vmx.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "kvm_vmx.h"
  20. #include <linux/module.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <asm/io.h>
  25. #include <asm/desc.h>
  26. #include "segment_descriptor.h"
  27. MODULE_AUTHOR("Qumranet");
  28. MODULE_LICENSE("GPL");
  29. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  30. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  31. #ifdef CONFIG_X86_64
  32. #define HOST_IS_64 1
  33. #else
  34. #define HOST_IS_64 0
  35. #endif
  36. static struct vmcs_descriptor {
  37. int size;
  38. int order;
  39. u32 revision_id;
  40. } vmcs_descriptor;
  41. #define VMX_SEGMENT_FIELD(seg) \
  42. [VCPU_SREG_##seg] = { \
  43. .selector = GUEST_##seg##_SELECTOR, \
  44. .base = GUEST_##seg##_BASE, \
  45. .limit = GUEST_##seg##_LIMIT, \
  46. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  47. }
  48. static struct kvm_vmx_segment_field {
  49. unsigned selector;
  50. unsigned base;
  51. unsigned limit;
  52. unsigned ar_bytes;
  53. } kvm_vmx_segment_fields[] = {
  54. VMX_SEGMENT_FIELD(CS),
  55. VMX_SEGMENT_FIELD(DS),
  56. VMX_SEGMENT_FIELD(ES),
  57. VMX_SEGMENT_FIELD(FS),
  58. VMX_SEGMENT_FIELD(GS),
  59. VMX_SEGMENT_FIELD(SS),
  60. VMX_SEGMENT_FIELD(TR),
  61. VMX_SEGMENT_FIELD(LDTR),
  62. };
  63. static const u32 vmx_msr_index[] = {
  64. #ifdef CONFIG_X86_64
  65. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  66. #endif
  67. MSR_EFER, MSR_K6_STAR,
  68. };
  69. #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
  70. static inline int is_page_fault(u32 intr_info)
  71. {
  72. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  73. INTR_INFO_VALID_MASK)) ==
  74. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  75. }
  76. static inline int is_external_interrupt(u32 intr_info)
  77. {
  78. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  79. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  80. }
  81. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  82. {
  83. int i;
  84. for (i = 0; i < vcpu->nmsrs; ++i)
  85. if (vcpu->guest_msrs[i].index == msr)
  86. return &vcpu->guest_msrs[i];
  87. return NULL;
  88. }
  89. static void vmcs_clear(struct vmcs *vmcs)
  90. {
  91. u64 phys_addr = __pa(vmcs);
  92. u8 error;
  93. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  94. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  95. : "cc", "memory");
  96. if (error)
  97. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  98. vmcs, phys_addr);
  99. }
  100. static void __vcpu_clear(void *arg)
  101. {
  102. struct kvm_vcpu *vcpu = arg;
  103. int cpu = raw_smp_processor_id();
  104. if (vcpu->cpu == cpu)
  105. vmcs_clear(vcpu->vmcs);
  106. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  107. per_cpu(current_vmcs, cpu) = NULL;
  108. }
  109. static void vcpu_clear(struct kvm_vcpu *vcpu)
  110. {
  111. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  112. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  113. else
  114. __vcpu_clear(vcpu);
  115. vcpu->launched = 0;
  116. }
  117. static unsigned long vmcs_readl(unsigned long field)
  118. {
  119. unsigned long value;
  120. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  121. : "=a"(value) : "d"(field) : "cc");
  122. return value;
  123. }
  124. static u16 vmcs_read16(unsigned long field)
  125. {
  126. return vmcs_readl(field);
  127. }
  128. static u32 vmcs_read32(unsigned long field)
  129. {
  130. return vmcs_readl(field);
  131. }
  132. static u64 vmcs_read64(unsigned long field)
  133. {
  134. #ifdef CONFIG_X86_64
  135. return vmcs_readl(field);
  136. #else
  137. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  138. #endif
  139. }
  140. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  141. {
  142. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  143. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  144. dump_stack();
  145. }
  146. static void vmcs_writel(unsigned long field, unsigned long value)
  147. {
  148. u8 error;
  149. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  150. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  151. if (unlikely(error))
  152. vmwrite_error(field, value);
  153. }
  154. static void vmcs_write16(unsigned long field, u16 value)
  155. {
  156. vmcs_writel(field, value);
  157. }
  158. static void vmcs_write32(unsigned long field, u32 value)
  159. {
  160. vmcs_writel(field, value);
  161. }
  162. static void vmcs_write64(unsigned long field, u64 value)
  163. {
  164. #ifdef CONFIG_X86_64
  165. vmcs_writel(field, value);
  166. #else
  167. vmcs_writel(field, value);
  168. asm volatile ("");
  169. vmcs_writel(field+1, value >> 32);
  170. #endif
  171. }
  172. /*
  173. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  174. * vcpu mutex is already taken.
  175. */
  176. static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
  177. {
  178. u64 phys_addr = __pa(vcpu->vmcs);
  179. int cpu;
  180. cpu = get_cpu();
  181. if (vcpu->cpu != cpu)
  182. vcpu_clear(vcpu);
  183. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  184. u8 error;
  185. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  186. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  187. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  188. : "cc");
  189. if (error)
  190. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  191. vcpu->vmcs, phys_addr);
  192. }
  193. if (vcpu->cpu != cpu) {
  194. struct descriptor_table dt;
  195. unsigned long sysenter_esp;
  196. vcpu->cpu = cpu;
  197. /*
  198. * Linux uses per-cpu TSS and GDT, so set these when switching
  199. * processors.
  200. */
  201. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  202. get_gdt(&dt);
  203. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  204. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  205. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  206. }
  207. return vcpu;
  208. }
  209. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  210. {
  211. put_cpu();
  212. }
  213. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  214. {
  215. vcpu_clear(vcpu);
  216. }
  217. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  218. {
  219. return vmcs_readl(GUEST_RFLAGS);
  220. }
  221. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  222. {
  223. vmcs_writel(GUEST_RFLAGS, rflags);
  224. }
  225. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  226. {
  227. unsigned long rip;
  228. u32 interruptibility;
  229. rip = vmcs_readl(GUEST_RIP);
  230. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  231. vmcs_writel(GUEST_RIP, rip);
  232. /*
  233. * We emulated an instruction, so temporary interrupt blocking
  234. * should be removed, if set.
  235. */
  236. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  237. if (interruptibility & 3)
  238. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  239. interruptibility & ~3);
  240. vcpu->interrupt_window_open = 1;
  241. }
  242. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  243. {
  244. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  245. vmcs_readl(GUEST_RIP));
  246. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  247. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  248. GP_VECTOR |
  249. INTR_TYPE_EXCEPTION |
  250. INTR_INFO_DELIEVER_CODE_MASK |
  251. INTR_INFO_VALID_MASK);
  252. }
  253. /*
  254. * reads and returns guest's timestamp counter "register"
  255. * guest_tsc = host_tsc + tsc_offset -- 21.3
  256. */
  257. static u64 guest_read_tsc(void)
  258. {
  259. u64 host_tsc, tsc_offset;
  260. rdtscll(host_tsc);
  261. tsc_offset = vmcs_read64(TSC_OFFSET);
  262. return host_tsc + tsc_offset;
  263. }
  264. /*
  265. * writes 'guest_tsc' into guest's timestamp counter "register"
  266. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  267. */
  268. static void guest_write_tsc(u64 guest_tsc)
  269. {
  270. u64 host_tsc;
  271. rdtscll(host_tsc);
  272. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  273. }
  274. static void reload_tss(void)
  275. {
  276. #ifndef CONFIG_X86_64
  277. /*
  278. * VT restores TR but not its size. Useless.
  279. */
  280. struct descriptor_table gdt;
  281. struct segment_descriptor *descs;
  282. get_gdt(&gdt);
  283. descs = (void *)gdt.base;
  284. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  285. load_TR_desc();
  286. #endif
  287. }
  288. /*
  289. * Reads an msr value (of 'msr_index') into 'pdata'.
  290. * Returns 0 on success, non-0 otherwise.
  291. * Assumes vcpu_load() was already called.
  292. */
  293. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  294. {
  295. u64 data;
  296. struct vmx_msr_entry *msr;
  297. if (!pdata) {
  298. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  299. return -EINVAL;
  300. }
  301. switch (msr_index) {
  302. #ifdef CONFIG_X86_64
  303. case MSR_FS_BASE:
  304. data = vmcs_readl(GUEST_FS_BASE);
  305. break;
  306. case MSR_GS_BASE:
  307. data = vmcs_readl(GUEST_GS_BASE);
  308. break;
  309. case MSR_EFER:
  310. return kvm_get_msr_common(vcpu, msr_index, pdata);
  311. #endif
  312. case MSR_IA32_TIME_STAMP_COUNTER:
  313. data = guest_read_tsc();
  314. break;
  315. case MSR_IA32_SYSENTER_CS:
  316. data = vmcs_read32(GUEST_SYSENTER_CS);
  317. break;
  318. case MSR_IA32_SYSENTER_EIP:
  319. data = vmcs_read32(GUEST_SYSENTER_EIP);
  320. break;
  321. case MSR_IA32_SYSENTER_ESP:
  322. data = vmcs_read32(GUEST_SYSENTER_ESP);
  323. break;
  324. default:
  325. msr = find_msr_entry(vcpu, msr_index);
  326. if (msr) {
  327. data = msr->data;
  328. break;
  329. }
  330. return kvm_get_msr_common(vcpu, msr_index, pdata);
  331. }
  332. *pdata = data;
  333. return 0;
  334. }
  335. /*
  336. * Writes msr value into into the appropriate "register".
  337. * Returns 0 on success, non-0 otherwise.
  338. * Assumes vcpu_load() was already called.
  339. */
  340. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  341. {
  342. struct vmx_msr_entry *msr;
  343. switch (msr_index) {
  344. #ifdef CONFIG_X86_64
  345. case MSR_EFER:
  346. return kvm_set_msr_common(vcpu, msr_index, data);
  347. case MSR_FS_BASE:
  348. vmcs_writel(GUEST_FS_BASE, data);
  349. break;
  350. case MSR_GS_BASE:
  351. vmcs_writel(GUEST_GS_BASE, data);
  352. break;
  353. #endif
  354. case MSR_IA32_SYSENTER_CS:
  355. vmcs_write32(GUEST_SYSENTER_CS, data);
  356. break;
  357. case MSR_IA32_SYSENTER_EIP:
  358. vmcs_write32(GUEST_SYSENTER_EIP, data);
  359. break;
  360. case MSR_IA32_SYSENTER_ESP:
  361. vmcs_write32(GUEST_SYSENTER_ESP, data);
  362. break;
  363. case MSR_IA32_TIME_STAMP_COUNTER: {
  364. guest_write_tsc(data);
  365. break;
  366. }
  367. default:
  368. msr = find_msr_entry(vcpu, msr_index);
  369. if (msr) {
  370. msr->data = data;
  371. break;
  372. }
  373. return kvm_set_msr_common(vcpu, msr_index, data);
  374. msr->data = data;
  375. break;
  376. }
  377. return 0;
  378. }
  379. /*
  380. * Sync the rsp and rip registers into the vcpu structure. This allows
  381. * registers to be accessed by indexing vcpu->regs.
  382. */
  383. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  384. {
  385. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  386. vcpu->rip = vmcs_readl(GUEST_RIP);
  387. }
  388. /*
  389. * Syncs rsp and rip back into the vmcs. Should be called after possible
  390. * modification.
  391. */
  392. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  393. {
  394. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  395. vmcs_writel(GUEST_RIP, vcpu->rip);
  396. }
  397. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  398. {
  399. unsigned long dr7 = 0x400;
  400. u32 exception_bitmap;
  401. int old_singlestep;
  402. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  403. old_singlestep = vcpu->guest_debug.singlestep;
  404. vcpu->guest_debug.enabled = dbg->enabled;
  405. if (vcpu->guest_debug.enabled) {
  406. int i;
  407. dr7 |= 0x200; /* exact */
  408. for (i = 0; i < 4; ++i) {
  409. if (!dbg->breakpoints[i].enabled)
  410. continue;
  411. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  412. dr7 |= 2 << (i*2); /* global enable */
  413. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  414. }
  415. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  416. vcpu->guest_debug.singlestep = dbg->singlestep;
  417. } else {
  418. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  419. vcpu->guest_debug.singlestep = 0;
  420. }
  421. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  422. unsigned long flags;
  423. flags = vmcs_readl(GUEST_RFLAGS);
  424. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  425. vmcs_writel(GUEST_RFLAGS, flags);
  426. }
  427. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  428. vmcs_writel(GUEST_DR7, dr7);
  429. return 0;
  430. }
  431. static __init int cpu_has_kvm_support(void)
  432. {
  433. unsigned long ecx = cpuid_ecx(1);
  434. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  435. }
  436. static __init int vmx_disabled_by_bios(void)
  437. {
  438. u64 msr;
  439. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  440. return (msr & 5) == 1; /* locked but not enabled */
  441. }
  442. static void hardware_enable(void *garbage)
  443. {
  444. int cpu = raw_smp_processor_id();
  445. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  446. u64 old;
  447. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  448. if ((old & 5) != 5)
  449. /* enable and lock */
  450. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  451. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  452. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  453. : "memory", "cc");
  454. }
  455. static void hardware_disable(void *garbage)
  456. {
  457. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  458. }
  459. static __init void setup_vmcs_descriptor(void)
  460. {
  461. u32 vmx_msr_low, vmx_msr_high;
  462. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  463. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  464. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  465. vmcs_descriptor.revision_id = vmx_msr_low;
  466. }
  467. static struct vmcs *alloc_vmcs_cpu(int cpu)
  468. {
  469. int node = cpu_to_node(cpu);
  470. struct page *pages;
  471. struct vmcs *vmcs;
  472. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  473. if (!pages)
  474. return NULL;
  475. vmcs = page_address(pages);
  476. memset(vmcs, 0, vmcs_descriptor.size);
  477. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  478. return vmcs;
  479. }
  480. static struct vmcs *alloc_vmcs(void)
  481. {
  482. return alloc_vmcs_cpu(raw_smp_processor_id());
  483. }
  484. static void free_vmcs(struct vmcs *vmcs)
  485. {
  486. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  487. }
  488. static __exit void free_kvm_area(void)
  489. {
  490. int cpu;
  491. for_each_online_cpu(cpu)
  492. free_vmcs(per_cpu(vmxarea, cpu));
  493. }
  494. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  495. static __init int alloc_kvm_area(void)
  496. {
  497. int cpu;
  498. for_each_online_cpu(cpu) {
  499. struct vmcs *vmcs;
  500. vmcs = alloc_vmcs_cpu(cpu);
  501. if (!vmcs) {
  502. free_kvm_area();
  503. return -ENOMEM;
  504. }
  505. per_cpu(vmxarea, cpu) = vmcs;
  506. }
  507. return 0;
  508. }
  509. static __init int hardware_setup(void)
  510. {
  511. setup_vmcs_descriptor();
  512. return alloc_kvm_area();
  513. }
  514. static __exit void hardware_unsetup(void)
  515. {
  516. free_kvm_area();
  517. }
  518. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  519. {
  520. if (vcpu->rmode.active)
  521. vmcs_write32(EXCEPTION_BITMAP, ~0);
  522. else
  523. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  524. }
  525. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  526. {
  527. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  528. if (vmcs_readl(sf->base) == save->base) {
  529. vmcs_write16(sf->selector, save->selector);
  530. vmcs_writel(sf->base, save->base);
  531. vmcs_write32(sf->limit, save->limit);
  532. vmcs_write32(sf->ar_bytes, save->ar);
  533. } else {
  534. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  535. << AR_DPL_SHIFT;
  536. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  537. }
  538. }
  539. static void enter_pmode(struct kvm_vcpu *vcpu)
  540. {
  541. unsigned long flags;
  542. vcpu->rmode.active = 0;
  543. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  544. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  545. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  546. flags = vmcs_readl(GUEST_RFLAGS);
  547. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  548. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  549. vmcs_writel(GUEST_RFLAGS, flags);
  550. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  551. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  552. update_exception_bitmap(vcpu);
  553. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  554. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  555. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  556. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  557. vmcs_write16(GUEST_SS_SELECTOR, 0);
  558. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  559. vmcs_write16(GUEST_CS_SELECTOR,
  560. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  561. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  562. }
  563. static int rmode_tss_base(struct kvm* kvm)
  564. {
  565. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  566. return base_gfn << PAGE_SHIFT;
  567. }
  568. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  569. {
  570. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  571. save->selector = vmcs_read16(sf->selector);
  572. save->base = vmcs_readl(sf->base);
  573. save->limit = vmcs_read32(sf->limit);
  574. save->ar = vmcs_read32(sf->ar_bytes);
  575. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  576. vmcs_write32(sf->limit, 0xffff);
  577. vmcs_write32(sf->ar_bytes, 0xf3);
  578. }
  579. static void enter_rmode(struct kvm_vcpu *vcpu)
  580. {
  581. unsigned long flags;
  582. vcpu->rmode.active = 1;
  583. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  584. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  585. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  586. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  587. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  588. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  589. flags = vmcs_readl(GUEST_RFLAGS);
  590. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  591. flags |= IOPL_MASK | X86_EFLAGS_VM;
  592. vmcs_writel(GUEST_RFLAGS, flags);
  593. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  594. update_exception_bitmap(vcpu);
  595. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  596. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  597. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  598. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  599. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  600. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  601. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  602. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  603. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  604. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  605. }
  606. #ifdef CONFIG_X86_64
  607. static void enter_lmode(struct kvm_vcpu *vcpu)
  608. {
  609. u32 guest_tr_ar;
  610. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  611. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  612. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  613. __FUNCTION__);
  614. vmcs_write32(GUEST_TR_AR_BYTES,
  615. (guest_tr_ar & ~AR_TYPE_MASK)
  616. | AR_TYPE_BUSY_64_TSS);
  617. }
  618. vcpu->shadow_efer |= EFER_LMA;
  619. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  620. vmcs_write32(VM_ENTRY_CONTROLS,
  621. vmcs_read32(VM_ENTRY_CONTROLS)
  622. | VM_ENTRY_CONTROLS_IA32E_MASK);
  623. }
  624. static void exit_lmode(struct kvm_vcpu *vcpu)
  625. {
  626. vcpu->shadow_efer &= ~EFER_LMA;
  627. vmcs_write32(VM_ENTRY_CONTROLS,
  628. vmcs_read32(VM_ENTRY_CONTROLS)
  629. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  630. }
  631. #endif
  632. static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
  633. {
  634. vcpu->cr0 &= KVM_GUEST_CR0_MASK;
  635. vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
  636. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  637. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  638. }
  639. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  640. {
  641. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  642. enter_pmode(vcpu);
  643. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  644. enter_rmode(vcpu);
  645. #ifdef CONFIG_X86_64
  646. if (vcpu->shadow_efer & EFER_LME) {
  647. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  648. enter_lmode(vcpu);
  649. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  650. exit_lmode(vcpu);
  651. }
  652. #endif
  653. vmcs_writel(CR0_READ_SHADOW, cr0);
  654. vmcs_writel(GUEST_CR0,
  655. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  656. vcpu->cr0 = cr0;
  657. }
  658. /*
  659. * Used when restoring the VM to avoid corrupting segment registers
  660. */
  661. static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
  662. {
  663. vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
  664. update_exception_bitmap(vcpu);
  665. vmcs_writel(CR0_READ_SHADOW, cr0);
  666. vmcs_writel(GUEST_CR0,
  667. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  668. vcpu->cr0 = cr0;
  669. }
  670. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  671. {
  672. vmcs_writel(GUEST_CR3, cr3);
  673. }
  674. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  675. {
  676. vmcs_writel(CR4_READ_SHADOW, cr4);
  677. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  678. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  679. vcpu->cr4 = cr4;
  680. }
  681. #ifdef CONFIG_X86_64
  682. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  683. {
  684. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  685. vcpu->shadow_efer = efer;
  686. if (efer & EFER_LMA) {
  687. vmcs_write32(VM_ENTRY_CONTROLS,
  688. vmcs_read32(VM_ENTRY_CONTROLS) |
  689. VM_ENTRY_CONTROLS_IA32E_MASK);
  690. msr->data = efer;
  691. } else {
  692. vmcs_write32(VM_ENTRY_CONTROLS,
  693. vmcs_read32(VM_ENTRY_CONTROLS) &
  694. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  695. msr->data = efer & ~EFER_LME;
  696. }
  697. }
  698. #endif
  699. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  700. {
  701. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  702. return vmcs_readl(sf->base);
  703. }
  704. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  705. struct kvm_segment *var, int seg)
  706. {
  707. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  708. u32 ar;
  709. var->base = vmcs_readl(sf->base);
  710. var->limit = vmcs_read32(sf->limit);
  711. var->selector = vmcs_read16(sf->selector);
  712. ar = vmcs_read32(sf->ar_bytes);
  713. if (ar & AR_UNUSABLE_MASK)
  714. ar = 0;
  715. var->type = ar & 15;
  716. var->s = (ar >> 4) & 1;
  717. var->dpl = (ar >> 5) & 3;
  718. var->present = (ar >> 7) & 1;
  719. var->avl = (ar >> 12) & 1;
  720. var->l = (ar >> 13) & 1;
  721. var->db = (ar >> 14) & 1;
  722. var->g = (ar >> 15) & 1;
  723. var->unusable = (ar >> 16) & 1;
  724. }
  725. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  726. struct kvm_segment *var, int seg)
  727. {
  728. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  729. u32 ar;
  730. vmcs_writel(sf->base, var->base);
  731. vmcs_write32(sf->limit, var->limit);
  732. vmcs_write16(sf->selector, var->selector);
  733. if (var->unusable)
  734. ar = 1 << 16;
  735. else {
  736. ar = var->type & 15;
  737. ar |= (var->s & 1) << 4;
  738. ar |= (var->dpl & 3) << 5;
  739. ar |= (var->present & 1) << 7;
  740. ar |= (var->avl & 1) << 12;
  741. ar |= (var->l & 1) << 13;
  742. ar |= (var->db & 1) << 14;
  743. ar |= (var->g & 1) << 15;
  744. }
  745. if (ar == 0) /* a 0 value means unusable */
  746. ar = AR_UNUSABLE_MASK;
  747. vmcs_write32(sf->ar_bytes, ar);
  748. }
  749. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  750. {
  751. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  752. *db = (ar >> 14) & 1;
  753. *l = (ar >> 13) & 1;
  754. }
  755. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  756. {
  757. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  758. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  759. }
  760. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  761. {
  762. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  763. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  764. }
  765. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  766. {
  767. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  768. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  769. }
  770. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  771. {
  772. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  773. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  774. }
  775. static int init_rmode_tss(struct kvm* kvm)
  776. {
  777. struct page *p1, *p2, *p3;
  778. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  779. char *page;
  780. p1 = _gfn_to_page(kvm, fn++);
  781. p2 = _gfn_to_page(kvm, fn++);
  782. p3 = _gfn_to_page(kvm, fn);
  783. if (!p1 || !p2 || !p3) {
  784. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  785. return 0;
  786. }
  787. page = kmap_atomic(p1, KM_USER0);
  788. memset(page, 0, PAGE_SIZE);
  789. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  790. kunmap_atomic(page, KM_USER0);
  791. page = kmap_atomic(p2, KM_USER0);
  792. memset(page, 0, PAGE_SIZE);
  793. kunmap_atomic(page, KM_USER0);
  794. page = kmap_atomic(p3, KM_USER0);
  795. memset(page, 0, PAGE_SIZE);
  796. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  797. kunmap_atomic(page, KM_USER0);
  798. return 1;
  799. }
  800. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  801. {
  802. u32 msr_high, msr_low;
  803. rdmsr(msr, msr_low, msr_high);
  804. val &= msr_high;
  805. val |= msr_low;
  806. vmcs_write32(vmcs_field, val);
  807. }
  808. static void seg_setup(int seg)
  809. {
  810. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  811. vmcs_write16(sf->selector, 0);
  812. vmcs_writel(sf->base, 0);
  813. vmcs_write32(sf->limit, 0xffff);
  814. vmcs_write32(sf->ar_bytes, 0x93);
  815. }
  816. /*
  817. * Sets up the vmcs for emulated real mode.
  818. */
  819. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  820. {
  821. u32 host_sysenter_cs;
  822. u32 junk;
  823. unsigned long a;
  824. struct descriptor_table dt;
  825. int i;
  826. int ret = 0;
  827. int nr_good_msrs;
  828. extern asmlinkage void kvm_vmx_return(void);
  829. if (!init_rmode_tss(vcpu->kvm)) {
  830. ret = -ENOMEM;
  831. goto out;
  832. }
  833. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  834. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  835. vcpu->cr8 = 0;
  836. vcpu->apic_base = 0xfee00000 |
  837. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  838. MSR_IA32_APICBASE_ENABLE;
  839. fx_init(vcpu);
  840. /*
  841. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  842. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  843. */
  844. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  845. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  846. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  847. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  848. seg_setup(VCPU_SREG_DS);
  849. seg_setup(VCPU_SREG_ES);
  850. seg_setup(VCPU_SREG_FS);
  851. seg_setup(VCPU_SREG_GS);
  852. seg_setup(VCPU_SREG_SS);
  853. vmcs_write16(GUEST_TR_SELECTOR, 0);
  854. vmcs_writel(GUEST_TR_BASE, 0);
  855. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  856. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  857. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  858. vmcs_writel(GUEST_LDTR_BASE, 0);
  859. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  860. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  861. vmcs_write32(GUEST_SYSENTER_CS, 0);
  862. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  863. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  864. vmcs_writel(GUEST_RFLAGS, 0x02);
  865. vmcs_writel(GUEST_RIP, 0xfff0);
  866. vmcs_writel(GUEST_RSP, 0);
  867. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  868. vmcs_writel(GUEST_DR7, 0x400);
  869. vmcs_writel(GUEST_GDTR_BASE, 0);
  870. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  871. vmcs_writel(GUEST_IDTR_BASE, 0);
  872. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  873. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  874. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  875. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  876. /* I/O */
  877. vmcs_write64(IO_BITMAP_A, 0);
  878. vmcs_write64(IO_BITMAP_B, 0);
  879. guest_write_tsc(0);
  880. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  881. /* Special registers */
  882. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  883. /* Control */
  884. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  885. PIN_BASED_VM_EXEC_CONTROL,
  886. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  887. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  888. );
  889. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  890. CPU_BASED_VM_EXEC_CONTROL,
  891. CPU_BASED_HLT_EXITING /* 20.6.2 */
  892. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  893. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  894. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  895. | CPU_BASED_MOV_DR_EXITING
  896. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  897. );
  898. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  899. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  900. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  901. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  902. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  903. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  904. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  905. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  906. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  907. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  908. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  909. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  910. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  911. #ifdef CONFIG_X86_64
  912. rdmsrl(MSR_FS_BASE, a);
  913. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  914. rdmsrl(MSR_GS_BASE, a);
  915. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  916. #else
  917. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  918. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  919. #endif
  920. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  921. get_idt(&dt);
  922. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  923. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  924. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  925. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  926. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  927. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  928. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  929. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  930. for (i = 0; i < NR_VMX_MSR; ++i) {
  931. u32 index = vmx_msr_index[i];
  932. u32 data_low, data_high;
  933. u64 data;
  934. int j = vcpu->nmsrs;
  935. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  936. continue;
  937. if (wrmsr_safe(index, data_low, data_high) < 0)
  938. continue;
  939. data = data_low | ((u64)data_high << 32);
  940. vcpu->host_msrs[j].index = index;
  941. vcpu->host_msrs[j].reserved = 0;
  942. vcpu->host_msrs[j].data = data;
  943. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  944. ++vcpu->nmsrs;
  945. }
  946. printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
  947. nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
  948. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  949. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  950. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  951. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  952. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  953. virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
  954. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  955. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  956. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  957. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  958. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  959. /* 22.2.1, 20.8.1 */
  960. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  961. VM_ENTRY_CONTROLS, 0);
  962. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  963. #ifdef CONFIG_X86_64
  964. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  965. vmcs_writel(TPR_THRESHOLD, 0);
  966. #endif
  967. vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
  968. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  969. vcpu->cr0 = 0x60000010;
  970. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  971. vmx_set_cr4(vcpu, 0);
  972. #ifdef CONFIG_X86_64
  973. vmx_set_efer(vcpu, 0);
  974. #endif
  975. return 0;
  976. out:
  977. return ret;
  978. }
  979. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  980. {
  981. u16 ent[2];
  982. u16 cs;
  983. u16 ip;
  984. unsigned long flags;
  985. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  986. u16 sp = vmcs_readl(GUEST_RSP);
  987. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  988. if (sp > ss_limit || sp - 6 > sp) {
  989. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  990. __FUNCTION__,
  991. vmcs_readl(GUEST_RSP),
  992. vmcs_readl(GUEST_SS_BASE),
  993. vmcs_read32(GUEST_SS_LIMIT));
  994. return;
  995. }
  996. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  997. sizeof(ent)) {
  998. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  999. return;
  1000. }
  1001. flags = vmcs_readl(GUEST_RFLAGS);
  1002. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1003. ip = vmcs_readl(GUEST_RIP);
  1004. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1005. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1006. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1007. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1008. return;
  1009. }
  1010. vmcs_writel(GUEST_RFLAGS, flags &
  1011. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1012. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1013. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1014. vmcs_writel(GUEST_RIP, ent[0]);
  1015. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1016. }
  1017. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1018. {
  1019. int word_index = __ffs(vcpu->irq_summary);
  1020. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1021. int irq = word_index * BITS_PER_LONG + bit_index;
  1022. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1023. if (!vcpu->irq_pending[word_index])
  1024. clear_bit(word_index, &vcpu->irq_summary);
  1025. if (vcpu->rmode.active) {
  1026. inject_rmode_irq(vcpu, irq);
  1027. return;
  1028. }
  1029. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1030. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1031. }
  1032. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1033. struct kvm_run *kvm_run)
  1034. {
  1035. u32 cpu_based_vm_exec_control;
  1036. vcpu->interrupt_window_open =
  1037. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1038. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1039. if (vcpu->interrupt_window_open &&
  1040. vcpu->irq_summary &&
  1041. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1042. /*
  1043. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1044. */
  1045. kvm_do_inject_irq(vcpu);
  1046. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1047. if (!vcpu->interrupt_window_open &&
  1048. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1049. /*
  1050. * Interrupts blocked. Wait for unblock.
  1051. */
  1052. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1053. else
  1054. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1055. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1056. }
  1057. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1058. {
  1059. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1060. set_debugreg(dbg->bp[0], 0);
  1061. set_debugreg(dbg->bp[1], 1);
  1062. set_debugreg(dbg->bp[2], 2);
  1063. set_debugreg(dbg->bp[3], 3);
  1064. if (dbg->singlestep) {
  1065. unsigned long flags;
  1066. flags = vmcs_readl(GUEST_RFLAGS);
  1067. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1068. vmcs_writel(GUEST_RFLAGS, flags);
  1069. }
  1070. }
  1071. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1072. int vec, u32 err_code)
  1073. {
  1074. if (!vcpu->rmode.active)
  1075. return 0;
  1076. if (vec == GP_VECTOR && err_code == 0)
  1077. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1078. return 1;
  1079. return 0;
  1080. }
  1081. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1082. {
  1083. u32 intr_info, error_code;
  1084. unsigned long cr2, rip;
  1085. u32 vect_info;
  1086. enum emulation_result er;
  1087. int r;
  1088. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1089. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1090. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1091. !is_page_fault(intr_info)) {
  1092. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1093. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1094. }
  1095. if (is_external_interrupt(vect_info)) {
  1096. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1097. set_bit(irq, vcpu->irq_pending);
  1098. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1099. }
  1100. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1101. asm ("int $2");
  1102. return 1;
  1103. }
  1104. error_code = 0;
  1105. rip = vmcs_readl(GUEST_RIP);
  1106. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1107. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1108. if (is_page_fault(intr_info)) {
  1109. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1110. spin_lock(&vcpu->kvm->lock);
  1111. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1112. if (r < 0) {
  1113. spin_unlock(&vcpu->kvm->lock);
  1114. return r;
  1115. }
  1116. if (!r) {
  1117. spin_unlock(&vcpu->kvm->lock);
  1118. return 1;
  1119. }
  1120. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1121. spin_unlock(&vcpu->kvm->lock);
  1122. switch (er) {
  1123. case EMULATE_DONE:
  1124. return 1;
  1125. case EMULATE_DO_MMIO:
  1126. ++kvm_stat.mmio_exits;
  1127. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1128. return 0;
  1129. case EMULATE_FAIL:
  1130. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1131. break;
  1132. default:
  1133. BUG();
  1134. }
  1135. }
  1136. if (vcpu->rmode.active &&
  1137. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1138. error_code))
  1139. return 1;
  1140. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1141. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1142. return 0;
  1143. }
  1144. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1145. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1146. kvm_run->ex.error_code = error_code;
  1147. return 0;
  1148. }
  1149. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1150. struct kvm_run *kvm_run)
  1151. {
  1152. ++kvm_stat.irq_exits;
  1153. return 1;
  1154. }
  1155. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1156. {
  1157. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1158. return 0;
  1159. }
  1160. static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
  1161. {
  1162. u64 inst;
  1163. gva_t rip;
  1164. int countr_size;
  1165. int i, n;
  1166. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1167. countr_size = 2;
  1168. } else {
  1169. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1170. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1171. (cs_ar & AR_DB_MASK) ? 4: 2;
  1172. }
  1173. rip = vmcs_readl(GUEST_RIP);
  1174. if (countr_size != 8)
  1175. rip += vmcs_readl(GUEST_CS_BASE);
  1176. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1177. for (i = 0; i < n; i++) {
  1178. switch (((u8*)&inst)[i]) {
  1179. case 0xf0:
  1180. case 0xf2:
  1181. case 0xf3:
  1182. case 0x2e:
  1183. case 0x36:
  1184. case 0x3e:
  1185. case 0x26:
  1186. case 0x64:
  1187. case 0x65:
  1188. case 0x66:
  1189. break;
  1190. case 0x67:
  1191. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1192. default:
  1193. goto done;
  1194. }
  1195. }
  1196. return 0;
  1197. done:
  1198. countr_size *= 8;
  1199. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1200. return 1;
  1201. }
  1202. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1203. {
  1204. u64 exit_qualification;
  1205. ++kvm_stat.io_exits;
  1206. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1207. kvm_run->exit_reason = KVM_EXIT_IO;
  1208. if (exit_qualification & 8)
  1209. kvm_run->io.direction = KVM_EXIT_IO_IN;
  1210. else
  1211. kvm_run->io.direction = KVM_EXIT_IO_OUT;
  1212. kvm_run->io.size = (exit_qualification & 7) + 1;
  1213. kvm_run->io.string = (exit_qualification & 16) != 0;
  1214. kvm_run->io.string_down
  1215. = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1216. kvm_run->io.rep = (exit_qualification & 32) != 0;
  1217. kvm_run->io.port = exit_qualification >> 16;
  1218. if (kvm_run->io.string) {
  1219. if (!get_io_count(vcpu, &kvm_run->io.count))
  1220. return 1;
  1221. kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1222. } else
  1223. kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
  1224. return 0;
  1225. }
  1226. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1227. {
  1228. u64 exit_qualification;
  1229. int cr;
  1230. int reg;
  1231. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1232. cr = exit_qualification & 15;
  1233. reg = (exit_qualification >> 8) & 15;
  1234. switch ((exit_qualification >> 4) & 3) {
  1235. case 0: /* mov to cr */
  1236. switch (cr) {
  1237. case 0:
  1238. vcpu_load_rsp_rip(vcpu);
  1239. set_cr0(vcpu, vcpu->regs[reg]);
  1240. skip_emulated_instruction(vcpu);
  1241. return 1;
  1242. case 3:
  1243. vcpu_load_rsp_rip(vcpu);
  1244. set_cr3(vcpu, vcpu->regs[reg]);
  1245. skip_emulated_instruction(vcpu);
  1246. return 1;
  1247. case 4:
  1248. vcpu_load_rsp_rip(vcpu);
  1249. set_cr4(vcpu, vcpu->regs[reg]);
  1250. skip_emulated_instruction(vcpu);
  1251. return 1;
  1252. case 8:
  1253. vcpu_load_rsp_rip(vcpu);
  1254. set_cr8(vcpu, vcpu->regs[reg]);
  1255. skip_emulated_instruction(vcpu);
  1256. return 1;
  1257. };
  1258. break;
  1259. case 1: /*mov from cr*/
  1260. switch (cr) {
  1261. case 3:
  1262. vcpu_load_rsp_rip(vcpu);
  1263. vcpu->regs[reg] = vcpu->cr3;
  1264. vcpu_put_rsp_rip(vcpu);
  1265. skip_emulated_instruction(vcpu);
  1266. return 1;
  1267. case 8:
  1268. printk(KERN_DEBUG "handle_cr: read CR8 "
  1269. "cpu erratum AA15\n");
  1270. vcpu_load_rsp_rip(vcpu);
  1271. vcpu->regs[reg] = vcpu->cr8;
  1272. vcpu_put_rsp_rip(vcpu);
  1273. skip_emulated_instruction(vcpu);
  1274. return 1;
  1275. }
  1276. break;
  1277. case 3: /* lmsw */
  1278. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1279. skip_emulated_instruction(vcpu);
  1280. return 1;
  1281. default:
  1282. break;
  1283. }
  1284. kvm_run->exit_reason = 0;
  1285. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1286. (int)(exit_qualification >> 4) & 3, cr);
  1287. return 0;
  1288. }
  1289. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1290. {
  1291. u64 exit_qualification;
  1292. unsigned long val;
  1293. int dr, reg;
  1294. /*
  1295. * FIXME: this code assumes the host is debugging the guest.
  1296. * need to deal with guest debugging itself too.
  1297. */
  1298. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1299. dr = exit_qualification & 7;
  1300. reg = (exit_qualification >> 8) & 15;
  1301. vcpu_load_rsp_rip(vcpu);
  1302. if (exit_qualification & 16) {
  1303. /* mov from dr */
  1304. switch (dr) {
  1305. case 6:
  1306. val = 0xffff0ff0;
  1307. break;
  1308. case 7:
  1309. val = 0x400;
  1310. break;
  1311. default:
  1312. val = 0;
  1313. }
  1314. vcpu->regs[reg] = val;
  1315. } else {
  1316. /* mov to dr */
  1317. }
  1318. vcpu_put_rsp_rip(vcpu);
  1319. skip_emulated_instruction(vcpu);
  1320. return 1;
  1321. }
  1322. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1323. {
  1324. kvm_run->exit_reason = KVM_EXIT_CPUID;
  1325. return 0;
  1326. }
  1327. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1328. {
  1329. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1330. u64 data;
  1331. if (vmx_get_msr(vcpu, ecx, &data)) {
  1332. vmx_inject_gp(vcpu, 0);
  1333. return 1;
  1334. }
  1335. /* FIXME: handling of bits 32:63 of rax, rdx */
  1336. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1337. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1338. skip_emulated_instruction(vcpu);
  1339. return 1;
  1340. }
  1341. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1342. {
  1343. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1344. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1345. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1346. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1347. vmx_inject_gp(vcpu, 0);
  1348. return 1;
  1349. }
  1350. skip_emulated_instruction(vcpu);
  1351. return 1;
  1352. }
  1353. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1354. struct kvm_run *kvm_run)
  1355. {
  1356. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1357. kvm_run->cr8 = vcpu->cr8;
  1358. kvm_run->apic_base = vcpu->apic_base;
  1359. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1360. vcpu->irq_summary == 0);
  1361. }
  1362. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1363. struct kvm_run *kvm_run)
  1364. {
  1365. /*
  1366. * If the user space waits to inject interrupts, exit as soon as
  1367. * possible
  1368. */
  1369. if (kvm_run->request_interrupt_window &&
  1370. !vcpu->irq_summary) {
  1371. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1372. ++kvm_stat.irq_window_exits;
  1373. return 0;
  1374. }
  1375. return 1;
  1376. }
  1377. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1378. {
  1379. skip_emulated_instruction(vcpu);
  1380. if (vcpu->irq_summary)
  1381. return 1;
  1382. kvm_run->exit_reason = KVM_EXIT_HLT;
  1383. ++kvm_stat.halt_exits;
  1384. return 0;
  1385. }
  1386. /*
  1387. * The exit handlers return 1 if the exit was handled fully and guest execution
  1388. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1389. * to be done to userspace and return 0.
  1390. */
  1391. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1392. struct kvm_run *kvm_run) = {
  1393. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1394. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1395. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1396. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1397. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1398. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1399. [EXIT_REASON_CPUID] = handle_cpuid,
  1400. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1401. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1402. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1403. [EXIT_REASON_HLT] = handle_halt,
  1404. };
  1405. static const int kvm_vmx_max_exit_handlers =
  1406. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1407. /*
  1408. * The guest has exited. See if we can fix it or if we need userspace
  1409. * assistance.
  1410. */
  1411. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1412. {
  1413. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1414. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1415. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1416. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1417. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1418. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1419. kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1420. if (exit_reason < kvm_vmx_max_exit_handlers
  1421. && kvm_vmx_exit_handlers[exit_reason])
  1422. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1423. else {
  1424. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1425. kvm_run->hw.hardware_exit_reason = exit_reason;
  1426. }
  1427. return 0;
  1428. }
  1429. /*
  1430. * Check if userspace requested an interrupt window, and that the
  1431. * interrupt window is open.
  1432. *
  1433. * No need to exit to userspace if we already have an interrupt queued.
  1434. */
  1435. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1436. struct kvm_run *kvm_run)
  1437. {
  1438. return (!vcpu->irq_summary &&
  1439. kvm_run->request_interrupt_window &&
  1440. vcpu->interrupt_window_open &&
  1441. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1442. }
  1443. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1444. {
  1445. u8 fail;
  1446. u16 fs_sel, gs_sel, ldt_sel;
  1447. int fs_gs_ldt_reload_needed;
  1448. int r;
  1449. again:
  1450. /*
  1451. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1452. * allow segment selectors with cpl > 0 or ti == 1.
  1453. */
  1454. fs_sel = read_fs();
  1455. gs_sel = read_gs();
  1456. ldt_sel = read_ldt();
  1457. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1458. if (!fs_gs_ldt_reload_needed) {
  1459. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1460. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1461. } else {
  1462. vmcs_write16(HOST_FS_SELECTOR, 0);
  1463. vmcs_write16(HOST_GS_SELECTOR, 0);
  1464. }
  1465. #ifdef CONFIG_X86_64
  1466. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1467. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1468. #else
  1469. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1470. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1471. #endif
  1472. if (!vcpu->mmio_read_completed)
  1473. do_interrupt_requests(vcpu, kvm_run);
  1474. if (vcpu->guest_debug.enabled)
  1475. kvm_guest_debug_pre(vcpu);
  1476. fx_save(vcpu->host_fx_image);
  1477. fx_restore(vcpu->guest_fx_image);
  1478. save_msrs(vcpu->host_msrs, vcpu->nmsrs);
  1479. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1480. asm (
  1481. /* Store host registers */
  1482. "pushf \n\t"
  1483. #ifdef CONFIG_X86_64
  1484. "push %%rax; push %%rbx; push %%rdx;"
  1485. "push %%rsi; push %%rdi; push %%rbp;"
  1486. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1487. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1488. "push %%rcx \n\t"
  1489. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1490. #else
  1491. "pusha; push %%ecx \n\t"
  1492. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1493. #endif
  1494. /* Check if vmlaunch of vmresume is needed */
  1495. "cmp $0, %1 \n\t"
  1496. /* Load guest registers. Don't clobber flags. */
  1497. #ifdef CONFIG_X86_64
  1498. "mov %c[cr2](%3), %%rax \n\t"
  1499. "mov %%rax, %%cr2 \n\t"
  1500. "mov %c[rax](%3), %%rax \n\t"
  1501. "mov %c[rbx](%3), %%rbx \n\t"
  1502. "mov %c[rdx](%3), %%rdx \n\t"
  1503. "mov %c[rsi](%3), %%rsi \n\t"
  1504. "mov %c[rdi](%3), %%rdi \n\t"
  1505. "mov %c[rbp](%3), %%rbp \n\t"
  1506. "mov %c[r8](%3), %%r8 \n\t"
  1507. "mov %c[r9](%3), %%r9 \n\t"
  1508. "mov %c[r10](%3), %%r10 \n\t"
  1509. "mov %c[r11](%3), %%r11 \n\t"
  1510. "mov %c[r12](%3), %%r12 \n\t"
  1511. "mov %c[r13](%3), %%r13 \n\t"
  1512. "mov %c[r14](%3), %%r14 \n\t"
  1513. "mov %c[r15](%3), %%r15 \n\t"
  1514. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1515. #else
  1516. "mov %c[cr2](%3), %%eax \n\t"
  1517. "mov %%eax, %%cr2 \n\t"
  1518. "mov %c[rax](%3), %%eax \n\t"
  1519. "mov %c[rbx](%3), %%ebx \n\t"
  1520. "mov %c[rdx](%3), %%edx \n\t"
  1521. "mov %c[rsi](%3), %%esi \n\t"
  1522. "mov %c[rdi](%3), %%edi \n\t"
  1523. "mov %c[rbp](%3), %%ebp \n\t"
  1524. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1525. #endif
  1526. /* Enter guest mode */
  1527. "jne launched \n\t"
  1528. ASM_VMX_VMLAUNCH "\n\t"
  1529. "jmp kvm_vmx_return \n\t"
  1530. "launched: " ASM_VMX_VMRESUME "\n\t"
  1531. ".globl kvm_vmx_return \n\t"
  1532. "kvm_vmx_return: "
  1533. /* Save guest registers, load host registers, keep flags */
  1534. #ifdef CONFIG_X86_64
  1535. "xchg %3, (%%rsp) \n\t"
  1536. "mov %%rax, %c[rax](%3) \n\t"
  1537. "mov %%rbx, %c[rbx](%3) \n\t"
  1538. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1539. "mov %%rdx, %c[rdx](%3) \n\t"
  1540. "mov %%rsi, %c[rsi](%3) \n\t"
  1541. "mov %%rdi, %c[rdi](%3) \n\t"
  1542. "mov %%rbp, %c[rbp](%3) \n\t"
  1543. "mov %%r8, %c[r8](%3) \n\t"
  1544. "mov %%r9, %c[r9](%3) \n\t"
  1545. "mov %%r10, %c[r10](%3) \n\t"
  1546. "mov %%r11, %c[r11](%3) \n\t"
  1547. "mov %%r12, %c[r12](%3) \n\t"
  1548. "mov %%r13, %c[r13](%3) \n\t"
  1549. "mov %%r14, %c[r14](%3) \n\t"
  1550. "mov %%r15, %c[r15](%3) \n\t"
  1551. "mov %%cr2, %%rax \n\t"
  1552. "mov %%rax, %c[cr2](%3) \n\t"
  1553. "mov (%%rsp), %3 \n\t"
  1554. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1555. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1556. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1557. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1558. #else
  1559. "xchg %3, (%%esp) \n\t"
  1560. "mov %%eax, %c[rax](%3) \n\t"
  1561. "mov %%ebx, %c[rbx](%3) \n\t"
  1562. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1563. "mov %%edx, %c[rdx](%3) \n\t"
  1564. "mov %%esi, %c[rsi](%3) \n\t"
  1565. "mov %%edi, %c[rdi](%3) \n\t"
  1566. "mov %%ebp, %c[rbp](%3) \n\t"
  1567. "mov %%cr2, %%eax \n\t"
  1568. "mov %%eax, %c[cr2](%3) \n\t"
  1569. "mov (%%esp), %3 \n\t"
  1570. "pop %%ecx; popa \n\t"
  1571. #endif
  1572. "setbe %0 \n\t"
  1573. "popf \n\t"
  1574. : "=q" (fail)
  1575. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1576. "c"(vcpu),
  1577. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1578. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1579. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1580. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1581. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1582. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1583. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1584. #ifdef CONFIG_X86_64
  1585. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1586. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1587. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1588. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1589. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1590. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1591. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1592. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1593. #endif
  1594. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1595. : "cc", "memory" );
  1596. ++kvm_stat.exits;
  1597. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1598. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1599. fx_save(vcpu->guest_fx_image);
  1600. fx_restore(vcpu->host_fx_image);
  1601. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1602. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1603. /*
  1604. * Profile KVM exit RIPs:
  1605. */
  1606. if (unlikely(prof_on == KVM_PROFILING))
  1607. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1608. kvm_run->exit_type = 0;
  1609. if (fail) {
  1610. kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
  1611. kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
  1612. r = 0;
  1613. } else {
  1614. if (fs_gs_ldt_reload_needed) {
  1615. load_ldt(ldt_sel);
  1616. load_fs(fs_sel);
  1617. /*
  1618. * If we have to reload gs, we must take care to
  1619. * preserve our gs base.
  1620. */
  1621. local_irq_disable();
  1622. load_gs(gs_sel);
  1623. #ifdef CONFIG_X86_64
  1624. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1625. #endif
  1626. local_irq_enable();
  1627. reload_tss();
  1628. }
  1629. vcpu->launched = 1;
  1630. kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
  1631. r = kvm_handle_exit(kvm_run, vcpu);
  1632. if (r > 0) {
  1633. /* Give scheduler a change to reschedule. */
  1634. if (signal_pending(current)) {
  1635. ++kvm_stat.signal_exits;
  1636. post_kvm_run_save(vcpu, kvm_run);
  1637. return -EINTR;
  1638. }
  1639. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1640. ++kvm_stat.request_irq_exits;
  1641. post_kvm_run_save(vcpu, kvm_run);
  1642. return -EINTR;
  1643. }
  1644. kvm_resched(vcpu);
  1645. goto again;
  1646. }
  1647. }
  1648. post_kvm_run_save(vcpu, kvm_run);
  1649. return r;
  1650. }
  1651. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1652. {
  1653. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1654. }
  1655. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1656. unsigned long addr,
  1657. u32 err_code)
  1658. {
  1659. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1660. ++kvm_stat.pf_guest;
  1661. if (is_page_fault(vect_info)) {
  1662. printk(KERN_DEBUG "inject_page_fault: "
  1663. "double fault 0x%lx @ 0x%lx\n",
  1664. addr, vmcs_readl(GUEST_RIP));
  1665. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1666. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1667. DF_VECTOR |
  1668. INTR_TYPE_EXCEPTION |
  1669. INTR_INFO_DELIEVER_CODE_MASK |
  1670. INTR_INFO_VALID_MASK);
  1671. return;
  1672. }
  1673. vcpu->cr2 = addr;
  1674. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1675. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1676. PF_VECTOR |
  1677. INTR_TYPE_EXCEPTION |
  1678. INTR_INFO_DELIEVER_CODE_MASK |
  1679. INTR_INFO_VALID_MASK);
  1680. }
  1681. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1682. {
  1683. if (vcpu->vmcs) {
  1684. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1685. free_vmcs(vcpu->vmcs);
  1686. vcpu->vmcs = NULL;
  1687. }
  1688. }
  1689. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1690. {
  1691. vmx_free_vmcs(vcpu);
  1692. }
  1693. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1694. {
  1695. struct vmcs *vmcs;
  1696. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1697. if (!vcpu->guest_msrs)
  1698. return -ENOMEM;
  1699. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1700. if (!vcpu->host_msrs)
  1701. goto out_free_guest_msrs;
  1702. vmcs = alloc_vmcs();
  1703. if (!vmcs)
  1704. goto out_free_msrs;
  1705. vmcs_clear(vmcs);
  1706. vcpu->vmcs = vmcs;
  1707. vcpu->launched = 0;
  1708. return 0;
  1709. out_free_msrs:
  1710. kfree(vcpu->host_msrs);
  1711. vcpu->host_msrs = NULL;
  1712. out_free_guest_msrs:
  1713. kfree(vcpu->guest_msrs);
  1714. vcpu->guest_msrs = NULL;
  1715. return -ENOMEM;
  1716. }
  1717. static struct kvm_arch_ops vmx_arch_ops = {
  1718. .cpu_has_kvm_support = cpu_has_kvm_support,
  1719. .disabled_by_bios = vmx_disabled_by_bios,
  1720. .hardware_setup = hardware_setup,
  1721. .hardware_unsetup = hardware_unsetup,
  1722. .hardware_enable = hardware_enable,
  1723. .hardware_disable = hardware_disable,
  1724. .vcpu_create = vmx_create_vcpu,
  1725. .vcpu_free = vmx_free_vcpu,
  1726. .vcpu_load = vmx_vcpu_load,
  1727. .vcpu_put = vmx_vcpu_put,
  1728. .vcpu_decache = vmx_vcpu_decache,
  1729. .set_guest_debug = set_guest_debug,
  1730. .get_msr = vmx_get_msr,
  1731. .set_msr = vmx_set_msr,
  1732. .get_segment_base = vmx_get_segment_base,
  1733. .get_segment = vmx_get_segment,
  1734. .set_segment = vmx_set_segment,
  1735. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1736. .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
  1737. .set_cr0 = vmx_set_cr0,
  1738. .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
  1739. .set_cr3 = vmx_set_cr3,
  1740. .set_cr4 = vmx_set_cr4,
  1741. #ifdef CONFIG_X86_64
  1742. .set_efer = vmx_set_efer,
  1743. #endif
  1744. .get_idt = vmx_get_idt,
  1745. .set_idt = vmx_set_idt,
  1746. .get_gdt = vmx_get_gdt,
  1747. .set_gdt = vmx_set_gdt,
  1748. .cache_regs = vcpu_load_rsp_rip,
  1749. .decache_regs = vcpu_put_rsp_rip,
  1750. .get_rflags = vmx_get_rflags,
  1751. .set_rflags = vmx_set_rflags,
  1752. .tlb_flush = vmx_flush_tlb,
  1753. .inject_page_fault = vmx_inject_page_fault,
  1754. .inject_gp = vmx_inject_gp,
  1755. .run = vmx_vcpu_run,
  1756. .skip_emulated_instruction = skip_emulated_instruction,
  1757. .vcpu_setup = vmx_vcpu_setup,
  1758. };
  1759. static int __init vmx_init(void)
  1760. {
  1761. return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1762. }
  1763. static void __exit vmx_exit(void)
  1764. {
  1765. kvm_exit_arch();
  1766. }
  1767. module_init(vmx_init)
  1768. module_exit(vmx_exit)