dn_dev.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Device Layer
  7. *
  8. * Authors: Steve Whitehouse <SteveW@ACM.org>
  9. * Eduardo Marcelo Serrat <emserrat@geocities.com>
  10. *
  11. * Changes:
  12. * Steve Whitehouse : Devices now see incoming frames so they
  13. * can mark on who it came from.
  14. * Steve Whitehouse : Fixed bug in creating neighbours. Each neighbour
  15. * can now have a device specific setup func.
  16. * Steve Whitehouse : Added /proc/sys/net/decnet/conf/<dev>/
  17. * Steve Whitehouse : Fixed bug which sometimes killed timer
  18. * Steve Whitehouse : Multiple ifaddr support
  19. * Steve Whitehouse : SIOCGIFCONF is now a compile time option
  20. * Steve Whitehouse : /proc/sys/net/decnet/conf/<sys>/forwarding
  21. * Steve Whitehouse : Removed timer1 - it's a user space issue now
  22. * Patrick Caulfield : Fixed router hello message format
  23. * Steve Whitehouse : Got rid of constant sizes for blksize for
  24. * devices. All mtu based now.
  25. */
  26. #include <linux/capability.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/init.h>
  30. #include <linux/net.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/proc_fs.h>
  33. #include <linux/seq_file.h>
  34. #include <linux/timer.h>
  35. #include <linux/string.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_arp.h>
  38. #include <linux/if_ether.h>
  39. #include <linux/skbuff.h>
  40. #include <linux/sysctl.h>
  41. #include <linux/notifier.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/system.h>
  44. #include <net/neighbour.h>
  45. #include <net/dst.h>
  46. #include <net/flow.h>
  47. #include <net/fib_rules.h>
  48. #include <net/netlink.h>
  49. #include <net/dn.h>
  50. #include <net/dn_dev.h>
  51. #include <net/dn_route.h>
  52. #include <net/dn_neigh.h>
  53. #include <net/dn_fib.h>
  54. #define DN_IFREQ_SIZE (sizeof(struct ifreq) - sizeof(struct sockaddr) + sizeof(struct sockaddr_dn))
  55. static char dn_rt_all_end_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x04,0x00,0x00};
  56. static char dn_rt_all_rt_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x03,0x00,0x00};
  57. static char dn_hiord[ETH_ALEN] = {0xAA,0x00,0x04,0x00,0x00,0x00};
  58. static unsigned char dn_eco_version[3] = {0x02,0x00,0x00};
  59. extern struct neigh_table dn_neigh_table;
  60. /*
  61. * decnet_address is kept in network order.
  62. */
  63. __le16 decnet_address = 0;
  64. static DEFINE_RWLOCK(dndev_lock);
  65. static struct net_device *decnet_default_device;
  66. static BLOCKING_NOTIFIER_HEAD(dnaddr_chain);
  67. static struct dn_dev *dn_dev_create(struct net_device *dev, int *err);
  68. static void dn_dev_delete(struct net_device *dev);
  69. static void dn_ifaddr_notify(int event, struct dn_ifaddr *ifa);
  70. static int dn_eth_up(struct net_device *);
  71. static void dn_eth_down(struct net_device *);
  72. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  73. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  74. static struct dn_dev_parms dn_dev_list[] = {
  75. {
  76. .type = ARPHRD_ETHER, /* Ethernet */
  77. .mode = DN_DEV_BCAST,
  78. .state = DN_DEV_S_RU,
  79. .t2 = 1,
  80. .t3 = 10,
  81. .name = "ethernet",
  82. .ctl_name = NET_DECNET_CONF_ETHER,
  83. .up = dn_eth_up,
  84. .down = dn_eth_down,
  85. .timer3 = dn_send_brd_hello,
  86. },
  87. {
  88. .type = ARPHRD_IPGRE, /* DECnet tunneled over GRE in IP */
  89. .mode = DN_DEV_BCAST,
  90. .state = DN_DEV_S_RU,
  91. .t2 = 1,
  92. .t3 = 10,
  93. .name = "ipgre",
  94. .ctl_name = NET_DECNET_CONF_GRE,
  95. .timer3 = dn_send_brd_hello,
  96. },
  97. #if 0
  98. {
  99. .type = ARPHRD_X25, /* Bog standard X.25 */
  100. .mode = DN_DEV_UCAST,
  101. .state = DN_DEV_S_DS,
  102. .t2 = 1,
  103. .t3 = 120,
  104. .name = "x25",
  105. .ctl_name = NET_DECNET_CONF_X25,
  106. .timer3 = dn_send_ptp_hello,
  107. },
  108. #endif
  109. #if 0
  110. {
  111. .type = ARPHRD_PPP, /* DECnet over PPP */
  112. .mode = DN_DEV_BCAST,
  113. .state = DN_DEV_S_RU,
  114. .t2 = 1,
  115. .t3 = 10,
  116. .name = "ppp",
  117. .ctl_name = NET_DECNET_CONF_PPP,
  118. .timer3 = dn_send_brd_hello,
  119. },
  120. #endif
  121. {
  122. .type = ARPHRD_DDCMP, /* DECnet over DDCMP */
  123. .mode = DN_DEV_UCAST,
  124. .state = DN_DEV_S_DS,
  125. .t2 = 1,
  126. .t3 = 120,
  127. .name = "ddcmp",
  128. .ctl_name = NET_DECNET_CONF_DDCMP,
  129. .timer3 = dn_send_ptp_hello,
  130. },
  131. {
  132. .type = ARPHRD_LOOPBACK, /* Loopback interface - always last */
  133. .mode = DN_DEV_BCAST,
  134. .state = DN_DEV_S_RU,
  135. .t2 = 1,
  136. .t3 = 10,
  137. .name = "loopback",
  138. .ctl_name = NET_DECNET_CONF_LOOPBACK,
  139. .timer3 = dn_send_brd_hello,
  140. }
  141. };
  142. #define DN_DEV_LIST_SIZE (sizeof(dn_dev_list)/sizeof(struct dn_dev_parms))
  143. #define DN_DEV_PARMS_OFFSET(x) ((int) ((char *) &((struct dn_dev_parms *)0)->x))
  144. #ifdef CONFIG_SYSCTL
  145. static int min_t2[] = { 1 };
  146. static int max_t2[] = { 60 }; /* No max specified, but this seems sensible */
  147. static int min_t3[] = { 1 };
  148. static int max_t3[] = { 8191 }; /* Must fit in 16 bits when multiplied by BCT3MULT or T3MULT */
  149. static int min_priority[1];
  150. static int max_priority[] = { 127 }; /* From DECnet spec */
  151. static int dn_forwarding_proc(ctl_table *, int, struct file *,
  152. void __user *, size_t *, loff_t *);
  153. static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
  154. void __user *oldval, size_t __user *oldlenp,
  155. void __user *newval, size_t newlen);
  156. static struct dn_dev_sysctl_table {
  157. struct ctl_table_header *sysctl_header;
  158. ctl_table dn_dev_vars[5];
  159. ctl_table dn_dev_dev[2];
  160. ctl_table dn_dev_conf_dir[2];
  161. ctl_table dn_dev_proto_dir[2];
  162. ctl_table dn_dev_root_dir[2];
  163. } dn_dev_sysctl = {
  164. NULL,
  165. {
  166. {
  167. .ctl_name = NET_DECNET_CONF_DEV_FORWARDING,
  168. .procname = "forwarding",
  169. .data = (void *)DN_DEV_PARMS_OFFSET(forwarding),
  170. .maxlen = sizeof(int),
  171. .mode = 0644,
  172. .proc_handler = dn_forwarding_proc,
  173. .strategy = dn_forwarding_sysctl,
  174. },
  175. {
  176. .ctl_name = NET_DECNET_CONF_DEV_PRIORITY,
  177. .procname = "priority",
  178. .data = (void *)DN_DEV_PARMS_OFFSET(priority),
  179. .maxlen = sizeof(int),
  180. .mode = 0644,
  181. .proc_handler = proc_dointvec_minmax,
  182. .strategy = sysctl_intvec,
  183. .extra1 = &min_priority,
  184. .extra2 = &max_priority
  185. },
  186. {
  187. .ctl_name = NET_DECNET_CONF_DEV_T2,
  188. .procname = "t2",
  189. .data = (void *)DN_DEV_PARMS_OFFSET(t2),
  190. .maxlen = sizeof(int),
  191. .mode = 0644,
  192. .proc_handler = proc_dointvec_minmax,
  193. .strategy = sysctl_intvec,
  194. .extra1 = &min_t2,
  195. .extra2 = &max_t2
  196. },
  197. {
  198. .ctl_name = NET_DECNET_CONF_DEV_T3,
  199. .procname = "t3",
  200. .data = (void *)DN_DEV_PARMS_OFFSET(t3),
  201. .maxlen = sizeof(int),
  202. .mode = 0644,
  203. .proc_handler = proc_dointvec_minmax,
  204. .strategy = sysctl_intvec,
  205. .extra1 = &min_t3,
  206. .extra2 = &max_t3
  207. },
  208. {0}
  209. },
  210. {{
  211. .ctl_name = 0,
  212. .procname = "",
  213. .mode = 0555,
  214. .child = dn_dev_sysctl.dn_dev_vars
  215. }, {0}},
  216. {{
  217. .ctl_name = NET_DECNET_CONF,
  218. .procname = "conf",
  219. .mode = 0555,
  220. .child = dn_dev_sysctl.dn_dev_dev
  221. }, {0}},
  222. {{
  223. .ctl_name = NET_DECNET,
  224. .procname = "decnet",
  225. .mode = 0555,
  226. .child = dn_dev_sysctl.dn_dev_conf_dir
  227. }, {0}},
  228. {{
  229. .ctl_name = CTL_NET,
  230. .procname = "net",
  231. .mode = 0555,
  232. .child = dn_dev_sysctl.dn_dev_proto_dir
  233. }, {0}}
  234. };
  235. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  236. {
  237. struct dn_dev_sysctl_table *t;
  238. int i;
  239. t = kmemdup(&dn_dev_sysctl, sizeof(*t), GFP_KERNEL);
  240. if (t == NULL)
  241. return;
  242. for(i = 0; i < ARRAY_SIZE(t->dn_dev_vars) - 1; i++) {
  243. long offset = (long)t->dn_dev_vars[i].data;
  244. t->dn_dev_vars[i].data = ((char *)parms) + offset;
  245. t->dn_dev_vars[i].de = NULL;
  246. }
  247. if (dev) {
  248. t->dn_dev_dev[0].procname = dev->name;
  249. t->dn_dev_dev[0].ctl_name = dev->ifindex;
  250. } else {
  251. t->dn_dev_dev[0].procname = parms->name;
  252. t->dn_dev_dev[0].ctl_name = parms->ctl_name;
  253. }
  254. t->dn_dev_dev[0].child = t->dn_dev_vars;
  255. t->dn_dev_dev[0].de = NULL;
  256. t->dn_dev_conf_dir[0].child = t->dn_dev_dev;
  257. t->dn_dev_conf_dir[0].de = NULL;
  258. t->dn_dev_proto_dir[0].child = t->dn_dev_conf_dir;
  259. t->dn_dev_proto_dir[0].de = NULL;
  260. t->dn_dev_root_dir[0].child = t->dn_dev_proto_dir;
  261. t->dn_dev_root_dir[0].de = NULL;
  262. t->dn_dev_vars[0].extra1 = (void *)dev;
  263. t->sysctl_header = register_sysctl_table(t->dn_dev_root_dir, 0);
  264. if (t->sysctl_header == NULL)
  265. kfree(t);
  266. else
  267. parms->sysctl = t;
  268. }
  269. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  270. {
  271. if (parms->sysctl) {
  272. struct dn_dev_sysctl_table *t = parms->sysctl;
  273. parms->sysctl = NULL;
  274. unregister_sysctl_table(t->sysctl_header);
  275. kfree(t);
  276. }
  277. }
  278. static int dn_forwarding_proc(ctl_table *table, int write,
  279. struct file *filep,
  280. void __user *buffer,
  281. size_t *lenp, loff_t *ppos)
  282. {
  283. #ifdef CONFIG_DECNET_ROUTER
  284. struct net_device *dev = table->extra1;
  285. struct dn_dev *dn_db;
  286. int err;
  287. int tmp, old;
  288. if (table->extra1 == NULL)
  289. return -EINVAL;
  290. dn_db = dev->dn_ptr;
  291. old = dn_db->parms.forwarding;
  292. err = proc_dointvec(table, write, filep, buffer, lenp, ppos);
  293. if ((err >= 0) && write) {
  294. if (dn_db->parms.forwarding < 0)
  295. dn_db->parms.forwarding = 0;
  296. if (dn_db->parms.forwarding > 2)
  297. dn_db->parms.forwarding = 2;
  298. /*
  299. * What an ugly hack this is... its works, just. It
  300. * would be nice if sysctl/proc were just that little
  301. * bit more flexible so I don't have to write a special
  302. * routine, or suffer hacks like this - SJW
  303. */
  304. tmp = dn_db->parms.forwarding;
  305. dn_db->parms.forwarding = old;
  306. if (dn_db->parms.down)
  307. dn_db->parms.down(dev);
  308. dn_db->parms.forwarding = tmp;
  309. if (dn_db->parms.up)
  310. dn_db->parms.up(dev);
  311. }
  312. return err;
  313. #else
  314. return -EINVAL;
  315. #endif
  316. }
  317. static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
  318. void __user *oldval, size_t __user *oldlenp,
  319. void __user *newval, size_t newlen)
  320. {
  321. #ifdef CONFIG_DECNET_ROUTER
  322. struct net_device *dev = table->extra1;
  323. struct dn_dev *dn_db;
  324. int value;
  325. if (table->extra1 == NULL)
  326. return -EINVAL;
  327. dn_db = dev->dn_ptr;
  328. if (newval && newlen) {
  329. if (newlen != sizeof(int))
  330. return -EINVAL;
  331. if (get_user(value, (int __user *)newval))
  332. return -EFAULT;
  333. if (value < 0)
  334. return -EINVAL;
  335. if (value > 2)
  336. return -EINVAL;
  337. if (dn_db->parms.down)
  338. dn_db->parms.down(dev);
  339. dn_db->parms.forwarding = value;
  340. if (dn_db->parms.up)
  341. dn_db->parms.up(dev);
  342. }
  343. return 0;
  344. #else
  345. return -EINVAL;
  346. #endif
  347. }
  348. #else /* CONFIG_SYSCTL */
  349. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  350. {
  351. }
  352. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  353. {
  354. }
  355. #endif /* CONFIG_SYSCTL */
  356. static inline __u16 mtu2blksize(struct net_device *dev)
  357. {
  358. u32 blksize = dev->mtu;
  359. if (blksize > 0xffff)
  360. blksize = 0xffff;
  361. if (dev->type == ARPHRD_ETHER ||
  362. dev->type == ARPHRD_PPP ||
  363. dev->type == ARPHRD_IPGRE ||
  364. dev->type == ARPHRD_LOOPBACK)
  365. blksize -= 2;
  366. return (__u16)blksize;
  367. }
  368. static struct dn_ifaddr *dn_dev_alloc_ifa(void)
  369. {
  370. struct dn_ifaddr *ifa;
  371. ifa = kzalloc(sizeof(*ifa), GFP_KERNEL);
  372. return ifa;
  373. }
  374. static __inline__ void dn_dev_free_ifa(struct dn_ifaddr *ifa)
  375. {
  376. kfree(ifa);
  377. }
  378. static void dn_dev_del_ifa(struct dn_dev *dn_db, struct dn_ifaddr **ifap, int destroy)
  379. {
  380. struct dn_ifaddr *ifa1 = *ifap;
  381. unsigned char mac_addr[6];
  382. struct net_device *dev = dn_db->dev;
  383. ASSERT_RTNL();
  384. *ifap = ifa1->ifa_next;
  385. if (dn_db->dev->type == ARPHRD_ETHER) {
  386. if (ifa1->ifa_local != dn_eth2dn(dev->dev_addr)) {
  387. dn_dn2eth(mac_addr, ifa1->ifa_local);
  388. dev_mc_delete(dev, mac_addr, ETH_ALEN, 0);
  389. }
  390. }
  391. dn_ifaddr_notify(RTM_DELADDR, ifa1);
  392. blocking_notifier_call_chain(&dnaddr_chain, NETDEV_DOWN, ifa1);
  393. if (destroy) {
  394. dn_dev_free_ifa(ifa1);
  395. if (dn_db->ifa_list == NULL)
  396. dn_dev_delete(dn_db->dev);
  397. }
  398. }
  399. static int dn_dev_insert_ifa(struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  400. {
  401. struct net_device *dev = dn_db->dev;
  402. struct dn_ifaddr *ifa1;
  403. unsigned char mac_addr[6];
  404. ASSERT_RTNL();
  405. /* Check for duplicates */
  406. for(ifa1 = dn_db->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
  407. if (ifa1->ifa_local == ifa->ifa_local)
  408. return -EEXIST;
  409. }
  410. if (dev->type == ARPHRD_ETHER) {
  411. if (ifa->ifa_local != dn_eth2dn(dev->dev_addr)) {
  412. dn_dn2eth(mac_addr, ifa->ifa_local);
  413. dev_mc_add(dev, mac_addr, ETH_ALEN, 0);
  414. dev_mc_upload(dev);
  415. }
  416. }
  417. ifa->ifa_next = dn_db->ifa_list;
  418. dn_db->ifa_list = ifa;
  419. dn_ifaddr_notify(RTM_NEWADDR, ifa);
  420. blocking_notifier_call_chain(&dnaddr_chain, NETDEV_UP, ifa);
  421. return 0;
  422. }
  423. static int dn_dev_set_ifa(struct net_device *dev, struct dn_ifaddr *ifa)
  424. {
  425. struct dn_dev *dn_db = dev->dn_ptr;
  426. int rv;
  427. if (dn_db == NULL) {
  428. int err;
  429. dn_db = dn_dev_create(dev, &err);
  430. if (dn_db == NULL)
  431. return err;
  432. }
  433. ifa->ifa_dev = dn_db;
  434. if (dev->flags & IFF_LOOPBACK)
  435. ifa->ifa_scope = RT_SCOPE_HOST;
  436. rv = dn_dev_insert_ifa(dn_db, ifa);
  437. if (rv)
  438. dn_dev_free_ifa(ifa);
  439. return rv;
  440. }
  441. int dn_dev_ioctl(unsigned int cmd, void __user *arg)
  442. {
  443. char buffer[DN_IFREQ_SIZE];
  444. struct ifreq *ifr = (struct ifreq *)buffer;
  445. struct sockaddr_dn *sdn = (struct sockaddr_dn *)&ifr->ifr_addr;
  446. struct dn_dev *dn_db;
  447. struct net_device *dev;
  448. struct dn_ifaddr *ifa = NULL, **ifap = NULL;
  449. int ret = 0;
  450. if (copy_from_user(ifr, arg, DN_IFREQ_SIZE))
  451. return -EFAULT;
  452. ifr->ifr_name[IFNAMSIZ-1] = 0;
  453. #ifdef CONFIG_KMOD
  454. dev_load(ifr->ifr_name);
  455. #endif
  456. switch(cmd) {
  457. case SIOCGIFADDR:
  458. break;
  459. case SIOCSIFADDR:
  460. if (!capable(CAP_NET_ADMIN))
  461. return -EACCES;
  462. if (sdn->sdn_family != AF_DECnet)
  463. return -EINVAL;
  464. break;
  465. default:
  466. return -EINVAL;
  467. }
  468. rtnl_lock();
  469. if ((dev = __dev_get_by_name(ifr->ifr_name)) == NULL) {
  470. ret = -ENODEV;
  471. goto done;
  472. }
  473. if ((dn_db = dev->dn_ptr) != NULL) {
  474. for (ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next)
  475. if (strcmp(ifr->ifr_name, ifa->ifa_label) == 0)
  476. break;
  477. }
  478. if (ifa == NULL && cmd != SIOCSIFADDR) {
  479. ret = -EADDRNOTAVAIL;
  480. goto done;
  481. }
  482. switch(cmd) {
  483. case SIOCGIFADDR:
  484. *((__le16 *)sdn->sdn_nodeaddr) = ifa->ifa_local;
  485. goto rarok;
  486. case SIOCSIFADDR:
  487. if (!ifa) {
  488. if ((ifa = dn_dev_alloc_ifa()) == NULL) {
  489. ret = -ENOBUFS;
  490. break;
  491. }
  492. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  493. } else {
  494. if (ifa->ifa_local == dn_saddr2dn(sdn))
  495. break;
  496. dn_dev_del_ifa(dn_db, ifap, 0);
  497. }
  498. ifa->ifa_local = ifa->ifa_address = dn_saddr2dn(sdn);
  499. ret = dn_dev_set_ifa(dev, ifa);
  500. }
  501. done:
  502. rtnl_unlock();
  503. return ret;
  504. rarok:
  505. if (copy_to_user(arg, ifr, DN_IFREQ_SIZE))
  506. ret = -EFAULT;
  507. goto done;
  508. }
  509. struct net_device *dn_dev_get_default(void)
  510. {
  511. struct net_device *dev;
  512. read_lock(&dndev_lock);
  513. dev = decnet_default_device;
  514. if (dev) {
  515. if (dev->dn_ptr)
  516. dev_hold(dev);
  517. else
  518. dev = NULL;
  519. }
  520. read_unlock(&dndev_lock);
  521. return dev;
  522. }
  523. int dn_dev_set_default(struct net_device *dev, int force)
  524. {
  525. struct net_device *old = NULL;
  526. int rv = -EBUSY;
  527. if (!dev->dn_ptr)
  528. return -ENODEV;
  529. write_lock(&dndev_lock);
  530. if (force || decnet_default_device == NULL) {
  531. old = decnet_default_device;
  532. decnet_default_device = dev;
  533. rv = 0;
  534. }
  535. write_unlock(&dndev_lock);
  536. if (old)
  537. dev_put(old);
  538. return rv;
  539. }
  540. static void dn_dev_check_default(struct net_device *dev)
  541. {
  542. write_lock(&dndev_lock);
  543. if (dev == decnet_default_device) {
  544. decnet_default_device = NULL;
  545. } else {
  546. dev = NULL;
  547. }
  548. write_unlock(&dndev_lock);
  549. if (dev)
  550. dev_put(dev);
  551. }
  552. static struct dn_dev *dn_dev_by_index(int ifindex)
  553. {
  554. struct net_device *dev;
  555. struct dn_dev *dn_dev = NULL;
  556. dev = dev_get_by_index(ifindex);
  557. if (dev) {
  558. dn_dev = dev->dn_ptr;
  559. dev_put(dev);
  560. }
  561. return dn_dev;
  562. }
  563. static struct nla_policy dn_ifa_policy[IFA_MAX+1] __read_mostly = {
  564. [IFA_ADDRESS] = { .type = NLA_U16 },
  565. [IFA_LOCAL] = { .type = NLA_U16 },
  566. [IFA_LABEL] = { .type = NLA_STRING,
  567. .len = IFNAMSIZ - 1 },
  568. };
  569. static int dn_nl_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  570. {
  571. struct nlattr *tb[IFA_MAX+1];
  572. struct dn_dev *dn_db;
  573. struct ifaddrmsg *ifm;
  574. struct dn_ifaddr *ifa, **ifap;
  575. int err = -EADDRNOTAVAIL;
  576. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, dn_ifa_policy);
  577. if (err < 0)
  578. goto errout;
  579. ifm = nlmsg_data(nlh);
  580. if ((dn_db = dn_dev_by_index(ifm->ifa_index)) == NULL)
  581. goto errout;
  582. for (ifap = &dn_db->ifa_list; (ifa = *ifap); ifap = &ifa->ifa_next) {
  583. if (tb[IFA_LOCAL] &&
  584. nla_memcmp(tb[IFA_LOCAL], &ifa->ifa_local, 2))
  585. continue;
  586. if (tb[IFA_LABEL] && nla_strcmp(tb[IFA_LABEL], ifa->ifa_label))
  587. continue;
  588. dn_dev_del_ifa(dn_db, ifap, 1);
  589. return 0;
  590. }
  591. errout:
  592. return err;
  593. }
  594. static int dn_nl_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  595. {
  596. struct nlattr *tb[IFA_MAX+1];
  597. struct net_device *dev;
  598. struct dn_dev *dn_db;
  599. struct ifaddrmsg *ifm;
  600. struct dn_ifaddr *ifa;
  601. int err;
  602. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, dn_ifa_policy);
  603. if (err < 0)
  604. return err;
  605. if (tb[IFA_LOCAL] == NULL)
  606. return -EINVAL;
  607. ifm = nlmsg_data(nlh);
  608. if ((dev = __dev_get_by_index(ifm->ifa_index)) == NULL)
  609. return -ENODEV;
  610. if ((dn_db = dev->dn_ptr) == NULL) {
  611. int err;
  612. dn_db = dn_dev_create(dev, &err);
  613. if (!dn_db)
  614. return err;
  615. }
  616. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  617. return -ENOBUFS;
  618. if (tb[IFA_ADDRESS] == NULL)
  619. tb[IFA_ADDRESS] = tb[IFA_LOCAL];
  620. ifa->ifa_local = nla_get_le16(tb[IFA_LOCAL]);
  621. ifa->ifa_address = nla_get_le16(tb[IFA_ADDRESS]);
  622. ifa->ifa_flags = ifm->ifa_flags;
  623. ifa->ifa_scope = ifm->ifa_scope;
  624. ifa->ifa_dev = dn_db;
  625. if (tb[IFA_LABEL])
  626. nla_strlcpy(ifa->ifa_label, tb[IFA_LABEL], IFNAMSIZ);
  627. else
  628. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  629. err = dn_dev_insert_ifa(dn_db, ifa);
  630. if (err)
  631. dn_dev_free_ifa(ifa);
  632. return err;
  633. }
  634. static inline size_t dn_ifaddr_nlmsg_size(void)
  635. {
  636. return NLMSG_ALIGN(sizeof(struct ifaddrmsg))
  637. + nla_total_size(IFNAMSIZ) /* IFA_LABEL */
  638. + nla_total_size(2) /* IFA_ADDRESS */
  639. + nla_total_size(2); /* IFA_LOCAL */
  640. }
  641. static int dn_nl_fill_ifaddr(struct sk_buff *skb, struct dn_ifaddr *ifa,
  642. u32 pid, u32 seq, int event, unsigned int flags)
  643. {
  644. struct ifaddrmsg *ifm;
  645. struct nlmsghdr *nlh;
  646. nlh = nlmsg_put(skb, pid, seq, event, sizeof(*ifm), flags);
  647. if (nlh == NULL)
  648. return -EMSGSIZE;
  649. ifm = nlmsg_data(nlh);
  650. ifm->ifa_family = AF_DECnet;
  651. ifm->ifa_prefixlen = 16;
  652. ifm->ifa_flags = ifa->ifa_flags | IFA_F_PERMANENT;
  653. ifm->ifa_scope = ifa->ifa_scope;
  654. ifm->ifa_index = ifa->ifa_dev->dev->ifindex;
  655. if (ifa->ifa_address)
  656. NLA_PUT_LE16(skb, IFA_ADDRESS, ifa->ifa_address);
  657. if (ifa->ifa_local)
  658. NLA_PUT_LE16(skb, IFA_LOCAL, ifa->ifa_local);
  659. if (ifa->ifa_label[0])
  660. NLA_PUT_STRING(skb, IFA_LABEL, ifa->ifa_label);
  661. return nlmsg_end(skb, nlh);
  662. nla_put_failure:
  663. nlmsg_cancel(skb, nlh);
  664. return -EMSGSIZE;
  665. }
  666. static void dn_ifaddr_notify(int event, struct dn_ifaddr *ifa)
  667. {
  668. struct sk_buff *skb;
  669. int err = -ENOBUFS;
  670. skb = alloc_skb(dn_ifaddr_nlmsg_size(), GFP_KERNEL);
  671. if (skb == NULL)
  672. goto errout;
  673. err = dn_nl_fill_ifaddr(skb, ifa, 0, 0, event, 0);
  674. if (err < 0) {
  675. /* -EMSGSIZE implies BUG in dn_ifaddr_nlmsg_size() */
  676. WARN_ON(err == -EMSGSIZE);
  677. kfree_skb(skb);
  678. goto errout;
  679. }
  680. err = rtnl_notify(skb, 0, RTNLGRP_DECnet_IFADDR, NULL, GFP_KERNEL);
  681. errout:
  682. if (err < 0)
  683. rtnl_set_sk_err(RTNLGRP_DECnet_IFADDR, err);
  684. }
  685. static int dn_nl_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
  686. {
  687. int idx, dn_idx = 0, skip_ndevs, skip_naddr;
  688. struct net_device *dev;
  689. struct dn_dev *dn_db;
  690. struct dn_ifaddr *ifa;
  691. skip_ndevs = cb->args[0];
  692. skip_naddr = cb->args[1];
  693. read_lock(&dev_base_lock);
  694. for (dev = dev_base, idx = 0; dev; dev = dev->next, idx++) {
  695. if (idx < skip_ndevs)
  696. continue;
  697. else if (idx > skip_ndevs) {
  698. /* Only skip over addresses for first dev dumped
  699. * in this iteration (idx == skip_ndevs) */
  700. skip_naddr = 0;
  701. }
  702. if ((dn_db = dev->dn_ptr) == NULL)
  703. continue;
  704. for (ifa = dn_db->ifa_list, dn_idx = 0; ifa;
  705. ifa = ifa->ifa_next, dn_idx++) {
  706. if (dn_idx < skip_naddr)
  707. continue;
  708. if (dn_nl_fill_ifaddr(skb, ifa, NETLINK_CB(cb->skb).pid,
  709. cb->nlh->nlmsg_seq, RTM_NEWADDR,
  710. NLM_F_MULTI) < 0)
  711. goto done;
  712. }
  713. }
  714. done:
  715. read_unlock(&dev_base_lock);
  716. cb->args[0] = idx;
  717. cb->args[1] = dn_idx;
  718. return skb->len;
  719. }
  720. static int dn_dev_get_first(struct net_device *dev, __le16 *addr)
  721. {
  722. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  723. struct dn_ifaddr *ifa;
  724. int rv = -ENODEV;
  725. if (dn_db == NULL)
  726. goto out;
  727. ifa = dn_db->ifa_list;
  728. if (ifa != NULL) {
  729. *addr = ifa->ifa_local;
  730. rv = 0;
  731. }
  732. out:
  733. return rv;
  734. }
  735. /*
  736. * Find a default address to bind to.
  737. *
  738. * This is one of those areas where the initial VMS concepts don't really
  739. * map onto the Linux concepts, and since we introduced multiple addresses
  740. * per interface we have to cope with slightly odd ways of finding out what
  741. * "our address" really is. Mostly it's not a problem; for this we just guess
  742. * a sensible default. Eventually the routing code will take care of all the
  743. * nasties for us I hope.
  744. */
  745. int dn_dev_bind_default(__le16 *addr)
  746. {
  747. struct net_device *dev;
  748. int rv;
  749. dev = dn_dev_get_default();
  750. last_chance:
  751. if (dev) {
  752. read_lock(&dev_base_lock);
  753. rv = dn_dev_get_first(dev, addr);
  754. read_unlock(&dev_base_lock);
  755. dev_put(dev);
  756. if (rv == 0 || dev == &loopback_dev)
  757. return rv;
  758. }
  759. dev = &loopback_dev;
  760. dev_hold(dev);
  761. goto last_chance;
  762. }
  763. static void dn_send_endnode_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  764. {
  765. struct endnode_hello_message *msg;
  766. struct sk_buff *skb = NULL;
  767. __le16 *pktlen;
  768. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  769. if ((skb = dn_alloc_skb(NULL, sizeof(*msg), GFP_ATOMIC)) == NULL)
  770. return;
  771. skb->dev = dev;
  772. msg = (struct endnode_hello_message *)skb_put(skb,sizeof(*msg));
  773. msg->msgflg = 0x0D;
  774. memcpy(msg->tiver, dn_eco_version, 3);
  775. dn_dn2eth(msg->id, ifa->ifa_local);
  776. msg->iinfo = DN_RT_INFO_ENDN;
  777. msg->blksize = dn_htons(mtu2blksize(dev));
  778. msg->area = 0x00;
  779. memset(msg->seed, 0, 8);
  780. memcpy(msg->neighbor, dn_hiord, ETH_ALEN);
  781. if (dn_db->router) {
  782. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  783. dn_dn2eth(msg->neighbor, dn->addr);
  784. }
  785. msg->timer = dn_htons((unsigned short)dn_db->parms.t3);
  786. msg->mpd = 0x00;
  787. msg->datalen = 0x02;
  788. memset(msg->data, 0xAA, 2);
  789. pktlen = (__le16 *)skb_push(skb,2);
  790. *pktlen = dn_htons(skb->len - 2);
  791. skb->nh.raw = skb->data;
  792. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, msg->id);
  793. }
  794. #define DRDELAY (5 * HZ)
  795. static int dn_am_i_a_router(struct dn_neigh *dn, struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  796. {
  797. /* First check time since device went up */
  798. if ((jiffies - dn_db->uptime) < DRDELAY)
  799. return 0;
  800. /* If there is no router, then yes... */
  801. if (!dn_db->router)
  802. return 1;
  803. /* otherwise only if we have a higher priority or.. */
  804. if (dn->priority < dn_db->parms.priority)
  805. return 1;
  806. /* if we have equal priority and a higher node number */
  807. if (dn->priority != dn_db->parms.priority)
  808. return 0;
  809. if (dn_ntohs(dn->addr) < dn_ntohs(ifa->ifa_local))
  810. return 1;
  811. return 0;
  812. }
  813. static void dn_send_router_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  814. {
  815. int n;
  816. struct dn_dev *dn_db = dev->dn_ptr;
  817. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  818. struct sk_buff *skb;
  819. size_t size;
  820. unsigned char *ptr;
  821. unsigned char *i1, *i2;
  822. __le16 *pktlen;
  823. char *src;
  824. if (mtu2blksize(dev) < (26 + 7))
  825. return;
  826. n = mtu2blksize(dev) - 26;
  827. n /= 7;
  828. if (n > 32)
  829. n = 32;
  830. size = 2 + 26 + 7 * n;
  831. if ((skb = dn_alloc_skb(NULL, size, GFP_ATOMIC)) == NULL)
  832. return;
  833. skb->dev = dev;
  834. ptr = skb_put(skb, size);
  835. *ptr++ = DN_RT_PKT_CNTL | DN_RT_PKT_ERTH;
  836. *ptr++ = 2; /* ECO */
  837. *ptr++ = 0;
  838. *ptr++ = 0;
  839. dn_dn2eth(ptr, ifa->ifa_local);
  840. src = ptr;
  841. ptr += ETH_ALEN;
  842. *ptr++ = dn_db->parms.forwarding == 1 ?
  843. DN_RT_INFO_L1RT : DN_RT_INFO_L2RT;
  844. *((__le16 *)ptr) = dn_htons(mtu2blksize(dev));
  845. ptr += 2;
  846. *ptr++ = dn_db->parms.priority; /* Priority */
  847. *ptr++ = 0; /* Area: Reserved */
  848. *((__le16 *)ptr) = dn_htons((unsigned short)dn_db->parms.t3);
  849. ptr += 2;
  850. *ptr++ = 0; /* MPD: Reserved */
  851. i1 = ptr++;
  852. memset(ptr, 0, 7); /* Name: Reserved */
  853. ptr += 7;
  854. i2 = ptr++;
  855. n = dn_neigh_elist(dev, ptr, n);
  856. *i2 = 7 * n;
  857. *i1 = 8 + *i2;
  858. skb_trim(skb, (27 + *i2));
  859. pktlen = (__le16 *)skb_push(skb, 2);
  860. *pktlen = dn_htons(skb->len - 2);
  861. skb->nh.raw = skb->data;
  862. if (dn_am_i_a_router(dn, dn_db, ifa)) {
  863. struct sk_buff *skb2 = skb_copy(skb, GFP_ATOMIC);
  864. if (skb2) {
  865. dn_rt_finish_output(skb2, dn_rt_all_end_mcast, src);
  866. }
  867. }
  868. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  869. }
  870. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  871. {
  872. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  873. if (dn_db->parms.forwarding == 0)
  874. dn_send_endnode_hello(dev, ifa);
  875. else
  876. dn_send_router_hello(dev, ifa);
  877. }
  878. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  879. {
  880. int tdlen = 16;
  881. int size = dev->hard_header_len + 2 + 4 + tdlen;
  882. struct sk_buff *skb = dn_alloc_skb(NULL, size, GFP_ATOMIC);
  883. int i;
  884. unsigned char *ptr;
  885. char src[ETH_ALEN];
  886. if (skb == NULL)
  887. return ;
  888. skb->dev = dev;
  889. skb_push(skb, dev->hard_header_len);
  890. ptr = skb_put(skb, 2 + 4 + tdlen);
  891. *ptr++ = DN_RT_PKT_HELO;
  892. *((__le16 *)ptr) = ifa->ifa_local;
  893. ptr += 2;
  894. *ptr++ = tdlen;
  895. for(i = 0; i < tdlen; i++)
  896. *ptr++ = 0252;
  897. dn_dn2eth(src, ifa->ifa_local);
  898. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  899. }
  900. static int dn_eth_up(struct net_device *dev)
  901. {
  902. struct dn_dev *dn_db = dev->dn_ptr;
  903. if (dn_db->parms.forwarding == 0)
  904. dev_mc_add(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
  905. else
  906. dev_mc_add(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
  907. dev_mc_upload(dev);
  908. dn_db->use_long = 1;
  909. return 0;
  910. }
  911. static void dn_eth_down(struct net_device *dev)
  912. {
  913. struct dn_dev *dn_db = dev->dn_ptr;
  914. if (dn_db->parms.forwarding == 0)
  915. dev_mc_delete(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
  916. else
  917. dev_mc_delete(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
  918. }
  919. static void dn_dev_set_timer(struct net_device *dev);
  920. static void dn_dev_timer_func(unsigned long arg)
  921. {
  922. struct net_device *dev = (struct net_device *)arg;
  923. struct dn_dev *dn_db = dev->dn_ptr;
  924. struct dn_ifaddr *ifa;
  925. if (dn_db->t3 <= dn_db->parms.t2) {
  926. if (dn_db->parms.timer3) {
  927. for(ifa = dn_db->ifa_list; ifa; ifa = ifa->ifa_next) {
  928. if (!(ifa->ifa_flags & IFA_F_SECONDARY))
  929. dn_db->parms.timer3(dev, ifa);
  930. }
  931. }
  932. dn_db->t3 = dn_db->parms.t3;
  933. } else {
  934. dn_db->t3 -= dn_db->parms.t2;
  935. }
  936. dn_dev_set_timer(dev);
  937. }
  938. static void dn_dev_set_timer(struct net_device *dev)
  939. {
  940. struct dn_dev *dn_db = dev->dn_ptr;
  941. if (dn_db->parms.t2 > dn_db->parms.t3)
  942. dn_db->parms.t2 = dn_db->parms.t3;
  943. dn_db->timer.data = (unsigned long)dev;
  944. dn_db->timer.function = dn_dev_timer_func;
  945. dn_db->timer.expires = jiffies + (dn_db->parms.t2 * HZ);
  946. add_timer(&dn_db->timer);
  947. }
  948. struct dn_dev *dn_dev_create(struct net_device *dev, int *err)
  949. {
  950. int i;
  951. struct dn_dev_parms *p = dn_dev_list;
  952. struct dn_dev *dn_db;
  953. for(i = 0; i < DN_DEV_LIST_SIZE; i++, p++) {
  954. if (p->type == dev->type)
  955. break;
  956. }
  957. *err = -ENODEV;
  958. if (i == DN_DEV_LIST_SIZE)
  959. return NULL;
  960. *err = -ENOBUFS;
  961. if ((dn_db = kzalloc(sizeof(struct dn_dev), GFP_ATOMIC)) == NULL)
  962. return NULL;
  963. memcpy(&dn_db->parms, p, sizeof(struct dn_dev_parms));
  964. smp_wmb();
  965. dev->dn_ptr = dn_db;
  966. dn_db->dev = dev;
  967. init_timer(&dn_db->timer);
  968. dn_db->uptime = jiffies;
  969. dn_db->neigh_parms = neigh_parms_alloc(dev, &dn_neigh_table);
  970. if (!dn_db->neigh_parms) {
  971. dev->dn_ptr = NULL;
  972. kfree(dn_db);
  973. return NULL;
  974. }
  975. if (dn_db->parms.up) {
  976. if (dn_db->parms.up(dev) < 0) {
  977. neigh_parms_release(&dn_neigh_table, dn_db->neigh_parms);
  978. dev->dn_ptr = NULL;
  979. kfree(dn_db);
  980. return NULL;
  981. }
  982. }
  983. dn_dev_sysctl_register(dev, &dn_db->parms);
  984. dn_dev_set_timer(dev);
  985. *err = 0;
  986. return dn_db;
  987. }
  988. /*
  989. * This processes a device up event. We only start up
  990. * the loopback device & ethernet devices with correct
  991. * MAC addreses automatically. Others must be started
  992. * specifically.
  993. *
  994. * FIXME: How should we configure the loopback address ? If we could dispense
  995. * with using decnet_address here and for autobind, it will be one less thing
  996. * for users to worry about setting up.
  997. */
  998. void dn_dev_up(struct net_device *dev)
  999. {
  1000. struct dn_ifaddr *ifa;
  1001. __le16 addr = decnet_address;
  1002. int maybe_default = 0;
  1003. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  1004. if ((dev->type != ARPHRD_ETHER) && (dev->type != ARPHRD_LOOPBACK))
  1005. return;
  1006. /*
  1007. * Need to ensure that loopback device has a dn_db attached to it
  1008. * to allow creation of neighbours against it, even though it might
  1009. * not have a local address of its own. Might as well do the same for
  1010. * all autoconfigured interfaces.
  1011. */
  1012. if (dn_db == NULL) {
  1013. int err;
  1014. dn_db = dn_dev_create(dev, &err);
  1015. if (dn_db == NULL)
  1016. return;
  1017. }
  1018. if (dev->type == ARPHRD_ETHER) {
  1019. if (memcmp(dev->dev_addr, dn_hiord, 4) != 0)
  1020. return;
  1021. addr = dn_eth2dn(dev->dev_addr);
  1022. maybe_default = 1;
  1023. }
  1024. if (addr == 0)
  1025. return;
  1026. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  1027. return;
  1028. ifa->ifa_local = ifa->ifa_address = addr;
  1029. ifa->ifa_flags = 0;
  1030. ifa->ifa_scope = RT_SCOPE_UNIVERSE;
  1031. strcpy(ifa->ifa_label, dev->name);
  1032. dn_dev_set_ifa(dev, ifa);
  1033. /*
  1034. * Automagically set the default device to the first automatically
  1035. * configured ethernet card in the system.
  1036. */
  1037. if (maybe_default) {
  1038. dev_hold(dev);
  1039. if (dn_dev_set_default(dev, 0))
  1040. dev_put(dev);
  1041. }
  1042. }
  1043. static void dn_dev_delete(struct net_device *dev)
  1044. {
  1045. struct dn_dev *dn_db = dev->dn_ptr;
  1046. if (dn_db == NULL)
  1047. return;
  1048. del_timer_sync(&dn_db->timer);
  1049. dn_dev_sysctl_unregister(&dn_db->parms);
  1050. dn_dev_check_default(dev);
  1051. neigh_ifdown(&dn_neigh_table, dev);
  1052. if (dn_db->parms.down)
  1053. dn_db->parms.down(dev);
  1054. dev->dn_ptr = NULL;
  1055. neigh_parms_release(&dn_neigh_table, dn_db->neigh_parms);
  1056. neigh_ifdown(&dn_neigh_table, dev);
  1057. if (dn_db->router)
  1058. neigh_release(dn_db->router);
  1059. if (dn_db->peer)
  1060. neigh_release(dn_db->peer);
  1061. kfree(dn_db);
  1062. }
  1063. void dn_dev_down(struct net_device *dev)
  1064. {
  1065. struct dn_dev *dn_db = dev->dn_ptr;
  1066. struct dn_ifaddr *ifa;
  1067. if (dn_db == NULL)
  1068. return;
  1069. while((ifa = dn_db->ifa_list) != NULL) {
  1070. dn_dev_del_ifa(dn_db, &dn_db->ifa_list, 0);
  1071. dn_dev_free_ifa(ifa);
  1072. }
  1073. dn_dev_delete(dev);
  1074. }
  1075. void dn_dev_init_pkt(struct sk_buff *skb)
  1076. {
  1077. return;
  1078. }
  1079. void dn_dev_veri_pkt(struct sk_buff *skb)
  1080. {
  1081. return;
  1082. }
  1083. void dn_dev_hello(struct sk_buff *skb)
  1084. {
  1085. return;
  1086. }
  1087. void dn_dev_devices_off(void)
  1088. {
  1089. struct net_device *dev;
  1090. rtnl_lock();
  1091. for(dev = dev_base; dev; dev = dev->next)
  1092. dn_dev_down(dev);
  1093. rtnl_unlock();
  1094. }
  1095. void dn_dev_devices_on(void)
  1096. {
  1097. struct net_device *dev;
  1098. rtnl_lock();
  1099. for(dev = dev_base; dev; dev = dev->next) {
  1100. if (dev->flags & IFF_UP)
  1101. dn_dev_up(dev);
  1102. }
  1103. rtnl_unlock();
  1104. }
  1105. int register_dnaddr_notifier(struct notifier_block *nb)
  1106. {
  1107. return blocking_notifier_chain_register(&dnaddr_chain, nb);
  1108. }
  1109. int unregister_dnaddr_notifier(struct notifier_block *nb)
  1110. {
  1111. return blocking_notifier_chain_unregister(&dnaddr_chain, nb);
  1112. }
  1113. #ifdef CONFIG_PROC_FS
  1114. static inline struct net_device *dn_dev_get_next(struct seq_file *seq, struct net_device *dev)
  1115. {
  1116. do {
  1117. dev = dev->next;
  1118. } while(dev && !dev->dn_ptr);
  1119. return dev;
  1120. }
  1121. static struct net_device *dn_dev_get_idx(struct seq_file *seq, loff_t pos)
  1122. {
  1123. struct net_device *dev;
  1124. dev = dev_base;
  1125. if (dev && !dev->dn_ptr)
  1126. dev = dn_dev_get_next(seq, dev);
  1127. if (pos) {
  1128. while(dev && (dev = dn_dev_get_next(seq, dev)))
  1129. --pos;
  1130. }
  1131. return dev;
  1132. }
  1133. static void *dn_dev_seq_start(struct seq_file *seq, loff_t *pos)
  1134. {
  1135. if (*pos) {
  1136. struct net_device *dev;
  1137. read_lock(&dev_base_lock);
  1138. dev = dn_dev_get_idx(seq, *pos - 1);
  1139. if (dev == NULL)
  1140. read_unlock(&dev_base_lock);
  1141. return dev;
  1142. }
  1143. return SEQ_START_TOKEN;
  1144. }
  1145. static void *dn_dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1146. {
  1147. struct net_device *dev = v;
  1148. loff_t one = 1;
  1149. if (v == SEQ_START_TOKEN) {
  1150. dev = dn_dev_seq_start(seq, &one);
  1151. } else {
  1152. dev = dn_dev_get_next(seq, dev);
  1153. if (dev == NULL)
  1154. read_unlock(&dev_base_lock);
  1155. }
  1156. ++*pos;
  1157. return dev;
  1158. }
  1159. static void dn_dev_seq_stop(struct seq_file *seq, void *v)
  1160. {
  1161. if (v && v != SEQ_START_TOKEN)
  1162. read_unlock(&dev_base_lock);
  1163. }
  1164. static char *dn_type2asc(char type)
  1165. {
  1166. switch(type) {
  1167. case DN_DEV_BCAST:
  1168. return "B";
  1169. case DN_DEV_UCAST:
  1170. return "U";
  1171. case DN_DEV_MPOINT:
  1172. return "M";
  1173. }
  1174. return "?";
  1175. }
  1176. static int dn_dev_seq_show(struct seq_file *seq, void *v)
  1177. {
  1178. if (v == SEQ_START_TOKEN)
  1179. seq_puts(seq, "Name Flags T1 Timer1 T3 Timer3 BlkSize Pri State DevType Router Peer\n");
  1180. else {
  1181. struct net_device *dev = v;
  1182. char peer_buf[DN_ASCBUF_LEN];
  1183. char router_buf[DN_ASCBUF_LEN];
  1184. struct dn_dev *dn_db = dev->dn_ptr;
  1185. seq_printf(seq, "%-8s %1s %04u %04u %04lu %04lu"
  1186. " %04hu %03d %02x %-10s %-7s %-7s\n",
  1187. dev->name ? dev->name : "???",
  1188. dn_type2asc(dn_db->parms.mode),
  1189. 0, 0,
  1190. dn_db->t3, dn_db->parms.t3,
  1191. mtu2blksize(dev),
  1192. dn_db->parms.priority,
  1193. dn_db->parms.state, dn_db->parms.name,
  1194. dn_db->router ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->router->primary_key), router_buf) : "",
  1195. dn_db->peer ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->peer->primary_key), peer_buf) : "");
  1196. }
  1197. return 0;
  1198. }
  1199. static struct seq_operations dn_dev_seq_ops = {
  1200. .start = dn_dev_seq_start,
  1201. .next = dn_dev_seq_next,
  1202. .stop = dn_dev_seq_stop,
  1203. .show = dn_dev_seq_show,
  1204. };
  1205. static int dn_dev_seq_open(struct inode *inode, struct file *file)
  1206. {
  1207. return seq_open(file, &dn_dev_seq_ops);
  1208. }
  1209. static const struct file_operations dn_dev_seq_fops = {
  1210. .owner = THIS_MODULE,
  1211. .open = dn_dev_seq_open,
  1212. .read = seq_read,
  1213. .llseek = seq_lseek,
  1214. .release = seq_release,
  1215. };
  1216. #endif /* CONFIG_PROC_FS */
  1217. static struct rtnetlink_link dnet_rtnetlink_table[RTM_NR_MSGTYPES] =
  1218. {
  1219. [RTM_NEWADDR - RTM_BASE] = { .doit = dn_nl_newaddr, },
  1220. [RTM_DELADDR - RTM_BASE] = { .doit = dn_nl_deladdr, },
  1221. [RTM_GETADDR - RTM_BASE] = { .dumpit = dn_nl_dump_ifaddr, },
  1222. #ifdef CONFIG_DECNET_ROUTER
  1223. [RTM_NEWROUTE - RTM_BASE] = { .doit = dn_fib_rtm_newroute, },
  1224. [RTM_DELROUTE - RTM_BASE] = { .doit = dn_fib_rtm_delroute, },
  1225. [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
  1226. .dumpit = dn_fib_dump, },
  1227. [RTM_GETRULE - RTM_BASE] = { .dumpit = dn_fib_dump_rules, },
  1228. #else
  1229. [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
  1230. .dumpit = dn_cache_dump, },
  1231. #endif
  1232. };
  1233. static int __initdata addr[2];
  1234. module_param_array(addr, int, NULL, 0444);
  1235. MODULE_PARM_DESC(addr, "The DECnet address of this machine: area,node");
  1236. void __init dn_dev_init(void)
  1237. {
  1238. if (addr[0] > 63 || addr[0] < 0) {
  1239. printk(KERN_ERR "DECnet: Area must be between 0 and 63");
  1240. return;
  1241. }
  1242. if (addr[1] > 1023 || addr[1] < 0) {
  1243. printk(KERN_ERR "DECnet: Node must be between 0 and 1023");
  1244. return;
  1245. }
  1246. decnet_address = dn_htons((addr[0] << 10) | addr[1]);
  1247. dn_dev_devices_on();
  1248. rtnetlink_links[PF_DECnet] = dnet_rtnetlink_table;
  1249. proc_net_fops_create("decnet_dev", S_IRUGO, &dn_dev_seq_fops);
  1250. #ifdef CONFIG_SYSCTL
  1251. {
  1252. int i;
  1253. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1254. dn_dev_sysctl_register(NULL, &dn_dev_list[i]);
  1255. }
  1256. #endif /* CONFIG_SYSCTL */
  1257. }
  1258. void __exit dn_dev_cleanup(void)
  1259. {
  1260. rtnetlink_links[PF_DECnet] = NULL;
  1261. #ifdef CONFIG_SYSCTL
  1262. {
  1263. int i;
  1264. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1265. dn_dev_sysctl_unregister(&dn_dev_list[i]);
  1266. }
  1267. #endif /* CONFIG_SYSCTL */
  1268. proc_net_remove("decnet_dev");
  1269. dn_dev_devices_off();
  1270. }