mmap.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808
  1. /**
  2. * eCryptfs: Linux filesystem encryption layer
  3. * This is where eCryptfs coordinates the symmetric encryption and
  4. * decryption of the file data as it passes between the lower
  5. * encrypted file and the upper decrypted file.
  6. *
  7. * Copyright (C) 1997-2003 Erez Zadok
  8. * Copyright (C) 2001-2003 Stony Brook University
  9. * Copyright (C) 2004-2007 International Business Machines Corp.
  10. * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License as
  14. * published by the Free Software Foundation; either version 2 of the
  15. * License, or (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful, but
  18. * WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  20. * General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  25. * 02111-1307, USA.
  26. */
  27. #include <linux/pagemap.h>
  28. #include <linux/writeback.h>
  29. #include <linux/page-flags.h>
  30. #include <linux/mount.h>
  31. #include <linux/file.h>
  32. #include <linux/crypto.h>
  33. #include <linux/scatterlist.h>
  34. #include "ecryptfs_kernel.h"
  35. struct kmem_cache *ecryptfs_lower_page_cache;
  36. /**
  37. * ecryptfs_get1page
  38. *
  39. * Get one page from cache or lower f/s, return error otherwise.
  40. *
  41. * Returns unlocked and up-to-date page (if ok), with increased
  42. * refcnt.
  43. */
  44. static struct page *ecryptfs_get1page(struct file *file, int index)
  45. {
  46. struct page *page;
  47. struct dentry *dentry;
  48. struct inode *inode;
  49. struct address_space *mapping;
  50. dentry = file->f_path.dentry;
  51. inode = dentry->d_inode;
  52. mapping = inode->i_mapping;
  53. page = read_cache_page(mapping, index,
  54. (filler_t *)mapping->a_ops->readpage,
  55. (void *)file);
  56. if (IS_ERR(page))
  57. goto out;
  58. wait_on_page_locked(page);
  59. out:
  60. return page;
  61. }
  62. static
  63. int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros);
  64. /**
  65. * ecryptfs_fill_zeros
  66. * @file: The ecryptfs file
  67. * @new_length: The new length of the data in the underlying file;
  68. * everything between the prior end of the file and the
  69. * new end of the file will be filled with zero's.
  70. * new_length must be greater than current length
  71. *
  72. * Function for handling lseek-ing past the end of the file.
  73. *
  74. * This function does not support shrinking, only growing a file.
  75. *
  76. * Returns zero on success; non-zero otherwise.
  77. */
  78. int ecryptfs_fill_zeros(struct file *file, loff_t new_length)
  79. {
  80. int rc = 0;
  81. struct dentry *dentry = file->f_path.dentry;
  82. struct inode *inode = dentry->d_inode;
  83. pgoff_t old_end_page_index = 0;
  84. pgoff_t index = old_end_page_index;
  85. int old_end_pos_in_page = -1;
  86. pgoff_t new_end_page_index;
  87. int new_end_pos_in_page;
  88. loff_t cur_length = i_size_read(inode);
  89. if (cur_length != 0) {
  90. index = old_end_page_index =
  91. ((cur_length - 1) >> PAGE_CACHE_SHIFT);
  92. old_end_pos_in_page = ((cur_length - 1) & ~PAGE_CACHE_MASK);
  93. }
  94. new_end_page_index = ((new_length - 1) >> PAGE_CACHE_SHIFT);
  95. new_end_pos_in_page = ((new_length - 1) & ~PAGE_CACHE_MASK);
  96. ecryptfs_printk(KERN_DEBUG, "old_end_page_index = [0x%.16x]; "
  97. "old_end_pos_in_page = [%d]; "
  98. "new_end_page_index = [0x%.16x]; "
  99. "new_end_pos_in_page = [%d]\n",
  100. old_end_page_index, old_end_pos_in_page,
  101. new_end_page_index, new_end_pos_in_page);
  102. if (old_end_page_index == new_end_page_index) {
  103. /* Start and end are in the same page; we just need to
  104. * set a portion of the existing page to zero's */
  105. rc = write_zeros(file, index, (old_end_pos_in_page + 1),
  106. (new_end_pos_in_page - old_end_pos_in_page));
  107. if (rc)
  108. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  109. "index=[0x%.16x], "
  110. "old_end_pos_in_page=[d], "
  111. "(PAGE_CACHE_SIZE - new_end_pos_in_page"
  112. "=[%d]"
  113. ")=[d]) returned [%d]\n", file, index,
  114. old_end_pos_in_page,
  115. new_end_pos_in_page,
  116. (PAGE_CACHE_SIZE - new_end_pos_in_page),
  117. rc);
  118. goto out;
  119. }
  120. /* Fill the remainder of the previous last page with zeros */
  121. rc = write_zeros(file, index, (old_end_pos_in_page + 1),
  122. ((PAGE_CACHE_SIZE - 1) - old_end_pos_in_page));
  123. if (rc) {
  124. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  125. "index=[0x%.16x], old_end_pos_in_page=[d], "
  126. "(PAGE_CACHE_SIZE - old_end_pos_in_page)=[d]) "
  127. "returned [%d]\n", file, index,
  128. old_end_pos_in_page,
  129. (PAGE_CACHE_SIZE - old_end_pos_in_page), rc);
  130. goto out;
  131. }
  132. index++;
  133. while (index < new_end_page_index) {
  134. /* Fill all intermediate pages with zeros */
  135. rc = write_zeros(file, index, 0, PAGE_CACHE_SIZE);
  136. if (rc) {
  137. ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
  138. "index=[0x%.16x], "
  139. "old_end_pos_in_page=[d], "
  140. "(PAGE_CACHE_SIZE - new_end_pos_in_page"
  141. "=[%d]"
  142. ")=[d]) returned [%d]\n", file, index,
  143. old_end_pos_in_page,
  144. new_end_pos_in_page,
  145. (PAGE_CACHE_SIZE - new_end_pos_in_page),
  146. rc);
  147. goto out;
  148. }
  149. index++;
  150. }
  151. /* Fill the portion at the beginning of the last new page with
  152. * zero's */
  153. rc = write_zeros(file, index, 0, (new_end_pos_in_page + 1));
  154. if (rc) {
  155. ecryptfs_printk(KERN_ERR, "write_zeros(file="
  156. "[%p], index=[0x%.16x], 0, "
  157. "new_end_pos_in_page=[%d]"
  158. "returned [%d]\n", file, index,
  159. new_end_pos_in_page, rc);
  160. goto out;
  161. }
  162. out:
  163. return rc;
  164. }
  165. /**
  166. * ecryptfs_writepage
  167. * @page: Page that is locked before this call is made
  168. *
  169. * Returns zero on success; non-zero otherwise
  170. */
  171. static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc)
  172. {
  173. struct ecryptfs_page_crypt_context ctx;
  174. int rc;
  175. ctx.page = page;
  176. ctx.mode = ECRYPTFS_WRITEPAGE_MODE;
  177. ctx.param.wbc = wbc;
  178. rc = ecryptfs_encrypt_page(&ctx);
  179. if (rc) {
  180. ecryptfs_printk(KERN_WARNING, "Error encrypting "
  181. "page (upper index [0x%.16x])\n", page->index);
  182. ClearPageUptodate(page);
  183. goto out;
  184. }
  185. SetPageUptodate(page);
  186. unlock_page(page);
  187. out:
  188. return rc;
  189. }
  190. /**
  191. * Reads the data from the lower file file at index lower_page_index
  192. * and copies that data into page.
  193. *
  194. * @param page Page to fill
  195. * @param lower_page_index Index of the page in the lower file to get
  196. */
  197. int ecryptfs_do_readpage(struct file *file, struct page *page,
  198. pgoff_t lower_page_index)
  199. {
  200. int rc;
  201. struct dentry *dentry;
  202. struct file *lower_file;
  203. struct dentry *lower_dentry;
  204. struct inode *inode;
  205. struct inode *lower_inode;
  206. char *page_data;
  207. struct page *lower_page = NULL;
  208. char *lower_page_data;
  209. const struct address_space_operations *lower_a_ops;
  210. dentry = file->f_path.dentry;
  211. lower_file = ecryptfs_file_to_lower(file);
  212. lower_dentry = ecryptfs_dentry_to_lower(dentry);
  213. inode = dentry->d_inode;
  214. lower_inode = ecryptfs_inode_to_lower(inode);
  215. lower_a_ops = lower_inode->i_mapping->a_ops;
  216. lower_page = read_cache_page(lower_inode->i_mapping, lower_page_index,
  217. (filler_t *)lower_a_ops->readpage,
  218. (void *)lower_file);
  219. if (IS_ERR(lower_page)) {
  220. rc = PTR_ERR(lower_page);
  221. lower_page = NULL;
  222. ecryptfs_printk(KERN_ERR, "Error reading from page cache\n");
  223. goto out;
  224. }
  225. wait_on_page_locked(lower_page);
  226. page_data = kmap_atomic(page, KM_USER0);
  227. lower_page_data = kmap_atomic(lower_page, KM_USER1);
  228. memcpy(page_data, lower_page_data, PAGE_CACHE_SIZE);
  229. kunmap_atomic(lower_page_data, KM_USER1);
  230. flush_dcache_page(lower_page);
  231. kunmap_atomic(page_data, KM_USER0);
  232. flush_dcache_page(page);
  233. rc = 0;
  234. out:
  235. if (likely(lower_page))
  236. page_cache_release(lower_page);
  237. if (rc == 0)
  238. SetPageUptodate(page);
  239. else
  240. ClearPageUptodate(page);
  241. return rc;
  242. }
  243. /**
  244. * Header Extent:
  245. * Octets 0-7: Unencrypted file size (big-endian)
  246. * Octets 8-15: eCryptfs special marker
  247. * Octets 16-19: Flags
  248. * Octet 16: File format version number (between 0 and 255)
  249. * Octets 17-18: Reserved
  250. * Octet 19: Bit 1 (lsb): Reserved
  251. * Bit 2: Encrypted?
  252. * Bits 3-8: Reserved
  253. * Octets 20-23: Header extent size (big-endian)
  254. * Octets 24-25: Number of header extents at front of file
  255. * (big-endian)
  256. * Octet 26: Begin RFC 2440 authentication token packet set
  257. */
  258. static void set_header_info(char *page_virt,
  259. struct ecryptfs_crypt_stat *crypt_stat)
  260. {
  261. size_t written;
  262. int save_num_header_extents_at_front =
  263. crypt_stat->num_header_extents_at_front;
  264. crypt_stat->num_header_extents_at_front = 1;
  265. ecryptfs_write_header_metadata(page_virt + 20, crypt_stat, &written);
  266. crypt_stat->num_header_extents_at_front =
  267. save_num_header_extents_at_front;
  268. }
  269. /**
  270. * ecryptfs_readpage
  271. * @file: This is an ecryptfs file
  272. * @page: ecryptfs associated page to stick the read data into
  273. *
  274. * Read in a page, decrypting if necessary.
  275. *
  276. * Returns zero on success; non-zero on error.
  277. */
  278. static int ecryptfs_readpage(struct file *file, struct page *page)
  279. {
  280. int rc = 0;
  281. struct ecryptfs_crypt_stat *crypt_stat;
  282. BUG_ON(!(file && file->f_path.dentry && file->f_path.dentry->d_inode));
  283. crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
  284. ->crypt_stat;
  285. if (!crypt_stat
  286. || !(crypt_stat->flags & ECRYPTFS_ENCRYPTED)
  287. || (crypt_stat->flags & ECRYPTFS_NEW_FILE)) {
  288. ecryptfs_printk(KERN_DEBUG,
  289. "Passing through unencrypted page\n");
  290. rc = ecryptfs_do_readpage(file, page, page->index);
  291. if (rc) {
  292. ecryptfs_printk(KERN_ERR, "Error reading page; rc = "
  293. "[%d]\n", rc);
  294. goto out;
  295. }
  296. } else if (crypt_stat->flags & ECRYPTFS_VIEW_AS_ENCRYPTED) {
  297. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
  298. int num_pages_in_header_region =
  299. (crypt_stat->header_extent_size
  300. / PAGE_CACHE_SIZE);
  301. if (page->index < num_pages_in_header_region) {
  302. char *page_virt;
  303. page_virt = kmap_atomic(page, KM_USER0);
  304. memset(page_virt, 0, PAGE_CACHE_SIZE);
  305. if (page->index == 0) {
  306. rc = ecryptfs_read_xattr_region(
  307. page_virt, file->f_path.dentry);
  308. set_header_info(page_virt, crypt_stat);
  309. }
  310. kunmap_atomic(page_virt, KM_USER0);
  311. flush_dcache_page(page);
  312. if (rc) {
  313. printk(KERN_ERR "Error reading xattr "
  314. "region\n");
  315. goto out;
  316. }
  317. } else {
  318. rc = ecryptfs_do_readpage(
  319. file, page,
  320. (page->index
  321. - num_pages_in_header_region));
  322. if (rc) {
  323. printk(KERN_ERR "Error reading page; "
  324. "rc = [%d]\n", rc);
  325. goto out;
  326. }
  327. }
  328. } else {
  329. rc = ecryptfs_do_readpage(file, page, page->index);
  330. if (rc) {
  331. printk(KERN_ERR "Error reading page; rc = "
  332. "[%d]\n", rc);
  333. goto out;
  334. }
  335. }
  336. } else {
  337. rc = ecryptfs_decrypt_page(file, page);
  338. if (rc) {
  339. ecryptfs_printk(KERN_ERR, "Error decrypting page; "
  340. "rc = [%d]\n", rc);
  341. goto out;
  342. }
  343. }
  344. SetPageUptodate(page);
  345. out:
  346. if (rc)
  347. ClearPageUptodate(page);
  348. ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
  349. page->index);
  350. unlock_page(page);
  351. return rc;
  352. }
  353. /**
  354. * Called with lower inode mutex held.
  355. */
  356. static int fill_zeros_to_end_of_page(struct page *page, unsigned int to)
  357. {
  358. struct inode *inode = page->mapping->host;
  359. int end_byte_in_page;
  360. char *page_virt;
  361. if ((i_size_read(inode) / PAGE_CACHE_SIZE) != page->index)
  362. goto out;
  363. end_byte_in_page = i_size_read(inode) % PAGE_CACHE_SIZE;
  364. if (to > end_byte_in_page)
  365. end_byte_in_page = to;
  366. page_virt = kmap_atomic(page, KM_USER0);
  367. memset((page_virt + end_byte_in_page), 0,
  368. (PAGE_CACHE_SIZE - end_byte_in_page));
  369. kunmap_atomic(page_virt, KM_USER0);
  370. flush_dcache_page(page);
  371. out:
  372. return 0;
  373. }
  374. static int ecryptfs_prepare_write(struct file *file, struct page *page,
  375. unsigned from, unsigned to)
  376. {
  377. int rc = 0;
  378. if (from == 0 && to == PAGE_CACHE_SIZE)
  379. goto out; /* If we are writing a full page, it will be
  380. up to date. */
  381. if (!PageUptodate(page))
  382. rc = ecryptfs_do_readpage(file, page, page->index);
  383. out:
  384. return rc;
  385. }
  386. int ecryptfs_writepage_and_release_lower_page(struct page *lower_page,
  387. struct inode *lower_inode,
  388. struct writeback_control *wbc)
  389. {
  390. int rc = 0;
  391. rc = lower_inode->i_mapping->a_ops->writepage(lower_page, wbc);
  392. if (rc) {
  393. ecryptfs_printk(KERN_ERR, "Error calling lower writepage(); "
  394. "rc = [%d]\n", rc);
  395. goto out;
  396. }
  397. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  398. page_cache_release(lower_page);
  399. out:
  400. return rc;
  401. }
  402. static void ecryptfs_release_lower_page(struct page *lower_page)
  403. {
  404. unlock_page(lower_page);
  405. page_cache_release(lower_page);
  406. }
  407. /**
  408. * ecryptfs_write_inode_size_to_header
  409. *
  410. * Writes the lower file size to the first 8 bytes of the header.
  411. *
  412. * Returns zero on success; non-zero on error.
  413. */
  414. static int ecryptfs_write_inode_size_to_header(struct file *lower_file,
  415. struct inode *lower_inode,
  416. struct inode *inode)
  417. {
  418. int rc = 0;
  419. struct page *header_page;
  420. char *header_virt;
  421. const struct address_space_operations *lower_a_ops;
  422. u64 file_size;
  423. header_page = grab_cache_page(lower_inode->i_mapping, 0);
  424. if (!header_page) {
  425. ecryptfs_printk(KERN_ERR, "grab_cache_page for "
  426. "lower_page_index 0 failed\n");
  427. rc = -EINVAL;
  428. goto out;
  429. }
  430. lower_a_ops = lower_inode->i_mapping->a_ops;
  431. rc = lower_a_ops->prepare_write(lower_file, header_page, 0, 8);
  432. file_size = (u64)i_size_read(inode);
  433. ecryptfs_printk(KERN_DEBUG, "Writing size: [0x%.16x]\n", file_size);
  434. file_size = cpu_to_be64(file_size);
  435. header_virt = kmap_atomic(header_page, KM_USER0);
  436. memcpy(header_virt, &file_size, sizeof(u64));
  437. kunmap_atomic(header_virt, KM_USER0);
  438. flush_dcache_page(header_page);
  439. rc = lower_a_ops->commit_write(lower_file, header_page, 0, 8);
  440. if (rc < 0)
  441. ecryptfs_printk(KERN_ERR, "Error commiting header page "
  442. "write\n");
  443. ecryptfs_release_lower_page(header_page);
  444. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  445. mark_inode_dirty_sync(inode);
  446. out:
  447. return rc;
  448. }
  449. static int ecryptfs_write_inode_size_to_xattr(struct inode *lower_inode,
  450. struct inode *inode,
  451. struct dentry *ecryptfs_dentry,
  452. int lower_i_mutex_held)
  453. {
  454. ssize_t size;
  455. void *xattr_virt;
  456. struct dentry *lower_dentry;
  457. u64 file_size;
  458. int rc;
  459. xattr_virt = kmem_cache_alloc(ecryptfs_xattr_cache, GFP_KERNEL);
  460. if (!xattr_virt) {
  461. printk(KERN_ERR "Out of memory whilst attempting to write "
  462. "inode size to xattr\n");
  463. rc = -ENOMEM;
  464. goto out;
  465. }
  466. lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
  467. if (!lower_dentry->d_inode->i_op->getxattr) {
  468. printk(KERN_WARNING
  469. "No support for setting xattr in lower filesystem\n");
  470. rc = -ENOSYS;
  471. kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
  472. goto out;
  473. }
  474. if (!lower_i_mutex_held)
  475. mutex_lock(&lower_dentry->d_inode->i_mutex);
  476. size = lower_dentry->d_inode->i_op->getxattr(lower_dentry,
  477. ECRYPTFS_XATTR_NAME,
  478. xattr_virt,
  479. PAGE_CACHE_SIZE);
  480. if (!lower_i_mutex_held)
  481. mutex_unlock(&lower_dentry->d_inode->i_mutex);
  482. if (size < 0)
  483. size = 8;
  484. file_size = (u64)i_size_read(inode);
  485. file_size = cpu_to_be64(file_size);
  486. memcpy(xattr_virt, &file_size, sizeof(u64));
  487. if (!lower_i_mutex_held)
  488. mutex_lock(&lower_dentry->d_inode->i_mutex);
  489. rc = lower_dentry->d_inode->i_op->setxattr(lower_dentry,
  490. ECRYPTFS_XATTR_NAME,
  491. xattr_virt, size, 0);
  492. if (!lower_i_mutex_held)
  493. mutex_unlock(&lower_dentry->d_inode->i_mutex);
  494. if (rc)
  495. printk(KERN_ERR "Error whilst attempting to write inode size "
  496. "to lower file xattr; rc = [%d]\n", rc);
  497. kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
  498. out:
  499. return rc;
  500. }
  501. int
  502. ecryptfs_write_inode_size_to_metadata(struct file *lower_file,
  503. struct inode *lower_inode,
  504. struct inode *inode,
  505. struct dentry *ecryptfs_dentry,
  506. int lower_i_mutex_held)
  507. {
  508. struct ecryptfs_crypt_stat *crypt_stat;
  509. crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
  510. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
  511. return ecryptfs_write_inode_size_to_xattr(lower_inode, inode,
  512. ecryptfs_dentry,
  513. lower_i_mutex_held);
  514. else
  515. return ecryptfs_write_inode_size_to_header(lower_file,
  516. lower_inode,
  517. inode);
  518. }
  519. int ecryptfs_get_lower_page(struct page **lower_page, struct inode *lower_inode,
  520. struct file *lower_file,
  521. unsigned long lower_page_index, int byte_offset,
  522. int region_bytes)
  523. {
  524. int rc = 0;
  525. *lower_page = grab_cache_page(lower_inode->i_mapping, lower_page_index);
  526. if (!(*lower_page)) {
  527. rc = -EINVAL;
  528. ecryptfs_printk(KERN_ERR, "Error attempting to grab "
  529. "lower page with index [0x%.16x]\n",
  530. lower_page_index);
  531. goto out;
  532. }
  533. rc = lower_inode->i_mapping->a_ops->prepare_write(lower_file,
  534. (*lower_page),
  535. byte_offset,
  536. region_bytes);
  537. if (rc) {
  538. ecryptfs_printk(KERN_ERR, "prepare_write for "
  539. "lower_page_index = [0x%.16x] failed; rc = "
  540. "[%d]\n", lower_page_index, rc);
  541. }
  542. out:
  543. if (rc && (*lower_page)) {
  544. ecryptfs_release_lower_page(*lower_page);
  545. (*lower_page) = NULL;
  546. }
  547. return rc;
  548. }
  549. /**
  550. * ecryptfs_commit_lower_page
  551. *
  552. * Returns zero on success; non-zero on error
  553. */
  554. int
  555. ecryptfs_commit_lower_page(struct page *lower_page, struct inode *lower_inode,
  556. struct file *lower_file, int byte_offset,
  557. int region_size)
  558. {
  559. int rc = 0;
  560. rc = lower_inode->i_mapping->a_ops->commit_write(
  561. lower_file, lower_page, byte_offset, region_size);
  562. if (rc < 0) {
  563. ecryptfs_printk(KERN_ERR,
  564. "Error committing write; rc = [%d]\n", rc);
  565. } else
  566. rc = 0;
  567. ecryptfs_release_lower_page(lower_page);
  568. return rc;
  569. }
  570. /**
  571. * ecryptfs_copy_page_to_lower
  572. *
  573. * Used for plaintext pass-through; no page index interpolation
  574. * required.
  575. */
  576. int ecryptfs_copy_page_to_lower(struct page *page, struct inode *lower_inode,
  577. struct file *lower_file)
  578. {
  579. int rc = 0;
  580. struct page *lower_page;
  581. rc = ecryptfs_get_lower_page(&lower_page, lower_inode, lower_file,
  582. page->index, 0, PAGE_CACHE_SIZE);
  583. if (rc) {
  584. ecryptfs_printk(KERN_ERR, "Error attempting to get page "
  585. "at index [0x%.16x]\n", page->index);
  586. goto out;
  587. }
  588. /* TODO: aops */
  589. memcpy((char *)page_address(lower_page), page_address(page),
  590. PAGE_CACHE_SIZE);
  591. rc = ecryptfs_commit_lower_page(lower_page, lower_inode, lower_file,
  592. 0, PAGE_CACHE_SIZE);
  593. if (rc)
  594. ecryptfs_printk(KERN_ERR, "Error attempting to commit page "
  595. "at index [0x%.16x]\n", page->index);
  596. out:
  597. return rc;
  598. }
  599. struct kmem_cache *ecryptfs_xattr_cache;
  600. /**
  601. * ecryptfs_commit_write
  602. * @file: The eCryptfs file object
  603. * @page: The eCryptfs page
  604. * @from: Ignored (we rotate the page IV on each write)
  605. * @to: Ignored
  606. *
  607. * This is where we encrypt the data and pass the encrypted data to
  608. * the lower filesystem. In OpenPGP-compatible mode, we operate on
  609. * entire underlying packets.
  610. */
  611. static int ecryptfs_commit_write(struct file *file, struct page *page,
  612. unsigned from, unsigned to)
  613. {
  614. struct ecryptfs_page_crypt_context ctx;
  615. loff_t pos;
  616. struct inode *inode;
  617. struct inode *lower_inode;
  618. struct file *lower_file;
  619. struct ecryptfs_crypt_stat *crypt_stat;
  620. int rc;
  621. inode = page->mapping->host;
  622. lower_inode = ecryptfs_inode_to_lower(inode);
  623. lower_file = ecryptfs_file_to_lower(file);
  624. mutex_lock(&lower_inode->i_mutex);
  625. crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
  626. ->crypt_stat;
  627. if (crypt_stat->flags & ECRYPTFS_NEW_FILE) {
  628. ecryptfs_printk(KERN_DEBUG, "ECRYPTFS_NEW_FILE flag set in "
  629. "crypt_stat at memory location [%p]\n", crypt_stat);
  630. crypt_stat->flags &= ~(ECRYPTFS_NEW_FILE);
  631. } else
  632. ecryptfs_printk(KERN_DEBUG, "Not a new file\n");
  633. ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page"
  634. "(page w/ index = [0x%.16x], to = [%d])\n", page->index,
  635. to);
  636. rc = fill_zeros_to_end_of_page(page, to);
  637. if (rc) {
  638. ecryptfs_printk(KERN_WARNING, "Error attempting to fill "
  639. "zeros in page with index = [0x%.16x]\n",
  640. page->index);
  641. goto out;
  642. }
  643. ctx.page = page;
  644. ctx.mode = ECRYPTFS_PREPARE_COMMIT_MODE;
  645. ctx.param.lower_file = lower_file;
  646. rc = ecryptfs_encrypt_page(&ctx);
  647. if (rc) {
  648. ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper "
  649. "index [0x%.16x])\n", page->index);
  650. goto out;
  651. }
  652. inode->i_blocks = lower_inode->i_blocks;
  653. pos = (page->index << PAGE_CACHE_SHIFT) + to;
  654. if (pos > i_size_read(inode)) {
  655. i_size_write(inode, pos);
  656. ecryptfs_printk(KERN_DEBUG, "Expanded file size to "
  657. "[0x%.16x]\n", i_size_read(inode));
  658. }
  659. rc = ecryptfs_write_inode_size_to_metadata(lower_file, lower_inode,
  660. inode, file->f_dentry,
  661. ECRYPTFS_LOWER_I_MUTEX_HELD);
  662. if (rc)
  663. printk(KERN_ERR "Error writing inode size to metadata; "
  664. "rc = [%d]\n", rc);
  665. lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
  666. mark_inode_dirty_sync(inode);
  667. out:
  668. if (rc < 0)
  669. ClearPageUptodate(page);
  670. else
  671. SetPageUptodate(page);
  672. mutex_unlock(&lower_inode->i_mutex);
  673. return rc;
  674. }
  675. /**
  676. * write_zeros
  677. * @file: The ecryptfs file
  678. * @index: The index in which we are writing
  679. * @start: The position after the last block of data
  680. * @num_zeros: The number of zeros to write
  681. *
  682. * Write a specified number of zero's to a page.
  683. *
  684. * (start + num_zeros) must be less than or equal to PAGE_CACHE_SIZE
  685. */
  686. static
  687. int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros)
  688. {
  689. int rc = 0;
  690. struct page *tmp_page;
  691. char *tmp_page_virt;
  692. tmp_page = ecryptfs_get1page(file, index);
  693. if (IS_ERR(tmp_page)) {
  694. ecryptfs_printk(KERN_ERR, "Error getting page at index "
  695. "[0x%.16x]\n", index);
  696. rc = PTR_ERR(tmp_page);
  697. goto out;
  698. }
  699. rc = ecryptfs_prepare_write(file, tmp_page, start, start + num_zeros);
  700. if (rc) {
  701. ecryptfs_printk(KERN_ERR, "Error preparing to write zero's "
  702. "to remainder of page at index [0x%.16x]\n",
  703. index);
  704. page_cache_release(tmp_page);
  705. goto out;
  706. }
  707. tmp_page_virt = kmap_atomic(tmp_page, KM_USER0);
  708. memset(((char *)tmp_page_virt + start), 0, num_zeros);
  709. kunmap_atomic(tmp_page_virt, KM_USER0);
  710. flush_dcache_page(tmp_page);
  711. rc = ecryptfs_commit_write(file, tmp_page, start, start + num_zeros);
  712. if (rc < 0) {
  713. ecryptfs_printk(KERN_ERR, "Error attempting to write zero's "
  714. "to remainder of page at index [0x%.16x]\n",
  715. index);
  716. page_cache_release(tmp_page);
  717. goto out;
  718. }
  719. rc = 0;
  720. page_cache_release(tmp_page);
  721. out:
  722. return rc;
  723. }
  724. static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block)
  725. {
  726. int rc = 0;
  727. struct inode *inode;
  728. struct inode *lower_inode;
  729. inode = (struct inode *)mapping->host;
  730. lower_inode = ecryptfs_inode_to_lower(inode);
  731. if (lower_inode->i_mapping->a_ops->bmap)
  732. rc = lower_inode->i_mapping->a_ops->bmap(lower_inode->i_mapping,
  733. block);
  734. return rc;
  735. }
  736. static void ecryptfs_sync_page(struct page *page)
  737. {
  738. struct inode *inode;
  739. struct inode *lower_inode;
  740. struct page *lower_page;
  741. inode = page->mapping->host;
  742. lower_inode = ecryptfs_inode_to_lower(inode);
  743. /* NOTE: Recently swapped with grab_cache_page(), since
  744. * sync_page() just makes sure that pending I/O gets done. */
  745. lower_page = find_lock_page(lower_inode->i_mapping, page->index);
  746. if (!lower_page) {
  747. ecryptfs_printk(KERN_DEBUG, "find_lock_page failed\n");
  748. return;
  749. }
  750. lower_page->mapping->a_ops->sync_page(lower_page);
  751. ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
  752. lower_page->index);
  753. unlock_page(lower_page);
  754. page_cache_release(lower_page);
  755. }
  756. struct address_space_operations ecryptfs_aops = {
  757. .writepage = ecryptfs_writepage,
  758. .readpage = ecryptfs_readpage,
  759. .prepare_write = ecryptfs_prepare_write,
  760. .commit_write = ecryptfs_commit_write,
  761. .bmap = ecryptfs_bmap,
  762. .sync_page = ecryptfs_sync_page,
  763. };