vtbl.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * This file includes volume table manipulation code. The volume table is an
  23. * on-flash table containing volume meta-data like name, number of reserved
  24. * physical eraseblocks, type, etc. The volume table is stored in the so-called
  25. * "layout volume".
  26. *
  27. * The layout volume is an internal volume which is organized as follows. It
  28. * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
  29. * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
  30. * other. This redundancy guarantees robustness to unclean reboots. The volume
  31. * table is basically an array of volume table records. Each record contains
  32. * full information about the volume and protected by a CRC checksum.
  33. *
  34. * The volume table is changed, it is first changed in RAM. Then LEB 0 is
  35. * erased, and the updated volume table is written back to LEB 0. Then same for
  36. * LEB 1. This scheme guarantees recoverability from unclean reboots.
  37. *
  38. * In this UBI implementation the on-flash volume table does not contain any
  39. * information about how many data static volumes contain. This information may
  40. * be found from the scanning data.
  41. *
  42. * But it would still be beneficial to store this information in the volume
  43. * table. For example, suppose we have a static volume X, and all its physical
  44. * eraseblocks became bad for some reasons. Suppose we are attaching the
  45. * corresponding MTD device, the scanning has found no logical eraseblocks
  46. * corresponding to the volume X. According to the volume table volume X does
  47. * exist. So we don't know whether it is just empty or all its physical
  48. * eraseblocks went bad. So we cannot alarm the user about this corruption.
  49. *
  50. * The volume table also stores so-called "update marker", which is used for
  51. * volume updates. Before updating the volume, the update marker is set, and
  52. * after the update operation is finished, the update marker is cleared. So if
  53. * the update operation was interrupted (e.g. by an unclean reboot) - the
  54. * update marker is still there and we know that the volume's contents is
  55. * damaged.
  56. */
  57. #include <linux/crc32.h>
  58. #include <linux/err.h>
  59. #include <asm/div64.h>
  60. #include "ubi.h"
  61. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  62. static void paranoid_vtbl_check(const struct ubi_device *ubi);
  63. #else
  64. #define paranoid_vtbl_check(ubi)
  65. #endif
  66. /* Empty volume table record */
  67. static struct ubi_vtbl_record empty_vtbl_record;
  68. /**
  69. * ubi_change_vtbl_record - change volume table record.
  70. * @ubi: UBI device description object
  71. * @idx: table index to change
  72. * @vtbl_rec: new volume table record
  73. *
  74. * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
  75. * volume table record is written. The caller does not have to calculate CRC of
  76. * the record as it is done by this function. Returns zero in case of success
  77. * and a negative error code in case of failure.
  78. */
  79. int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
  80. struct ubi_vtbl_record *vtbl_rec)
  81. {
  82. int i, err;
  83. uint32_t crc;
  84. struct ubi_volume *layout_vol;
  85. ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
  86. layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOL_ID)];
  87. if (!vtbl_rec)
  88. vtbl_rec = &empty_vtbl_record;
  89. else {
  90. crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
  91. vtbl_rec->crc = cpu_to_be32(crc);
  92. }
  93. memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
  94. for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
  95. err = ubi_eba_unmap_leb(ubi, layout_vol, i);
  96. if (err)
  97. return err;
  98. err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
  99. ubi->vtbl_size, UBI_LONGTERM);
  100. if (err)
  101. return err;
  102. }
  103. paranoid_vtbl_check(ubi);
  104. return ubi_wl_flush(ubi);
  105. }
  106. /**
  107. * vol_til_check - check if volume table is not corrupted and contains sensible
  108. * data.
  109. *
  110. * @ubi: UBI device description object
  111. * @vtbl: volume table
  112. *
  113. * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
  114. * and %-EINVAL if it contains inconsistent data.
  115. */
  116. static int vtbl_check(const struct ubi_device *ubi,
  117. const struct ubi_vtbl_record *vtbl)
  118. {
  119. int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
  120. int upd_marker;
  121. uint32_t crc;
  122. const char *name;
  123. for (i = 0; i < ubi->vtbl_slots; i++) {
  124. cond_resched();
  125. reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
  126. alignment = be32_to_cpu(vtbl[i].alignment);
  127. data_pad = be32_to_cpu(vtbl[i].data_pad);
  128. upd_marker = vtbl[i].upd_marker;
  129. vol_type = vtbl[i].vol_type;
  130. name_len = be16_to_cpu(vtbl[i].name_len);
  131. name = &vtbl[i].name[0];
  132. crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
  133. if (be32_to_cpu(vtbl[i].crc) != crc) {
  134. ubi_err("bad CRC at record %u: %#08x, not %#08x",
  135. i, crc, be32_to_cpu(vtbl[i].crc));
  136. ubi_dbg_dump_vtbl_record(&vtbl[i], i);
  137. return 1;
  138. }
  139. if (reserved_pebs == 0) {
  140. if (memcmp(&vtbl[i], &empty_vtbl_record,
  141. UBI_VTBL_RECORD_SIZE)) {
  142. dbg_err("bad empty record");
  143. goto bad;
  144. }
  145. continue;
  146. }
  147. if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
  148. name_len < 0) {
  149. dbg_err("negative values");
  150. goto bad;
  151. }
  152. if (alignment > ubi->leb_size || alignment == 0) {
  153. dbg_err("bad alignment");
  154. goto bad;
  155. }
  156. n = alignment % ubi->min_io_size;
  157. if (alignment != 1 && n) {
  158. dbg_err("alignment is not multiple of min I/O unit");
  159. goto bad;
  160. }
  161. n = ubi->leb_size % alignment;
  162. if (data_pad != n) {
  163. dbg_err("bad data_pad, has to be %d", n);
  164. goto bad;
  165. }
  166. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  167. dbg_err("bad vol_type");
  168. goto bad;
  169. }
  170. if (upd_marker != 0 && upd_marker != 1) {
  171. dbg_err("bad upd_marker");
  172. goto bad;
  173. }
  174. if (reserved_pebs > ubi->good_peb_count) {
  175. dbg_err("too large reserved_pebs, good PEBs %d",
  176. ubi->good_peb_count);
  177. goto bad;
  178. }
  179. if (name_len > UBI_VOL_NAME_MAX) {
  180. dbg_err("too long volume name, max %d",
  181. UBI_VOL_NAME_MAX);
  182. goto bad;
  183. }
  184. if (name[0] == '\0') {
  185. dbg_err("NULL volume name");
  186. goto bad;
  187. }
  188. if (name_len != strnlen(name, name_len + 1)) {
  189. dbg_err("bad name_len");
  190. goto bad;
  191. }
  192. }
  193. /* Checks that all names are unique */
  194. for (i = 0; i < ubi->vtbl_slots - 1; i++) {
  195. for (n = i + 1; n < ubi->vtbl_slots; n++) {
  196. int len1 = be16_to_cpu(vtbl[i].name_len);
  197. int len2 = be16_to_cpu(vtbl[n].name_len);
  198. if (len1 > 0 && len1 == len2 &&
  199. !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
  200. ubi_err("volumes %d and %d have the same name"
  201. " \"%s\"", i, n, vtbl[i].name);
  202. ubi_dbg_dump_vtbl_record(&vtbl[i], i);
  203. ubi_dbg_dump_vtbl_record(&vtbl[n], n);
  204. return -EINVAL;
  205. }
  206. }
  207. }
  208. return 0;
  209. bad:
  210. ubi_err("volume table check failed, record %d", i);
  211. ubi_dbg_dump_vtbl_record(&vtbl[i], i);
  212. return -EINVAL;
  213. }
  214. /**
  215. * create_vtbl - create a copy of volume table.
  216. * @ubi: UBI device description object
  217. * @si: scanning information
  218. * @copy: number of the volume table copy
  219. * @vtbl: contents of the volume table
  220. *
  221. * This function returns zero in case of success and a negative error code in
  222. * case of failure.
  223. */
  224. static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
  225. int copy, void *vtbl)
  226. {
  227. int err, tries = 0;
  228. static struct ubi_vid_hdr *vid_hdr;
  229. struct ubi_scan_volume *sv;
  230. struct ubi_scan_leb *new_seb, *old_seb = NULL;
  231. ubi_msg("create volume table (copy #%d)", copy + 1);
  232. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
  233. if (!vid_hdr)
  234. return -ENOMEM;
  235. /*
  236. * Check if there is a logical eraseblock which would have to contain
  237. * this volume table copy was found during scanning. It has to be wiped
  238. * out.
  239. */
  240. sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
  241. if (sv)
  242. old_seb = ubi_scan_find_seb(sv, copy);
  243. retry:
  244. new_seb = ubi_scan_get_free_peb(ubi, si);
  245. if (IS_ERR(new_seb)) {
  246. err = PTR_ERR(new_seb);
  247. goto out_free;
  248. }
  249. vid_hdr->vol_type = UBI_VID_DYNAMIC;
  250. vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOL_ID);
  251. vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
  252. vid_hdr->data_size = vid_hdr->used_ebs =
  253. vid_hdr->data_pad = cpu_to_be32(0);
  254. vid_hdr->lnum = cpu_to_be32(copy);
  255. vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
  256. vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0);
  257. /* The EC header is already there, write the VID header */
  258. err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
  259. if (err)
  260. goto write_error;
  261. /* Write the layout volume contents */
  262. err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
  263. if (err)
  264. goto write_error;
  265. /*
  266. * And add it to the scanning information. Don't delete the old
  267. * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
  268. */
  269. err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
  270. vid_hdr, 0);
  271. kfree(new_seb);
  272. ubi_free_vid_hdr(ubi, vid_hdr);
  273. return err;
  274. write_error:
  275. if (err == -EIO && ++tries <= 5) {
  276. /*
  277. * Probably this physical eraseblock went bad, try to pick
  278. * another one.
  279. */
  280. list_add_tail(&new_seb->u.list, &si->corr);
  281. goto retry;
  282. }
  283. kfree(new_seb);
  284. out_free:
  285. ubi_free_vid_hdr(ubi, vid_hdr);
  286. return err;
  287. }
  288. /**
  289. * process_lvol - process the layout volume.
  290. * @ubi: UBI device description object
  291. * @si: scanning information
  292. * @sv: layout volume scanning information
  293. *
  294. * This function is responsible for reading the layout volume, ensuring it is
  295. * not corrupted, and recovering from corruptions if needed. Returns volume
  296. * table in case of success and a negative error code in case of failure.
  297. */
  298. static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
  299. struct ubi_scan_info *si,
  300. struct ubi_scan_volume *sv)
  301. {
  302. int err;
  303. struct rb_node *rb;
  304. struct ubi_scan_leb *seb;
  305. struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
  306. int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
  307. /*
  308. * UBI goes through the following steps when it changes the layout
  309. * volume:
  310. * a. erase LEB 0;
  311. * b. write new data to LEB 0;
  312. * c. erase LEB 1;
  313. * d. write new data to LEB 1.
  314. *
  315. * Before the change, both LEBs contain the same data.
  316. *
  317. * Due to unclean reboots, the contents of LEB 0 may be lost, but there
  318. * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
  319. * Similarly, LEB 1 may be lost, but there should be LEB 0. And
  320. * finally, unclean reboots may result in a situation when neither LEB
  321. * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
  322. * 0 contains more recent information.
  323. *
  324. * So the plan is to first check LEB 0. Then
  325. * a. if LEB 0 is OK, it must be containing the most resent data; then
  326. * we compare it with LEB 1, and if they are different, we copy LEB
  327. * 0 to LEB 1;
  328. * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
  329. * to LEB 0.
  330. */
  331. dbg_msg("check layout volume");
  332. /* Read both LEB 0 and LEB 1 into memory */
  333. ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
  334. leb[seb->lnum] = vmalloc(ubi->vtbl_size);
  335. if (!leb[seb->lnum]) {
  336. err = -ENOMEM;
  337. goto out_free;
  338. }
  339. memset(leb[seb->lnum], 0, ubi->vtbl_size);
  340. err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
  341. ubi->vtbl_size);
  342. if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
  343. /* Scrub the PEB later */
  344. seb->scrub = 1;
  345. else if (err)
  346. goto out_free;
  347. }
  348. err = -EINVAL;
  349. if (leb[0]) {
  350. leb_corrupted[0] = vtbl_check(ubi, leb[0]);
  351. if (leb_corrupted[0] < 0)
  352. goto out_free;
  353. }
  354. if (!leb_corrupted[0]) {
  355. /* LEB 0 is OK */
  356. if (leb[1])
  357. leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
  358. if (leb_corrupted[1]) {
  359. ubi_warn("volume table copy #2 is corrupted");
  360. err = create_vtbl(ubi, si, 1, leb[0]);
  361. if (err)
  362. goto out_free;
  363. ubi_msg("volume table was restored");
  364. }
  365. /* Both LEB 1 and LEB 2 are OK and consistent */
  366. vfree(leb[1]);
  367. return leb[0];
  368. } else {
  369. /* LEB 0 is corrupted or does not exist */
  370. if (leb[1]) {
  371. leb_corrupted[1] = vtbl_check(ubi, leb[1]);
  372. if (leb_corrupted[1] < 0)
  373. goto out_free;
  374. }
  375. if (leb_corrupted[1]) {
  376. /* Both LEB 0 and LEB 1 are corrupted */
  377. ubi_err("both volume tables are corrupted");
  378. goto out_free;
  379. }
  380. ubi_warn("volume table copy #1 is corrupted");
  381. err = create_vtbl(ubi, si, 0, leb[1]);
  382. if (err)
  383. goto out_free;
  384. ubi_msg("volume table was restored");
  385. vfree(leb[0]);
  386. return leb[1];
  387. }
  388. out_free:
  389. vfree(leb[0]);
  390. vfree(leb[1]);
  391. return ERR_PTR(err);
  392. }
  393. /**
  394. * create_empty_lvol - create empty layout volume.
  395. * @ubi: UBI device description object
  396. * @si: scanning information
  397. *
  398. * This function returns volume table contents in case of success and a
  399. * negative error code in case of failure.
  400. */
  401. static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
  402. struct ubi_scan_info *si)
  403. {
  404. int i;
  405. struct ubi_vtbl_record *vtbl;
  406. vtbl = vmalloc(ubi->vtbl_size);
  407. if (!vtbl)
  408. return ERR_PTR(-ENOMEM);
  409. memset(vtbl, 0, ubi->vtbl_size);
  410. for (i = 0; i < ubi->vtbl_slots; i++)
  411. memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
  412. for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
  413. int err;
  414. err = create_vtbl(ubi, si, i, vtbl);
  415. if (err) {
  416. vfree(vtbl);
  417. return ERR_PTR(err);
  418. }
  419. }
  420. return vtbl;
  421. }
  422. /**
  423. * init_volumes - initialize volume information for existing volumes.
  424. * @ubi: UBI device description object
  425. * @si: scanning information
  426. * @vtbl: volume table
  427. *
  428. * This function allocates volume description objects for existing volumes.
  429. * Returns zero in case of success and a negative error code in case of
  430. * failure.
  431. */
  432. static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
  433. const struct ubi_vtbl_record *vtbl)
  434. {
  435. int i, reserved_pebs = 0;
  436. struct ubi_scan_volume *sv;
  437. struct ubi_volume *vol;
  438. for (i = 0; i < ubi->vtbl_slots; i++) {
  439. cond_resched();
  440. if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
  441. continue; /* Empty record */
  442. vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
  443. if (!vol)
  444. return -ENOMEM;
  445. vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
  446. vol->alignment = be32_to_cpu(vtbl[i].alignment);
  447. vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
  448. vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
  449. UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
  450. vol->name_len = be16_to_cpu(vtbl[i].name_len);
  451. vol->usable_leb_size = ubi->leb_size - vol->data_pad;
  452. memcpy(vol->name, vtbl[i].name, vol->name_len);
  453. vol->name[vol->name_len] = '\0';
  454. vol->vol_id = i;
  455. ubi_assert(!ubi->volumes[i]);
  456. ubi->volumes[i] = vol;
  457. ubi->vol_count += 1;
  458. vol->ubi = ubi;
  459. reserved_pebs += vol->reserved_pebs;
  460. /*
  461. * In case of dynamic volume UBI knows nothing about how many
  462. * data is stored there. So assume the whole volume is used.
  463. */
  464. if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
  465. vol->used_ebs = vol->reserved_pebs;
  466. vol->last_eb_bytes = vol->usable_leb_size;
  467. vol->used_bytes =
  468. (long long)vol->used_ebs * vol->usable_leb_size;
  469. continue;
  470. }
  471. /* Static volumes only */
  472. sv = ubi_scan_find_sv(si, i);
  473. if (!sv) {
  474. /*
  475. * No eraseblocks belonging to this volume found. We
  476. * don't actually know whether this static volume is
  477. * completely corrupted or just contains no data. And
  478. * we cannot know this as long as data size is not
  479. * stored on flash. So we just assume the volume is
  480. * empty. FIXME: this should be handled.
  481. */
  482. continue;
  483. }
  484. if (sv->leb_count != sv->used_ebs) {
  485. /*
  486. * We found a static volume which misses several
  487. * eraseblocks. Treat it as corrupted.
  488. */
  489. ubi_warn("static volume %d misses %d LEBs - corrupted",
  490. sv->vol_id, sv->used_ebs - sv->leb_count);
  491. vol->corrupted = 1;
  492. continue;
  493. }
  494. vol->used_ebs = sv->used_ebs;
  495. vol->used_bytes =
  496. (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
  497. vol->used_bytes += sv->last_data_size;
  498. vol->last_eb_bytes = sv->last_data_size;
  499. }
  500. vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
  501. if (!vol)
  502. return -ENOMEM;
  503. vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
  504. vol->alignment = 1;
  505. vol->vol_type = UBI_DYNAMIC_VOLUME;
  506. vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
  507. memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
  508. vol->usable_leb_size = ubi->leb_size;
  509. vol->used_ebs = vol->reserved_pebs;
  510. vol->last_eb_bytes = vol->reserved_pebs;
  511. vol->used_bytes =
  512. (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
  513. vol->vol_id = UBI_LAYOUT_VOL_ID;
  514. ubi_assert(!ubi->volumes[i]);
  515. ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
  516. reserved_pebs += vol->reserved_pebs;
  517. ubi->vol_count += 1;
  518. vol->ubi = ubi;
  519. if (reserved_pebs > ubi->avail_pebs)
  520. ubi_err("not enough PEBs, required %d, available %d",
  521. reserved_pebs, ubi->avail_pebs);
  522. ubi->rsvd_pebs += reserved_pebs;
  523. ubi->avail_pebs -= reserved_pebs;
  524. return 0;
  525. }
  526. /**
  527. * check_sv - check volume scanning information.
  528. * @vol: UBI volume description object
  529. * @sv: volume scanning information
  530. *
  531. * This function returns zero if the volume scanning information is consistent
  532. * to the data read from the volume tabla, and %-EINVAL if not.
  533. */
  534. static int check_sv(const struct ubi_volume *vol,
  535. const struct ubi_scan_volume *sv)
  536. {
  537. if (sv->highest_lnum >= vol->reserved_pebs) {
  538. dbg_err("bad highest_lnum");
  539. goto bad;
  540. }
  541. if (sv->leb_count > vol->reserved_pebs) {
  542. dbg_err("bad leb_count");
  543. goto bad;
  544. }
  545. if (sv->vol_type != vol->vol_type) {
  546. dbg_err("bad vol_type");
  547. goto bad;
  548. }
  549. if (sv->used_ebs > vol->reserved_pebs) {
  550. dbg_err("bad used_ebs");
  551. goto bad;
  552. }
  553. if (sv->data_pad != vol->data_pad) {
  554. dbg_err("bad data_pad");
  555. goto bad;
  556. }
  557. return 0;
  558. bad:
  559. ubi_err("bad scanning information");
  560. ubi_dbg_dump_sv(sv);
  561. ubi_dbg_dump_vol_info(vol);
  562. return -EINVAL;
  563. }
  564. /**
  565. * check_scanning_info - check that scanning information.
  566. * @ubi: UBI device description object
  567. * @si: scanning information
  568. *
  569. * Even though we protect on-flash data by CRC checksums, we still don't trust
  570. * the media. This function ensures that scanning information is consistent to
  571. * the information read from the volume table. Returns zero if the scanning
  572. * information is OK and %-EINVAL if it is not.
  573. */
  574. static int check_scanning_info(const struct ubi_device *ubi,
  575. struct ubi_scan_info *si)
  576. {
  577. int err, i;
  578. struct ubi_scan_volume *sv;
  579. struct ubi_volume *vol;
  580. if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
  581. ubi_err("scanning found %d volumes, maximum is %d + %d",
  582. si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
  583. return -EINVAL;
  584. }
  585. if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT&&
  586. si->highest_vol_id < UBI_INTERNAL_VOL_START) {
  587. ubi_err("too large volume ID %d found by scanning",
  588. si->highest_vol_id);
  589. return -EINVAL;
  590. }
  591. for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
  592. cond_resched();
  593. sv = ubi_scan_find_sv(si, i);
  594. vol = ubi->volumes[i];
  595. if (!vol) {
  596. if (sv)
  597. ubi_scan_rm_volume(si, sv);
  598. continue;
  599. }
  600. if (vol->reserved_pebs == 0) {
  601. ubi_assert(i < ubi->vtbl_slots);
  602. if (!sv)
  603. continue;
  604. /*
  605. * During scanning we found a volume which does not
  606. * exist according to the information in the volume
  607. * table. This must have happened due to an unclean
  608. * reboot while the volume was being removed. Discard
  609. * these eraseblocks.
  610. */
  611. ubi_msg("finish volume %d removal", sv->vol_id);
  612. ubi_scan_rm_volume(si, sv);
  613. } else if (sv) {
  614. err = check_sv(vol, sv);
  615. if (err)
  616. return err;
  617. }
  618. }
  619. return 0;
  620. }
  621. /**
  622. * ubi_read_volume_table - read volume table.
  623. * information.
  624. * @ubi: UBI device description object
  625. * @si: scanning information
  626. *
  627. * This function reads volume table, checks it, recover from errors if needed,
  628. * or creates it if needed. Returns zero in case of success and a negative
  629. * error code in case of failure.
  630. */
  631. int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
  632. {
  633. int i, err;
  634. struct ubi_scan_volume *sv;
  635. empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
  636. /*
  637. * The number of supported volumes is limited by the eraseblock size
  638. * and by the UBI_MAX_VOLUMES constant.
  639. */
  640. ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
  641. if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
  642. ubi->vtbl_slots = UBI_MAX_VOLUMES;
  643. ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
  644. ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
  645. sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
  646. if (!sv) {
  647. /*
  648. * No logical eraseblocks belonging to the layout volume were
  649. * found. This could mean that the flash is just empty. In
  650. * this case we create empty layout volume.
  651. *
  652. * But if flash is not empty this must be a corruption or the
  653. * MTD device just contains garbage.
  654. */
  655. if (si->is_empty) {
  656. ubi->vtbl = create_empty_lvol(ubi, si);
  657. if (IS_ERR(ubi->vtbl))
  658. return PTR_ERR(ubi->vtbl);
  659. } else {
  660. ubi_err("the layout volume was not found");
  661. return -EINVAL;
  662. }
  663. } else {
  664. if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
  665. /* This must not happen with proper UBI images */
  666. dbg_err("too many LEBs (%d) in layout volume",
  667. sv->leb_count);
  668. return -EINVAL;
  669. }
  670. ubi->vtbl = process_lvol(ubi, si, sv);
  671. if (IS_ERR(ubi->vtbl))
  672. return PTR_ERR(ubi->vtbl);
  673. }
  674. ubi->avail_pebs = ubi->good_peb_count;
  675. /*
  676. * The layout volume is OK, initialize the corresponding in-RAM data
  677. * structures.
  678. */
  679. err = init_volumes(ubi, si, ubi->vtbl);
  680. if (err)
  681. goto out_free;
  682. /*
  683. * Get sure that the scanning information is consistent to the
  684. * information stored in the volume table.
  685. */
  686. err = check_scanning_info(ubi, si);
  687. if (err)
  688. goto out_free;
  689. return 0;
  690. out_free:
  691. vfree(ubi->vtbl);
  692. for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
  693. if (ubi->volumes[i]) {
  694. kfree(ubi->volumes[i]);
  695. ubi->volumes[i] = NULL;
  696. }
  697. return err;
  698. }
  699. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  700. /**
  701. * paranoid_vtbl_check - check volume table.
  702. * @ubi: UBI device description object
  703. */
  704. static void paranoid_vtbl_check(const struct ubi_device *ubi)
  705. {
  706. if (vtbl_check(ubi, ubi->vtbl)) {
  707. ubi_err("paranoid check failed");
  708. BUG();
  709. }
  710. }
  711. #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */