3312. schedule();
  3313. atomic_dec(&rq->nr_iowait);
  3314. }
  3315. EXPORT_SYMBOL(io_schedule);
  3316. long __sched io_schedule_timeout(long timeout)
  3317. {
  3318. struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
  3319. long ret;
  3320. atomic_inc(&rq->nr_iowait);
  3321. ret = schedule_timeout(timeout);
  3322. atomic_dec(&rq->nr_iowait);
  3323. return ret;
  3324. }
  3325. /**
  3326. * sys_sched_get_priority_max - return maximum RT priority.
  3327. * @policy: scheduling class.
  3328. *
  3329. * this syscall returns the maximum rt_priority that can be used
  3330. * by a given scheduling class.
  3331. */
  3332. asmlinkage long sys_sched_get_priority_max(int policy)
  3333. {
  3334. int ret = -EINVAL;
  3335. switch (policy) {
  3336. case SCHED_FIFO:
  3337. case SCHED_RR:
  3338. ret = MAX_USER_RT_PRIO-1;
  3339. break;
  3340. case SCHED_NORMAL:
  3341. ret = 0;
  3342. break;
  3343. }
  3344. return ret;
  3345. }
  3346. /**
  3347. * sys_sched_get_priority_min - return minimum RT priority.
  3348. * @policy: scheduling class.
  3349. *
  3350. * this syscall returns the minimum rt_priority that can be used
  3351. * by a given scheduling class.
  3352. */
  3353. asmlinkage long sys_sched_get_priority_min(int policy)
  3354. {
  3355. int ret = -EINVAL;
  3356. switch (policy) {
  3357. case SCHED_FIFO:
  3358. case SCHED_RR:
  3359. ret = 1;
  3360. break;
  3361. case SCHED_NORMAL:
  3362. ret = 0;
  3363. }
  3364. return ret;
  3365. }
  3366. /**
  3367. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3368. * @pid: pid of the process.
  3369. * @interval: userspace pointer to the timeslice value.
  3370. *
  3371. * this syscall writes the default timeslice value of a given process
  3372. * into the user-space timespec buffer. A value of '0' means infinity.
  3373. */
  3374. asmlinkage
  3375. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  3376. {
  3377. int retval = -EINVAL;
  3378. struct timespec t;
  3379. task_t *p;
  3380. if (pid < 0)
  3381. goto out_nounlock;
  3382. retval = -ESRCH;
  3383. read_lock(&tasklist_lock);
  3384. p = find_process_by_pid(pid);
  3385. if (!p)
  3386. goto out_unlock;
  3387. retval = security_task_getscheduler(p);
  3388. if (retval)
  3389. goto out_unlock;
  3390. jiffies_to_timespec(p->policy & SCHED_FIFO ?
  3391. 0 : task_timeslice(p), &t);
  3392. read_unlock(&tasklist_lock);
  3393. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3394. out_nounlock:
  3395. return retval;
  3396. out_unlock:
  3397. read_unlock(&tasklist_lock);
  3398. return retval;
  3399. }
  3400. static inline struct task_struct *eldest_child(struct task_struct *p)
  3401. {
  3402. if (list_empty(&p->children)) return NULL;
  3403. return list_entry(p->children.next,struct task_struct,sibling);
  3404. }
  3405. static inline struct task_struct *older_sibling(struct task_struct *p)
  3406. {
  3407. if (p->sibling.prev==&p->parent->children) return NULL;
  3408. return list_entry(p->sibling.prev,struct task_struct,sibling);
  3409. }
  3410. static inline struct task_struct *younger_sibling(struct task_struct *p)
  3411. {
  3412. if (p->sibling.next==&p->parent->children) return NULL;
  3413. return list_entry(p->sibling.next,struct task_struct,sibling);
  3414. }
  3415. static void show_task(task_t * p)
  3416. {
  3417. task_t *relative;
  3418. unsigned state;
  3419. unsigned long free = 0;
  3420. static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
  3421. printk("%-13.13s ", p->comm);
  3422. state = p->state ? __ffs(p->state) + 1 : 0;
  3423. if (state < ARRAY_SIZE(stat_nam))
  3424. printk(stat_nam[state]);
  3425. else
  3426. printk("?");
  3427. #if (BITS_PER_LONG == 32)
  3428. if (state == TASK_RUNNING)
  3429. printk(" running ");
  3430. else
  3431. printk(" %08lX ", thread_saved_pc(p));
  3432. #else
  3433. if (state == TASK_RUNNING)
  3434. printk(" running task ");
  3435. else
  3436. printk(" %016lx ", thread_saved_pc(p));
  3437. #endif
  3438. #ifdef CONFIG_DEBUG_STACK_USAGE
  3439. {
  3440. unsigned long * n = (unsigned long *) (p->thread_info+1);
  3441. while (!*n)
  3442. n++;
  3443. free = (unsigned long) n - (unsigned long)(p->thread_info+1);
  3444. }
  3445. #endif
  3446. printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
  3447. if ((relative = eldest_child(p)))
  3448. printk("%5d ", relative->pid);
  3449. else
  3450. printk(" ");
  3451. if ((relative = younger_sibling(p)))
  3452. printk("%7d", relative->pid);
  3453. else
  3454. printk(" ");
  3455. if ((relative = older_sibling(p)))
  3456. printk(" %5d", relative->pid);
  3457. else
  3458. printk(" ");
  3459. if (!p->mm)
  3460. printk(" (L-TLB)\n");
  3461. else
  3462. printk(" (NOTLB)\n");
  3463. if (state != TASK_RUNNING)
  3464. show_stack(p, NULL);
  3465. }
  3466. void show_state(void)
  3467. {
  3468. task_t *g, *p;
  3469. #if (BITS_PER_LONG == 32)
  3470. printk("\n"
  3471. " sibling\n");
  3472. printk(" task PC pid father child younger older\n");
  3473. #else
  3474. printk("\n"
  3475. " sibling\n");
  3476. printk(" task PC pid father child younger older\n");
  3477. #endif
  3478. read_lock(&tasklist_lock);
  3479. do_each_thread(g, p) {
  3480. /*
  3481. * reset the NMI-timeout, listing all files on a slow
  3482. * console might take alot of time:
  3483. */
  3484. touch_nmi_watchdog();
  3485. show_task(p);
  3486. } while_each_thread(g, p);
  3487. read_unlock(&tasklist_lock);
  3488. }
  3489. void __devinit init_idle(task_t *idle, int cpu)
  3490. {
  3491. runqueue_t *rq = cpu_rq(cpu);
  3492. unsigned long flags;
  3493. idle->sleep_avg = 0;
  3494. idle->array = NULL;
  3495. idle->prio = MAX_PRIO;
  3496. idle->state = TASK_RUNNING;
  3497. idle->cpus_allowed = cpumask_of_cpu(cpu);
  3498. set_task_cpu(idle, cpu);
  3499. spin_lock_irqsave(&rq->lock, flags);
  3500. rq->curr = rq->idle = idle;
  3501. set_tsk_need_resched(idle);
  3502. spin_unlock_irqrestore(&rq->lock, flags);
  3503. /* Set the preempt count _outside_ the spinlocks! */
  3504. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  3505. idle->thread_info->preempt_count = (idle->lock_depth >= 0);
  3506. #else
  3507. idle->thread_info->preempt_count = 0;
  3508. #endif
  3509. }
  3510. /*
  3511. * In a system that switches off the HZ timer nohz_cpu_mask
  3512. * indicates which cpus entered this state. This is used
  3513. * in the rcu update to wait only for active cpus. For system
  3514. * which do not switch off the HZ timer nohz_cpu_mask should
  3515. * always be CPU_MASK_NONE.
  3516. */
  3517. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  3518. #ifdef CONFIG_SMP
  3519. /*
  3520. * This is how migration works:
  3521. *
  3522. * 1) we queue a migration_req_t structure in the source CPU's
  3523. * runqueue and wake up that CPU's migration thread.
  3524. * 2) we down() the locked semaphore => thread blocks.
  3525. * 3) migration thread wakes up (implicitly it forces the migrated
  3526. * thread off the CPU)
  3527. * 4) it gets the migration request and checks whether the migrated
  3528. * task is still in the wrong runqueue.
  3529. * 5) if it's in the wrong runqueue then the migration thread removes
  3530. * it and puts it into the right queue.
  3531. * 6) migration thread up()s the semaphore.
  3532. * 7) we wake up and the migration is done.
  3533. */
  3534. /*
  3535. * Change a given task's CPU affinity. Migrate the thread to a
  3536. * proper CPU and schedule it away if the CPU it's executing on
  3537. * is removed from the allowed bitmask.
  3538. *
  3539. * NOTE: the caller must have a valid reference to the task, the
  3540. * task must not exit() & deallocate itself prematurely. The
  3541. * call is not atomic; no spinlocks may be held.
  3542. */
  3543. int set_cpus_allowed(task_t *p, cpumask_t new_mask)
  3544. {
  3545. unsigned long flags;
  3546. int ret = 0;
  3547. migration_req_t req;
  3548. runqueue_t *rq;
  3549. rq = task_rq_lock(p, &flags);
  3550. if (!cpus_intersects(new_mask, cpu_online_map)) {
  3551. ret = -EINVAL;
  3552. goto out;
  3553. }
  3554. p->cpus_allowed = new_mask;
  3555. /* Can the task run on the task's current CPU? If so, we're done */
  3556. if (cpu_isset(task_cpu(p), new_mask))
  3557. goto out;
  3558. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  3559. /* Need help from migration thread: drop lock and wait. */
  3560. task_rq_unlock(rq, &flags);
  3561. wake_up_process(rq->migration_thread);
  3562. wait_for_completion(&req.done);
  3563. tlb_migrate_finish(p->mm);
  3564. return 0;
  3565. }
  3566. out:
  3567. task_rq_unlock(rq, &flags);
  3568. return ret;
  3569. }
  3570. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  3571. /*
  3572. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3573. * this because either it can't run here any more (set_cpus_allowed()
  3574. * away from this CPU, or CPU going down), or because we're
  3575. * attempting to rebalance this task on exec (sched_exec).
  3576. *
  3577. * So we race with normal scheduler movements, but that's OK, as long
  3578. * as the task is no longer on this CPU.
  3579. */
  3580. static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3581. {
  3582. runqueue_t *rq_dest, *rq_src;
  3583. if (unlikely(cpu_is_offline(dest_cpu)))
  3584. return;
  3585. rq_src = cpu_rq(src_cpu);
  3586. rq_dest = cpu_rq(dest_cpu);
  3587. double_rq_lock(rq_src, rq_dest);
  3588. /* Already moved. */
  3589. if (task_cpu(p) != src_cpu)
  3590. goto out;
  3591. /* Affinity changed (again). */
  3592. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  3593. goto out;
  3594. set_task_cpu(p, dest_cpu);
  3595. if (p->array) {
  3596. /*
  3597. * Sync timestamp with rq_dest's before activating.
  3598. * The same thing could be achieved by doing this step
  3599. * afterwards, and pretending it was a local activate.
  3600. * This way is cleaner and logically correct.
  3601. */
  3602. p->timestamp = p->timestamp - rq_src->timestamp_last_tick
  3603. + rq_dest->timestamp_last_tick;
  3604. deactivate_task(p, rq_src);
  3605. activate_task(p, rq_dest, 0);
  3606. if (TASK_PREEMPTS_CURR(p, rq_dest))
  3607. resched_task(rq_dest->curr);
  3608. }
  3609. out:
  3610. double_rq_unlock(rq_src, rq_dest);
  3611. }
  3612. /*
  3613. * migration_thread - this is a highprio system thread that performs
  3614. * thread migration by bumping thread off CPU then 'pushing' onto
  3615. * another runqueue.
  3616. */
  3617. static int migration_thread(void * data)
  3618. {
  3619. runqueue_t *rq;
  3620. int cpu = (long)data;
  3621. rq = cpu_rq(cpu);
  3622. BUG_ON(rq->migration_thread != current);
  3623. set_current_state(TASK_INTERRUPTIBLE);
  3624. while (!kthread_should_stop()) {
  3625. struct list_head *head;
  3626. migration_req_t *req;
  3627. if (current->flags & PF_FREEZE)
  3628. refrigerator(PF_FREEZE);
  3629. spin_lock_irq(&rq->lock);
  3630. if (cpu_is_offline(cpu)) {
  3631. spin_unlock_irq(&rq->lock);
  3632. goto wait_to_die;
  3633. }
  3634. if (rq->active_balance) {
  3635. active_load_balance(rq, cpu);
  3636. rq->active_balance = 0;
  3637. }
  3638. head = &rq->migration_queue;
  3639. if (list_empty(head)) {
  3640. spin_unlock_irq(&rq->lock);
  3641. schedule();
  3642. set_current_state(TASK_INTERRUPTIBLE);
  3643. continue;
  3644. }
  3645. req = list_entry(head->next, migration_req_t, list);
  3646. list_del_init(head->next);
  3647. if (req->type == REQ_MOVE_TASK) {
  3648. spin_unlock(&rq->lock);
  3649. __migrate_task(req->task, cpu, req->dest_cpu);
  3650. local_irq_enable();
  3651. } else if (req->type == REQ_SET_DOMAIN) {
  3652. rq->sd = req->sd;
  3653. spin_unlock_irq(&rq->lock);
  3654. } else {
  3655. spin_unlock_irq(&rq->lock);
  3656. WARN_ON(1);
  3657. }
  3658. complete(&req->done);
  3659. }
  3660. __set_current_state(TASK_RUNNING);
  3661. return 0;
  3662. wait_to_die:
  3663. /* Wait for kthread_stop */
  3664. set_current_state(TASK_INTERRUPTIBLE);
  3665. while (!kthread_should_stop()) {
  3666. schedule();
  3667. set_current_state(TASK_INTERRUPTIBLE);
  3668. }
  3669. __set_current_state(TASK_RUNNING);
  3670. return 0;
  3671. }
  3672. #ifdef CONFIG_HOTPLUG_CPU
  3673. /* Figure out where task on dead CPU should go, use force if neccessary. */
  3674. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
  3675. {
  3676. int dest_cpu;
  3677. cpumask_t mask;
  3678. /* On same node? */
  3679. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  3680. cpus_and(mask, mask, tsk->cpus_allowed);
  3681. dest_cpu = any_online_cpu(mask);
  3682. /* On any allowed CPU? */
  3683. if (dest_cpu == NR_CPUS)
  3684. dest_cpu = any_online_cpu(tsk->cpus_allowed);
  3685. /* No more Mr. Nice Guy. */
  3686. if (dest_cpu == NR_CPUS) {
  3687. cpus_setall(tsk->cpus_allowed);
  3688. dest_cpu = any_online_cpu(tsk->cpus_allowed);
  3689. /*
  3690. * Don't tell them about moving exiting tasks or
  3691. * kernel threads (both mm NULL), since they never
  3692. * leave kernel.
  3693. */
  3694. if (tsk->mm && printk_ratelimit())
  3695. printk(KERN_INFO "process %d (%s) no "
  3696. "longer affine to cpu%d\n",
  3697. tsk->pid, tsk->comm, dead_cpu);
  3698. }
  3699. __migrate_task(tsk, dead_cpu, dest_cpu);
  3700. }
  3701. /*
  3702. * While a dead CPU has no uninterruptible tasks queued at this point,
  3703. * it might still have a nonzero ->nr_uninterruptible counter, because
  3704. * for performance reasons the counter is not stricly tracking tasks to
  3705. * their home CPUs. So we just add the counter to another CPU's counter,
  3706. * to keep the global sum constant after CPU-down:
  3707. */
  3708. static void migrate_nr_uninterruptible(runqueue_t *rq_src)
  3709. {
  3710. runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  3711. unsigned long flags;
  3712. local_irq_save(flags);
  3713. double_rq_lock(rq_src, rq_dest);
  3714. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  3715. rq_src->nr_uninterruptible = 0;
  3716. double_rq_unlock(rq_src, rq_dest);
  3717. local_irq_restore(flags);
  3718. }
  3719. /* Run through task list and migrate tasks from the dead cpu. */
  3720. static void migrate_live_tasks(int src_cpu)
  3721. {
  3722. struct task_struct *tsk, *t;
  3723. write_lock_irq(&tasklist_lock);
  3724. do_each_thread(t, tsk) {
  3725. if (tsk == current)
  3726. continue;
  3727. if (task_cpu(tsk) == src_cpu)
  3728. move_task_off_dead_cpu(src_cpu, tsk);
  3729. } while_each_thread(t, tsk);
  3730. write_unlock_irq(&tasklist_lock);
  3731. }
  3732. /* Schedules idle task to be the next runnable task on current CPU.
  3733. * It does so by boosting its priority to highest possible and adding it to
  3734. * the _front_ of runqueue. Used by CPU offline code.
  3735. */
  3736. void sched_idle_next(void)
  3737. {
  3738. int cpu = smp_processor_id();
  3739. runqueue_t *rq = this_rq();
  3740. struct task_struct *p = rq->idle;
  3741. unsigned long flags;
  3742. /* cpu has to be offline */
  3743. BUG_ON(cpu_online(cpu));
  3744. /* Strictly not necessary since rest of the CPUs are stopped by now
  3745. * and interrupts disabled on current cpu.
  3746. */
  3747. spin_lock_irqsave(&rq->lock, flags);
  3748. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  3749. /* Add idle task to _front_ of it's priority queue */
  3750. __activate_idle_task(p, rq);
  3751. spin_unlock_irqrestore(&rq->lock, flags);
  3752. }
  3753. /* Ensures that the idle task is using init_mm right before its cpu goes
  3754. * offline.
  3755. */
  3756. void idle_task_exit(void)
  3757. {
  3758. struct mm_struct *mm = current->active_mm;
  3759. BUG_ON(cpu_online(smp_processor_id()));
  3760. if (mm != &init_mm)
  3761. switch_mm(mm, &init_mm, current);
  3762. mmdrop(mm);
  3763. }
  3764. static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
  3765. {
  3766. struct runqueue *rq = cpu_rq(dead_cpu);
  3767. /* Must be exiting, otherwise would be on tasklist. */
  3768. BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
  3769. /* Cannot have done final schedule yet: would have vanished. */
  3770. BUG_ON(tsk->flags & PF_DEAD);
  3771. get_task_struct(tsk);
  3772. /*
  3773. * Drop lock around migration; if someone else moves it,
  3774. * that's OK. No task can be added to this CPU, so iteration is
  3775. * fine.
  3776. */
  3777. spin_unlock_irq(&rq->lock);
  3778. move_task_off_dead_cpu(dead_cpu, tsk);
  3779. spin_lock_irq(&rq->lock);
  3780. put_task_struct(tsk);
  3781. }
  3782. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  3783. static void migrate_dead_tasks(unsigned int dead_cpu)
  3784. {
  3785. unsigned arr, i;
  3786. struct runqueue *rq = cpu_rq(dead_cpu);
  3787. for (arr = 0; arr < 2; arr++) {
  3788. for (i = 0; i < MAX_PRIO; i++) {
  3789. struct list_head *list = &rq->arrays[arr].queue[i];
  3790. while (!list_empty(list))
  3791. migrate_dead(dead_cpu,
  3792. list_entry(list->next, task_t,
  3793. run_list));
  3794. }
  3795. }
  3796. }
  3797. #endif /* CONFIG_HOTPLUG_CPU */
  3798. /*
  3799. * migration_call - callback that gets triggered when a CPU is added.
  3800. * Here we can start up the necessary migration thread for the new CPU.
  3801. */
  3802. static int migration_call(struct notifier_block *nfb, unsigned long action,
  3803. void *hcpu)
  3804. {
  3805. int cpu = (long)hcpu;
  3806. struct task_struct *p;
  3807. struct runqueue *rq;
  3808. unsigned long flags;
  3809. switch (action) {
  3810. case CPU_UP_PREPARE:
  3811. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  3812. if (IS_ERR(p))
  3813. return NOTIFY_BAD;
  3814. p->flags |= PF_NOFREEZE;
  3815. kthread_bind(p, cpu);
  3816. /* Must be high prio: stop_machine expects to yield to it. */
  3817. rq = task_rq_lock(p, &flags);
  3818. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  3819. task_rq_unlock(rq, &flags);
  3820. cpu_rq(cpu)->migration_thread = p;
  3821. break;
  3822. case CPU_ONLINE:
  3823. /* Strictly unneccessary, as first user will wake it. */
  3824. wake_up_process(cpu_rq(cpu)->migration_thread);
  3825. break;
  3826. #ifdef CONFIG_HOTPLUG_CPU
  3827. case CPU_UP_CANCELED:
  3828. /* Unbind it from offline cpu so it can run. Fall thru. */
  3829. kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
  3830. kthread_stop(cpu_rq(cpu)->migration_thread);
  3831. cpu_rq(cpu)->migration_thread = NULL;
  3832. break;
  3833. case CPU_DEAD:
  3834. migrate_live_tasks(cpu);
  3835. rq = cpu_rq(cpu);
  3836. kthread_stop(rq->migration_thread);
  3837. rq->migration_thread = NULL;
  3838. /* Idle task back to normal (off runqueue, low prio) */
  3839. rq = task_rq_lock(rq->idle, &flags);
  3840. deactivate_task(rq->idle, rq);
  3841. rq->idle->static_prio = MAX_PRIO;
  3842. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  3843. migrate_dead_tasks(cpu);
  3844. task_rq_unlock(rq, &flags);
  3845. migrate_nr_uninterruptible(rq);
  3846. BUG_ON(rq->nr_running != 0);
  3847. /* No need to migrate the tasks: it was best-effort if
  3848. * they didn't do lock_cpu_hotplug(). Just wake up
  3849. * the requestors. */
  3850. spin_lock_irq(&rq->lock);
  3851. while (!list_empty(&rq->migration_queue)) {
  3852. migration_req_t *req;
  3853. req = list_entry(rq->migration_queue.next,
  3854. migration_req_t, list);
  3855. BUG_ON(req->type != REQ_MOVE_TASK);
  3856. list_del_init(&req->list);
  3857. complete(&req->done);
  3858. }
  3859. spin_unlock_irq(&rq->lock);
  3860. break;
  3861. #endif
  3862. }
  3863. return NOTIFY_OK;
  3864. }
  3865. /* Register at highest priority so that task migration (migrate_all_tasks)
  3866. * happens before everything else.
  3867. */
  3868. static struct notifier_block __devinitdata migration_notifier = {
  3869. .notifier_call = migration_call,
  3870. .priority = 10
  3871. };
  3872. int __init migration_init(void)
  3873. {
  3874. void *cpu = (void *)(long)smp_processor_id();
  3875. /* Start one for boot CPU. */
  3876. migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  3877. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  3878. register_cpu_notifier(&migration_notifier);
  3879. return 0;
  3880. }
  3881. #endif
  3882. #ifdef CONFIG_SMP
  3883. #define SCHED_DOMAIN_DEBUG
  3884. #ifdef SCHED_DOMAIN_DEBUG
  3885. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  3886. {
  3887. int level = 0;
  3888. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  3889. do {
  3890. int i;
  3891. char str[NR_CPUS];
  3892. struct sched_group *group = sd->groups;
  3893. cpumask_t groupmask;
  3894. cpumask_scnprintf(str, NR_CPUS, sd->span);
  3895. cpus_clear(groupmask);
  3896. printk(KERN_DEBUG);
  3897. for (i = 0; i < level + 1; i++)
  3898. printk(" ");
  3899. printk("domain %d: ", level);
  3900. if (!(sd->flags & SD_LOAD_BALANCE)) {
  3901. printk("does not load-balance\n");
  3902. if (sd->parent)
  3903. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
  3904. break;
  3905. }
  3906. printk("span %s\n", str);
  3907. if (!cpu_isset(cpu, sd->span))
  3908. printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  3909. if (!cpu_isset(cpu, group->cpumask))
  3910. printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  3911. printk(KERN_DEBUG);
  3912. for (i = 0; i < level + 2; i++)
  3913. printk(" ");
  3914. printk("groups:");
  3915. do {
  3916. if (!group) {
  3917. printk("\n");
  3918. printk(KERN_ERR "ERROR: group is NULL\n");
  3919. break;
  3920. }
  3921. if (!group->cpu_power) {
  3922. printk("\n");
  3923. printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
  3924. }
  3925. if (!cpus_weight(group->cpumask)) {
  3926. printk("\n");
  3927. printk(KERN_ERR "ERROR: empty group\n");
  3928. }
  3929. if (cpus_intersects(groupmask, group->cpumask)) {
  3930. printk("\n");
  3931. printk(KERN_ERR "ERROR: repeated CPUs\n");
  3932. }
  3933. cpus_or(groupmask, groupmask, group->cpumask);
  3934. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  3935. printk(" %s", str);
  3936. group = group->next;
  3937. } while (group != sd->groups);
  3938. printk("\n");
  3939. if (!cpus_equal(sd->span, groupmask))
  3940. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  3941. level++;
  3942. sd = sd->parent;
  3943. if (sd) {
  3944. if (!cpus_subset(groupmask, sd->span))
  3945. printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
  3946. }
  3947. } while (sd);
  3948. }
  3949. #else
  3950. #define sched_domain_debug(sd, cpu) {}
  3951. #endif
  3952. /*
  3953. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  3954. * hold the hotplug lock.
  3955. */
  3956. void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
  3957. {
  3958. migration_req_t req;
  3959. unsigned long flags;
  3960. runqueue_t *rq = cpu_rq(cpu);
  3961. int local = 1;
  3962. sched_domain_debug(sd, cpu);
  3963. spin_lock_irqsave(&rq->lock, flags);
  3964. if (cpu == smp_processor_id() || !cpu_online(cpu)) {
  3965. rq->sd = sd;
  3966. } else {
  3967. init_completion(&req.done);
  3968. req.type = REQ_SET_DOMAIN;
  3969. req.sd = sd;
  3970. list_add(&req.list, &rq->migration_queue);
  3971. local = 0;
  3972. }
  3973. spin_unlock_irqrestore(&rq->lock, flags);
  3974. if (!local) {
  3975. wake_up_process(rq->migration_thread);
  3976. wait_for_completion(&req.done);
  3977. }
  3978. }
  3979. /* cpus with isolated domains */
  3980. cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
  3981. /* Setup the mask of cpus configured for isolated domains */
  3982. static int __init isolated_cpu_setup(char *str)
  3983. {
  3984. int ints[NR_CPUS], i;
  3985. str = get_options(str, ARRAY_SIZE(ints), ints);
  3986. cpus_clear(cpu_isolated_map);
  3987. for (i = 1; i <= ints[0]; i++)
  3988. if (ints[i] < NR_CPUS)
  3989. cpu_set(ints[i], cpu_isolated_map);
  3990. return 1;
  3991. }
  3992. __setup ("isolcpus=", isolated_cpu_setup);
  3993. /*
  3994. * init_sched_build_groups takes an array of groups, the cpumask we wish
  3995. * to span, and a pointer to a function which identifies what group a CPU
  3996. * belongs to. The return value of group_fn must be a valid index into the
  3997. * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
  3998. * keep track of groups covered with a cpumask_t).
  3999. *
  4000. * init_sched_build_groups will build a circular linked list of the groups
  4001. * covered by the given span, and will set each group's ->cpumask correctly,
  4002. * and ->cpu_power to 0.
  4003. */
  4004. void __devinit init_sched_build_groups(struct sched_group groups[],
  4005. cpumask_t span, int (*group_fn)(int cpu))
  4006. {
  4007. struct sched_group *first = NULL, *last = NULL;
  4008. cpumask_t covered = CPU_MASK_NONE;
  4009. int i;
  4010. for_each_cpu_mask(i, span) {
  4011. int group = group_fn(i);
  4012. struct sched_group *sg = &groups[group];
  4013. int j;
  4014. if (cpu_isset(i, covered))
  4015. continue;
  4016. sg->cpumask = CPU_MASK_NONE;
  4017. sg->cpu_power = 0;
  4018. for_each_cpu_mask(j, span) {
  4019. if (group_fn(j) != group)
  4020. continue;
  4021. cpu_set(j, covered);
  4022. cpu_set(j, sg->cpumask);
  4023. }
  4024. if (!first)
  4025. first = sg;
  4026. if (last)
  4027. last->next = sg;
  4028. last = sg;
  4029. }
  4030. last->next = first;
  4031. }
  4032. #ifdef ARCH_HAS_SCHED_DOMAIN
  4033. extern void __devinit arch_init_sched_domains(void);
  4034. extern void __devinit arch_destroy_sched_domains(void);
  4035. #else
  4036. #ifdef CONFIG_SCHED_SMT
  4037. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4038. static struct sched_group sched_group_cpus[NR_CPUS];
  4039. static int __devinit cpu_to_cpu_group(int cpu)
  4040. {
  4041. return cpu;
  4042. }
  4043. #endif
  4044. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  4045. static struct sched_group sched_group_phys[NR_CPUS];
  4046. static int __devinit cpu_to_phys_group(int cpu)
  4047. {
  4048. #ifdef CONFIG_SCHED_SMT
  4049. return first_cpu(cpu_sibling_map[cpu]);
  4050. #else
  4051. return cpu;
  4052. #endif
  4053. }
  4054. #ifdef CONFIG_NUMA
  4055. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  4056. static struct sched_group sched_group_nodes[MAX_NUMNODES];
  4057. static int __devinit cpu_to_node_group(int cpu)
  4058. {
  4059. return cpu_to_node(cpu);
  4060. }
  4061. #endif
  4062. #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
  4063. /*
  4064. * The domains setup code relies on siblings not spanning
  4065. * multiple nodes. Make sure the architecture has a proper
  4066. * siblings map:
  4067. */
  4068. static void check_sibling_maps(void)
  4069. {
  4070. int i, j;
  4071. for_each_online_cpu(i) {
  4072. for_each_cpu_mask(j, cpu_sibling_map[i]) {
  4073. if (cpu_to_node(i) != cpu_to_node(j)) {
  4074. printk(KERN_INFO "warning: CPU %d siblings map "
  4075. "to different node - isolating "
  4076. "them.\n", i);
  4077. cpu_sibling_map[i] = cpumask_of_cpu(i);
  4078. break;
  4079. }
  4080. }
  4081. }
  4082. }
  4083. #endif
  4084. /*
  4085. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  4086. */
  4087. static void __devinit arch_init_sched_domains(void)
  4088. {
  4089. int i;
  4090. cpumask_t cpu_default_map;
  4091. #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
  4092. check_sibling_maps();
  4093. #endif
  4094. /*
  4095. * Setup mask for cpus without special case scheduling requirements.
  4096. * For now this just excludes isolated cpus, but could be used to
  4097. * exclude other special cases in the future.
  4098. */
  4099. cpus_complement(cpu_default_map, cpu_isolated_map);
  4100. cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
  4101. /*
  4102. * Set up domains. Isolated domains just stay on the dummy domain.
  4103. */
  4104. for_each_cpu_mask(i, cpu_default_map) {
  4105. int group;
  4106. struct sched_domain *sd = NULL, *p;
  4107. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  4108. cpus_and(nodemask, nodemask, cpu_default_map);
  4109. #ifdef CONFIG_NUMA
  4110. sd = &per_cpu(node_domains, i);
  4111. group = cpu_to_node_group(i);
  4112. *sd = SD_NODE_INIT;
  4113. sd->span = cpu_default_map;
  4114. sd->groups = &sched_group_nodes[group];
  4115. #endif
  4116. p = sd;
  4117. sd = &per_cpu(phys_domains, i);
  4118. group = cpu_to_phys_group(i);
  4119. *sd = SD_CPU_INIT;
  4120. sd->span = nodemask;
  4121. sd->parent = p;
  4122. sd->groups = &sched_group_phys[group];
  4123. #ifdef CONFIG_SCHED_SMT
  4124. p = sd;
  4125. sd = &per_cpu(cpu_domains, i);
  4126. group = cpu_to_cpu_group(i);
  4127. *sd = SD_SIBLING_INIT;
  4128. sd->span = cpu_sibling_map[i];
  4129. cpus_and(sd->span, sd->span, cpu_default_map);
  4130. sd->parent = p;
  4131. sd->groups = &sched_group_cpus[group];
  4132. #endif
  4133. }
  4134. #ifdef CONFIG_SCHED_SMT
  4135. /* Set up CPU (sibling) groups */
  4136. for_each_online_cpu(i) {
  4137. cpumask_t this_sibling_map = cpu_sibling_map[i];
  4138. cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
  4139. if (i != first_cpu(this_sibling_map))
  4140. continue;
  4141. init_sched_build_groups(sched_group_cpus, this_sibling_map,
  4142. &cpu_to_cpu_group);
  4143. }
  4144. #endif
  4145. /* Set up physical groups */
  4146. for (i = 0; i < MAX_NUMNODES; i++) {
  4147. cpumask_t nodemask = node_to_cpumask(i);
  4148. cpus_and(nodemask, nodemask, cpu_default_map);
  4149. if (cpus_empty(nodemask))
  4150. continue;
  4151. init_sched_build_groups(sched_group_phys, nodemask,
  4152. &cpu_to_phys_group);
  4153. }
  4154. #ifdef CONFIG_NUMA
  4155. /* Set up node groups */
  4156. init_sched_build_groups(sched_group_nodes, cpu_default_map,
  4157. &cpu_to_node_group);
  4158. #endif
  4159. /* Calculate CPU power for physical packages and nodes */
  4160. for_each_cpu_mask(i, cpu_default_map) {
  4161. int power;
  4162. struct sched_domain *sd;
  4163. #ifdef CONFIG_SCHED_SMT
  4164. sd = &per_cpu(cpu_domains, i);
  4165. power = SCHED_LOAD_SCALE;
  4166. sd->groups->cpu_power = power;
  4167. #endif
  4168. sd = &per_cpu(phys_domains, i);
  4169. power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
  4170. (cpus_weight(sd->groups->cpumask)-1) / 10;
  4171. sd->groups->cpu_power = power;
  4172. #ifdef CONFIG_NUMA
  4173. if (i == first_cpu(sd->groups->cpumask)) {
  4174. /* Only add "power" once for each physical package. */
  4175. sd = &per_cpu(node_domains, i);
  4176. sd->groups->cpu_power += power;
  4177. }
  4178. #endif
  4179. }
  4180. /* Attach the domains */
  4181. for_each_online_cpu(i) {
  4182. struct sched_domain *sd;
  4183. #ifdef CONFIG_SCHED_SMT
  4184. sd = &per_cpu(cpu_domains, i);
  4185. #else
  4186. sd = &per_cpu(phys_domains, i);
  4187. #endif
  4188. cpu_attach_domain(sd, i);
  4189. }
  4190. }
  4191. #ifdef CONFIG_HOTPLUG_CPU
  4192. static void __devinit arch_destroy_sched_domains(void)
  4193. {
  4194. /* Do nothing: everything is statically allocated. */
  4195. }
  4196. #endif
  4197. #endif /* ARCH_HAS_SCHED_DOMAIN */
  4198. /*
  4199. * Initial dummy domain for early boot and for hotplug cpu. Being static,
  4200. * it is initialized to zero, so all balancing flags are cleared which is
  4201. * what we want.
  4202. */
  4203. static struct sched_domain sched_domain_dummy;
  4204. #ifdef CONFIG_HOTPLUG_CPU
  4205. /*
  4206. * Force a reinitialization of the sched domains hierarchy. The domains
  4207. * and groups cannot be updated in place without racing with the balancing
  4208. * code, so we temporarily attach all running cpus to a "dummy" domain
  4209. * which will prevent rebalancing while the sched domains are recalculated.
  4210. */
  4211. static int update_sched_domains(struct notifier_block *nfb,
  4212. unsigned long action, void *hcpu)
  4213. {
  4214. int i;
  4215. switch (action) {
  4216. case CPU_UP_PREPARE:
  4217. case CPU_DOWN_PREPARE:
  4218. for_each_online_cpu(i)
  4219. cpu_attach_domain(&sched_domain_dummy, i);
  4220. arch_destroy_sched_domains();
  4221. return NOTIFY_OK;
  4222. case CPU_UP_CANCELED:
  4223. case CPU_DOWN_FAILED:
  4224. case CPU_ONLINE:
  4225. case CPU_DEAD:
  4226. /*
  4227. * Fall through and re-initialise the domains.
  4228. */
  4229. break;
  4230. default:
  4231. return NOTIFY_DONE;
  4232. }
  4233. /* The hotplug lock is already held by cpu_up/cpu_down */
  4234. arch_init_sched_domains();
  4235. return NOTIFY_OK;
  4236. }
  4237. #endif
  4238. void __init sched_init_smp(void)
  4239. {
  4240. lock_cpu_hotplug();
  4241. arch_init_sched_domains();
  4242. unlock_cpu_hotplug();
  4243. /* XXX: Theoretical race here - CPU may be hotplugged now */
  4244. hotcpu_notifier(update_sched_domains, 0);
  4245. }
  4246. #else
  4247. void __init sched_init_smp(void)
  4248. {
  4249. }
  4250. #endif /* CONFIG_SMP */
  4251. int in_sched_functions(unsigned long addr)
  4252. {
  4253. /* Linker adds these: start and end of __sched functions */
  4254. extern char __sched_text_start[], __sched_text_end[];
  4255. return in_lock_functions(addr) ||
  4256. (addr >= (unsigned long)__sched_text_start
  4257. && addr < (unsigned long)__sched_text_end);
  4258. }
  4259. void __init sched_init(void)
  4260. {
  4261. runqueue_t *rq;
  4262. int i, j, k;
  4263. for (i = 0; i < NR_CPUS; i++) {
  4264. prio_array_t *array;
  4265. rq = cpu_rq(i);
  4266. spin_lock_init(&rq->lock);
  4267. rq->nr_running = 0;
  4268. rq->active = rq->arrays;
  4269. rq->expired = rq->arrays + 1;
  4270. rq->best_expired_prio = MAX_PRIO;
  4271. #ifdef CONFIG_SMP
  4272. rq->sd = &sched_domain_dummy;
  4273. for (j = 1; j < 3; j++)
  4274. rq->cpu_load[j] = 0;
  4275. rq->active_balance = 0;
  4276. rq->push_cpu = 0;
  4277. rq->migration_thread = NULL;
  4278. INIT_LIST_HEAD(&rq->migration_queue);
  4279. #endif
  4280. atomic_set(&rq->nr_iowait, 0);
  4281. for (j = 0; j < 2; j++) {
  4282. array = rq->arrays + j;
  4283. for (k = 0; k < MAX_PRIO; k++) {
  4284. INIT_LIST_HEAD(array->queue + k);
  4285. __clear_bit(k, array->bitmap);
  4286. }
  4287. // delimiter for bitsearch
  4288. __set_bit(MAX_PRIO, array->bitmap);
  4289. }
  4290. }
  4291. /*
  4292. * The boot idle thread does lazy MMU switching as well:
  4293. */
  4294. atomic_inc(&init_mm.mm_count);
  4295. enter_lazy_tlb(&init_mm, current);
  4296. /*
  4297. * Make us the idle thread. Technically, schedule() should not be
  4298. * called from this thread, however somewhere below it might be,
  4299. * but because we are the idle thread, we just pick up running again
  4300. * when this runqueue becomes "idle".
  4301. */
  4302. init_idle(current, smp_processor_id());
  4303. }
  4304. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4305. void __might_sleep(char *file, int line)
  4306. {
  4307. #if defined(in_atomic)
  4308. static unsigned long prev_jiffy; /* ratelimiting */
  4309. if ((in_atomic() || irqs_disabled()) &&
  4310. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  4311. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  4312. return;
  4313. prev_jiffy = jiffies;
  4314. printk(KERN_ERR "Debug: sleeping function called from invalid"
  4315. " context at %s:%d\n", file, line);
  4316. printk("in_atomic():%d, irqs_disabled():%d\n",
  4317. in_atomic(), irqs_disabled());
  4318. dump_stack();
  4319. }
  4320. #endif
  4321. }
  4322. EXPORT_SYMBOL(__might_sleep);
  4323. #endif
  4324. #ifdef CONFIG_MAGIC_SYSRQ
  4325. void normalize_rt_tasks(void)
  4326. {
  4327. struct task_struct *p;
  4328. prio_array_t *array;
  4329. unsigned long flags;
  4330. runqueue_t *rq;
  4331. read_lock_irq(&tasklist_lock);
  4332. for_each_process (p) {
  4333. if (!rt_task(p))
  4334. continue;
  4335. rq = task_rq_lock(p, &flags);
  4336. array = p->array;
  4337. if (array)
  4338. deactivate_task(p, task_rq(p));
  4339. __setscheduler(p, SCHED_NORMAL, 0);
  4340. if (array) {
  4341. __activate_task(p, task_rq(p));
  4342. resched_task(rq->curr);
  4343. }
  4344. task_rq_unlock(rq, &flags);
  4345. }
  4346. read_unlock_irq(&tasklist_lock);
  4347. }
  4348. #endif /* CONFIG_MAGIC_SYSRQ */