sata_mv.c 95 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481
  1. /*
  2. * sata_mv.c - Marvell SATA support
  3. *
  4. * Copyright 2008: Marvell Corporation, all rights reserved.
  5. * Copyright 2005: EMC Corporation, all rights reserved.
  6. * Copyright 2005 Red Hat, Inc. All rights reserved.
  7. *
  8. * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  22. *
  23. */
  24. /*
  25. * sata_mv TODO list:
  26. *
  27. * --> Errata workaround for NCQ device errors.
  28. *
  29. * --> More errata workarounds for PCI-X.
  30. *
  31. * --> Complete a full errata audit for all chipsets to identify others.
  32. *
  33. * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
  34. *
  35. * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
  36. *
  37. * --> Develop a low-power-consumption strategy, and implement it.
  38. *
  39. * --> [Experiment, low priority] Investigate interrupt coalescing.
  40. * Quite often, especially with PCI Message Signalled Interrupts (MSI),
  41. * the overhead reduced by interrupt mitigation is quite often not
  42. * worth the latency cost.
  43. *
  44. * --> [Experiment, Marvell value added] Is it possible to use target
  45. * mode to cross-connect two Linux boxes with Marvell cards? If so,
  46. * creating LibATA target mode support would be very interesting.
  47. *
  48. * Target mode, for those without docs, is the ability to directly
  49. * connect two SATA ports.
  50. */
  51. #include <linux/kernel.h>
  52. #include <linux/module.h>
  53. #include <linux/pci.h>
  54. #include <linux/init.h>
  55. #include <linux/blkdev.h>
  56. #include <linux/delay.h>
  57. #include <linux/interrupt.h>
  58. #include <linux/dmapool.h>
  59. #include <linux/dma-mapping.h>
  60. #include <linux/device.h>
  61. #include <linux/platform_device.h>
  62. #include <linux/ata_platform.h>
  63. #include <linux/mbus.h>
  64. #include <linux/bitops.h>
  65. #include <scsi/scsi_host.h>
  66. #include <scsi/scsi_cmnd.h>
  67. #include <scsi/scsi_device.h>
  68. #include <linux/libata.h>
  69. #define DRV_NAME "sata_mv"
  70. #define DRV_VERSION "1.24"
  71. enum {
  72. /* BAR's are enumerated in terms of pci_resource_start() terms */
  73. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  74. MV_IO_BAR = 2, /* offset 0x18: IO space */
  75. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  76. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  77. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  78. MV_PCI_REG_BASE = 0,
  79. MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
  80. MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
  81. MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
  82. MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
  83. MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
  84. MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
  85. MV_SATAHC0_REG_BASE = 0x20000,
  86. MV_FLASH_CTL_OFS = 0x1046c,
  87. MV_GPIO_PORT_CTL_OFS = 0x104f0,
  88. MV_RESET_CFG_OFS = 0x180d8,
  89. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  90. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  91. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  92. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  93. MV_MAX_Q_DEPTH = 32,
  94. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  95. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  96. * CRPB needs alignment on a 256B boundary. Size == 256B
  97. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  98. */
  99. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  100. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  101. MV_MAX_SG_CT = 256,
  102. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  103. /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
  104. MV_PORT_HC_SHIFT = 2,
  105. MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
  106. /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
  107. MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
  108. /* Host Flags */
  109. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  110. MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
  111. MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
  112. ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
  113. ATA_FLAG_PIO_POLLING,
  114. MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
  115. MV_GENIIE_FLAGS = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  116. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
  117. ATA_FLAG_NCQ | ATA_FLAG_AN,
  118. CRQB_FLAG_READ = (1 << 0),
  119. CRQB_TAG_SHIFT = 1,
  120. CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
  121. CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
  122. CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
  123. CRQB_CMD_ADDR_SHIFT = 8,
  124. CRQB_CMD_CS = (0x2 << 11),
  125. CRQB_CMD_LAST = (1 << 15),
  126. CRPB_FLAG_STATUS_SHIFT = 8,
  127. CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
  128. CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
  129. EPRD_FLAG_END_OF_TBL = (1 << 31),
  130. /* PCI interface registers */
  131. PCI_COMMAND_OFS = 0xc00,
  132. PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
  133. PCI_MAIN_CMD_STS_OFS = 0xd30,
  134. STOP_PCI_MASTER = (1 << 2),
  135. PCI_MASTER_EMPTY = (1 << 3),
  136. GLOB_SFT_RST = (1 << 4),
  137. MV_PCI_MODE_OFS = 0xd00,
  138. MV_PCI_MODE_MASK = 0x30,
  139. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  140. MV_PCI_DISC_TIMER = 0xd04,
  141. MV_PCI_MSI_TRIGGER = 0xc38,
  142. MV_PCI_SERR_MASK = 0xc28,
  143. MV_PCI_XBAR_TMOUT_OFS = 0x1d04,
  144. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  145. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  146. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  147. MV_PCI_ERR_COMMAND = 0x1d50,
  148. PCI_IRQ_CAUSE_OFS = 0x1d58,
  149. PCI_IRQ_MASK_OFS = 0x1d5c,
  150. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  151. PCIE_IRQ_CAUSE_OFS = 0x1900,
  152. PCIE_IRQ_MASK_OFS = 0x1910,
  153. PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
  154. /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
  155. PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
  156. PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
  157. SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
  158. SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
  159. ERR_IRQ = (1 << 0), /* shift by port # */
  160. DONE_IRQ = (1 << 1), /* shift by port # */
  161. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  162. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  163. PCI_ERR = (1 << 18),
  164. TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
  165. TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
  166. PORTS_0_3_COAL_DONE = (1 << 8),
  167. PORTS_4_7_COAL_DONE = (1 << 17),
  168. PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
  169. GPIO_INT = (1 << 22),
  170. SELF_INT = (1 << 23),
  171. TWSI_INT = (1 << 24),
  172. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  173. HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
  174. HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
  175. /* SATAHC registers */
  176. HC_CFG_OFS = 0,
  177. HC_IRQ_CAUSE_OFS = 0x14,
  178. DMA_IRQ = (1 << 0), /* shift by port # */
  179. HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
  180. DEV_IRQ = (1 << 8), /* shift by port # */
  181. /* Shadow block registers */
  182. SHD_BLK_OFS = 0x100,
  183. SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
  184. /* SATA registers */
  185. SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
  186. SATA_ACTIVE_OFS = 0x350,
  187. SATA_FIS_IRQ_CAUSE_OFS = 0x364,
  188. SATA_FIS_IRQ_AN = (1 << 9), /* async notification */
  189. LTMODE_OFS = 0x30c,
  190. LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
  191. PHY_MODE3 = 0x310,
  192. PHY_MODE4 = 0x314,
  193. PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
  194. PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
  195. PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
  196. PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
  197. PHY_MODE2 = 0x330,
  198. SATA_IFCTL_OFS = 0x344,
  199. SATA_TESTCTL_OFS = 0x348,
  200. SATA_IFSTAT_OFS = 0x34c,
  201. VENDOR_UNIQUE_FIS_OFS = 0x35c,
  202. FISCFG_OFS = 0x360,
  203. FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
  204. FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
  205. MV5_PHY_MODE = 0x74,
  206. MV5_LTMODE_OFS = 0x30,
  207. MV5_PHY_CTL_OFS = 0x0C,
  208. SATA_INTERFACE_CFG_OFS = 0x050,
  209. MV_M2_PREAMP_MASK = 0x7e0,
  210. /* Port registers */
  211. EDMA_CFG_OFS = 0,
  212. EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
  213. EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
  214. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  215. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  216. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  217. EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
  218. EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
  219. EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
  220. EDMA_ERR_IRQ_MASK_OFS = 0xc,
  221. EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
  222. EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
  223. EDMA_ERR_DEV = (1 << 2), /* device error */
  224. EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
  225. EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
  226. EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
  227. EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
  228. EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
  229. EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
  230. EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
  231. EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
  232. EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
  233. EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
  234. EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
  235. EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
  236. EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
  237. EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
  238. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
  239. EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
  240. EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
  241. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
  242. EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
  243. EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
  244. EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
  245. EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
  246. EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
  247. EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
  248. EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
  249. EDMA_ERR_OVERRUN_5 = (1 << 5),
  250. EDMA_ERR_UNDERRUN_5 = (1 << 6),
  251. EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
  252. EDMA_ERR_LNK_CTRL_RX_1 |
  253. EDMA_ERR_LNK_CTRL_RX_3 |
  254. EDMA_ERR_LNK_CTRL_TX,
  255. EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
  256. EDMA_ERR_PRD_PAR |
  257. EDMA_ERR_DEV_DCON |
  258. EDMA_ERR_DEV_CON |
  259. EDMA_ERR_SERR |
  260. EDMA_ERR_SELF_DIS |
  261. EDMA_ERR_CRQB_PAR |
  262. EDMA_ERR_CRPB_PAR |
  263. EDMA_ERR_INTRL_PAR |
  264. EDMA_ERR_IORDY |
  265. EDMA_ERR_LNK_CTRL_RX_2 |
  266. EDMA_ERR_LNK_DATA_RX |
  267. EDMA_ERR_LNK_DATA_TX |
  268. EDMA_ERR_TRANS_PROTO,
  269. EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
  270. EDMA_ERR_PRD_PAR |
  271. EDMA_ERR_DEV_DCON |
  272. EDMA_ERR_DEV_CON |
  273. EDMA_ERR_OVERRUN_5 |
  274. EDMA_ERR_UNDERRUN_5 |
  275. EDMA_ERR_SELF_DIS_5 |
  276. EDMA_ERR_CRQB_PAR |
  277. EDMA_ERR_CRPB_PAR |
  278. EDMA_ERR_INTRL_PAR |
  279. EDMA_ERR_IORDY,
  280. EDMA_REQ_Q_BASE_HI_OFS = 0x10,
  281. EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
  282. EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
  283. EDMA_REQ_Q_PTR_SHIFT = 5,
  284. EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
  285. EDMA_RSP_Q_IN_PTR_OFS = 0x20,
  286. EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
  287. EDMA_RSP_Q_PTR_SHIFT = 3,
  288. EDMA_CMD_OFS = 0x28, /* EDMA command register */
  289. EDMA_EN = (1 << 0), /* enable EDMA */
  290. EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
  291. EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
  292. EDMA_STATUS_OFS = 0x30, /* EDMA engine status */
  293. EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
  294. EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
  295. EDMA_IORDY_TMOUT_OFS = 0x34,
  296. EDMA_ARB_CFG_OFS = 0x38,
  297. EDMA_HALTCOND_OFS = 0x60, /* GenIIe halt conditions */
  298. GEN_II_NCQ_MAX_SECTORS = 256, /* max sects/io on Gen2 w/NCQ */
  299. /* Host private flags (hp_flags) */
  300. MV_HP_FLAG_MSI = (1 << 0),
  301. MV_HP_ERRATA_50XXB0 = (1 << 1),
  302. MV_HP_ERRATA_50XXB2 = (1 << 2),
  303. MV_HP_ERRATA_60X1B2 = (1 << 3),
  304. MV_HP_ERRATA_60X1C0 = (1 << 4),
  305. MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
  306. MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
  307. MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
  308. MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
  309. MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
  310. MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
  311. /* Port private flags (pp_flags) */
  312. MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
  313. MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
  314. MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
  315. MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
  316. };
  317. #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
  318. #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
  319. #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
  320. #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
  321. #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
  322. #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
  323. #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
  324. enum {
  325. /* DMA boundary 0xffff is required by the s/g splitting
  326. * we need on /length/ in mv_fill-sg().
  327. */
  328. MV_DMA_BOUNDARY = 0xffffU,
  329. /* mask of register bits containing lower 32 bits
  330. * of EDMA request queue DMA address
  331. */
  332. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  333. /* ditto, for response queue */
  334. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  335. };
  336. enum chip_type {
  337. chip_504x,
  338. chip_508x,
  339. chip_5080,
  340. chip_604x,
  341. chip_608x,
  342. chip_6042,
  343. chip_7042,
  344. chip_soc,
  345. };
  346. /* Command ReQuest Block: 32B */
  347. struct mv_crqb {
  348. __le32 sg_addr;
  349. __le32 sg_addr_hi;
  350. __le16 ctrl_flags;
  351. __le16 ata_cmd[11];
  352. };
  353. struct mv_crqb_iie {
  354. __le32 addr;
  355. __le32 addr_hi;
  356. __le32 flags;
  357. __le32 len;
  358. __le32 ata_cmd[4];
  359. };
  360. /* Command ResPonse Block: 8B */
  361. struct mv_crpb {
  362. __le16 id;
  363. __le16 flags;
  364. __le32 tmstmp;
  365. };
  366. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  367. struct mv_sg {
  368. __le32 addr;
  369. __le32 flags_size;
  370. __le32 addr_hi;
  371. __le32 reserved;
  372. };
  373. struct mv_port_priv {
  374. struct mv_crqb *crqb;
  375. dma_addr_t crqb_dma;
  376. struct mv_crpb *crpb;
  377. dma_addr_t crpb_dma;
  378. struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
  379. dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
  380. unsigned int req_idx;
  381. unsigned int resp_idx;
  382. u32 pp_flags;
  383. unsigned int delayed_eh_pmp_map;
  384. };
  385. struct mv_port_signal {
  386. u32 amps;
  387. u32 pre;
  388. };
  389. struct mv_host_priv {
  390. u32 hp_flags;
  391. u32 main_irq_mask;
  392. struct mv_port_signal signal[8];
  393. const struct mv_hw_ops *ops;
  394. int n_ports;
  395. void __iomem *base;
  396. void __iomem *main_irq_cause_addr;
  397. void __iomem *main_irq_mask_addr;
  398. u32 irq_cause_ofs;
  399. u32 irq_mask_ofs;
  400. u32 unmask_all_irqs;
  401. /*
  402. * These consistent DMA memory pools give us guaranteed
  403. * alignment for hardware-accessed data structures,
  404. * and less memory waste in accomplishing the alignment.
  405. */
  406. struct dma_pool *crqb_pool;
  407. struct dma_pool *crpb_pool;
  408. struct dma_pool *sg_tbl_pool;
  409. };
  410. struct mv_hw_ops {
  411. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  412. unsigned int port);
  413. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  414. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  415. void __iomem *mmio);
  416. int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
  417. unsigned int n_hc);
  418. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  419. void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
  420. };
  421. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  422. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  423. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  424. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  425. static int mv_port_start(struct ata_port *ap);
  426. static void mv_port_stop(struct ata_port *ap);
  427. static int mv_qc_defer(struct ata_queued_cmd *qc);
  428. static void mv_qc_prep(struct ata_queued_cmd *qc);
  429. static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
  430. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
  431. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  432. unsigned long deadline);
  433. static void mv_eh_freeze(struct ata_port *ap);
  434. static void mv_eh_thaw(struct ata_port *ap);
  435. static void mv6_dev_config(struct ata_device *dev);
  436. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  437. unsigned int port);
  438. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  439. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  440. void __iomem *mmio);
  441. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  442. unsigned int n_hc);
  443. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  444. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
  445. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  446. unsigned int port);
  447. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  448. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  449. void __iomem *mmio);
  450. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  451. unsigned int n_hc);
  452. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  453. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  454. void __iomem *mmio);
  455. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  456. void __iomem *mmio);
  457. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  458. void __iomem *mmio, unsigned int n_hc);
  459. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  460. void __iomem *mmio);
  461. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
  462. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
  463. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  464. unsigned int port_no);
  465. static int mv_stop_edma(struct ata_port *ap);
  466. static int mv_stop_edma_engine(void __iomem *port_mmio);
  467. static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
  468. static void mv_pmp_select(struct ata_port *ap, int pmp);
  469. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  470. unsigned long deadline);
  471. static int mv_softreset(struct ata_link *link, unsigned int *class,
  472. unsigned long deadline);
  473. static void mv_pmp_error_handler(struct ata_port *ap);
  474. static void mv_process_crpb_entries(struct ata_port *ap,
  475. struct mv_port_priv *pp);
  476. /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
  477. * because we have to allow room for worst case splitting of
  478. * PRDs for 64K boundaries in mv_fill_sg().
  479. */
  480. static struct scsi_host_template mv5_sht = {
  481. ATA_BASE_SHT(DRV_NAME),
  482. .sg_tablesize = MV_MAX_SG_CT / 2,
  483. .dma_boundary = MV_DMA_BOUNDARY,
  484. };
  485. static struct scsi_host_template mv6_sht = {
  486. ATA_NCQ_SHT(DRV_NAME),
  487. .can_queue = MV_MAX_Q_DEPTH - 1,
  488. .sg_tablesize = MV_MAX_SG_CT / 2,
  489. .dma_boundary = MV_DMA_BOUNDARY,
  490. };
  491. static struct ata_port_operations mv5_ops = {
  492. .inherits = &ata_sff_port_ops,
  493. .qc_defer = mv_qc_defer,
  494. .qc_prep = mv_qc_prep,
  495. .qc_issue = mv_qc_issue,
  496. .freeze = mv_eh_freeze,
  497. .thaw = mv_eh_thaw,
  498. .hardreset = mv_hardreset,
  499. .error_handler = ata_std_error_handler, /* avoid SFF EH */
  500. .post_internal_cmd = ATA_OP_NULL,
  501. .scr_read = mv5_scr_read,
  502. .scr_write = mv5_scr_write,
  503. .port_start = mv_port_start,
  504. .port_stop = mv_port_stop,
  505. };
  506. static struct ata_port_operations mv6_ops = {
  507. .inherits = &mv5_ops,
  508. .dev_config = mv6_dev_config,
  509. .scr_read = mv_scr_read,
  510. .scr_write = mv_scr_write,
  511. .pmp_hardreset = mv_pmp_hardreset,
  512. .pmp_softreset = mv_softreset,
  513. .softreset = mv_softreset,
  514. .error_handler = mv_pmp_error_handler,
  515. };
  516. static struct ata_port_operations mv_iie_ops = {
  517. .inherits = &mv6_ops,
  518. .dev_config = ATA_OP_NULL,
  519. .qc_prep = mv_qc_prep_iie,
  520. };
  521. static const struct ata_port_info mv_port_info[] = {
  522. { /* chip_504x */
  523. .flags = MV_COMMON_FLAGS,
  524. .pio_mask = 0x1f, /* pio0-4 */
  525. .udma_mask = ATA_UDMA6,
  526. .port_ops = &mv5_ops,
  527. },
  528. { /* chip_508x */
  529. .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
  530. .pio_mask = 0x1f, /* pio0-4 */
  531. .udma_mask = ATA_UDMA6,
  532. .port_ops = &mv5_ops,
  533. },
  534. { /* chip_5080 */
  535. .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
  536. .pio_mask = 0x1f, /* pio0-4 */
  537. .udma_mask = ATA_UDMA6,
  538. .port_ops = &mv5_ops,
  539. },
  540. { /* chip_604x */
  541. .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  542. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
  543. ATA_FLAG_NCQ,
  544. .pio_mask = 0x1f, /* pio0-4 */
  545. .udma_mask = ATA_UDMA6,
  546. .port_ops = &mv6_ops,
  547. },
  548. { /* chip_608x */
  549. .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  550. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
  551. ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
  552. .pio_mask = 0x1f, /* pio0-4 */
  553. .udma_mask = ATA_UDMA6,
  554. .port_ops = &mv6_ops,
  555. },
  556. { /* chip_6042 */
  557. .flags = MV_GENIIE_FLAGS,
  558. .pio_mask = 0x1f, /* pio0-4 */
  559. .udma_mask = ATA_UDMA6,
  560. .port_ops = &mv_iie_ops,
  561. },
  562. { /* chip_7042 */
  563. .flags = MV_GENIIE_FLAGS,
  564. .pio_mask = 0x1f, /* pio0-4 */
  565. .udma_mask = ATA_UDMA6,
  566. .port_ops = &mv_iie_ops,
  567. },
  568. { /* chip_soc */
  569. .flags = MV_GENIIE_FLAGS,
  570. .pio_mask = 0x1f, /* pio0-4 */
  571. .udma_mask = ATA_UDMA6,
  572. .port_ops = &mv_iie_ops,
  573. },
  574. };
  575. static const struct pci_device_id mv_pci_tbl[] = {
  576. { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
  577. { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
  578. { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
  579. { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
  580. /* RocketRAID 1720/174x have different identifiers */
  581. { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
  582. { PCI_VDEVICE(TTI, 0x1740), chip_508x },
  583. { PCI_VDEVICE(TTI, 0x1742), chip_508x },
  584. { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
  585. { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
  586. { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
  587. { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
  588. { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
  589. { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
  590. /* Adaptec 1430SA */
  591. { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
  592. /* Marvell 7042 support */
  593. { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
  594. /* Highpoint RocketRAID PCIe series */
  595. { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
  596. { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
  597. { } /* terminate list */
  598. };
  599. static const struct mv_hw_ops mv5xxx_ops = {
  600. .phy_errata = mv5_phy_errata,
  601. .enable_leds = mv5_enable_leds,
  602. .read_preamp = mv5_read_preamp,
  603. .reset_hc = mv5_reset_hc,
  604. .reset_flash = mv5_reset_flash,
  605. .reset_bus = mv5_reset_bus,
  606. };
  607. static const struct mv_hw_ops mv6xxx_ops = {
  608. .phy_errata = mv6_phy_errata,
  609. .enable_leds = mv6_enable_leds,
  610. .read_preamp = mv6_read_preamp,
  611. .reset_hc = mv6_reset_hc,
  612. .reset_flash = mv6_reset_flash,
  613. .reset_bus = mv_reset_pci_bus,
  614. };
  615. static const struct mv_hw_ops mv_soc_ops = {
  616. .phy_errata = mv6_phy_errata,
  617. .enable_leds = mv_soc_enable_leds,
  618. .read_preamp = mv_soc_read_preamp,
  619. .reset_hc = mv_soc_reset_hc,
  620. .reset_flash = mv_soc_reset_flash,
  621. .reset_bus = mv_soc_reset_bus,
  622. };
  623. /*
  624. * Functions
  625. */
  626. static inline void writelfl(unsigned long data, void __iomem *addr)
  627. {
  628. writel(data, addr);
  629. (void) readl(addr); /* flush to avoid PCI posted write */
  630. }
  631. static inline unsigned int mv_hc_from_port(unsigned int port)
  632. {
  633. return port >> MV_PORT_HC_SHIFT;
  634. }
  635. static inline unsigned int mv_hardport_from_port(unsigned int port)
  636. {
  637. return port & MV_PORT_MASK;
  638. }
  639. /*
  640. * Consolidate some rather tricky bit shift calculations.
  641. * This is hot-path stuff, so not a function.
  642. * Simple code, with two return values, so macro rather than inline.
  643. *
  644. * port is the sole input, in range 0..7.
  645. * shift is one output, for use with main_irq_cause / main_irq_mask registers.
  646. * hardport is the other output, in range 0..3.
  647. *
  648. * Note that port and hardport may be the same variable in some cases.
  649. */
  650. #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
  651. { \
  652. shift = mv_hc_from_port(port) * HC_SHIFT; \
  653. hardport = mv_hardport_from_port(port); \
  654. shift += hardport * 2; \
  655. }
  656. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  657. {
  658. return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  659. }
  660. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  661. unsigned int port)
  662. {
  663. return mv_hc_base(base, mv_hc_from_port(port));
  664. }
  665. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  666. {
  667. return mv_hc_base_from_port(base, port) +
  668. MV_SATAHC_ARBTR_REG_SZ +
  669. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  670. }
  671. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  672. {
  673. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  674. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  675. return hc_mmio + ofs;
  676. }
  677. static inline void __iomem *mv_host_base(struct ata_host *host)
  678. {
  679. struct mv_host_priv *hpriv = host->private_data;
  680. return hpriv->base;
  681. }
  682. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  683. {
  684. return mv_port_base(mv_host_base(ap->host), ap->port_no);
  685. }
  686. static inline int mv_get_hc_count(unsigned long port_flags)
  687. {
  688. return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  689. }
  690. static void mv_set_edma_ptrs(void __iomem *port_mmio,
  691. struct mv_host_priv *hpriv,
  692. struct mv_port_priv *pp)
  693. {
  694. u32 index;
  695. /*
  696. * initialize request queue
  697. */
  698. pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  699. index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  700. WARN_ON(pp->crqb_dma & 0x3ff);
  701. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
  702. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
  703. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  704. writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
  705. /*
  706. * initialize response queue
  707. */
  708. pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  709. index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
  710. WARN_ON(pp->crpb_dma & 0xff);
  711. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
  712. writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
  713. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
  714. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  715. }
  716. static void mv_set_main_irq_mask(struct ata_host *host,
  717. u32 disable_bits, u32 enable_bits)
  718. {
  719. struct mv_host_priv *hpriv = host->private_data;
  720. u32 old_mask, new_mask;
  721. old_mask = hpriv->main_irq_mask;
  722. new_mask = (old_mask & ~disable_bits) | enable_bits;
  723. if (new_mask != old_mask) {
  724. hpriv->main_irq_mask = new_mask;
  725. writelfl(new_mask, hpriv->main_irq_mask_addr);
  726. }
  727. }
  728. static void mv_enable_port_irqs(struct ata_port *ap,
  729. unsigned int port_bits)
  730. {
  731. unsigned int shift, hardport, port = ap->port_no;
  732. u32 disable_bits, enable_bits;
  733. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  734. disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
  735. enable_bits = port_bits << shift;
  736. mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
  737. }
  738. /**
  739. * mv_start_dma - Enable eDMA engine
  740. * @base: port base address
  741. * @pp: port private data
  742. *
  743. * Verify the local cache of the eDMA state is accurate with a
  744. * WARN_ON.
  745. *
  746. * LOCKING:
  747. * Inherited from caller.
  748. */
  749. static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
  750. struct mv_port_priv *pp, u8 protocol)
  751. {
  752. int want_ncq = (protocol == ATA_PROT_NCQ);
  753. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  754. int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
  755. if (want_ncq != using_ncq)
  756. mv_stop_edma(ap);
  757. }
  758. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
  759. struct mv_host_priv *hpriv = ap->host->private_data;
  760. int hardport = mv_hardport_from_port(ap->port_no);
  761. void __iomem *hc_mmio = mv_hc_base_from_port(
  762. mv_host_base(ap->host), ap->port_no);
  763. u32 hc_irq_cause;
  764. /* clear EDMA event indicators, if any */
  765. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  766. /* clear pending irq events */
  767. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  768. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  769. mv_edma_cfg(ap, want_ncq);
  770. /* clear FIS IRQ Cause */
  771. if (IS_GEN_IIE(hpriv))
  772. writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  773. mv_set_edma_ptrs(port_mmio, hpriv, pp);
  774. mv_enable_port_irqs(ap, DONE_IRQ|ERR_IRQ);
  775. writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
  776. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  777. }
  778. }
  779. static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
  780. {
  781. void __iomem *port_mmio = mv_ap_base(ap);
  782. const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
  783. const int per_loop = 5, timeout = (15 * 1000 / per_loop);
  784. int i;
  785. /*
  786. * Wait for the EDMA engine to finish transactions in progress.
  787. * No idea what a good "timeout" value might be, but measurements
  788. * indicate that it often requires hundreds of microseconds
  789. * with two drives in-use. So we use the 15msec value above
  790. * as a rough guess at what even more drives might require.
  791. */
  792. for (i = 0; i < timeout; ++i) {
  793. u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
  794. if ((edma_stat & empty_idle) == empty_idle)
  795. break;
  796. udelay(per_loop);
  797. }
  798. /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
  799. }
  800. /**
  801. * mv_stop_edma_engine - Disable eDMA engine
  802. * @port_mmio: io base address
  803. *
  804. * LOCKING:
  805. * Inherited from caller.
  806. */
  807. static int mv_stop_edma_engine(void __iomem *port_mmio)
  808. {
  809. int i;
  810. /* Disable eDMA. The disable bit auto clears. */
  811. writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
  812. /* Wait for the chip to confirm eDMA is off. */
  813. for (i = 10000; i > 0; i--) {
  814. u32 reg = readl(port_mmio + EDMA_CMD_OFS);
  815. if (!(reg & EDMA_EN))
  816. return 0;
  817. udelay(10);
  818. }
  819. return -EIO;
  820. }
  821. static int mv_stop_edma(struct ata_port *ap)
  822. {
  823. void __iomem *port_mmio = mv_ap_base(ap);
  824. struct mv_port_priv *pp = ap->private_data;
  825. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  826. return 0;
  827. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  828. mv_wait_for_edma_empty_idle(ap);
  829. if (mv_stop_edma_engine(port_mmio)) {
  830. ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
  831. return -EIO;
  832. }
  833. return 0;
  834. }
  835. #ifdef ATA_DEBUG
  836. static void mv_dump_mem(void __iomem *start, unsigned bytes)
  837. {
  838. int b, w;
  839. for (b = 0; b < bytes; ) {
  840. DPRINTK("%p: ", start + b);
  841. for (w = 0; b < bytes && w < 4; w++) {
  842. printk("%08x ", readl(start + b));
  843. b += sizeof(u32);
  844. }
  845. printk("\n");
  846. }
  847. }
  848. #endif
  849. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  850. {
  851. #ifdef ATA_DEBUG
  852. int b, w;
  853. u32 dw;
  854. for (b = 0; b < bytes; ) {
  855. DPRINTK("%02x: ", b);
  856. for (w = 0; b < bytes && w < 4; w++) {
  857. (void) pci_read_config_dword(pdev, b, &dw);
  858. printk("%08x ", dw);
  859. b += sizeof(u32);
  860. }
  861. printk("\n");
  862. }
  863. #endif
  864. }
  865. static void mv_dump_all_regs(void __iomem *mmio_base, int port,
  866. struct pci_dev *pdev)
  867. {
  868. #ifdef ATA_DEBUG
  869. void __iomem *hc_base = mv_hc_base(mmio_base,
  870. port >> MV_PORT_HC_SHIFT);
  871. void __iomem *port_base;
  872. int start_port, num_ports, p, start_hc, num_hcs, hc;
  873. if (0 > port) {
  874. start_hc = start_port = 0;
  875. num_ports = 8; /* shld be benign for 4 port devs */
  876. num_hcs = 2;
  877. } else {
  878. start_hc = port >> MV_PORT_HC_SHIFT;
  879. start_port = port;
  880. num_ports = num_hcs = 1;
  881. }
  882. DPRINTK("All registers for port(s) %u-%u:\n", start_port,
  883. num_ports > 1 ? num_ports - 1 : start_port);
  884. if (NULL != pdev) {
  885. DPRINTK("PCI config space regs:\n");
  886. mv_dump_pci_cfg(pdev, 0x68);
  887. }
  888. DPRINTK("PCI regs:\n");
  889. mv_dump_mem(mmio_base+0xc00, 0x3c);
  890. mv_dump_mem(mmio_base+0xd00, 0x34);
  891. mv_dump_mem(mmio_base+0xf00, 0x4);
  892. mv_dump_mem(mmio_base+0x1d00, 0x6c);
  893. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  894. hc_base = mv_hc_base(mmio_base, hc);
  895. DPRINTK("HC regs (HC %i):\n", hc);
  896. mv_dump_mem(hc_base, 0x1c);
  897. }
  898. for (p = start_port; p < start_port + num_ports; p++) {
  899. port_base = mv_port_base(mmio_base, p);
  900. DPRINTK("EDMA regs (port %i):\n", p);
  901. mv_dump_mem(port_base, 0x54);
  902. DPRINTK("SATA regs (port %i):\n", p);
  903. mv_dump_mem(port_base+0x300, 0x60);
  904. }
  905. #endif
  906. }
  907. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  908. {
  909. unsigned int ofs;
  910. switch (sc_reg_in) {
  911. case SCR_STATUS:
  912. case SCR_CONTROL:
  913. case SCR_ERROR:
  914. ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
  915. break;
  916. case SCR_ACTIVE:
  917. ofs = SATA_ACTIVE_OFS; /* active is not with the others */
  918. break;
  919. default:
  920. ofs = 0xffffffffU;
  921. break;
  922. }
  923. return ofs;
  924. }
  925. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  926. {
  927. unsigned int ofs = mv_scr_offset(sc_reg_in);
  928. if (ofs != 0xffffffffU) {
  929. *val = readl(mv_ap_base(link->ap) + ofs);
  930. return 0;
  931. } else
  932. return -EINVAL;
  933. }
  934. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  935. {
  936. unsigned int ofs = mv_scr_offset(sc_reg_in);
  937. if (ofs != 0xffffffffU) {
  938. writelfl(val, mv_ap_base(link->ap) + ofs);
  939. return 0;
  940. } else
  941. return -EINVAL;
  942. }
  943. static void mv6_dev_config(struct ata_device *adev)
  944. {
  945. /*
  946. * Deal with Gen-II ("mv6") hardware quirks/restrictions:
  947. *
  948. * Gen-II does not support NCQ over a port multiplier
  949. * (no FIS-based switching).
  950. *
  951. * We don't have hob_nsect when doing NCQ commands on Gen-II.
  952. * See mv_qc_prep() for more info.
  953. */
  954. if (adev->flags & ATA_DFLAG_NCQ) {
  955. if (sata_pmp_attached(adev->link->ap)) {
  956. adev->flags &= ~ATA_DFLAG_NCQ;
  957. ata_dev_printk(adev, KERN_INFO,
  958. "NCQ disabled for command-based switching\n");
  959. } else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
  960. adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
  961. ata_dev_printk(adev, KERN_INFO,
  962. "max_sectors limited to %u for NCQ\n",
  963. adev->max_sectors);
  964. }
  965. }
  966. }
  967. static int mv_qc_defer(struct ata_queued_cmd *qc)
  968. {
  969. struct ata_link *link = qc->dev->link;
  970. struct ata_port *ap = link->ap;
  971. struct mv_port_priv *pp = ap->private_data;
  972. /*
  973. * Don't allow new commands if we're in a delayed EH state
  974. * for NCQ and/or FIS-based switching.
  975. */
  976. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  977. return ATA_DEFER_PORT;
  978. /*
  979. * If the port is completely idle, then allow the new qc.
  980. */
  981. if (ap->nr_active_links == 0)
  982. return 0;
  983. /*
  984. * The port is operating in host queuing mode (EDMA) with NCQ
  985. * enabled, allow multiple NCQ commands. EDMA also allows
  986. * queueing multiple DMA commands but libata core currently
  987. * doesn't allow it.
  988. */
  989. if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
  990. (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
  991. return 0;
  992. return ATA_DEFER_PORT;
  993. }
  994. static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
  995. {
  996. u32 new_fiscfg, old_fiscfg;
  997. u32 new_ltmode, old_ltmode;
  998. u32 new_haltcond, old_haltcond;
  999. old_fiscfg = readl(port_mmio + FISCFG_OFS);
  1000. old_ltmode = readl(port_mmio + LTMODE_OFS);
  1001. old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
  1002. new_fiscfg = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
  1003. new_ltmode = old_ltmode & ~LTMODE_BIT8;
  1004. new_haltcond = old_haltcond | EDMA_ERR_DEV;
  1005. if (want_fbs) {
  1006. new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
  1007. new_ltmode = old_ltmode | LTMODE_BIT8;
  1008. if (want_ncq)
  1009. new_haltcond &= ~EDMA_ERR_DEV;
  1010. else
  1011. new_fiscfg |= FISCFG_WAIT_DEV_ERR;
  1012. }
  1013. if (new_fiscfg != old_fiscfg)
  1014. writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
  1015. if (new_ltmode != old_ltmode)
  1016. writelfl(new_ltmode, port_mmio + LTMODE_OFS);
  1017. if (new_haltcond != old_haltcond)
  1018. writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
  1019. }
  1020. static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
  1021. {
  1022. struct mv_host_priv *hpriv = ap->host->private_data;
  1023. u32 old, new;
  1024. /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
  1025. old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
  1026. if (want_ncq)
  1027. new = old | (1 << 22);
  1028. else
  1029. new = old & ~(1 << 22);
  1030. if (new != old)
  1031. writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
  1032. }
  1033. static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
  1034. {
  1035. u32 cfg;
  1036. struct mv_port_priv *pp = ap->private_data;
  1037. struct mv_host_priv *hpriv = ap->host->private_data;
  1038. void __iomem *port_mmio = mv_ap_base(ap);
  1039. /* set up non-NCQ EDMA configuration */
  1040. cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
  1041. pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
  1042. if (IS_GEN_I(hpriv))
  1043. cfg |= (1 << 8); /* enab config burst size mask */
  1044. else if (IS_GEN_II(hpriv)) {
  1045. cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
  1046. mv_60x1_errata_sata25(ap, want_ncq);
  1047. } else if (IS_GEN_IIE(hpriv)) {
  1048. int want_fbs = sata_pmp_attached(ap);
  1049. /*
  1050. * Possible future enhancement:
  1051. *
  1052. * The chip can use FBS with non-NCQ, if we allow it,
  1053. * But first we need to have the error handling in place
  1054. * for this mode (datasheet section 7.3.15.4.2.3).
  1055. * So disallow non-NCQ FBS for now.
  1056. */
  1057. want_fbs &= want_ncq;
  1058. mv_config_fbs(port_mmio, want_ncq, want_fbs);
  1059. if (want_fbs) {
  1060. pp->pp_flags |= MV_PP_FLAG_FBS_EN;
  1061. cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
  1062. }
  1063. cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
  1064. cfg |= (1 << 22); /* enab 4-entry host queue cache */
  1065. if (!IS_SOC(hpriv))
  1066. cfg |= (1 << 18); /* enab early completion */
  1067. if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
  1068. cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
  1069. }
  1070. if (want_ncq) {
  1071. cfg |= EDMA_CFG_NCQ;
  1072. pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
  1073. } else
  1074. pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
  1075. writelfl(cfg, port_mmio + EDMA_CFG_OFS);
  1076. }
  1077. static void mv_port_free_dma_mem(struct ata_port *ap)
  1078. {
  1079. struct mv_host_priv *hpriv = ap->host->private_data;
  1080. struct mv_port_priv *pp = ap->private_data;
  1081. int tag;
  1082. if (pp->crqb) {
  1083. dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
  1084. pp->crqb = NULL;
  1085. }
  1086. if (pp->crpb) {
  1087. dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
  1088. pp->crpb = NULL;
  1089. }
  1090. /*
  1091. * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
  1092. * For later hardware, we have one unique sg_tbl per NCQ tag.
  1093. */
  1094. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1095. if (pp->sg_tbl[tag]) {
  1096. if (tag == 0 || !IS_GEN_I(hpriv))
  1097. dma_pool_free(hpriv->sg_tbl_pool,
  1098. pp->sg_tbl[tag],
  1099. pp->sg_tbl_dma[tag]);
  1100. pp->sg_tbl[tag] = NULL;
  1101. }
  1102. }
  1103. }
  1104. /**
  1105. * mv_port_start - Port specific init/start routine.
  1106. * @ap: ATA channel to manipulate
  1107. *
  1108. * Allocate and point to DMA memory, init port private memory,
  1109. * zero indices.
  1110. *
  1111. * LOCKING:
  1112. * Inherited from caller.
  1113. */
  1114. static int mv_port_start(struct ata_port *ap)
  1115. {
  1116. struct device *dev = ap->host->dev;
  1117. struct mv_host_priv *hpriv = ap->host->private_data;
  1118. struct mv_port_priv *pp;
  1119. int tag;
  1120. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  1121. if (!pp)
  1122. return -ENOMEM;
  1123. ap->private_data = pp;
  1124. pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
  1125. if (!pp->crqb)
  1126. return -ENOMEM;
  1127. memset(pp->crqb, 0, MV_CRQB_Q_SZ);
  1128. pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
  1129. if (!pp->crpb)
  1130. goto out_port_free_dma_mem;
  1131. memset(pp->crpb, 0, MV_CRPB_Q_SZ);
  1132. /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
  1133. if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
  1134. ap->flags |= ATA_FLAG_AN;
  1135. /*
  1136. * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
  1137. * For later hardware, we need one unique sg_tbl per NCQ tag.
  1138. */
  1139. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1140. if (tag == 0 || !IS_GEN_I(hpriv)) {
  1141. pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
  1142. GFP_KERNEL, &pp->sg_tbl_dma[tag]);
  1143. if (!pp->sg_tbl[tag])
  1144. goto out_port_free_dma_mem;
  1145. } else {
  1146. pp->sg_tbl[tag] = pp->sg_tbl[0];
  1147. pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
  1148. }
  1149. }
  1150. return 0;
  1151. out_port_free_dma_mem:
  1152. mv_port_free_dma_mem(ap);
  1153. return -ENOMEM;
  1154. }
  1155. /**
  1156. * mv_port_stop - Port specific cleanup/stop routine.
  1157. * @ap: ATA channel to manipulate
  1158. *
  1159. * Stop DMA, cleanup port memory.
  1160. *
  1161. * LOCKING:
  1162. * This routine uses the host lock to protect the DMA stop.
  1163. */
  1164. static void mv_port_stop(struct ata_port *ap)
  1165. {
  1166. mv_stop_edma(ap);
  1167. mv_enable_port_irqs(ap, 0);
  1168. mv_port_free_dma_mem(ap);
  1169. }
  1170. /**
  1171. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  1172. * @qc: queued command whose SG list to source from
  1173. *
  1174. * Populate the SG list and mark the last entry.
  1175. *
  1176. * LOCKING:
  1177. * Inherited from caller.
  1178. */
  1179. static void mv_fill_sg(struct ata_queued_cmd *qc)
  1180. {
  1181. struct mv_port_priv *pp = qc->ap->private_data;
  1182. struct scatterlist *sg;
  1183. struct mv_sg *mv_sg, *last_sg = NULL;
  1184. unsigned int si;
  1185. mv_sg = pp->sg_tbl[qc->tag];
  1186. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  1187. dma_addr_t addr = sg_dma_address(sg);
  1188. u32 sg_len = sg_dma_len(sg);
  1189. while (sg_len) {
  1190. u32 offset = addr & 0xffff;
  1191. u32 len = sg_len;
  1192. if ((offset + sg_len > 0x10000))
  1193. len = 0x10000 - offset;
  1194. mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
  1195. mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
  1196. mv_sg->flags_size = cpu_to_le32(len & 0xffff);
  1197. sg_len -= len;
  1198. addr += len;
  1199. last_sg = mv_sg;
  1200. mv_sg++;
  1201. }
  1202. }
  1203. if (likely(last_sg))
  1204. last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  1205. }
  1206. static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
  1207. {
  1208. u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  1209. (last ? CRQB_CMD_LAST : 0);
  1210. *cmdw = cpu_to_le16(tmp);
  1211. }
  1212. /**
  1213. * mv_qc_prep - Host specific command preparation.
  1214. * @qc: queued command to prepare
  1215. *
  1216. * This routine simply redirects to the general purpose routine
  1217. * if command is not DMA. Else, it handles prep of the CRQB
  1218. * (command request block), does some sanity checking, and calls
  1219. * the SG load routine.
  1220. *
  1221. * LOCKING:
  1222. * Inherited from caller.
  1223. */
  1224. static void mv_qc_prep(struct ata_queued_cmd *qc)
  1225. {
  1226. struct ata_port *ap = qc->ap;
  1227. struct mv_port_priv *pp = ap->private_data;
  1228. __le16 *cw;
  1229. struct ata_taskfile *tf;
  1230. u16 flags = 0;
  1231. unsigned in_index;
  1232. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1233. (qc->tf.protocol != ATA_PROT_NCQ))
  1234. return;
  1235. /* Fill in command request block
  1236. */
  1237. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1238. flags |= CRQB_FLAG_READ;
  1239. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1240. flags |= qc->tag << CRQB_TAG_SHIFT;
  1241. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1242. /* get current queue index from software */
  1243. in_index = pp->req_idx;
  1244. pp->crqb[in_index].sg_addr =
  1245. cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1246. pp->crqb[in_index].sg_addr_hi =
  1247. cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1248. pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
  1249. cw = &pp->crqb[in_index].ata_cmd[0];
  1250. tf = &qc->tf;
  1251. /* Sadly, the CRQB cannot accomodate all registers--there are
  1252. * only 11 bytes...so we must pick and choose required
  1253. * registers based on the command. So, we drop feature and
  1254. * hob_feature for [RW] DMA commands, but they are needed for
  1255. * NCQ. NCQ will drop hob_nsect.
  1256. */
  1257. switch (tf->command) {
  1258. case ATA_CMD_READ:
  1259. case ATA_CMD_READ_EXT:
  1260. case ATA_CMD_WRITE:
  1261. case ATA_CMD_WRITE_EXT:
  1262. case ATA_CMD_WRITE_FUA_EXT:
  1263. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  1264. break;
  1265. case ATA_CMD_FPDMA_READ:
  1266. case ATA_CMD_FPDMA_WRITE:
  1267. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  1268. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  1269. break;
  1270. default:
  1271. /* The only other commands EDMA supports in non-queued and
  1272. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  1273. * of which are defined/used by Linux. If we get here, this
  1274. * driver needs work.
  1275. *
  1276. * FIXME: modify libata to give qc_prep a return value and
  1277. * return error here.
  1278. */
  1279. BUG_ON(tf->command);
  1280. break;
  1281. }
  1282. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  1283. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  1284. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  1285. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  1286. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  1287. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  1288. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  1289. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  1290. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  1291. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1292. return;
  1293. mv_fill_sg(qc);
  1294. }
  1295. /**
  1296. * mv_qc_prep_iie - Host specific command preparation.
  1297. * @qc: queued command to prepare
  1298. *
  1299. * This routine simply redirects to the general purpose routine
  1300. * if command is not DMA. Else, it handles prep of the CRQB
  1301. * (command request block), does some sanity checking, and calls
  1302. * the SG load routine.
  1303. *
  1304. * LOCKING:
  1305. * Inherited from caller.
  1306. */
  1307. static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
  1308. {
  1309. struct ata_port *ap = qc->ap;
  1310. struct mv_port_priv *pp = ap->private_data;
  1311. struct mv_crqb_iie *crqb;
  1312. struct ata_taskfile *tf;
  1313. unsigned in_index;
  1314. u32 flags = 0;
  1315. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1316. (qc->tf.protocol != ATA_PROT_NCQ))
  1317. return;
  1318. /* Fill in Gen IIE command request block */
  1319. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1320. flags |= CRQB_FLAG_READ;
  1321. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1322. flags |= qc->tag << CRQB_TAG_SHIFT;
  1323. flags |= qc->tag << CRQB_HOSTQ_SHIFT;
  1324. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1325. /* get current queue index from software */
  1326. in_index = pp->req_idx;
  1327. crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
  1328. crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1329. crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1330. crqb->flags = cpu_to_le32(flags);
  1331. tf = &qc->tf;
  1332. crqb->ata_cmd[0] = cpu_to_le32(
  1333. (tf->command << 16) |
  1334. (tf->feature << 24)
  1335. );
  1336. crqb->ata_cmd[1] = cpu_to_le32(
  1337. (tf->lbal << 0) |
  1338. (tf->lbam << 8) |
  1339. (tf->lbah << 16) |
  1340. (tf->device << 24)
  1341. );
  1342. crqb->ata_cmd[2] = cpu_to_le32(
  1343. (tf->hob_lbal << 0) |
  1344. (tf->hob_lbam << 8) |
  1345. (tf->hob_lbah << 16) |
  1346. (tf->hob_feature << 24)
  1347. );
  1348. crqb->ata_cmd[3] = cpu_to_le32(
  1349. (tf->nsect << 0) |
  1350. (tf->hob_nsect << 8)
  1351. );
  1352. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1353. return;
  1354. mv_fill_sg(qc);
  1355. }
  1356. /**
  1357. * mv_qc_issue - Initiate a command to the host
  1358. * @qc: queued command to start
  1359. *
  1360. * This routine simply redirects to the general purpose routine
  1361. * if command is not DMA. Else, it sanity checks our local
  1362. * caches of the request producer/consumer indices then enables
  1363. * DMA and bumps the request producer index.
  1364. *
  1365. * LOCKING:
  1366. * Inherited from caller.
  1367. */
  1368. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
  1369. {
  1370. struct ata_port *ap = qc->ap;
  1371. void __iomem *port_mmio = mv_ap_base(ap);
  1372. struct mv_port_priv *pp = ap->private_data;
  1373. u32 in_index;
  1374. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1375. (qc->tf.protocol != ATA_PROT_NCQ)) {
  1376. static int limit_warnings = 10;
  1377. /*
  1378. * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
  1379. *
  1380. * Someday, we might implement special polling workarounds
  1381. * for these, but it all seems rather unnecessary since we
  1382. * normally use only DMA for commands which transfer more
  1383. * than a single block of data.
  1384. *
  1385. * Much of the time, this could just work regardless.
  1386. * So for now, just log the incident, and allow the attempt.
  1387. */
  1388. if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
  1389. --limit_warnings;
  1390. ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
  1391. ": attempting PIO w/multiple DRQ: "
  1392. "this may fail due to h/w errata\n");
  1393. }
  1394. /*
  1395. * We're about to send a non-EDMA capable command to the
  1396. * port. Turn off EDMA so there won't be problems accessing
  1397. * shadow block, etc registers.
  1398. */
  1399. mv_stop_edma(ap);
  1400. mv_enable_port_irqs(ap, ERR_IRQ);
  1401. mv_pmp_select(ap, qc->dev->link->pmp);
  1402. return ata_sff_qc_issue(qc);
  1403. }
  1404. mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
  1405. pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  1406. in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  1407. /* and write the request in pointer to kick the EDMA to life */
  1408. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
  1409. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  1410. return 0;
  1411. }
  1412. static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
  1413. {
  1414. struct mv_port_priv *pp = ap->private_data;
  1415. struct ata_queued_cmd *qc;
  1416. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  1417. return NULL;
  1418. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1419. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  1420. qc = NULL;
  1421. return qc;
  1422. }
  1423. static void mv_pmp_error_handler(struct ata_port *ap)
  1424. {
  1425. unsigned int pmp, pmp_map;
  1426. struct mv_port_priv *pp = ap->private_data;
  1427. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
  1428. /*
  1429. * Perform NCQ error analysis on failed PMPs
  1430. * before we freeze the port entirely.
  1431. *
  1432. * The failed PMPs are marked earlier by mv_pmp_eh_prep().
  1433. */
  1434. pmp_map = pp->delayed_eh_pmp_map;
  1435. pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
  1436. for (pmp = 0; pmp_map != 0; pmp++) {
  1437. unsigned int this_pmp = (1 << pmp);
  1438. if (pmp_map & this_pmp) {
  1439. struct ata_link *link = &ap->pmp_link[pmp];
  1440. pmp_map &= ~this_pmp;
  1441. ata_eh_analyze_ncq_error(link);
  1442. }
  1443. }
  1444. ata_port_freeze(ap);
  1445. }
  1446. sata_pmp_error_handler(ap);
  1447. }
  1448. static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
  1449. {
  1450. void __iomem *port_mmio = mv_ap_base(ap);
  1451. return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
  1452. }
  1453. static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
  1454. {
  1455. struct ata_eh_info *ehi;
  1456. unsigned int pmp;
  1457. /*
  1458. * Initialize EH info for PMPs which saw device errors
  1459. */
  1460. ehi = &ap->link.eh_info;
  1461. for (pmp = 0; pmp_map != 0; pmp++) {
  1462. unsigned int this_pmp = (1 << pmp);
  1463. if (pmp_map & this_pmp) {
  1464. struct ata_link *link = &ap->pmp_link[pmp];
  1465. pmp_map &= ~this_pmp;
  1466. ehi = &link->eh_info;
  1467. ata_ehi_clear_desc(ehi);
  1468. ata_ehi_push_desc(ehi, "dev err");
  1469. ehi->err_mask |= AC_ERR_DEV;
  1470. ehi->action |= ATA_EH_RESET;
  1471. ata_link_abort(link);
  1472. }
  1473. }
  1474. }
  1475. static int mv_req_q_empty(struct ata_port *ap)
  1476. {
  1477. void __iomem *port_mmio = mv_ap_base(ap);
  1478. u32 in_ptr, out_ptr;
  1479. in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
  1480. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  1481. out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
  1482. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  1483. return (in_ptr == out_ptr); /* 1 == queue_is_empty */
  1484. }
  1485. static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
  1486. {
  1487. struct mv_port_priv *pp = ap->private_data;
  1488. int failed_links;
  1489. unsigned int old_map, new_map;
  1490. /*
  1491. * Device error during FBS+NCQ operation:
  1492. *
  1493. * Set a port flag to prevent further I/O being enqueued.
  1494. * Leave the EDMA running to drain outstanding commands from this port.
  1495. * Perform the post-mortem/EH only when all responses are complete.
  1496. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
  1497. */
  1498. if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
  1499. pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
  1500. pp->delayed_eh_pmp_map = 0;
  1501. }
  1502. old_map = pp->delayed_eh_pmp_map;
  1503. new_map = old_map | mv_get_err_pmp_map(ap);
  1504. if (old_map != new_map) {
  1505. pp->delayed_eh_pmp_map = new_map;
  1506. mv_pmp_eh_prep(ap, new_map & ~old_map);
  1507. }
  1508. failed_links = hweight16(new_map);
  1509. ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
  1510. "failed_links=%d nr_active_links=%d\n",
  1511. __func__, pp->delayed_eh_pmp_map,
  1512. ap->qc_active, failed_links,
  1513. ap->nr_active_links);
  1514. if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
  1515. mv_process_crpb_entries(ap, pp);
  1516. mv_stop_edma(ap);
  1517. mv_eh_freeze(ap);
  1518. ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
  1519. return 1; /* handled */
  1520. }
  1521. ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
  1522. return 1; /* handled */
  1523. }
  1524. static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
  1525. {
  1526. /*
  1527. * Possible future enhancement:
  1528. *
  1529. * FBS+non-NCQ operation is not yet implemented.
  1530. * See related notes in mv_edma_cfg().
  1531. *
  1532. * Device error during FBS+non-NCQ operation:
  1533. *
  1534. * We need to snapshot the shadow registers for each failed command.
  1535. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
  1536. */
  1537. return 0; /* not handled */
  1538. }
  1539. static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
  1540. {
  1541. struct mv_port_priv *pp = ap->private_data;
  1542. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  1543. return 0; /* EDMA was not active: not handled */
  1544. if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
  1545. return 0; /* FBS was not active: not handled */
  1546. if (!(edma_err_cause & EDMA_ERR_DEV))
  1547. return 0; /* non DEV error: not handled */
  1548. edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
  1549. if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
  1550. return 0; /* other problems: not handled */
  1551. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
  1552. /*
  1553. * EDMA should NOT have self-disabled for this case.
  1554. * If it did, then something is wrong elsewhere,
  1555. * and we cannot handle it here.
  1556. */
  1557. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  1558. ata_port_printk(ap, KERN_WARNING,
  1559. "%s: err_cause=0x%x pp_flags=0x%x\n",
  1560. __func__, edma_err_cause, pp->pp_flags);
  1561. return 0; /* not handled */
  1562. }
  1563. return mv_handle_fbs_ncq_dev_err(ap);
  1564. } else {
  1565. /*
  1566. * EDMA should have self-disabled for this case.
  1567. * If it did not, then something is wrong elsewhere,
  1568. * and we cannot handle it here.
  1569. */
  1570. if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
  1571. ata_port_printk(ap, KERN_WARNING,
  1572. "%s: err_cause=0x%x pp_flags=0x%x\n",
  1573. __func__, edma_err_cause, pp->pp_flags);
  1574. return 0; /* not handled */
  1575. }
  1576. return mv_handle_fbs_non_ncq_dev_err(ap);
  1577. }
  1578. return 0; /* not handled */
  1579. }
  1580. static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
  1581. {
  1582. struct ata_eh_info *ehi = &ap->link.eh_info;
  1583. char *when = "idle";
  1584. ata_ehi_clear_desc(ehi);
  1585. if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
  1586. when = "disabled";
  1587. } else if (edma_was_enabled) {
  1588. when = "EDMA enabled";
  1589. } else {
  1590. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1591. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  1592. when = "polling";
  1593. }
  1594. ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
  1595. ehi->err_mask |= AC_ERR_OTHER;
  1596. ehi->action |= ATA_EH_RESET;
  1597. ata_port_freeze(ap);
  1598. }
  1599. /**
  1600. * mv_err_intr - Handle error interrupts on the port
  1601. * @ap: ATA channel to manipulate
  1602. *
  1603. * Most cases require a full reset of the chip's state machine,
  1604. * which also performs a COMRESET.
  1605. * Also, if the port disabled DMA, update our cached copy to match.
  1606. *
  1607. * LOCKING:
  1608. * Inherited from caller.
  1609. */
  1610. static void mv_err_intr(struct ata_port *ap)
  1611. {
  1612. void __iomem *port_mmio = mv_ap_base(ap);
  1613. u32 edma_err_cause, eh_freeze_mask, serr = 0;
  1614. u32 fis_cause = 0;
  1615. struct mv_port_priv *pp = ap->private_data;
  1616. struct mv_host_priv *hpriv = ap->host->private_data;
  1617. unsigned int action = 0, err_mask = 0;
  1618. struct ata_eh_info *ehi = &ap->link.eh_info;
  1619. struct ata_queued_cmd *qc;
  1620. int abort = 0;
  1621. /*
  1622. * Read and clear the SError and err_cause bits.
  1623. * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
  1624. * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
  1625. */
  1626. sata_scr_read(&ap->link, SCR_ERROR, &serr);
  1627. sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
  1628. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1629. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  1630. fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  1631. writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  1632. }
  1633. writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1634. if (edma_err_cause & EDMA_ERR_DEV) {
  1635. /*
  1636. * Device errors during FIS-based switching operation
  1637. * require special handling.
  1638. */
  1639. if (mv_handle_dev_err(ap, edma_err_cause))
  1640. return;
  1641. }
  1642. qc = mv_get_active_qc(ap);
  1643. ata_ehi_clear_desc(ehi);
  1644. ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
  1645. edma_err_cause, pp->pp_flags);
  1646. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  1647. ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
  1648. if (fis_cause & SATA_FIS_IRQ_AN) {
  1649. u32 ec = edma_err_cause &
  1650. ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
  1651. sata_async_notification(ap);
  1652. if (!ec)
  1653. return; /* Just an AN; no need for the nukes */
  1654. ata_ehi_push_desc(ehi, "SDB notify");
  1655. }
  1656. }
  1657. /*
  1658. * All generations share these EDMA error cause bits:
  1659. */
  1660. if (edma_err_cause & EDMA_ERR_DEV) {
  1661. err_mask |= AC_ERR_DEV;
  1662. action |= ATA_EH_RESET;
  1663. ata_ehi_push_desc(ehi, "dev error");
  1664. }
  1665. if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  1666. EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
  1667. EDMA_ERR_INTRL_PAR)) {
  1668. err_mask |= AC_ERR_ATA_BUS;
  1669. action |= ATA_EH_RESET;
  1670. ata_ehi_push_desc(ehi, "parity error");
  1671. }
  1672. if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
  1673. ata_ehi_hotplugged(ehi);
  1674. ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
  1675. "dev disconnect" : "dev connect");
  1676. action |= ATA_EH_RESET;
  1677. }
  1678. /*
  1679. * Gen-I has a different SELF_DIS bit,
  1680. * different FREEZE bits, and no SERR bit:
  1681. */
  1682. if (IS_GEN_I(hpriv)) {
  1683. eh_freeze_mask = EDMA_EH_FREEZE_5;
  1684. if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
  1685. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1686. ata_ehi_push_desc(ehi, "EDMA self-disable");
  1687. }
  1688. } else {
  1689. eh_freeze_mask = EDMA_EH_FREEZE;
  1690. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  1691. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1692. ata_ehi_push_desc(ehi, "EDMA self-disable");
  1693. }
  1694. if (edma_err_cause & EDMA_ERR_SERR) {
  1695. ata_ehi_push_desc(ehi, "SError=%08x", serr);
  1696. err_mask |= AC_ERR_ATA_BUS;
  1697. action |= ATA_EH_RESET;
  1698. }
  1699. }
  1700. if (!err_mask) {
  1701. err_mask = AC_ERR_OTHER;
  1702. action |= ATA_EH_RESET;
  1703. }
  1704. ehi->serror |= serr;
  1705. ehi->action |= action;
  1706. if (qc)
  1707. qc->err_mask |= err_mask;
  1708. else
  1709. ehi->err_mask |= err_mask;
  1710. if (err_mask == AC_ERR_DEV) {
  1711. /*
  1712. * Cannot do ata_port_freeze() here,
  1713. * because it would kill PIO access,
  1714. * which is needed for further diagnosis.
  1715. */
  1716. mv_eh_freeze(ap);
  1717. abort = 1;
  1718. } else if (edma_err_cause & eh_freeze_mask) {
  1719. /*
  1720. * Note to self: ata_port_freeze() calls ata_port_abort()
  1721. */
  1722. ata_port_freeze(ap);
  1723. } else {
  1724. abort = 1;
  1725. }
  1726. if (abort) {
  1727. if (qc)
  1728. ata_link_abort(qc->dev->link);
  1729. else
  1730. ata_port_abort(ap);
  1731. }
  1732. }
  1733. static void mv_process_crpb_response(struct ata_port *ap,
  1734. struct mv_crpb *response, unsigned int tag, int ncq_enabled)
  1735. {
  1736. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
  1737. if (qc) {
  1738. u8 ata_status;
  1739. u16 edma_status = le16_to_cpu(response->flags);
  1740. /*
  1741. * edma_status from a response queue entry:
  1742. * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
  1743. * MSB is saved ATA status from command completion.
  1744. */
  1745. if (!ncq_enabled) {
  1746. u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
  1747. if (err_cause) {
  1748. /*
  1749. * Error will be seen/handled by mv_err_intr().
  1750. * So do nothing at all here.
  1751. */
  1752. return;
  1753. }
  1754. }
  1755. ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
  1756. if (!ac_err_mask(ata_status))
  1757. ata_qc_complete(qc);
  1758. /* else: leave it for mv_err_intr() */
  1759. } else {
  1760. ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
  1761. __func__, tag);
  1762. }
  1763. }
  1764. static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
  1765. {
  1766. void __iomem *port_mmio = mv_ap_base(ap);
  1767. struct mv_host_priv *hpriv = ap->host->private_data;
  1768. u32 in_index;
  1769. bool work_done = false;
  1770. int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
  1771. /* Get the hardware queue position index */
  1772. in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
  1773. >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  1774. /* Process new responses from since the last time we looked */
  1775. while (in_index != pp->resp_idx) {
  1776. unsigned int tag;
  1777. struct mv_crpb *response = &pp->crpb[pp->resp_idx];
  1778. pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  1779. if (IS_GEN_I(hpriv)) {
  1780. /* 50xx: no NCQ, only one command active at a time */
  1781. tag = ap->link.active_tag;
  1782. } else {
  1783. /* Gen II/IIE: get command tag from CRPB entry */
  1784. tag = le16_to_cpu(response->id) & 0x1f;
  1785. }
  1786. mv_process_crpb_response(ap, response, tag, ncq_enabled);
  1787. work_done = true;
  1788. }
  1789. /* Update the software queue position index in hardware */
  1790. if (work_done)
  1791. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
  1792. (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
  1793. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  1794. }
  1795. static void mv_port_intr(struct ata_port *ap, u32 port_cause)
  1796. {
  1797. struct mv_port_priv *pp;
  1798. int edma_was_enabled;
  1799. if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
  1800. mv_unexpected_intr(ap, 0);
  1801. return;
  1802. }
  1803. /*
  1804. * Grab a snapshot of the EDMA_EN flag setting,
  1805. * so that we have a consistent view for this port,
  1806. * even if something we call of our routines changes it.
  1807. */
  1808. pp = ap->private_data;
  1809. edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
  1810. /*
  1811. * Process completed CRPB response(s) before other events.
  1812. */
  1813. if (edma_was_enabled && (port_cause & DONE_IRQ)) {
  1814. mv_process_crpb_entries(ap, pp);
  1815. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  1816. mv_handle_fbs_ncq_dev_err(ap);
  1817. }
  1818. /*
  1819. * Handle chip-reported errors, or continue on to handle PIO.
  1820. */
  1821. if (unlikely(port_cause & ERR_IRQ)) {
  1822. mv_err_intr(ap);
  1823. } else if (!edma_was_enabled) {
  1824. struct ata_queued_cmd *qc = mv_get_active_qc(ap);
  1825. if (qc)
  1826. ata_sff_host_intr(ap, qc);
  1827. else
  1828. mv_unexpected_intr(ap, edma_was_enabled);
  1829. }
  1830. }
  1831. /**
  1832. * mv_host_intr - Handle all interrupts on the given host controller
  1833. * @host: host specific structure
  1834. * @main_irq_cause: Main interrupt cause register for the chip.
  1835. *
  1836. * LOCKING:
  1837. * Inherited from caller.
  1838. */
  1839. static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
  1840. {
  1841. struct mv_host_priv *hpriv = host->private_data;
  1842. void __iomem *mmio = hpriv->base, *hc_mmio;
  1843. unsigned int handled = 0, port;
  1844. for (port = 0; port < hpriv->n_ports; port++) {
  1845. struct ata_port *ap = host->ports[port];
  1846. unsigned int p, shift, hardport, port_cause;
  1847. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  1848. /*
  1849. * Each hc within the host has its own hc_irq_cause register,
  1850. * where the interrupting ports bits get ack'd.
  1851. */
  1852. if (hardport == 0) { /* first port on this hc ? */
  1853. u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
  1854. u32 port_mask, ack_irqs;
  1855. /*
  1856. * Skip this entire hc if nothing pending for any ports
  1857. */
  1858. if (!hc_cause) {
  1859. port += MV_PORTS_PER_HC - 1;
  1860. continue;
  1861. }
  1862. /*
  1863. * We don't need/want to read the hc_irq_cause register,
  1864. * because doing so hurts performance, and
  1865. * main_irq_cause already gives us everything we need.
  1866. *
  1867. * But we do have to *write* to the hc_irq_cause to ack
  1868. * the ports that we are handling this time through.
  1869. *
  1870. * This requires that we create a bitmap for those
  1871. * ports which interrupted us, and use that bitmap
  1872. * to ack (only) those ports via hc_irq_cause.
  1873. */
  1874. ack_irqs = 0;
  1875. for (p = 0; p < MV_PORTS_PER_HC; ++p) {
  1876. if ((port + p) >= hpriv->n_ports)
  1877. break;
  1878. port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
  1879. if (hc_cause & port_mask)
  1880. ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
  1881. }
  1882. hc_mmio = mv_hc_base_from_port(mmio, port);
  1883. writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
  1884. handled = 1;
  1885. }
  1886. /*
  1887. * Handle interrupts signalled for this port:
  1888. */
  1889. port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
  1890. if (port_cause)
  1891. mv_port_intr(ap, port_cause);
  1892. }
  1893. return handled;
  1894. }
  1895. static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
  1896. {
  1897. struct mv_host_priv *hpriv = host->private_data;
  1898. struct ata_port *ap;
  1899. struct ata_queued_cmd *qc;
  1900. struct ata_eh_info *ehi;
  1901. unsigned int i, err_mask, printed = 0;
  1902. u32 err_cause;
  1903. err_cause = readl(mmio + hpriv->irq_cause_ofs);
  1904. dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
  1905. err_cause);
  1906. DPRINTK("All regs @ PCI error\n");
  1907. mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
  1908. writelfl(0, mmio + hpriv->irq_cause_ofs);
  1909. for (i = 0; i < host->n_ports; i++) {
  1910. ap = host->ports[i];
  1911. if (!ata_link_offline(&ap->link)) {
  1912. ehi = &ap->link.eh_info;
  1913. ata_ehi_clear_desc(ehi);
  1914. if (!printed++)
  1915. ata_ehi_push_desc(ehi,
  1916. "PCI err cause 0x%08x", err_cause);
  1917. err_mask = AC_ERR_HOST_BUS;
  1918. ehi->action = ATA_EH_RESET;
  1919. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1920. if (qc)
  1921. qc->err_mask |= err_mask;
  1922. else
  1923. ehi->err_mask |= err_mask;
  1924. ata_port_freeze(ap);
  1925. }
  1926. }
  1927. return 1; /* handled */
  1928. }
  1929. /**
  1930. * mv_interrupt - Main interrupt event handler
  1931. * @irq: unused
  1932. * @dev_instance: private data; in this case the host structure
  1933. *
  1934. * Read the read only register to determine if any host
  1935. * controllers have pending interrupts. If so, call lower level
  1936. * routine to handle. Also check for PCI errors which are only
  1937. * reported here.
  1938. *
  1939. * LOCKING:
  1940. * This routine holds the host lock while processing pending
  1941. * interrupts.
  1942. */
  1943. static irqreturn_t mv_interrupt(int irq, void *dev_instance)
  1944. {
  1945. struct ata_host *host = dev_instance;
  1946. struct mv_host_priv *hpriv = host->private_data;
  1947. unsigned int handled = 0;
  1948. u32 main_irq_cause, pending_irqs;
  1949. spin_lock(&host->lock);
  1950. main_irq_cause = readl(hpriv->main_irq_cause_addr);
  1951. pending_irqs = main_irq_cause & hpriv->main_irq_mask;
  1952. /*
  1953. * Deal with cases where we either have nothing pending, or have read
  1954. * a bogus register value which can indicate HW removal or PCI fault.
  1955. */
  1956. if (pending_irqs && main_irq_cause != 0xffffffffU) {
  1957. if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
  1958. handled = mv_pci_error(host, hpriv->base);
  1959. else
  1960. handled = mv_host_intr(host, pending_irqs);
  1961. }
  1962. spin_unlock(&host->lock);
  1963. return IRQ_RETVAL(handled);
  1964. }
  1965. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  1966. {
  1967. unsigned int ofs;
  1968. switch (sc_reg_in) {
  1969. case SCR_STATUS:
  1970. case SCR_ERROR:
  1971. case SCR_CONTROL:
  1972. ofs = sc_reg_in * sizeof(u32);
  1973. break;
  1974. default:
  1975. ofs = 0xffffffffU;
  1976. break;
  1977. }
  1978. return ofs;
  1979. }
  1980. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  1981. {
  1982. struct mv_host_priv *hpriv = link->ap->host->private_data;
  1983. void __iomem *mmio = hpriv->base;
  1984. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  1985. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  1986. if (ofs != 0xffffffffU) {
  1987. *val = readl(addr + ofs);
  1988. return 0;
  1989. } else
  1990. return -EINVAL;
  1991. }
  1992. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  1993. {
  1994. struct mv_host_priv *hpriv = link->ap->host->private_data;
  1995. void __iomem *mmio = hpriv->base;
  1996. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  1997. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  1998. if (ofs != 0xffffffffU) {
  1999. writelfl(val, addr + ofs);
  2000. return 0;
  2001. } else
  2002. return -EINVAL;
  2003. }
  2004. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
  2005. {
  2006. struct pci_dev *pdev = to_pci_dev(host->dev);
  2007. int early_5080;
  2008. early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
  2009. if (!early_5080) {
  2010. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2011. tmp |= (1 << 0);
  2012. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2013. }
  2014. mv_reset_pci_bus(host, mmio);
  2015. }
  2016. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2017. {
  2018. writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
  2019. }
  2020. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  2021. void __iomem *mmio)
  2022. {
  2023. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  2024. u32 tmp;
  2025. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2026. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  2027. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  2028. }
  2029. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2030. {
  2031. u32 tmp;
  2032. writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
  2033. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  2034. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2035. tmp |= ~(1 << 0);
  2036. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2037. }
  2038. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2039. unsigned int port)
  2040. {
  2041. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  2042. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  2043. u32 tmp;
  2044. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  2045. if (fix_apm_sq) {
  2046. tmp = readl(phy_mmio + MV5_LTMODE_OFS);
  2047. tmp |= (1 << 19);
  2048. writel(tmp, phy_mmio + MV5_LTMODE_OFS);
  2049. tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
  2050. tmp &= ~0x3;
  2051. tmp |= 0x1;
  2052. writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
  2053. }
  2054. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2055. tmp &= ~mask;
  2056. tmp |= hpriv->signal[port].pre;
  2057. tmp |= hpriv->signal[port].amps;
  2058. writel(tmp, phy_mmio + MV5_PHY_MODE);
  2059. }
  2060. #undef ZERO
  2061. #define ZERO(reg) writel(0, port_mmio + (reg))
  2062. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  2063. unsigned int port)
  2064. {
  2065. void __iomem *port_mmio = mv_port_base(mmio, port);
  2066. mv_reset_channel(hpriv, mmio, port);
  2067. ZERO(0x028); /* command */
  2068. writel(0x11f, port_mmio + EDMA_CFG_OFS);
  2069. ZERO(0x004); /* timer */
  2070. ZERO(0x008); /* irq err cause */
  2071. ZERO(0x00c); /* irq err mask */
  2072. ZERO(0x010); /* rq bah */
  2073. ZERO(0x014); /* rq inp */
  2074. ZERO(0x018); /* rq outp */
  2075. ZERO(0x01c); /* respq bah */
  2076. ZERO(0x024); /* respq outp */
  2077. ZERO(0x020); /* respq inp */
  2078. ZERO(0x02c); /* test control */
  2079. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
  2080. }
  2081. #undef ZERO
  2082. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2083. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2084. unsigned int hc)
  2085. {
  2086. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2087. u32 tmp;
  2088. ZERO(0x00c);
  2089. ZERO(0x010);
  2090. ZERO(0x014);
  2091. ZERO(0x018);
  2092. tmp = readl(hc_mmio + 0x20);
  2093. tmp &= 0x1c1c1c1c;
  2094. tmp |= 0x03030303;
  2095. writel(tmp, hc_mmio + 0x20);
  2096. }
  2097. #undef ZERO
  2098. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2099. unsigned int n_hc)
  2100. {
  2101. unsigned int hc, port;
  2102. for (hc = 0; hc < n_hc; hc++) {
  2103. for (port = 0; port < MV_PORTS_PER_HC; port++)
  2104. mv5_reset_hc_port(hpriv, mmio,
  2105. (hc * MV_PORTS_PER_HC) + port);
  2106. mv5_reset_one_hc(hpriv, mmio, hc);
  2107. }
  2108. return 0;
  2109. }
  2110. #undef ZERO
  2111. #define ZERO(reg) writel(0, mmio + (reg))
  2112. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
  2113. {
  2114. struct mv_host_priv *hpriv = host->private_data;
  2115. u32 tmp;
  2116. tmp = readl(mmio + MV_PCI_MODE_OFS);
  2117. tmp &= 0xff00ffff;
  2118. writel(tmp, mmio + MV_PCI_MODE_OFS);
  2119. ZERO(MV_PCI_DISC_TIMER);
  2120. ZERO(MV_PCI_MSI_TRIGGER);
  2121. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
  2122. ZERO(MV_PCI_SERR_MASK);
  2123. ZERO(hpriv->irq_cause_ofs);
  2124. ZERO(hpriv->irq_mask_ofs);
  2125. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  2126. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  2127. ZERO(MV_PCI_ERR_ATTRIBUTE);
  2128. ZERO(MV_PCI_ERR_COMMAND);
  2129. }
  2130. #undef ZERO
  2131. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2132. {
  2133. u32 tmp;
  2134. mv5_reset_flash(hpriv, mmio);
  2135. tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
  2136. tmp &= 0x3;
  2137. tmp |= (1 << 5) | (1 << 6);
  2138. writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
  2139. }
  2140. /**
  2141. * mv6_reset_hc - Perform the 6xxx global soft reset
  2142. * @mmio: base address of the HBA
  2143. *
  2144. * This routine only applies to 6xxx parts.
  2145. *
  2146. * LOCKING:
  2147. * Inherited from caller.
  2148. */
  2149. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2150. unsigned int n_hc)
  2151. {
  2152. void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
  2153. int i, rc = 0;
  2154. u32 t;
  2155. /* Following procedure defined in PCI "main command and status
  2156. * register" table.
  2157. */
  2158. t = readl(reg);
  2159. writel(t | STOP_PCI_MASTER, reg);
  2160. for (i = 0; i < 1000; i++) {
  2161. udelay(1);
  2162. t = readl(reg);
  2163. if (PCI_MASTER_EMPTY & t)
  2164. break;
  2165. }
  2166. if (!(PCI_MASTER_EMPTY & t)) {
  2167. printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
  2168. rc = 1;
  2169. goto done;
  2170. }
  2171. /* set reset */
  2172. i = 5;
  2173. do {
  2174. writel(t | GLOB_SFT_RST, reg);
  2175. t = readl(reg);
  2176. udelay(1);
  2177. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  2178. if (!(GLOB_SFT_RST & t)) {
  2179. printk(KERN_ERR DRV_NAME ": can't set global reset\n");
  2180. rc = 1;
  2181. goto done;
  2182. }
  2183. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  2184. i = 5;
  2185. do {
  2186. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  2187. t = readl(reg);
  2188. udelay(1);
  2189. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  2190. if (GLOB_SFT_RST & t) {
  2191. printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
  2192. rc = 1;
  2193. }
  2194. done:
  2195. return rc;
  2196. }
  2197. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  2198. void __iomem *mmio)
  2199. {
  2200. void __iomem *port_mmio;
  2201. u32 tmp;
  2202. tmp = readl(mmio + MV_RESET_CFG_OFS);
  2203. if ((tmp & (1 << 0)) == 0) {
  2204. hpriv->signal[idx].amps = 0x7 << 8;
  2205. hpriv->signal[idx].pre = 0x1 << 5;
  2206. return;
  2207. }
  2208. port_mmio = mv_port_base(mmio, idx);
  2209. tmp = readl(port_mmio + PHY_MODE2);
  2210. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2211. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2212. }
  2213. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2214. {
  2215. writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
  2216. }
  2217. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2218. unsigned int port)
  2219. {
  2220. void __iomem *port_mmio = mv_port_base(mmio, port);
  2221. u32 hp_flags = hpriv->hp_flags;
  2222. int fix_phy_mode2 =
  2223. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2224. int fix_phy_mode4 =
  2225. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2226. u32 m2, m3;
  2227. if (fix_phy_mode2) {
  2228. m2 = readl(port_mmio + PHY_MODE2);
  2229. m2 &= ~(1 << 16);
  2230. m2 |= (1 << 31);
  2231. writel(m2, port_mmio + PHY_MODE2);
  2232. udelay(200);
  2233. m2 = readl(port_mmio + PHY_MODE2);
  2234. m2 &= ~((1 << 16) | (1 << 31));
  2235. writel(m2, port_mmio + PHY_MODE2);
  2236. udelay(200);
  2237. }
  2238. /*
  2239. * Gen-II/IIe PHY_MODE3 errata RM#2:
  2240. * Achieves better receiver noise performance than the h/w default:
  2241. */
  2242. m3 = readl(port_mmio + PHY_MODE3);
  2243. m3 = (m3 & 0x1f) | (0x5555601 << 5);
  2244. /* Guideline 88F5182 (GL# SATA-S11) */
  2245. if (IS_SOC(hpriv))
  2246. m3 &= ~0x1c;
  2247. if (fix_phy_mode4) {
  2248. u32 m4 = readl(port_mmio + PHY_MODE4);
  2249. /*
  2250. * Enforce reserved-bit restrictions on GenIIe devices only.
  2251. * For earlier chipsets, force only the internal config field
  2252. * (workaround for errata FEr SATA#10 part 1).
  2253. */
  2254. if (IS_GEN_IIE(hpriv))
  2255. m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
  2256. else
  2257. m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
  2258. writel(m4, port_mmio + PHY_MODE4);
  2259. }
  2260. /*
  2261. * Workaround for 60x1-B2 errata SATA#13:
  2262. * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
  2263. * so we must always rewrite PHY_MODE3 after PHY_MODE4.
  2264. */
  2265. writel(m3, port_mmio + PHY_MODE3);
  2266. /* Revert values of pre-emphasis and signal amps to the saved ones */
  2267. m2 = readl(port_mmio + PHY_MODE2);
  2268. m2 &= ~MV_M2_PREAMP_MASK;
  2269. m2 |= hpriv->signal[port].amps;
  2270. m2 |= hpriv->signal[port].pre;
  2271. m2 &= ~(1 << 16);
  2272. /* according to mvSata 3.6.1, some IIE values are fixed */
  2273. if (IS_GEN_IIE(hpriv)) {
  2274. m2 &= ~0xC30FF01F;
  2275. m2 |= 0x0000900F;
  2276. }
  2277. writel(m2, port_mmio + PHY_MODE2);
  2278. }
  2279. /* TODO: use the generic LED interface to configure the SATA Presence */
  2280. /* & Acitivy LEDs on the board */
  2281. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  2282. void __iomem *mmio)
  2283. {
  2284. return;
  2285. }
  2286. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  2287. void __iomem *mmio)
  2288. {
  2289. void __iomem *port_mmio;
  2290. u32 tmp;
  2291. port_mmio = mv_port_base(mmio, idx);
  2292. tmp = readl(port_mmio + PHY_MODE2);
  2293. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2294. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2295. }
  2296. #undef ZERO
  2297. #define ZERO(reg) writel(0, port_mmio + (reg))
  2298. static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
  2299. void __iomem *mmio, unsigned int port)
  2300. {
  2301. void __iomem *port_mmio = mv_port_base(mmio, port);
  2302. mv_reset_channel(hpriv, mmio, port);
  2303. ZERO(0x028); /* command */
  2304. writel(0x101f, port_mmio + EDMA_CFG_OFS);
  2305. ZERO(0x004); /* timer */
  2306. ZERO(0x008); /* irq err cause */
  2307. ZERO(0x00c); /* irq err mask */
  2308. ZERO(0x010); /* rq bah */
  2309. ZERO(0x014); /* rq inp */
  2310. ZERO(0x018); /* rq outp */
  2311. ZERO(0x01c); /* respq bah */
  2312. ZERO(0x024); /* respq outp */
  2313. ZERO(0x020); /* respq inp */
  2314. ZERO(0x02c); /* test control */
  2315. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
  2316. }
  2317. #undef ZERO
  2318. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2319. static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
  2320. void __iomem *mmio)
  2321. {
  2322. void __iomem *hc_mmio = mv_hc_base(mmio, 0);
  2323. ZERO(0x00c);
  2324. ZERO(0x010);
  2325. ZERO(0x014);
  2326. }
  2327. #undef ZERO
  2328. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  2329. void __iomem *mmio, unsigned int n_hc)
  2330. {
  2331. unsigned int port;
  2332. for (port = 0; port < hpriv->n_ports; port++)
  2333. mv_soc_reset_hc_port(hpriv, mmio, port);
  2334. mv_soc_reset_one_hc(hpriv, mmio);
  2335. return 0;
  2336. }
  2337. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  2338. void __iomem *mmio)
  2339. {
  2340. return;
  2341. }
  2342. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
  2343. {
  2344. return;
  2345. }
  2346. static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
  2347. {
  2348. u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
  2349. ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
  2350. if (want_gen2i)
  2351. ifcfg |= (1 << 7); /* enable gen2i speed */
  2352. writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
  2353. }
  2354. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  2355. unsigned int port_no)
  2356. {
  2357. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  2358. /*
  2359. * The datasheet warns against setting EDMA_RESET when EDMA is active
  2360. * (but doesn't say what the problem might be). So we first try
  2361. * to disable the EDMA engine before doing the EDMA_RESET operation.
  2362. */
  2363. mv_stop_edma_engine(port_mmio);
  2364. writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
  2365. if (!IS_GEN_I(hpriv)) {
  2366. /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
  2367. mv_setup_ifcfg(port_mmio, 1);
  2368. }
  2369. /*
  2370. * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
  2371. * link, and physical layers. It resets all SATA interface registers
  2372. * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
  2373. */
  2374. writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
  2375. udelay(25); /* allow reset propagation */
  2376. writelfl(0, port_mmio + EDMA_CMD_OFS);
  2377. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  2378. if (IS_GEN_I(hpriv))
  2379. mdelay(1);
  2380. }
  2381. static void mv_pmp_select(struct ata_port *ap, int pmp)
  2382. {
  2383. if (sata_pmp_supported(ap)) {
  2384. void __iomem *port_mmio = mv_ap_base(ap);
  2385. u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
  2386. int old = reg & 0xf;
  2387. if (old != pmp) {
  2388. reg = (reg & ~0xf) | pmp;
  2389. writelfl(reg, port_mmio + SATA_IFCTL_OFS);
  2390. }
  2391. }
  2392. }
  2393. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  2394. unsigned long deadline)
  2395. {
  2396. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2397. return sata_std_hardreset(link, class, deadline);
  2398. }
  2399. static int mv_softreset(struct ata_link *link, unsigned int *class,
  2400. unsigned long deadline)
  2401. {
  2402. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2403. return ata_sff_softreset(link, class, deadline);
  2404. }
  2405. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  2406. unsigned long deadline)
  2407. {
  2408. struct ata_port *ap = link->ap;
  2409. struct mv_host_priv *hpriv = ap->host->private_data;
  2410. struct mv_port_priv *pp = ap->private_data;
  2411. void __iomem *mmio = hpriv->base;
  2412. int rc, attempts = 0, extra = 0;
  2413. u32 sstatus;
  2414. bool online;
  2415. mv_reset_channel(hpriv, mmio, ap->port_no);
  2416. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2417. /* Workaround for errata FEr SATA#10 (part 2) */
  2418. do {
  2419. const unsigned long *timing =
  2420. sata_ehc_deb_timing(&link->eh_context);
  2421. rc = sata_link_hardreset(link, timing, deadline + extra,
  2422. &online, NULL);
  2423. rc = online ? -EAGAIN : rc;
  2424. if (rc)
  2425. return rc;
  2426. sata_scr_read(link, SCR_STATUS, &sstatus);
  2427. if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
  2428. /* Force 1.5gb/s link speed and try again */
  2429. mv_setup_ifcfg(mv_ap_base(ap), 0);
  2430. if (time_after(jiffies + HZ, deadline))
  2431. extra = HZ; /* only extend it once, max */
  2432. }
  2433. } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
  2434. return rc;
  2435. }
  2436. static void mv_eh_freeze(struct ata_port *ap)
  2437. {
  2438. mv_stop_edma(ap);
  2439. mv_enable_port_irqs(ap, 0);
  2440. }
  2441. static void mv_eh_thaw(struct ata_port *ap)
  2442. {
  2443. struct mv_host_priv *hpriv = ap->host->private_data;
  2444. unsigned int port = ap->port_no;
  2445. unsigned int hardport = mv_hardport_from_port(port);
  2446. void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
  2447. void __iomem *port_mmio = mv_ap_base(ap);
  2448. u32 hc_irq_cause;
  2449. /* clear EDMA errors on this port */
  2450. writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2451. /* clear pending irq events */
  2452. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  2453. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  2454. mv_enable_port_irqs(ap, ERR_IRQ);
  2455. }
  2456. /**
  2457. * mv_port_init - Perform some early initialization on a single port.
  2458. * @port: libata data structure storing shadow register addresses
  2459. * @port_mmio: base address of the port
  2460. *
  2461. * Initialize shadow register mmio addresses, clear outstanding
  2462. * interrupts on the port, and unmask interrupts for the future
  2463. * start of the port.
  2464. *
  2465. * LOCKING:
  2466. * Inherited from caller.
  2467. */
  2468. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  2469. {
  2470. void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
  2471. unsigned serr_ofs;
  2472. /* PIO related setup
  2473. */
  2474. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  2475. port->error_addr =
  2476. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  2477. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  2478. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  2479. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  2480. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  2481. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  2482. port->status_addr =
  2483. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  2484. /* special case: control/altstatus doesn't have ATA_REG_ address */
  2485. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
  2486. /* unused: */
  2487. port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
  2488. /* Clear any currently outstanding port interrupt conditions */
  2489. serr_ofs = mv_scr_offset(SCR_ERROR);
  2490. writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
  2491. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2492. /* unmask all non-transient EDMA error interrupts */
  2493. writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
  2494. VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
  2495. readl(port_mmio + EDMA_CFG_OFS),
  2496. readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
  2497. readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
  2498. }
  2499. static unsigned int mv_in_pcix_mode(struct ata_host *host)
  2500. {
  2501. struct mv_host_priv *hpriv = host->private_data;
  2502. void __iomem *mmio = hpriv->base;
  2503. u32 reg;
  2504. if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
  2505. return 0; /* not PCI-X capable */
  2506. reg = readl(mmio + MV_PCI_MODE_OFS);
  2507. if ((reg & MV_PCI_MODE_MASK) == 0)
  2508. return 0; /* conventional PCI mode */
  2509. return 1; /* chip is in PCI-X mode */
  2510. }
  2511. static int mv_pci_cut_through_okay(struct ata_host *host)
  2512. {
  2513. struct mv_host_priv *hpriv = host->private_data;
  2514. void __iomem *mmio = hpriv->base;
  2515. u32 reg;
  2516. if (!mv_in_pcix_mode(host)) {
  2517. reg = readl(mmio + PCI_COMMAND_OFS);
  2518. if (reg & PCI_COMMAND_MRDTRIG)
  2519. return 0; /* not okay */
  2520. }
  2521. return 1; /* okay */
  2522. }
  2523. static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
  2524. {
  2525. struct pci_dev *pdev = to_pci_dev(host->dev);
  2526. struct mv_host_priv *hpriv = host->private_data;
  2527. u32 hp_flags = hpriv->hp_flags;
  2528. switch (board_idx) {
  2529. case chip_5080:
  2530. hpriv->ops = &mv5xxx_ops;
  2531. hp_flags |= MV_HP_GEN_I;
  2532. switch (pdev->revision) {
  2533. case 0x1:
  2534. hp_flags |= MV_HP_ERRATA_50XXB0;
  2535. break;
  2536. case 0x3:
  2537. hp_flags |= MV_HP_ERRATA_50XXB2;
  2538. break;
  2539. default:
  2540. dev_printk(KERN_WARNING, &pdev->dev,
  2541. "Applying 50XXB2 workarounds to unknown rev\n");
  2542. hp_flags |= MV_HP_ERRATA_50XXB2;
  2543. break;
  2544. }
  2545. break;
  2546. case chip_504x:
  2547. case chip_508x:
  2548. hpriv->ops = &mv5xxx_ops;
  2549. hp_flags |= MV_HP_GEN_I;
  2550. switch (pdev->revision) {
  2551. case 0x0:
  2552. hp_flags |= MV_HP_ERRATA_50XXB0;
  2553. break;
  2554. case 0x3:
  2555. hp_flags |= MV_HP_ERRATA_50XXB2;
  2556. break;
  2557. default:
  2558. dev_printk(KERN_WARNING, &pdev->dev,
  2559. "Applying B2 workarounds to unknown rev\n");
  2560. hp_flags |= MV_HP_ERRATA_50XXB2;
  2561. break;
  2562. }
  2563. break;
  2564. case chip_604x:
  2565. case chip_608x:
  2566. hpriv->ops = &mv6xxx_ops;
  2567. hp_flags |= MV_HP_GEN_II;
  2568. switch (pdev->revision) {
  2569. case 0x7:
  2570. hp_flags |= MV_HP_ERRATA_60X1B2;
  2571. break;
  2572. case 0x9:
  2573. hp_flags |= MV_HP_ERRATA_60X1C0;
  2574. break;
  2575. default:
  2576. dev_printk(KERN_WARNING, &pdev->dev,
  2577. "Applying B2 workarounds to unknown rev\n");
  2578. hp_flags |= MV_HP_ERRATA_60X1B2;
  2579. break;
  2580. }
  2581. break;
  2582. case chip_7042:
  2583. hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
  2584. if (pdev->vendor == PCI_VENDOR_ID_TTI &&
  2585. (pdev->device == 0x2300 || pdev->device == 0x2310))
  2586. {
  2587. /*
  2588. * Highpoint RocketRAID PCIe 23xx series cards:
  2589. *
  2590. * Unconfigured drives are treated as "Legacy"
  2591. * by the BIOS, and it overwrites sector 8 with
  2592. * a "Lgcy" metadata block prior to Linux boot.
  2593. *
  2594. * Configured drives (RAID or JBOD) leave sector 8
  2595. * alone, but instead overwrite a high numbered
  2596. * sector for the RAID metadata. This sector can
  2597. * be determined exactly, by truncating the physical
  2598. * drive capacity to a nice even GB value.
  2599. *
  2600. * RAID metadata is at: (dev->n_sectors & ~0xfffff)
  2601. *
  2602. * Warn the user, lest they think we're just buggy.
  2603. */
  2604. printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
  2605. " BIOS CORRUPTS DATA on all attached drives,"
  2606. " regardless of if/how they are configured."
  2607. " BEWARE!\n");
  2608. printk(KERN_WARNING DRV_NAME ": For data safety, do not"
  2609. " use sectors 8-9 on \"Legacy\" drives,"
  2610. " and avoid the final two gigabytes on"
  2611. " all RocketRAID BIOS initialized drives.\n");
  2612. }
  2613. /* drop through */
  2614. case chip_6042:
  2615. hpriv->ops = &mv6xxx_ops;
  2616. hp_flags |= MV_HP_GEN_IIE;
  2617. if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
  2618. hp_flags |= MV_HP_CUT_THROUGH;
  2619. switch (pdev->revision) {
  2620. case 0x2: /* Rev.B0: the first/only public release */
  2621. hp_flags |= MV_HP_ERRATA_60X1C0;
  2622. break;
  2623. default:
  2624. dev_printk(KERN_WARNING, &pdev->dev,
  2625. "Applying 60X1C0 workarounds to unknown rev\n");
  2626. hp_flags |= MV_HP_ERRATA_60X1C0;
  2627. break;
  2628. }
  2629. break;
  2630. case chip_soc:
  2631. hpriv->ops = &mv_soc_ops;
  2632. hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
  2633. MV_HP_ERRATA_60X1C0;
  2634. break;
  2635. default:
  2636. dev_printk(KERN_ERR, host->dev,
  2637. "BUG: invalid board index %u\n", board_idx);
  2638. return 1;
  2639. }
  2640. hpriv->hp_flags = hp_flags;
  2641. if (hp_flags & MV_HP_PCIE) {
  2642. hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
  2643. hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
  2644. hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
  2645. } else {
  2646. hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
  2647. hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
  2648. hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
  2649. }
  2650. return 0;
  2651. }
  2652. /**
  2653. * mv_init_host - Perform some early initialization of the host.
  2654. * @host: ATA host to initialize
  2655. * @board_idx: controller index
  2656. *
  2657. * If possible, do an early global reset of the host. Then do
  2658. * our port init and clear/unmask all/relevant host interrupts.
  2659. *
  2660. * LOCKING:
  2661. * Inherited from caller.
  2662. */
  2663. static int mv_init_host(struct ata_host *host, unsigned int board_idx)
  2664. {
  2665. int rc = 0, n_hc, port, hc;
  2666. struct mv_host_priv *hpriv = host->private_data;
  2667. void __iomem *mmio = hpriv->base;
  2668. rc = mv_chip_id(host, board_idx);
  2669. if (rc)
  2670. goto done;
  2671. if (IS_SOC(hpriv)) {
  2672. hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
  2673. hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
  2674. } else {
  2675. hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
  2676. hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
  2677. }
  2678. /* global interrupt mask: 0 == mask everything */
  2679. mv_set_main_irq_mask(host, ~0, 0);
  2680. n_hc = mv_get_hc_count(host->ports[0]->flags);
  2681. for (port = 0; port < host->n_ports; port++)
  2682. hpriv->ops->read_preamp(hpriv, port, mmio);
  2683. rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
  2684. if (rc)
  2685. goto done;
  2686. hpriv->ops->reset_flash(hpriv, mmio);
  2687. hpriv->ops->reset_bus(host, mmio);
  2688. hpriv->ops->enable_leds(hpriv, mmio);
  2689. for (port = 0; port < host->n_ports; port++) {
  2690. struct ata_port *ap = host->ports[port];
  2691. void __iomem *port_mmio = mv_port_base(mmio, port);
  2692. mv_port_init(&ap->ioaddr, port_mmio);
  2693. #ifdef CONFIG_PCI
  2694. if (!IS_SOC(hpriv)) {
  2695. unsigned int offset = port_mmio - mmio;
  2696. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
  2697. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
  2698. }
  2699. #endif
  2700. }
  2701. for (hc = 0; hc < n_hc; hc++) {
  2702. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2703. VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
  2704. "(before clear)=0x%08x\n", hc,
  2705. readl(hc_mmio + HC_CFG_OFS),
  2706. readl(hc_mmio + HC_IRQ_CAUSE_OFS));
  2707. /* Clear any currently outstanding hc interrupt conditions */
  2708. writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
  2709. }
  2710. if (!IS_SOC(hpriv)) {
  2711. /* Clear any currently outstanding host interrupt conditions */
  2712. writelfl(0, mmio + hpriv->irq_cause_ofs);
  2713. /* and unmask interrupt generation for host regs */
  2714. writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
  2715. /*
  2716. * enable only global host interrupts for now.
  2717. * The per-port interrupts get done later as ports are set up.
  2718. */
  2719. mv_set_main_irq_mask(host, 0, PCI_ERR);
  2720. }
  2721. done:
  2722. return rc;
  2723. }
  2724. static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
  2725. {
  2726. hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
  2727. MV_CRQB_Q_SZ, 0);
  2728. if (!hpriv->crqb_pool)
  2729. return -ENOMEM;
  2730. hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
  2731. MV_CRPB_Q_SZ, 0);
  2732. if (!hpriv->crpb_pool)
  2733. return -ENOMEM;
  2734. hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
  2735. MV_SG_TBL_SZ, 0);
  2736. if (!hpriv->sg_tbl_pool)
  2737. return -ENOMEM;
  2738. return 0;
  2739. }
  2740. static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
  2741. struct mbus_dram_target_info *dram)
  2742. {
  2743. int i;
  2744. for (i = 0; i < 4; i++) {
  2745. writel(0, hpriv->base + WINDOW_CTRL(i));
  2746. writel(0, hpriv->base + WINDOW_BASE(i));
  2747. }
  2748. for (i = 0; i < dram->num_cs; i++) {
  2749. struct mbus_dram_window *cs = dram->cs + i;
  2750. writel(((cs->size - 1) & 0xffff0000) |
  2751. (cs->mbus_attr << 8) |
  2752. (dram->mbus_dram_target_id << 4) | 1,
  2753. hpriv->base + WINDOW_CTRL(i));
  2754. writel(cs->base, hpriv->base + WINDOW_BASE(i));
  2755. }
  2756. }
  2757. /**
  2758. * mv_platform_probe - handle a positive probe of an soc Marvell
  2759. * host
  2760. * @pdev: platform device found
  2761. *
  2762. * LOCKING:
  2763. * Inherited from caller.
  2764. */
  2765. static int mv_platform_probe(struct platform_device *pdev)
  2766. {
  2767. static int printed_version;
  2768. const struct mv_sata_platform_data *mv_platform_data;
  2769. const struct ata_port_info *ppi[] =
  2770. { &mv_port_info[chip_soc], NULL };
  2771. struct ata_host *host;
  2772. struct mv_host_priv *hpriv;
  2773. struct resource *res;
  2774. int n_ports, rc;
  2775. if (!printed_version++)
  2776. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  2777. /*
  2778. * Simple resource validation ..
  2779. */
  2780. if (unlikely(pdev->num_resources != 2)) {
  2781. dev_err(&pdev->dev, "invalid number of resources\n");
  2782. return -EINVAL;
  2783. }
  2784. /*
  2785. * Get the register base first
  2786. */
  2787. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2788. if (res == NULL)
  2789. return -EINVAL;
  2790. /* allocate host */
  2791. mv_platform_data = pdev->dev.platform_data;
  2792. n_ports = mv_platform_data->n_ports;
  2793. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  2794. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  2795. if (!host || !hpriv)
  2796. return -ENOMEM;
  2797. host->private_data = hpriv;
  2798. hpriv->n_ports = n_ports;
  2799. host->iomap = NULL;
  2800. hpriv->base = devm_ioremap(&pdev->dev, res->start,
  2801. res->end - res->start + 1);
  2802. hpriv->base -= MV_SATAHC0_REG_BASE;
  2803. /*
  2804. * (Re-)program MBUS remapping windows if we are asked to.
  2805. */
  2806. if (mv_platform_data->dram != NULL)
  2807. mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
  2808. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  2809. if (rc)
  2810. return rc;
  2811. /* initialize adapter */
  2812. rc = mv_init_host(host, chip_soc);
  2813. if (rc)
  2814. return rc;
  2815. dev_printk(KERN_INFO, &pdev->dev,
  2816. "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
  2817. host->n_ports);
  2818. return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
  2819. IRQF_SHARED, &mv6_sht);
  2820. }
  2821. /*
  2822. *
  2823. * mv_platform_remove - unplug a platform interface
  2824. * @pdev: platform device
  2825. *
  2826. * A platform bus SATA device has been unplugged. Perform the needed
  2827. * cleanup. Also called on module unload for any active devices.
  2828. */
  2829. static int __devexit mv_platform_remove(struct platform_device *pdev)
  2830. {
  2831. struct device *dev = &pdev->dev;
  2832. struct ata_host *host = dev_get_drvdata(dev);
  2833. ata_host_detach(host);
  2834. return 0;
  2835. }
  2836. static struct platform_driver mv_platform_driver = {
  2837. .probe = mv_platform_probe,
  2838. .remove = __devexit_p(mv_platform_remove),
  2839. .driver = {
  2840. .name = DRV_NAME,
  2841. .owner = THIS_MODULE,
  2842. },
  2843. };
  2844. #ifdef CONFIG_PCI
  2845. static int mv_pci_init_one(struct pci_dev *pdev,
  2846. const struct pci_device_id *ent);
  2847. static struct pci_driver mv_pci_driver = {
  2848. .name = DRV_NAME,
  2849. .id_table = mv_pci_tbl,
  2850. .probe = mv_pci_init_one,
  2851. .remove = ata_pci_remove_one,
  2852. };
  2853. /*
  2854. * module options
  2855. */
  2856. static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
  2857. /* move to PCI layer or libata core? */
  2858. static int pci_go_64(struct pci_dev *pdev)
  2859. {
  2860. int rc;
  2861. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2862. rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2863. if (rc) {
  2864. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2865. if (rc) {
  2866. dev_printk(KERN_ERR, &pdev->dev,
  2867. "64-bit DMA enable failed\n");
  2868. return rc;
  2869. }
  2870. }
  2871. } else {
  2872. rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2873. if (rc) {
  2874. dev_printk(KERN_ERR, &pdev->dev,
  2875. "32-bit DMA enable failed\n");
  2876. return rc;
  2877. }
  2878. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2879. if (rc) {
  2880. dev_printk(KERN_ERR, &pdev->dev,
  2881. "32-bit consistent DMA enable failed\n");
  2882. return rc;
  2883. }
  2884. }
  2885. return rc;
  2886. }
  2887. /**
  2888. * mv_print_info - Dump key info to kernel log for perusal.
  2889. * @host: ATA host to print info about
  2890. *
  2891. * FIXME: complete this.
  2892. *
  2893. * LOCKING:
  2894. * Inherited from caller.
  2895. */
  2896. static void mv_print_info(struct ata_host *host)
  2897. {
  2898. struct pci_dev *pdev = to_pci_dev(host->dev);
  2899. struct mv_host_priv *hpriv = host->private_data;
  2900. u8 scc;
  2901. const char *scc_s, *gen;
  2902. /* Use this to determine the HW stepping of the chip so we know
  2903. * what errata to workaround
  2904. */
  2905. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  2906. if (scc == 0)
  2907. scc_s = "SCSI";
  2908. else if (scc == 0x01)
  2909. scc_s = "RAID";
  2910. else
  2911. scc_s = "?";
  2912. if (IS_GEN_I(hpriv))
  2913. gen = "I";
  2914. else if (IS_GEN_II(hpriv))
  2915. gen = "II";
  2916. else if (IS_GEN_IIE(hpriv))
  2917. gen = "IIE";
  2918. else
  2919. gen = "?";
  2920. dev_printk(KERN_INFO, &pdev->dev,
  2921. "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
  2922. gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
  2923. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  2924. }
  2925. /**
  2926. * mv_pci_init_one - handle a positive probe of a PCI Marvell host
  2927. * @pdev: PCI device found
  2928. * @ent: PCI device ID entry for the matched host
  2929. *
  2930. * LOCKING:
  2931. * Inherited from caller.
  2932. */
  2933. static int mv_pci_init_one(struct pci_dev *pdev,
  2934. const struct pci_device_id *ent)
  2935. {
  2936. static int printed_version;
  2937. unsigned int board_idx = (unsigned int)ent->driver_data;
  2938. const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
  2939. struct ata_host *host;
  2940. struct mv_host_priv *hpriv;
  2941. int n_ports, rc;
  2942. if (!printed_version++)
  2943. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  2944. /* allocate host */
  2945. n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
  2946. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  2947. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  2948. if (!host || !hpriv)
  2949. return -ENOMEM;
  2950. host->private_data = hpriv;
  2951. hpriv->n_ports = n_ports;
  2952. /* acquire resources */
  2953. rc = pcim_enable_device(pdev);
  2954. if (rc)
  2955. return rc;
  2956. rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
  2957. if (rc == -EBUSY)
  2958. pcim_pin_device(pdev);
  2959. if (rc)
  2960. return rc;
  2961. host->iomap = pcim_iomap_table(pdev);
  2962. hpriv->base = host->iomap[MV_PRIMARY_BAR];
  2963. rc = pci_go_64(pdev);
  2964. if (rc)
  2965. return rc;
  2966. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  2967. if (rc)
  2968. return rc;
  2969. /* initialize adapter */
  2970. rc = mv_init_host(host, board_idx);
  2971. if (rc)
  2972. return rc;
  2973. /* Enable interrupts */
  2974. if (msi && pci_enable_msi(pdev))
  2975. pci_intx(pdev, 1);
  2976. mv_dump_pci_cfg(pdev, 0x68);
  2977. mv_print_info(host);
  2978. pci_set_master(pdev);
  2979. pci_try_set_mwi(pdev);
  2980. return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
  2981. IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
  2982. }
  2983. #endif
  2984. static int mv_platform_probe(struct platform_device *pdev);
  2985. static int __devexit mv_platform_remove(struct platform_device *pdev);
  2986. static int __init mv_init(void)
  2987. {
  2988. int rc = -ENODEV;
  2989. #ifdef CONFIG_PCI
  2990. rc = pci_register_driver(&mv_pci_driver);
  2991. if (rc < 0)
  2992. return rc;
  2993. #endif
  2994. rc = platform_driver_register(&mv_platform_driver);
  2995. #ifdef CONFIG_PCI
  2996. if (rc < 0)
  2997. pci_unregister_driver(&mv_pci_driver);
  2998. #endif
  2999. return rc;
  3000. }
  3001. static void __exit mv_exit(void)
  3002. {
  3003. #ifdef CONFIG_PCI
  3004. pci_unregister_driver(&mv_pci_driver);
  3005. #endif
  3006. platform_driver_unregister(&mv_platform_driver);
  3007. }
  3008. MODULE_AUTHOR("Brett Russ");
  3009. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  3010. MODULE_LICENSE("GPL");
  3011. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  3012. MODULE_VERSION(DRV_VERSION);
  3013. MODULE_ALIAS("platform:" DRV_NAME);
  3014. #ifdef CONFIG_PCI
  3015. module_param(msi, int, 0444);
  3016. MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  3017. #endif
  3018. module_init(mv_init);
  3019. module_exit(mv_exit);