x86.c 103 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/intel-iommu.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/msr.h>
  38. #include <asm/desc.h>
  39. #include <asm/mtrr.h>
  40. #define MAX_IO_MSRS 256
  41. #define CR0_RESERVED_BITS \
  42. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  43. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  44. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  45. #define CR4_RESERVED_BITS \
  46. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  47. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  48. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  49. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  50. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  51. /* EFER defaults:
  52. * - enable syscall per default because its emulated by KVM
  53. * - enable LME and LMA per default on 64 bit KVM
  54. */
  55. #ifdef CONFIG_X86_64
  56. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  57. #else
  58. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  59. #endif
  60. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  61. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  62. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  63. struct kvm_cpuid_entry2 __user *entries);
  64. struct kvm_x86_ops *kvm_x86_ops;
  65. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  66. struct kvm_stats_debugfs_item debugfs_entries[] = {
  67. { "pf_fixed", VCPU_STAT(pf_fixed) },
  68. { "pf_guest", VCPU_STAT(pf_guest) },
  69. { "tlb_flush", VCPU_STAT(tlb_flush) },
  70. { "invlpg", VCPU_STAT(invlpg) },
  71. { "exits", VCPU_STAT(exits) },
  72. { "io_exits", VCPU_STAT(io_exits) },
  73. { "mmio_exits", VCPU_STAT(mmio_exits) },
  74. { "signal_exits", VCPU_STAT(signal_exits) },
  75. { "irq_window", VCPU_STAT(irq_window_exits) },
  76. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  77. { "halt_exits", VCPU_STAT(halt_exits) },
  78. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  79. { "hypercalls", VCPU_STAT(hypercalls) },
  80. { "request_irq", VCPU_STAT(request_irq_exits) },
  81. { "request_nmi", VCPU_STAT(request_nmi_exits) },
  82. { "irq_exits", VCPU_STAT(irq_exits) },
  83. { "host_state_reload", VCPU_STAT(host_state_reload) },
  84. { "efer_reload", VCPU_STAT(efer_reload) },
  85. { "fpu_reload", VCPU_STAT(fpu_reload) },
  86. { "insn_emulation", VCPU_STAT(insn_emulation) },
  87. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  88. { "irq_injections", VCPU_STAT(irq_injections) },
  89. { "nmi_injections", VCPU_STAT(nmi_injections) },
  90. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  91. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  92. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  93. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  94. { "mmu_flooded", VM_STAT(mmu_flooded) },
  95. { "mmu_recycled", VM_STAT(mmu_recycled) },
  96. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  97. { "mmu_unsync", VM_STAT(mmu_unsync) },
  98. { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
  99. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  100. { "largepages", VM_STAT(lpages) },
  101. { NULL }
  102. };
  103. unsigned long segment_base(u16 selector)
  104. {
  105. struct descriptor_table gdt;
  106. struct desc_struct *d;
  107. unsigned long table_base;
  108. unsigned long v;
  109. if (selector == 0)
  110. return 0;
  111. asm("sgdt %0" : "=m"(gdt));
  112. table_base = gdt.base;
  113. if (selector & 4) { /* from ldt */
  114. u16 ldt_selector;
  115. asm("sldt %0" : "=g"(ldt_selector));
  116. table_base = segment_base(ldt_selector);
  117. }
  118. d = (struct desc_struct *)(table_base + (selector & ~7));
  119. v = d->base0 | ((unsigned long)d->base1 << 16) |
  120. ((unsigned long)d->base2 << 24);
  121. #ifdef CONFIG_X86_64
  122. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  123. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  124. #endif
  125. return v;
  126. }
  127. EXPORT_SYMBOL_GPL(segment_base);
  128. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  129. {
  130. if (irqchip_in_kernel(vcpu->kvm))
  131. return vcpu->arch.apic_base;
  132. else
  133. return vcpu->arch.apic_base;
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  136. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  137. {
  138. /* TODO: reserve bits check */
  139. if (irqchip_in_kernel(vcpu->kvm))
  140. kvm_lapic_set_base(vcpu, data);
  141. else
  142. vcpu->arch.apic_base = data;
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  145. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  146. {
  147. WARN_ON(vcpu->arch.exception.pending);
  148. vcpu->arch.exception.pending = true;
  149. vcpu->arch.exception.has_error_code = false;
  150. vcpu->arch.exception.nr = nr;
  151. }
  152. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  153. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  154. u32 error_code)
  155. {
  156. ++vcpu->stat.pf_guest;
  157. if (vcpu->arch.exception.pending) {
  158. if (vcpu->arch.exception.nr == PF_VECTOR) {
  159. printk(KERN_DEBUG "kvm: inject_page_fault:"
  160. " double fault 0x%lx\n", addr);
  161. vcpu->arch.exception.nr = DF_VECTOR;
  162. vcpu->arch.exception.error_code = 0;
  163. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  164. /* triple fault -> shutdown */
  165. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  166. }
  167. return;
  168. }
  169. vcpu->arch.cr2 = addr;
  170. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  171. }
  172. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  173. {
  174. vcpu->arch.nmi_pending = 1;
  175. }
  176. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  177. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  178. {
  179. WARN_ON(vcpu->arch.exception.pending);
  180. vcpu->arch.exception.pending = true;
  181. vcpu->arch.exception.has_error_code = true;
  182. vcpu->arch.exception.nr = nr;
  183. vcpu->arch.exception.error_code = error_code;
  184. }
  185. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  186. static void __queue_exception(struct kvm_vcpu *vcpu)
  187. {
  188. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  189. vcpu->arch.exception.has_error_code,
  190. vcpu->arch.exception.error_code);
  191. }
  192. /*
  193. * Load the pae pdptrs. Return true is they are all valid.
  194. */
  195. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  196. {
  197. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  198. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  199. int i;
  200. int ret;
  201. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  202. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  203. offset * sizeof(u64), sizeof(pdpte));
  204. if (ret < 0) {
  205. ret = 0;
  206. goto out;
  207. }
  208. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  209. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  210. ret = 0;
  211. goto out;
  212. }
  213. }
  214. ret = 1;
  215. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  216. out:
  217. return ret;
  218. }
  219. EXPORT_SYMBOL_GPL(load_pdptrs);
  220. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  221. {
  222. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  223. bool changed = true;
  224. int r;
  225. if (is_long_mode(vcpu) || !is_pae(vcpu))
  226. return false;
  227. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  228. if (r < 0)
  229. goto out;
  230. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  231. out:
  232. return changed;
  233. }
  234. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  235. {
  236. if (cr0 & CR0_RESERVED_BITS) {
  237. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  238. cr0, vcpu->arch.cr0);
  239. kvm_inject_gp(vcpu, 0);
  240. return;
  241. }
  242. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  243. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  244. kvm_inject_gp(vcpu, 0);
  245. return;
  246. }
  247. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  248. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  249. "and a clear PE flag\n");
  250. kvm_inject_gp(vcpu, 0);
  251. return;
  252. }
  253. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  254. #ifdef CONFIG_X86_64
  255. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  256. int cs_db, cs_l;
  257. if (!is_pae(vcpu)) {
  258. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  259. "in long mode while PAE is disabled\n");
  260. kvm_inject_gp(vcpu, 0);
  261. return;
  262. }
  263. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  264. if (cs_l) {
  265. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  266. "in long mode while CS.L == 1\n");
  267. kvm_inject_gp(vcpu, 0);
  268. return;
  269. }
  270. } else
  271. #endif
  272. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  273. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  274. "reserved bits\n");
  275. kvm_inject_gp(vcpu, 0);
  276. return;
  277. }
  278. }
  279. kvm_x86_ops->set_cr0(vcpu, cr0);
  280. vcpu->arch.cr0 = cr0;
  281. kvm_mmu_sync_global(vcpu);
  282. kvm_mmu_reset_context(vcpu);
  283. return;
  284. }
  285. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  286. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  287. {
  288. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  289. KVMTRACE_1D(LMSW, vcpu,
  290. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  291. handler);
  292. }
  293. EXPORT_SYMBOL_GPL(kvm_lmsw);
  294. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  295. {
  296. if (cr4 & CR4_RESERVED_BITS) {
  297. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  298. kvm_inject_gp(vcpu, 0);
  299. return;
  300. }
  301. if (is_long_mode(vcpu)) {
  302. if (!(cr4 & X86_CR4_PAE)) {
  303. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  304. "in long mode\n");
  305. kvm_inject_gp(vcpu, 0);
  306. return;
  307. }
  308. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  309. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  310. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  311. kvm_inject_gp(vcpu, 0);
  312. return;
  313. }
  314. if (cr4 & X86_CR4_VMXE) {
  315. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  316. kvm_inject_gp(vcpu, 0);
  317. return;
  318. }
  319. kvm_x86_ops->set_cr4(vcpu, cr4);
  320. vcpu->arch.cr4 = cr4;
  321. kvm_mmu_sync_global(vcpu);
  322. kvm_mmu_reset_context(vcpu);
  323. }
  324. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  325. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  326. {
  327. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  328. kvm_mmu_sync_roots(vcpu);
  329. kvm_mmu_flush_tlb(vcpu);
  330. return;
  331. }
  332. if (is_long_mode(vcpu)) {
  333. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  334. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  335. kvm_inject_gp(vcpu, 0);
  336. return;
  337. }
  338. } else {
  339. if (is_pae(vcpu)) {
  340. if (cr3 & CR3_PAE_RESERVED_BITS) {
  341. printk(KERN_DEBUG
  342. "set_cr3: #GP, reserved bits\n");
  343. kvm_inject_gp(vcpu, 0);
  344. return;
  345. }
  346. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  347. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  348. "reserved bits\n");
  349. kvm_inject_gp(vcpu, 0);
  350. return;
  351. }
  352. }
  353. /*
  354. * We don't check reserved bits in nonpae mode, because
  355. * this isn't enforced, and VMware depends on this.
  356. */
  357. }
  358. /*
  359. * Does the new cr3 value map to physical memory? (Note, we
  360. * catch an invalid cr3 even in real-mode, because it would
  361. * cause trouble later on when we turn on paging anyway.)
  362. *
  363. * A real CPU would silently accept an invalid cr3 and would
  364. * attempt to use it - with largely undefined (and often hard
  365. * to debug) behavior on the guest side.
  366. */
  367. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  368. kvm_inject_gp(vcpu, 0);
  369. else {
  370. vcpu->arch.cr3 = cr3;
  371. vcpu->arch.mmu.new_cr3(vcpu);
  372. }
  373. }
  374. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  375. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  376. {
  377. if (cr8 & CR8_RESERVED_BITS) {
  378. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  379. kvm_inject_gp(vcpu, 0);
  380. return;
  381. }
  382. if (irqchip_in_kernel(vcpu->kvm))
  383. kvm_lapic_set_tpr(vcpu, cr8);
  384. else
  385. vcpu->arch.cr8 = cr8;
  386. }
  387. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  388. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  389. {
  390. if (irqchip_in_kernel(vcpu->kvm))
  391. return kvm_lapic_get_cr8(vcpu);
  392. else
  393. return vcpu->arch.cr8;
  394. }
  395. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  396. /*
  397. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  398. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  399. *
  400. * This list is modified at module load time to reflect the
  401. * capabilities of the host cpu.
  402. */
  403. static u32 msrs_to_save[] = {
  404. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  405. MSR_K6_STAR,
  406. #ifdef CONFIG_X86_64
  407. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  408. #endif
  409. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  410. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT
  411. };
  412. static unsigned num_msrs_to_save;
  413. static u32 emulated_msrs[] = {
  414. MSR_IA32_MISC_ENABLE,
  415. };
  416. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  417. {
  418. if (efer & efer_reserved_bits) {
  419. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  420. efer);
  421. kvm_inject_gp(vcpu, 0);
  422. return;
  423. }
  424. if (is_paging(vcpu)
  425. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  426. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  427. kvm_inject_gp(vcpu, 0);
  428. return;
  429. }
  430. kvm_x86_ops->set_efer(vcpu, efer);
  431. efer &= ~EFER_LMA;
  432. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  433. vcpu->arch.shadow_efer = efer;
  434. }
  435. void kvm_enable_efer_bits(u64 mask)
  436. {
  437. efer_reserved_bits &= ~mask;
  438. }
  439. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  440. /*
  441. * Writes msr value into into the appropriate "register".
  442. * Returns 0 on success, non-0 otherwise.
  443. * Assumes vcpu_load() was already called.
  444. */
  445. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  446. {
  447. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  448. }
  449. /*
  450. * Adapt set_msr() to msr_io()'s calling convention
  451. */
  452. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  453. {
  454. return kvm_set_msr(vcpu, index, *data);
  455. }
  456. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  457. {
  458. static int version;
  459. struct pvclock_wall_clock wc;
  460. struct timespec now, sys, boot;
  461. if (!wall_clock)
  462. return;
  463. version++;
  464. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  465. /*
  466. * The guest calculates current wall clock time by adding
  467. * system time (updated by kvm_write_guest_time below) to the
  468. * wall clock specified here. guest system time equals host
  469. * system time for us, thus we must fill in host boot time here.
  470. */
  471. now = current_kernel_time();
  472. ktime_get_ts(&sys);
  473. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  474. wc.sec = boot.tv_sec;
  475. wc.nsec = boot.tv_nsec;
  476. wc.version = version;
  477. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  478. version++;
  479. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  480. }
  481. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  482. {
  483. uint32_t quotient, remainder;
  484. /* Don't try to replace with do_div(), this one calculates
  485. * "(dividend << 32) / divisor" */
  486. __asm__ ( "divl %4"
  487. : "=a" (quotient), "=d" (remainder)
  488. : "0" (0), "1" (dividend), "r" (divisor) );
  489. return quotient;
  490. }
  491. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  492. {
  493. uint64_t nsecs = 1000000000LL;
  494. int32_t shift = 0;
  495. uint64_t tps64;
  496. uint32_t tps32;
  497. tps64 = tsc_khz * 1000LL;
  498. while (tps64 > nsecs*2) {
  499. tps64 >>= 1;
  500. shift--;
  501. }
  502. tps32 = (uint32_t)tps64;
  503. while (tps32 <= (uint32_t)nsecs) {
  504. tps32 <<= 1;
  505. shift++;
  506. }
  507. hv_clock->tsc_shift = shift;
  508. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  509. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  510. __func__, tsc_khz, hv_clock->tsc_shift,
  511. hv_clock->tsc_to_system_mul);
  512. }
  513. static void kvm_write_guest_time(struct kvm_vcpu *v)
  514. {
  515. struct timespec ts;
  516. unsigned long flags;
  517. struct kvm_vcpu_arch *vcpu = &v->arch;
  518. void *shared_kaddr;
  519. if ((!vcpu->time_page))
  520. return;
  521. if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
  522. kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
  523. vcpu->hv_clock_tsc_khz = tsc_khz;
  524. }
  525. /* Keep irq disabled to prevent changes to the clock */
  526. local_irq_save(flags);
  527. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  528. &vcpu->hv_clock.tsc_timestamp);
  529. ktime_get_ts(&ts);
  530. local_irq_restore(flags);
  531. /* With all the info we got, fill in the values */
  532. vcpu->hv_clock.system_time = ts.tv_nsec +
  533. (NSEC_PER_SEC * (u64)ts.tv_sec);
  534. /*
  535. * The interface expects us to write an even number signaling that the
  536. * update is finished. Since the guest won't see the intermediate
  537. * state, we just increase by 2 at the end.
  538. */
  539. vcpu->hv_clock.version += 2;
  540. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  541. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  542. sizeof(vcpu->hv_clock));
  543. kunmap_atomic(shared_kaddr, KM_USER0);
  544. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  545. }
  546. static bool msr_mtrr_valid(unsigned msr)
  547. {
  548. switch (msr) {
  549. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  550. case MSR_MTRRfix64K_00000:
  551. case MSR_MTRRfix16K_80000:
  552. case MSR_MTRRfix16K_A0000:
  553. case MSR_MTRRfix4K_C0000:
  554. case MSR_MTRRfix4K_C8000:
  555. case MSR_MTRRfix4K_D0000:
  556. case MSR_MTRRfix4K_D8000:
  557. case MSR_MTRRfix4K_E0000:
  558. case MSR_MTRRfix4K_E8000:
  559. case MSR_MTRRfix4K_F0000:
  560. case MSR_MTRRfix4K_F8000:
  561. case MSR_MTRRdefType:
  562. case MSR_IA32_CR_PAT:
  563. return true;
  564. case 0x2f8:
  565. return true;
  566. }
  567. return false;
  568. }
  569. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  570. {
  571. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  572. if (!msr_mtrr_valid(msr))
  573. return 1;
  574. if (msr == MSR_MTRRdefType) {
  575. vcpu->arch.mtrr_state.def_type = data;
  576. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  577. } else if (msr == MSR_MTRRfix64K_00000)
  578. p[0] = data;
  579. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  580. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  581. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  582. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  583. else if (msr == MSR_IA32_CR_PAT)
  584. vcpu->arch.pat = data;
  585. else { /* Variable MTRRs */
  586. int idx, is_mtrr_mask;
  587. u64 *pt;
  588. idx = (msr - 0x200) / 2;
  589. is_mtrr_mask = msr - 0x200 - 2 * idx;
  590. if (!is_mtrr_mask)
  591. pt =
  592. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  593. else
  594. pt =
  595. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  596. *pt = data;
  597. }
  598. kvm_mmu_reset_context(vcpu);
  599. return 0;
  600. }
  601. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  602. {
  603. switch (msr) {
  604. case MSR_EFER:
  605. set_efer(vcpu, data);
  606. break;
  607. case MSR_IA32_MC0_STATUS:
  608. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  609. __func__, data);
  610. break;
  611. case MSR_IA32_MCG_STATUS:
  612. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  613. __func__, data);
  614. break;
  615. case MSR_IA32_MCG_CTL:
  616. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  617. __func__, data);
  618. break;
  619. case MSR_IA32_DEBUGCTLMSR:
  620. if (!data) {
  621. /* We support the non-activated case already */
  622. break;
  623. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  624. /* Values other than LBR and BTF are vendor-specific,
  625. thus reserved and should throw a #GP */
  626. return 1;
  627. }
  628. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  629. __func__, data);
  630. break;
  631. case MSR_IA32_UCODE_REV:
  632. case MSR_IA32_UCODE_WRITE:
  633. break;
  634. case 0x200 ... 0x2ff:
  635. return set_msr_mtrr(vcpu, msr, data);
  636. case MSR_IA32_APICBASE:
  637. kvm_set_apic_base(vcpu, data);
  638. break;
  639. case MSR_IA32_MISC_ENABLE:
  640. vcpu->arch.ia32_misc_enable_msr = data;
  641. break;
  642. case MSR_KVM_WALL_CLOCK:
  643. vcpu->kvm->arch.wall_clock = data;
  644. kvm_write_wall_clock(vcpu->kvm, data);
  645. break;
  646. case MSR_KVM_SYSTEM_TIME: {
  647. if (vcpu->arch.time_page) {
  648. kvm_release_page_dirty(vcpu->arch.time_page);
  649. vcpu->arch.time_page = NULL;
  650. }
  651. vcpu->arch.time = data;
  652. /* we verify if the enable bit is set... */
  653. if (!(data & 1))
  654. break;
  655. /* ...but clean it before doing the actual write */
  656. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  657. vcpu->arch.time_page =
  658. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  659. if (is_error_page(vcpu->arch.time_page)) {
  660. kvm_release_page_clean(vcpu->arch.time_page);
  661. vcpu->arch.time_page = NULL;
  662. }
  663. kvm_write_guest_time(vcpu);
  664. break;
  665. }
  666. default:
  667. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  668. return 1;
  669. }
  670. return 0;
  671. }
  672. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  673. /*
  674. * Reads an msr value (of 'msr_index') into 'pdata'.
  675. * Returns 0 on success, non-0 otherwise.
  676. * Assumes vcpu_load() was already called.
  677. */
  678. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  679. {
  680. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  681. }
  682. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  683. {
  684. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  685. if (!msr_mtrr_valid(msr))
  686. return 1;
  687. if (msr == MSR_MTRRdefType)
  688. *pdata = vcpu->arch.mtrr_state.def_type +
  689. (vcpu->arch.mtrr_state.enabled << 10);
  690. else if (msr == MSR_MTRRfix64K_00000)
  691. *pdata = p[0];
  692. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  693. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  694. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  695. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  696. else if (msr == MSR_IA32_CR_PAT)
  697. *pdata = vcpu->arch.pat;
  698. else { /* Variable MTRRs */
  699. int idx, is_mtrr_mask;
  700. u64 *pt;
  701. idx = (msr - 0x200) / 2;
  702. is_mtrr_mask = msr - 0x200 - 2 * idx;
  703. if (!is_mtrr_mask)
  704. pt =
  705. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  706. else
  707. pt =
  708. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  709. *pdata = *pt;
  710. }
  711. return 0;
  712. }
  713. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  714. {
  715. u64 data;
  716. switch (msr) {
  717. case 0xc0010010: /* SYSCFG */
  718. case 0xc0010015: /* HWCR */
  719. case MSR_IA32_PLATFORM_ID:
  720. case MSR_IA32_P5_MC_ADDR:
  721. case MSR_IA32_P5_MC_TYPE:
  722. case MSR_IA32_MC0_CTL:
  723. case MSR_IA32_MCG_STATUS:
  724. case MSR_IA32_MCG_CAP:
  725. case MSR_IA32_MCG_CTL:
  726. case MSR_IA32_MC0_MISC:
  727. case MSR_IA32_MC0_MISC+4:
  728. case MSR_IA32_MC0_MISC+8:
  729. case MSR_IA32_MC0_MISC+12:
  730. case MSR_IA32_MC0_MISC+16:
  731. case MSR_IA32_MC0_MISC+20:
  732. case MSR_IA32_UCODE_REV:
  733. case MSR_IA32_EBL_CR_POWERON:
  734. case MSR_IA32_DEBUGCTLMSR:
  735. case MSR_IA32_LASTBRANCHFROMIP:
  736. case MSR_IA32_LASTBRANCHTOIP:
  737. case MSR_IA32_LASTINTFROMIP:
  738. case MSR_IA32_LASTINTTOIP:
  739. data = 0;
  740. break;
  741. case MSR_MTRRcap:
  742. data = 0x500 | KVM_NR_VAR_MTRR;
  743. break;
  744. case 0x200 ... 0x2ff:
  745. return get_msr_mtrr(vcpu, msr, pdata);
  746. case 0xcd: /* fsb frequency */
  747. data = 3;
  748. break;
  749. case MSR_IA32_APICBASE:
  750. data = kvm_get_apic_base(vcpu);
  751. break;
  752. case MSR_IA32_MISC_ENABLE:
  753. data = vcpu->arch.ia32_misc_enable_msr;
  754. break;
  755. case MSR_IA32_PERF_STATUS:
  756. /* TSC increment by tick */
  757. data = 1000ULL;
  758. /* CPU multiplier */
  759. data |= (((uint64_t)4ULL) << 40);
  760. break;
  761. case MSR_EFER:
  762. data = vcpu->arch.shadow_efer;
  763. break;
  764. case MSR_KVM_WALL_CLOCK:
  765. data = vcpu->kvm->arch.wall_clock;
  766. break;
  767. case MSR_KVM_SYSTEM_TIME:
  768. data = vcpu->arch.time;
  769. break;
  770. default:
  771. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  772. return 1;
  773. }
  774. *pdata = data;
  775. return 0;
  776. }
  777. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  778. /*
  779. * Read or write a bunch of msrs. All parameters are kernel addresses.
  780. *
  781. * @return number of msrs set successfully.
  782. */
  783. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  784. struct kvm_msr_entry *entries,
  785. int (*do_msr)(struct kvm_vcpu *vcpu,
  786. unsigned index, u64 *data))
  787. {
  788. int i;
  789. vcpu_load(vcpu);
  790. down_read(&vcpu->kvm->slots_lock);
  791. for (i = 0; i < msrs->nmsrs; ++i)
  792. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  793. break;
  794. up_read(&vcpu->kvm->slots_lock);
  795. vcpu_put(vcpu);
  796. return i;
  797. }
  798. /*
  799. * Read or write a bunch of msrs. Parameters are user addresses.
  800. *
  801. * @return number of msrs set successfully.
  802. */
  803. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  804. int (*do_msr)(struct kvm_vcpu *vcpu,
  805. unsigned index, u64 *data),
  806. int writeback)
  807. {
  808. struct kvm_msrs msrs;
  809. struct kvm_msr_entry *entries;
  810. int r, n;
  811. unsigned size;
  812. r = -EFAULT;
  813. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  814. goto out;
  815. r = -E2BIG;
  816. if (msrs.nmsrs >= MAX_IO_MSRS)
  817. goto out;
  818. r = -ENOMEM;
  819. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  820. entries = vmalloc(size);
  821. if (!entries)
  822. goto out;
  823. r = -EFAULT;
  824. if (copy_from_user(entries, user_msrs->entries, size))
  825. goto out_free;
  826. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  827. if (r < 0)
  828. goto out_free;
  829. r = -EFAULT;
  830. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  831. goto out_free;
  832. r = n;
  833. out_free:
  834. vfree(entries);
  835. out:
  836. return r;
  837. }
  838. int kvm_dev_ioctl_check_extension(long ext)
  839. {
  840. int r;
  841. switch (ext) {
  842. case KVM_CAP_IRQCHIP:
  843. case KVM_CAP_HLT:
  844. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  845. case KVM_CAP_SET_TSS_ADDR:
  846. case KVM_CAP_EXT_CPUID:
  847. case KVM_CAP_CLOCKSOURCE:
  848. case KVM_CAP_PIT:
  849. case KVM_CAP_NOP_IO_DELAY:
  850. case KVM_CAP_MP_STATE:
  851. case KVM_CAP_SYNC_MMU:
  852. r = 1;
  853. break;
  854. case KVM_CAP_COALESCED_MMIO:
  855. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  856. break;
  857. case KVM_CAP_VAPIC:
  858. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  859. break;
  860. case KVM_CAP_NR_VCPUS:
  861. r = KVM_MAX_VCPUS;
  862. break;
  863. case KVM_CAP_NR_MEMSLOTS:
  864. r = KVM_MEMORY_SLOTS;
  865. break;
  866. case KVM_CAP_PV_MMU:
  867. r = !tdp_enabled;
  868. break;
  869. case KVM_CAP_IOMMU:
  870. r = intel_iommu_found();
  871. break;
  872. default:
  873. r = 0;
  874. break;
  875. }
  876. return r;
  877. }
  878. long kvm_arch_dev_ioctl(struct file *filp,
  879. unsigned int ioctl, unsigned long arg)
  880. {
  881. void __user *argp = (void __user *)arg;
  882. long r;
  883. switch (ioctl) {
  884. case KVM_GET_MSR_INDEX_LIST: {
  885. struct kvm_msr_list __user *user_msr_list = argp;
  886. struct kvm_msr_list msr_list;
  887. unsigned n;
  888. r = -EFAULT;
  889. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  890. goto out;
  891. n = msr_list.nmsrs;
  892. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  893. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  894. goto out;
  895. r = -E2BIG;
  896. if (n < num_msrs_to_save)
  897. goto out;
  898. r = -EFAULT;
  899. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  900. num_msrs_to_save * sizeof(u32)))
  901. goto out;
  902. if (copy_to_user(user_msr_list->indices
  903. + num_msrs_to_save * sizeof(u32),
  904. &emulated_msrs,
  905. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  906. goto out;
  907. r = 0;
  908. break;
  909. }
  910. case KVM_GET_SUPPORTED_CPUID: {
  911. struct kvm_cpuid2 __user *cpuid_arg = argp;
  912. struct kvm_cpuid2 cpuid;
  913. r = -EFAULT;
  914. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  915. goto out;
  916. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  917. cpuid_arg->entries);
  918. if (r)
  919. goto out;
  920. r = -EFAULT;
  921. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  922. goto out;
  923. r = 0;
  924. break;
  925. }
  926. default:
  927. r = -EINVAL;
  928. }
  929. out:
  930. return r;
  931. }
  932. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  933. {
  934. kvm_x86_ops->vcpu_load(vcpu, cpu);
  935. kvm_write_guest_time(vcpu);
  936. }
  937. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  938. {
  939. kvm_x86_ops->vcpu_put(vcpu);
  940. kvm_put_guest_fpu(vcpu);
  941. }
  942. static int is_efer_nx(void)
  943. {
  944. u64 efer;
  945. rdmsrl(MSR_EFER, efer);
  946. return efer & EFER_NX;
  947. }
  948. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  949. {
  950. int i;
  951. struct kvm_cpuid_entry2 *e, *entry;
  952. entry = NULL;
  953. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  954. e = &vcpu->arch.cpuid_entries[i];
  955. if (e->function == 0x80000001) {
  956. entry = e;
  957. break;
  958. }
  959. }
  960. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  961. entry->edx &= ~(1 << 20);
  962. printk(KERN_INFO "kvm: guest NX capability removed\n");
  963. }
  964. }
  965. /* when an old userspace process fills a new kernel module */
  966. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  967. struct kvm_cpuid *cpuid,
  968. struct kvm_cpuid_entry __user *entries)
  969. {
  970. int r, i;
  971. struct kvm_cpuid_entry *cpuid_entries;
  972. r = -E2BIG;
  973. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  974. goto out;
  975. r = -ENOMEM;
  976. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  977. if (!cpuid_entries)
  978. goto out;
  979. r = -EFAULT;
  980. if (copy_from_user(cpuid_entries, entries,
  981. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  982. goto out_free;
  983. for (i = 0; i < cpuid->nent; i++) {
  984. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  985. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  986. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  987. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  988. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  989. vcpu->arch.cpuid_entries[i].index = 0;
  990. vcpu->arch.cpuid_entries[i].flags = 0;
  991. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  992. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  993. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  994. }
  995. vcpu->arch.cpuid_nent = cpuid->nent;
  996. cpuid_fix_nx_cap(vcpu);
  997. r = 0;
  998. out_free:
  999. vfree(cpuid_entries);
  1000. out:
  1001. return r;
  1002. }
  1003. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1004. struct kvm_cpuid2 *cpuid,
  1005. struct kvm_cpuid_entry2 __user *entries)
  1006. {
  1007. int r;
  1008. r = -E2BIG;
  1009. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1010. goto out;
  1011. r = -EFAULT;
  1012. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1013. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1014. goto out;
  1015. vcpu->arch.cpuid_nent = cpuid->nent;
  1016. return 0;
  1017. out:
  1018. return r;
  1019. }
  1020. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1021. struct kvm_cpuid2 *cpuid,
  1022. struct kvm_cpuid_entry2 __user *entries)
  1023. {
  1024. int r;
  1025. r = -E2BIG;
  1026. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1027. goto out;
  1028. r = -EFAULT;
  1029. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1030. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1031. goto out;
  1032. return 0;
  1033. out:
  1034. cpuid->nent = vcpu->arch.cpuid_nent;
  1035. return r;
  1036. }
  1037. static inline u32 bit(int bitno)
  1038. {
  1039. return 1 << (bitno & 31);
  1040. }
  1041. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1042. u32 index)
  1043. {
  1044. entry->function = function;
  1045. entry->index = index;
  1046. cpuid_count(entry->function, entry->index,
  1047. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1048. entry->flags = 0;
  1049. }
  1050. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1051. u32 index, int *nent, int maxnent)
  1052. {
  1053. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  1054. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1055. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1056. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1057. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1058. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  1059. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1060. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  1061. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  1062. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  1063. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  1064. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1065. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1066. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1067. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1068. bit(X86_FEATURE_PGE) |
  1069. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1070. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  1071. bit(X86_FEATURE_SYSCALL) |
  1072. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  1073. #ifdef CONFIG_X86_64
  1074. bit(X86_FEATURE_LM) |
  1075. #endif
  1076. bit(X86_FEATURE_MMXEXT) |
  1077. bit(X86_FEATURE_3DNOWEXT) |
  1078. bit(X86_FEATURE_3DNOW);
  1079. const u32 kvm_supported_word3_x86_features =
  1080. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  1081. const u32 kvm_supported_word6_x86_features =
  1082. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  1083. /* all func 2 cpuid_count() should be called on the same cpu */
  1084. get_cpu();
  1085. do_cpuid_1_ent(entry, function, index);
  1086. ++*nent;
  1087. switch (function) {
  1088. case 0:
  1089. entry->eax = min(entry->eax, (u32)0xb);
  1090. break;
  1091. case 1:
  1092. entry->edx &= kvm_supported_word0_x86_features;
  1093. entry->ecx &= kvm_supported_word3_x86_features;
  1094. break;
  1095. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1096. * may return different values. This forces us to get_cpu() before
  1097. * issuing the first command, and also to emulate this annoying behavior
  1098. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1099. case 2: {
  1100. int t, times = entry->eax & 0xff;
  1101. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1102. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1103. for (t = 1; t < times && *nent < maxnent; ++t) {
  1104. do_cpuid_1_ent(&entry[t], function, 0);
  1105. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1106. ++*nent;
  1107. }
  1108. break;
  1109. }
  1110. /* function 4 and 0xb have additional index. */
  1111. case 4: {
  1112. int i, cache_type;
  1113. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1114. /* read more entries until cache_type is zero */
  1115. for (i = 1; *nent < maxnent; ++i) {
  1116. cache_type = entry[i - 1].eax & 0x1f;
  1117. if (!cache_type)
  1118. break;
  1119. do_cpuid_1_ent(&entry[i], function, i);
  1120. entry[i].flags |=
  1121. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1122. ++*nent;
  1123. }
  1124. break;
  1125. }
  1126. case 0xb: {
  1127. int i, level_type;
  1128. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1129. /* read more entries until level_type is zero */
  1130. for (i = 1; *nent < maxnent; ++i) {
  1131. level_type = entry[i - 1].ecx & 0xff00;
  1132. if (!level_type)
  1133. break;
  1134. do_cpuid_1_ent(&entry[i], function, i);
  1135. entry[i].flags |=
  1136. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1137. ++*nent;
  1138. }
  1139. break;
  1140. }
  1141. case 0x80000000:
  1142. entry->eax = min(entry->eax, 0x8000001a);
  1143. break;
  1144. case 0x80000001:
  1145. entry->edx &= kvm_supported_word1_x86_features;
  1146. entry->ecx &= kvm_supported_word6_x86_features;
  1147. break;
  1148. }
  1149. put_cpu();
  1150. }
  1151. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1152. struct kvm_cpuid_entry2 __user *entries)
  1153. {
  1154. struct kvm_cpuid_entry2 *cpuid_entries;
  1155. int limit, nent = 0, r = -E2BIG;
  1156. u32 func;
  1157. if (cpuid->nent < 1)
  1158. goto out;
  1159. r = -ENOMEM;
  1160. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1161. if (!cpuid_entries)
  1162. goto out;
  1163. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1164. limit = cpuid_entries[0].eax;
  1165. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1166. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1167. &nent, cpuid->nent);
  1168. r = -E2BIG;
  1169. if (nent >= cpuid->nent)
  1170. goto out_free;
  1171. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1172. limit = cpuid_entries[nent - 1].eax;
  1173. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1174. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1175. &nent, cpuid->nent);
  1176. r = -EFAULT;
  1177. if (copy_to_user(entries, cpuid_entries,
  1178. nent * sizeof(struct kvm_cpuid_entry2)))
  1179. goto out_free;
  1180. cpuid->nent = nent;
  1181. r = 0;
  1182. out_free:
  1183. vfree(cpuid_entries);
  1184. out:
  1185. return r;
  1186. }
  1187. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1188. struct kvm_lapic_state *s)
  1189. {
  1190. vcpu_load(vcpu);
  1191. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1192. vcpu_put(vcpu);
  1193. return 0;
  1194. }
  1195. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1196. struct kvm_lapic_state *s)
  1197. {
  1198. vcpu_load(vcpu);
  1199. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1200. kvm_apic_post_state_restore(vcpu);
  1201. vcpu_put(vcpu);
  1202. return 0;
  1203. }
  1204. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1205. struct kvm_interrupt *irq)
  1206. {
  1207. if (irq->irq < 0 || irq->irq >= 256)
  1208. return -EINVAL;
  1209. if (irqchip_in_kernel(vcpu->kvm))
  1210. return -ENXIO;
  1211. vcpu_load(vcpu);
  1212. set_bit(irq->irq, vcpu->arch.irq_pending);
  1213. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1214. vcpu_put(vcpu);
  1215. return 0;
  1216. }
  1217. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1218. {
  1219. vcpu_load(vcpu);
  1220. kvm_inject_nmi(vcpu);
  1221. vcpu_put(vcpu);
  1222. return 0;
  1223. }
  1224. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1225. struct kvm_tpr_access_ctl *tac)
  1226. {
  1227. if (tac->flags)
  1228. return -EINVAL;
  1229. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1230. return 0;
  1231. }
  1232. long kvm_arch_vcpu_ioctl(struct file *filp,
  1233. unsigned int ioctl, unsigned long arg)
  1234. {
  1235. struct kvm_vcpu *vcpu = filp->private_data;
  1236. void __user *argp = (void __user *)arg;
  1237. int r;
  1238. struct kvm_lapic_state *lapic = NULL;
  1239. switch (ioctl) {
  1240. case KVM_GET_LAPIC: {
  1241. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1242. r = -ENOMEM;
  1243. if (!lapic)
  1244. goto out;
  1245. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1246. if (r)
  1247. goto out;
  1248. r = -EFAULT;
  1249. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1250. goto out;
  1251. r = 0;
  1252. break;
  1253. }
  1254. case KVM_SET_LAPIC: {
  1255. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1256. r = -ENOMEM;
  1257. if (!lapic)
  1258. goto out;
  1259. r = -EFAULT;
  1260. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1261. goto out;
  1262. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1263. if (r)
  1264. goto out;
  1265. r = 0;
  1266. break;
  1267. }
  1268. case KVM_INTERRUPT: {
  1269. struct kvm_interrupt irq;
  1270. r = -EFAULT;
  1271. if (copy_from_user(&irq, argp, sizeof irq))
  1272. goto out;
  1273. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1274. if (r)
  1275. goto out;
  1276. r = 0;
  1277. break;
  1278. }
  1279. case KVM_NMI: {
  1280. r = kvm_vcpu_ioctl_nmi(vcpu);
  1281. if (r)
  1282. goto out;
  1283. r = 0;
  1284. break;
  1285. }
  1286. case KVM_SET_CPUID: {
  1287. struct kvm_cpuid __user *cpuid_arg = argp;
  1288. struct kvm_cpuid cpuid;
  1289. r = -EFAULT;
  1290. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1291. goto out;
  1292. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1293. if (r)
  1294. goto out;
  1295. break;
  1296. }
  1297. case KVM_SET_CPUID2: {
  1298. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1299. struct kvm_cpuid2 cpuid;
  1300. r = -EFAULT;
  1301. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1302. goto out;
  1303. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1304. cpuid_arg->entries);
  1305. if (r)
  1306. goto out;
  1307. break;
  1308. }
  1309. case KVM_GET_CPUID2: {
  1310. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1311. struct kvm_cpuid2 cpuid;
  1312. r = -EFAULT;
  1313. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1314. goto out;
  1315. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1316. cpuid_arg->entries);
  1317. if (r)
  1318. goto out;
  1319. r = -EFAULT;
  1320. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1321. goto out;
  1322. r = 0;
  1323. break;
  1324. }
  1325. case KVM_GET_MSRS:
  1326. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1327. break;
  1328. case KVM_SET_MSRS:
  1329. r = msr_io(vcpu, argp, do_set_msr, 0);
  1330. break;
  1331. case KVM_TPR_ACCESS_REPORTING: {
  1332. struct kvm_tpr_access_ctl tac;
  1333. r = -EFAULT;
  1334. if (copy_from_user(&tac, argp, sizeof tac))
  1335. goto out;
  1336. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1337. if (r)
  1338. goto out;
  1339. r = -EFAULT;
  1340. if (copy_to_user(argp, &tac, sizeof tac))
  1341. goto out;
  1342. r = 0;
  1343. break;
  1344. };
  1345. case KVM_SET_VAPIC_ADDR: {
  1346. struct kvm_vapic_addr va;
  1347. r = -EINVAL;
  1348. if (!irqchip_in_kernel(vcpu->kvm))
  1349. goto out;
  1350. r = -EFAULT;
  1351. if (copy_from_user(&va, argp, sizeof va))
  1352. goto out;
  1353. r = 0;
  1354. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1355. break;
  1356. }
  1357. default:
  1358. r = -EINVAL;
  1359. }
  1360. out:
  1361. if (lapic)
  1362. kfree(lapic);
  1363. return r;
  1364. }
  1365. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1366. {
  1367. int ret;
  1368. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1369. return -1;
  1370. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1371. return ret;
  1372. }
  1373. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1374. u32 kvm_nr_mmu_pages)
  1375. {
  1376. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1377. return -EINVAL;
  1378. down_write(&kvm->slots_lock);
  1379. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1380. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1381. up_write(&kvm->slots_lock);
  1382. return 0;
  1383. }
  1384. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1385. {
  1386. return kvm->arch.n_alloc_mmu_pages;
  1387. }
  1388. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1389. {
  1390. int i;
  1391. struct kvm_mem_alias *alias;
  1392. for (i = 0; i < kvm->arch.naliases; ++i) {
  1393. alias = &kvm->arch.aliases[i];
  1394. if (gfn >= alias->base_gfn
  1395. && gfn < alias->base_gfn + alias->npages)
  1396. return alias->target_gfn + gfn - alias->base_gfn;
  1397. }
  1398. return gfn;
  1399. }
  1400. /*
  1401. * Set a new alias region. Aliases map a portion of physical memory into
  1402. * another portion. This is useful for memory windows, for example the PC
  1403. * VGA region.
  1404. */
  1405. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1406. struct kvm_memory_alias *alias)
  1407. {
  1408. int r, n;
  1409. struct kvm_mem_alias *p;
  1410. r = -EINVAL;
  1411. /* General sanity checks */
  1412. if (alias->memory_size & (PAGE_SIZE - 1))
  1413. goto out;
  1414. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1415. goto out;
  1416. if (alias->slot >= KVM_ALIAS_SLOTS)
  1417. goto out;
  1418. if (alias->guest_phys_addr + alias->memory_size
  1419. < alias->guest_phys_addr)
  1420. goto out;
  1421. if (alias->target_phys_addr + alias->memory_size
  1422. < alias->target_phys_addr)
  1423. goto out;
  1424. down_write(&kvm->slots_lock);
  1425. spin_lock(&kvm->mmu_lock);
  1426. p = &kvm->arch.aliases[alias->slot];
  1427. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1428. p->npages = alias->memory_size >> PAGE_SHIFT;
  1429. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1430. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1431. if (kvm->arch.aliases[n - 1].npages)
  1432. break;
  1433. kvm->arch.naliases = n;
  1434. spin_unlock(&kvm->mmu_lock);
  1435. kvm_mmu_zap_all(kvm);
  1436. up_write(&kvm->slots_lock);
  1437. return 0;
  1438. out:
  1439. return r;
  1440. }
  1441. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1442. {
  1443. int r;
  1444. r = 0;
  1445. switch (chip->chip_id) {
  1446. case KVM_IRQCHIP_PIC_MASTER:
  1447. memcpy(&chip->chip.pic,
  1448. &pic_irqchip(kvm)->pics[0],
  1449. sizeof(struct kvm_pic_state));
  1450. break;
  1451. case KVM_IRQCHIP_PIC_SLAVE:
  1452. memcpy(&chip->chip.pic,
  1453. &pic_irqchip(kvm)->pics[1],
  1454. sizeof(struct kvm_pic_state));
  1455. break;
  1456. case KVM_IRQCHIP_IOAPIC:
  1457. memcpy(&chip->chip.ioapic,
  1458. ioapic_irqchip(kvm),
  1459. sizeof(struct kvm_ioapic_state));
  1460. break;
  1461. default:
  1462. r = -EINVAL;
  1463. break;
  1464. }
  1465. return r;
  1466. }
  1467. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1468. {
  1469. int r;
  1470. r = 0;
  1471. switch (chip->chip_id) {
  1472. case KVM_IRQCHIP_PIC_MASTER:
  1473. memcpy(&pic_irqchip(kvm)->pics[0],
  1474. &chip->chip.pic,
  1475. sizeof(struct kvm_pic_state));
  1476. break;
  1477. case KVM_IRQCHIP_PIC_SLAVE:
  1478. memcpy(&pic_irqchip(kvm)->pics[1],
  1479. &chip->chip.pic,
  1480. sizeof(struct kvm_pic_state));
  1481. break;
  1482. case KVM_IRQCHIP_IOAPIC:
  1483. memcpy(ioapic_irqchip(kvm),
  1484. &chip->chip.ioapic,
  1485. sizeof(struct kvm_ioapic_state));
  1486. break;
  1487. default:
  1488. r = -EINVAL;
  1489. break;
  1490. }
  1491. kvm_pic_update_irq(pic_irqchip(kvm));
  1492. return r;
  1493. }
  1494. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1495. {
  1496. int r = 0;
  1497. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1498. return r;
  1499. }
  1500. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1501. {
  1502. int r = 0;
  1503. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1504. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1505. return r;
  1506. }
  1507. /*
  1508. * Get (and clear) the dirty memory log for a memory slot.
  1509. */
  1510. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1511. struct kvm_dirty_log *log)
  1512. {
  1513. int r;
  1514. int n;
  1515. struct kvm_memory_slot *memslot;
  1516. int is_dirty = 0;
  1517. down_write(&kvm->slots_lock);
  1518. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1519. if (r)
  1520. goto out;
  1521. /* If nothing is dirty, don't bother messing with page tables. */
  1522. if (is_dirty) {
  1523. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1524. kvm_flush_remote_tlbs(kvm);
  1525. memslot = &kvm->memslots[log->slot];
  1526. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1527. memset(memslot->dirty_bitmap, 0, n);
  1528. }
  1529. r = 0;
  1530. out:
  1531. up_write(&kvm->slots_lock);
  1532. return r;
  1533. }
  1534. long kvm_arch_vm_ioctl(struct file *filp,
  1535. unsigned int ioctl, unsigned long arg)
  1536. {
  1537. struct kvm *kvm = filp->private_data;
  1538. void __user *argp = (void __user *)arg;
  1539. int r = -EINVAL;
  1540. /*
  1541. * This union makes it completely explicit to gcc-3.x
  1542. * that these two variables' stack usage should be
  1543. * combined, not added together.
  1544. */
  1545. union {
  1546. struct kvm_pit_state ps;
  1547. struct kvm_memory_alias alias;
  1548. } u;
  1549. switch (ioctl) {
  1550. case KVM_SET_TSS_ADDR:
  1551. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1552. if (r < 0)
  1553. goto out;
  1554. break;
  1555. case KVM_SET_MEMORY_REGION: {
  1556. struct kvm_memory_region kvm_mem;
  1557. struct kvm_userspace_memory_region kvm_userspace_mem;
  1558. r = -EFAULT;
  1559. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1560. goto out;
  1561. kvm_userspace_mem.slot = kvm_mem.slot;
  1562. kvm_userspace_mem.flags = kvm_mem.flags;
  1563. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1564. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1565. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1566. if (r)
  1567. goto out;
  1568. break;
  1569. }
  1570. case KVM_SET_NR_MMU_PAGES:
  1571. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1572. if (r)
  1573. goto out;
  1574. break;
  1575. case KVM_GET_NR_MMU_PAGES:
  1576. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1577. break;
  1578. case KVM_SET_MEMORY_ALIAS:
  1579. r = -EFAULT;
  1580. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1581. goto out;
  1582. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1583. if (r)
  1584. goto out;
  1585. break;
  1586. case KVM_CREATE_IRQCHIP:
  1587. r = -ENOMEM;
  1588. kvm->arch.vpic = kvm_create_pic(kvm);
  1589. if (kvm->arch.vpic) {
  1590. r = kvm_ioapic_init(kvm);
  1591. if (r) {
  1592. kfree(kvm->arch.vpic);
  1593. kvm->arch.vpic = NULL;
  1594. goto out;
  1595. }
  1596. } else
  1597. goto out;
  1598. break;
  1599. case KVM_CREATE_PIT:
  1600. r = -ENOMEM;
  1601. kvm->arch.vpit = kvm_create_pit(kvm);
  1602. if (kvm->arch.vpit)
  1603. r = 0;
  1604. break;
  1605. case KVM_IRQ_LINE: {
  1606. struct kvm_irq_level irq_event;
  1607. r = -EFAULT;
  1608. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1609. goto out;
  1610. if (irqchip_in_kernel(kvm)) {
  1611. mutex_lock(&kvm->lock);
  1612. kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1613. irq_event.irq, irq_event.level);
  1614. mutex_unlock(&kvm->lock);
  1615. r = 0;
  1616. }
  1617. break;
  1618. }
  1619. case KVM_GET_IRQCHIP: {
  1620. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1621. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1622. r = -ENOMEM;
  1623. if (!chip)
  1624. goto out;
  1625. r = -EFAULT;
  1626. if (copy_from_user(chip, argp, sizeof *chip))
  1627. goto get_irqchip_out;
  1628. r = -ENXIO;
  1629. if (!irqchip_in_kernel(kvm))
  1630. goto get_irqchip_out;
  1631. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1632. if (r)
  1633. goto get_irqchip_out;
  1634. r = -EFAULT;
  1635. if (copy_to_user(argp, chip, sizeof *chip))
  1636. goto get_irqchip_out;
  1637. r = 0;
  1638. get_irqchip_out:
  1639. kfree(chip);
  1640. if (r)
  1641. goto out;
  1642. break;
  1643. }
  1644. case KVM_SET_IRQCHIP: {
  1645. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1646. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1647. r = -ENOMEM;
  1648. if (!chip)
  1649. goto out;
  1650. r = -EFAULT;
  1651. if (copy_from_user(chip, argp, sizeof *chip))
  1652. goto set_irqchip_out;
  1653. r = -ENXIO;
  1654. if (!irqchip_in_kernel(kvm))
  1655. goto set_irqchip_out;
  1656. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1657. if (r)
  1658. goto set_irqchip_out;
  1659. r = 0;
  1660. set_irqchip_out:
  1661. kfree(chip);
  1662. if (r)
  1663. goto out;
  1664. break;
  1665. }
  1666. case KVM_GET_PIT: {
  1667. r = -EFAULT;
  1668. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1669. goto out;
  1670. r = -ENXIO;
  1671. if (!kvm->arch.vpit)
  1672. goto out;
  1673. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1674. if (r)
  1675. goto out;
  1676. r = -EFAULT;
  1677. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1678. goto out;
  1679. r = 0;
  1680. break;
  1681. }
  1682. case KVM_SET_PIT: {
  1683. r = -EFAULT;
  1684. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1685. goto out;
  1686. r = -ENXIO;
  1687. if (!kvm->arch.vpit)
  1688. goto out;
  1689. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1690. if (r)
  1691. goto out;
  1692. r = 0;
  1693. break;
  1694. }
  1695. default:
  1696. ;
  1697. }
  1698. out:
  1699. return r;
  1700. }
  1701. static void kvm_init_msr_list(void)
  1702. {
  1703. u32 dummy[2];
  1704. unsigned i, j;
  1705. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1706. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1707. continue;
  1708. if (j < i)
  1709. msrs_to_save[j] = msrs_to_save[i];
  1710. j++;
  1711. }
  1712. num_msrs_to_save = j;
  1713. }
  1714. /*
  1715. * Only apic need an MMIO device hook, so shortcut now..
  1716. */
  1717. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1718. gpa_t addr, int len,
  1719. int is_write)
  1720. {
  1721. struct kvm_io_device *dev;
  1722. if (vcpu->arch.apic) {
  1723. dev = &vcpu->arch.apic->dev;
  1724. if (dev->in_range(dev, addr, len, is_write))
  1725. return dev;
  1726. }
  1727. return NULL;
  1728. }
  1729. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1730. gpa_t addr, int len,
  1731. int is_write)
  1732. {
  1733. struct kvm_io_device *dev;
  1734. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1735. if (dev == NULL)
  1736. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1737. is_write);
  1738. return dev;
  1739. }
  1740. int emulator_read_std(unsigned long addr,
  1741. void *val,
  1742. unsigned int bytes,
  1743. struct kvm_vcpu *vcpu)
  1744. {
  1745. void *data = val;
  1746. int r = X86EMUL_CONTINUE;
  1747. while (bytes) {
  1748. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1749. unsigned offset = addr & (PAGE_SIZE-1);
  1750. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1751. int ret;
  1752. if (gpa == UNMAPPED_GVA) {
  1753. r = X86EMUL_PROPAGATE_FAULT;
  1754. goto out;
  1755. }
  1756. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1757. if (ret < 0) {
  1758. r = X86EMUL_UNHANDLEABLE;
  1759. goto out;
  1760. }
  1761. bytes -= tocopy;
  1762. data += tocopy;
  1763. addr += tocopy;
  1764. }
  1765. out:
  1766. return r;
  1767. }
  1768. EXPORT_SYMBOL_GPL(emulator_read_std);
  1769. static int emulator_read_emulated(unsigned long addr,
  1770. void *val,
  1771. unsigned int bytes,
  1772. struct kvm_vcpu *vcpu)
  1773. {
  1774. struct kvm_io_device *mmio_dev;
  1775. gpa_t gpa;
  1776. if (vcpu->mmio_read_completed) {
  1777. memcpy(val, vcpu->mmio_data, bytes);
  1778. vcpu->mmio_read_completed = 0;
  1779. return X86EMUL_CONTINUE;
  1780. }
  1781. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1782. /* For APIC access vmexit */
  1783. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1784. goto mmio;
  1785. if (emulator_read_std(addr, val, bytes, vcpu)
  1786. == X86EMUL_CONTINUE)
  1787. return X86EMUL_CONTINUE;
  1788. if (gpa == UNMAPPED_GVA)
  1789. return X86EMUL_PROPAGATE_FAULT;
  1790. mmio:
  1791. /*
  1792. * Is this MMIO handled locally?
  1793. */
  1794. mutex_lock(&vcpu->kvm->lock);
  1795. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1796. if (mmio_dev) {
  1797. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1798. mutex_unlock(&vcpu->kvm->lock);
  1799. return X86EMUL_CONTINUE;
  1800. }
  1801. mutex_unlock(&vcpu->kvm->lock);
  1802. vcpu->mmio_needed = 1;
  1803. vcpu->mmio_phys_addr = gpa;
  1804. vcpu->mmio_size = bytes;
  1805. vcpu->mmio_is_write = 0;
  1806. return X86EMUL_UNHANDLEABLE;
  1807. }
  1808. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1809. const void *val, int bytes)
  1810. {
  1811. int ret;
  1812. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1813. if (ret < 0)
  1814. return 0;
  1815. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  1816. return 1;
  1817. }
  1818. static int emulator_write_emulated_onepage(unsigned long addr,
  1819. const void *val,
  1820. unsigned int bytes,
  1821. struct kvm_vcpu *vcpu)
  1822. {
  1823. struct kvm_io_device *mmio_dev;
  1824. gpa_t gpa;
  1825. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1826. if (gpa == UNMAPPED_GVA) {
  1827. kvm_inject_page_fault(vcpu, addr, 2);
  1828. return X86EMUL_PROPAGATE_FAULT;
  1829. }
  1830. /* For APIC access vmexit */
  1831. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1832. goto mmio;
  1833. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1834. return X86EMUL_CONTINUE;
  1835. mmio:
  1836. /*
  1837. * Is this MMIO handled locally?
  1838. */
  1839. mutex_lock(&vcpu->kvm->lock);
  1840. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1841. if (mmio_dev) {
  1842. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1843. mutex_unlock(&vcpu->kvm->lock);
  1844. return X86EMUL_CONTINUE;
  1845. }
  1846. mutex_unlock(&vcpu->kvm->lock);
  1847. vcpu->mmio_needed = 1;
  1848. vcpu->mmio_phys_addr = gpa;
  1849. vcpu->mmio_size = bytes;
  1850. vcpu->mmio_is_write = 1;
  1851. memcpy(vcpu->mmio_data, val, bytes);
  1852. return X86EMUL_CONTINUE;
  1853. }
  1854. int emulator_write_emulated(unsigned long addr,
  1855. const void *val,
  1856. unsigned int bytes,
  1857. struct kvm_vcpu *vcpu)
  1858. {
  1859. /* Crossing a page boundary? */
  1860. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1861. int rc, now;
  1862. now = -addr & ~PAGE_MASK;
  1863. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1864. if (rc != X86EMUL_CONTINUE)
  1865. return rc;
  1866. addr += now;
  1867. val += now;
  1868. bytes -= now;
  1869. }
  1870. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1871. }
  1872. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1873. static int emulator_cmpxchg_emulated(unsigned long addr,
  1874. const void *old,
  1875. const void *new,
  1876. unsigned int bytes,
  1877. struct kvm_vcpu *vcpu)
  1878. {
  1879. static int reported;
  1880. if (!reported) {
  1881. reported = 1;
  1882. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1883. }
  1884. #ifndef CONFIG_X86_64
  1885. /* guests cmpxchg8b have to be emulated atomically */
  1886. if (bytes == 8) {
  1887. gpa_t gpa;
  1888. struct page *page;
  1889. char *kaddr;
  1890. u64 val;
  1891. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1892. if (gpa == UNMAPPED_GVA ||
  1893. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1894. goto emul_write;
  1895. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1896. goto emul_write;
  1897. val = *(u64 *)new;
  1898. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1899. kaddr = kmap_atomic(page, KM_USER0);
  1900. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1901. kunmap_atomic(kaddr, KM_USER0);
  1902. kvm_release_page_dirty(page);
  1903. }
  1904. emul_write:
  1905. #endif
  1906. return emulator_write_emulated(addr, new, bytes, vcpu);
  1907. }
  1908. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1909. {
  1910. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1911. }
  1912. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1913. {
  1914. kvm_mmu_invlpg(vcpu, address);
  1915. return X86EMUL_CONTINUE;
  1916. }
  1917. int emulate_clts(struct kvm_vcpu *vcpu)
  1918. {
  1919. KVMTRACE_0D(CLTS, vcpu, handler);
  1920. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1921. return X86EMUL_CONTINUE;
  1922. }
  1923. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1924. {
  1925. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1926. switch (dr) {
  1927. case 0 ... 3:
  1928. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1929. return X86EMUL_CONTINUE;
  1930. default:
  1931. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1932. return X86EMUL_UNHANDLEABLE;
  1933. }
  1934. }
  1935. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1936. {
  1937. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1938. int exception;
  1939. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1940. if (exception) {
  1941. /* FIXME: better handling */
  1942. return X86EMUL_UNHANDLEABLE;
  1943. }
  1944. return X86EMUL_CONTINUE;
  1945. }
  1946. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1947. {
  1948. u8 opcodes[4];
  1949. unsigned long rip = kvm_rip_read(vcpu);
  1950. unsigned long rip_linear;
  1951. if (!printk_ratelimit())
  1952. return;
  1953. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1954. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1955. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1956. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1957. }
  1958. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1959. static struct x86_emulate_ops emulate_ops = {
  1960. .read_std = emulator_read_std,
  1961. .read_emulated = emulator_read_emulated,
  1962. .write_emulated = emulator_write_emulated,
  1963. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1964. };
  1965. static void cache_all_regs(struct kvm_vcpu *vcpu)
  1966. {
  1967. kvm_register_read(vcpu, VCPU_REGS_RAX);
  1968. kvm_register_read(vcpu, VCPU_REGS_RSP);
  1969. kvm_register_read(vcpu, VCPU_REGS_RIP);
  1970. vcpu->arch.regs_dirty = ~0;
  1971. }
  1972. int emulate_instruction(struct kvm_vcpu *vcpu,
  1973. struct kvm_run *run,
  1974. unsigned long cr2,
  1975. u16 error_code,
  1976. int emulation_type)
  1977. {
  1978. int r;
  1979. struct decode_cache *c;
  1980. kvm_clear_exception_queue(vcpu);
  1981. vcpu->arch.mmio_fault_cr2 = cr2;
  1982. /*
  1983. * TODO: fix x86_emulate.c to use guest_read/write_register
  1984. * instead of direct ->regs accesses, can save hundred cycles
  1985. * on Intel for instructions that don't read/change RSP, for
  1986. * for example.
  1987. */
  1988. cache_all_regs(vcpu);
  1989. vcpu->mmio_is_write = 0;
  1990. vcpu->arch.pio.string = 0;
  1991. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1992. int cs_db, cs_l;
  1993. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1994. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1995. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1996. vcpu->arch.emulate_ctxt.mode =
  1997. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1998. ? X86EMUL_MODE_REAL : cs_l
  1999. ? X86EMUL_MODE_PROT64 : cs_db
  2000. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2001. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2002. /* Reject the instructions other than VMCALL/VMMCALL when
  2003. * try to emulate invalid opcode */
  2004. c = &vcpu->arch.emulate_ctxt.decode;
  2005. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2006. (!(c->twobyte && c->b == 0x01 &&
  2007. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2008. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2009. return EMULATE_FAIL;
  2010. ++vcpu->stat.insn_emulation;
  2011. if (r) {
  2012. ++vcpu->stat.insn_emulation_fail;
  2013. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2014. return EMULATE_DONE;
  2015. return EMULATE_FAIL;
  2016. }
  2017. }
  2018. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2019. if (vcpu->arch.pio.string)
  2020. return EMULATE_DO_MMIO;
  2021. if ((r || vcpu->mmio_is_write) && run) {
  2022. run->exit_reason = KVM_EXIT_MMIO;
  2023. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2024. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2025. run->mmio.len = vcpu->mmio_size;
  2026. run->mmio.is_write = vcpu->mmio_is_write;
  2027. }
  2028. if (r) {
  2029. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2030. return EMULATE_DONE;
  2031. if (!vcpu->mmio_needed) {
  2032. kvm_report_emulation_failure(vcpu, "mmio");
  2033. return EMULATE_FAIL;
  2034. }
  2035. return EMULATE_DO_MMIO;
  2036. }
  2037. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2038. if (vcpu->mmio_is_write) {
  2039. vcpu->mmio_needed = 0;
  2040. return EMULATE_DO_MMIO;
  2041. }
  2042. return EMULATE_DONE;
  2043. }
  2044. EXPORT_SYMBOL_GPL(emulate_instruction);
  2045. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  2046. {
  2047. int i;
  2048. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  2049. if (vcpu->arch.pio.guest_pages[i]) {
  2050. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  2051. vcpu->arch.pio.guest_pages[i] = NULL;
  2052. }
  2053. }
  2054. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2055. {
  2056. void *p = vcpu->arch.pio_data;
  2057. void *q;
  2058. unsigned bytes;
  2059. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  2060. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  2061. PAGE_KERNEL);
  2062. if (!q) {
  2063. free_pio_guest_pages(vcpu);
  2064. return -ENOMEM;
  2065. }
  2066. q += vcpu->arch.pio.guest_page_offset;
  2067. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2068. if (vcpu->arch.pio.in)
  2069. memcpy(q, p, bytes);
  2070. else
  2071. memcpy(p, q, bytes);
  2072. q -= vcpu->arch.pio.guest_page_offset;
  2073. vunmap(q);
  2074. free_pio_guest_pages(vcpu);
  2075. return 0;
  2076. }
  2077. int complete_pio(struct kvm_vcpu *vcpu)
  2078. {
  2079. struct kvm_pio_request *io = &vcpu->arch.pio;
  2080. long delta;
  2081. int r;
  2082. unsigned long val;
  2083. if (!io->string) {
  2084. if (io->in) {
  2085. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2086. memcpy(&val, vcpu->arch.pio_data, io->size);
  2087. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2088. }
  2089. } else {
  2090. if (io->in) {
  2091. r = pio_copy_data(vcpu);
  2092. if (r)
  2093. return r;
  2094. }
  2095. delta = 1;
  2096. if (io->rep) {
  2097. delta *= io->cur_count;
  2098. /*
  2099. * The size of the register should really depend on
  2100. * current address size.
  2101. */
  2102. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2103. val -= delta;
  2104. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2105. }
  2106. if (io->down)
  2107. delta = -delta;
  2108. delta *= io->size;
  2109. if (io->in) {
  2110. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2111. val += delta;
  2112. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2113. } else {
  2114. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2115. val += delta;
  2116. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2117. }
  2118. }
  2119. io->count -= io->cur_count;
  2120. io->cur_count = 0;
  2121. return 0;
  2122. }
  2123. static void kernel_pio(struct kvm_io_device *pio_dev,
  2124. struct kvm_vcpu *vcpu,
  2125. void *pd)
  2126. {
  2127. /* TODO: String I/O for in kernel device */
  2128. mutex_lock(&vcpu->kvm->lock);
  2129. if (vcpu->arch.pio.in)
  2130. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2131. vcpu->arch.pio.size,
  2132. pd);
  2133. else
  2134. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2135. vcpu->arch.pio.size,
  2136. pd);
  2137. mutex_unlock(&vcpu->kvm->lock);
  2138. }
  2139. static void pio_string_write(struct kvm_io_device *pio_dev,
  2140. struct kvm_vcpu *vcpu)
  2141. {
  2142. struct kvm_pio_request *io = &vcpu->arch.pio;
  2143. void *pd = vcpu->arch.pio_data;
  2144. int i;
  2145. mutex_lock(&vcpu->kvm->lock);
  2146. for (i = 0; i < io->cur_count; i++) {
  2147. kvm_iodevice_write(pio_dev, io->port,
  2148. io->size,
  2149. pd);
  2150. pd += io->size;
  2151. }
  2152. mutex_unlock(&vcpu->kvm->lock);
  2153. }
  2154. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2155. gpa_t addr, int len,
  2156. int is_write)
  2157. {
  2158. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2159. }
  2160. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2161. int size, unsigned port)
  2162. {
  2163. struct kvm_io_device *pio_dev;
  2164. unsigned long val;
  2165. vcpu->run->exit_reason = KVM_EXIT_IO;
  2166. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2167. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2168. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2169. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2170. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2171. vcpu->arch.pio.in = in;
  2172. vcpu->arch.pio.string = 0;
  2173. vcpu->arch.pio.down = 0;
  2174. vcpu->arch.pio.guest_page_offset = 0;
  2175. vcpu->arch.pio.rep = 0;
  2176. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2177. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2178. handler);
  2179. else
  2180. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2181. handler);
  2182. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2183. memcpy(vcpu->arch.pio_data, &val, 4);
  2184. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2185. if (pio_dev) {
  2186. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2187. complete_pio(vcpu);
  2188. return 1;
  2189. }
  2190. return 0;
  2191. }
  2192. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2193. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2194. int size, unsigned long count, int down,
  2195. gva_t address, int rep, unsigned port)
  2196. {
  2197. unsigned now, in_page;
  2198. int i, ret = 0;
  2199. int nr_pages = 1;
  2200. struct page *page;
  2201. struct kvm_io_device *pio_dev;
  2202. vcpu->run->exit_reason = KVM_EXIT_IO;
  2203. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2204. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2205. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2206. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2207. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2208. vcpu->arch.pio.in = in;
  2209. vcpu->arch.pio.string = 1;
  2210. vcpu->arch.pio.down = down;
  2211. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2212. vcpu->arch.pio.rep = rep;
  2213. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2214. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2215. handler);
  2216. else
  2217. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2218. handler);
  2219. if (!count) {
  2220. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2221. return 1;
  2222. }
  2223. if (!down)
  2224. in_page = PAGE_SIZE - offset_in_page(address);
  2225. else
  2226. in_page = offset_in_page(address) + size;
  2227. now = min(count, (unsigned long)in_page / size);
  2228. if (!now) {
  2229. /*
  2230. * String I/O straddles page boundary. Pin two guest pages
  2231. * so that we satisfy atomicity constraints. Do just one
  2232. * transaction to avoid complexity.
  2233. */
  2234. nr_pages = 2;
  2235. now = 1;
  2236. }
  2237. if (down) {
  2238. /*
  2239. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2240. */
  2241. pr_unimpl(vcpu, "guest string pio down\n");
  2242. kvm_inject_gp(vcpu, 0);
  2243. return 1;
  2244. }
  2245. vcpu->run->io.count = now;
  2246. vcpu->arch.pio.cur_count = now;
  2247. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2248. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2249. for (i = 0; i < nr_pages; ++i) {
  2250. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2251. vcpu->arch.pio.guest_pages[i] = page;
  2252. if (!page) {
  2253. kvm_inject_gp(vcpu, 0);
  2254. free_pio_guest_pages(vcpu);
  2255. return 1;
  2256. }
  2257. }
  2258. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2259. vcpu->arch.pio.cur_count,
  2260. !vcpu->arch.pio.in);
  2261. if (!vcpu->arch.pio.in) {
  2262. /* string PIO write */
  2263. ret = pio_copy_data(vcpu);
  2264. if (ret >= 0 && pio_dev) {
  2265. pio_string_write(pio_dev, vcpu);
  2266. complete_pio(vcpu);
  2267. if (vcpu->arch.pio.count == 0)
  2268. ret = 1;
  2269. }
  2270. } else if (pio_dev)
  2271. pr_unimpl(vcpu, "no string pio read support yet, "
  2272. "port %x size %d count %ld\n",
  2273. port, size, count);
  2274. return ret;
  2275. }
  2276. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2277. int kvm_arch_init(void *opaque)
  2278. {
  2279. int r;
  2280. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2281. if (kvm_x86_ops) {
  2282. printk(KERN_ERR "kvm: already loaded the other module\n");
  2283. r = -EEXIST;
  2284. goto out;
  2285. }
  2286. if (!ops->cpu_has_kvm_support()) {
  2287. printk(KERN_ERR "kvm: no hardware support\n");
  2288. r = -EOPNOTSUPP;
  2289. goto out;
  2290. }
  2291. if (ops->disabled_by_bios()) {
  2292. printk(KERN_ERR "kvm: disabled by bios\n");
  2293. r = -EOPNOTSUPP;
  2294. goto out;
  2295. }
  2296. r = kvm_mmu_module_init();
  2297. if (r)
  2298. goto out;
  2299. kvm_init_msr_list();
  2300. kvm_x86_ops = ops;
  2301. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2302. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2303. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2304. PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
  2305. return 0;
  2306. out:
  2307. return r;
  2308. }
  2309. void kvm_arch_exit(void)
  2310. {
  2311. kvm_x86_ops = NULL;
  2312. kvm_mmu_module_exit();
  2313. }
  2314. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2315. {
  2316. ++vcpu->stat.halt_exits;
  2317. KVMTRACE_0D(HLT, vcpu, handler);
  2318. if (irqchip_in_kernel(vcpu->kvm)) {
  2319. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2320. return 1;
  2321. } else {
  2322. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2323. return 0;
  2324. }
  2325. }
  2326. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2327. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2328. unsigned long a1)
  2329. {
  2330. if (is_long_mode(vcpu))
  2331. return a0;
  2332. else
  2333. return a0 | ((gpa_t)a1 << 32);
  2334. }
  2335. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2336. {
  2337. unsigned long nr, a0, a1, a2, a3, ret;
  2338. int r = 1;
  2339. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2340. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2341. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2342. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2343. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2344. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2345. if (!is_long_mode(vcpu)) {
  2346. nr &= 0xFFFFFFFF;
  2347. a0 &= 0xFFFFFFFF;
  2348. a1 &= 0xFFFFFFFF;
  2349. a2 &= 0xFFFFFFFF;
  2350. a3 &= 0xFFFFFFFF;
  2351. }
  2352. switch (nr) {
  2353. case KVM_HC_VAPIC_POLL_IRQ:
  2354. ret = 0;
  2355. break;
  2356. case KVM_HC_MMU_OP:
  2357. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2358. break;
  2359. default:
  2360. ret = -KVM_ENOSYS;
  2361. break;
  2362. }
  2363. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2364. ++vcpu->stat.hypercalls;
  2365. return r;
  2366. }
  2367. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2368. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2369. {
  2370. char instruction[3];
  2371. int ret = 0;
  2372. unsigned long rip = kvm_rip_read(vcpu);
  2373. /*
  2374. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2375. * to ensure that the updated hypercall appears atomically across all
  2376. * VCPUs.
  2377. */
  2378. kvm_mmu_zap_all(vcpu->kvm);
  2379. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2380. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2381. != X86EMUL_CONTINUE)
  2382. ret = -EFAULT;
  2383. return ret;
  2384. }
  2385. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2386. {
  2387. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2388. }
  2389. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2390. {
  2391. struct descriptor_table dt = { limit, base };
  2392. kvm_x86_ops->set_gdt(vcpu, &dt);
  2393. }
  2394. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2395. {
  2396. struct descriptor_table dt = { limit, base };
  2397. kvm_x86_ops->set_idt(vcpu, &dt);
  2398. }
  2399. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2400. unsigned long *rflags)
  2401. {
  2402. kvm_lmsw(vcpu, msw);
  2403. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2404. }
  2405. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2406. {
  2407. unsigned long value;
  2408. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2409. switch (cr) {
  2410. case 0:
  2411. value = vcpu->arch.cr0;
  2412. break;
  2413. case 2:
  2414. value = vcpu->arch.cr2;
  2415. break;
  2416. case 3:
  2417. value = vcpu->arch.cr3;
  2418. break;
  2419. case 4:
  2420. value = vcpu->arch.cr4;
  2421. break;
  2422. case 8:
  2423. value = kvm_get_cr8(vcpu);
  2424. break;
  2425. default:
  2426. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2427. return 0;
  2428. }
  2429. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2430. (u32)((u64)value >> 32), handler);
  2431. return value;
  2432. }
  2433. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2434. unsigned long *rflags)
  2435. {
  2436. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2437. (u32)((u64)val >> 32), handler);
  2438. switch (cr) {
  2439. case 0:
  2440. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2441. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2442. break;
  2443. case 2:
  2444. vcpu->arch.cr2 = val;
  2445. break;
  2446. case 3:
  2447. kvm_set_cr3(vcpu, val);
  2448. break;
  2449. case 4:
  2450. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2451. break;
  2452. case 8:
  2453. kvm_set_cr8(vcpu, val & 0xfUL);
  2454. break;
  2455. default:
  2456. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2457. }
  2458. }
  2459. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2460. {
  2461. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2462. int j, nent = vcpu->arch.cpuid_nent;
  2463. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2464. /* when no next entry is found, the current entry[i] is reselected */
  2465. for (j = i + 1; ; j = (j + 1) % nent) {
  2466. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2467. if (ej->function == e->function) {
  2468. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2469. return j;
  2470. }
  2471. }
  2472. return 0; /* silence gcc, even though control never reaches here */
  2473. }
  2474. /* find an entry with matching function, matching index (if needed), and that
  2475. * should be read next (if it's stateful) */
  2476. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2477. u32 function, u32 index)
  2478. {
  2479. if (e->function != function)
  2480. return 0;
  2481. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2482. return 0;
  2483. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2484. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2485. return 0;
  2486. return 1;
  2487. }
  2488. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2489. {
  2490. int i;
  2491. u32 function, index;
  2492. struct kvm_cpuid_entry2 *e, *best;
  2493. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2494. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2495. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2496. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2497. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2498. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2499. best = NULL;
  2500. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2501. e = &vcpu->arch.cpuid_entries[i];
  2502. if (is_matching_cpuid_entry(e, function, index)) {
  2503. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2504. move_to_next_stateful_cpuid_entry(vcpu, i);
  2505. best = e;
  2506. break;
  2507. }
  2508. /*
  2509. * Both basic or both extended?
  2510. */
  2511. if (((e->function ^ function) & 0x80000000) == 0)
  2512. if (!best || e->function > best->function)
  2513. best = e;
  2514. }
  2515. if (best) {
  2516. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2517. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2518. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2519. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2520. }
  2521. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2522. KVMTRACE_5D(CPUID, vcpu, function,
  2523. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2524. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2525. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2526. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2527. }
  2528. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2529. /*
  2530. * Check if userspace requested an interrupt window, and that the
  2531. * interrupt window is open.
  2532. *
  2533. * No need to exit to userspace if we already have an interrupt queued.
  2534. */
  2535. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2536. struct kvm_run *kvm_run)
  2537. {
  2538. return (!vcpu->arch.irq_summary &&
  2539. kvm_run->request_interrupt_window &&
  2540. vcpu->arch.interrupt_window_open &&
  2541. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2542. }
  2543. /*
  2544. * Check if userspace requested a NMI window, and that the NMI window
  2545. * is open.
  2546. *
  2547. * No need to exit to userspace if we already have a NMI queued.
  2548. */
  2549. static int dm_request_for_nmi_injection(struct kvm_vcpu *vcpu,
  2550. struct kvm_run *kvm_run)
  2551. {
  2552. return (!vcpu->arch.nmi_pending &&
  2553. kvm_run->request_nmi_window &&
  2554. vcpu->arch.nmi_window_open);
  2555. }
  2556. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2557. struct kvm_run *kvm_run)
  2558. {
  2559. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2560. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2561. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2562. if (irqchip_in_kernel(vcpu->kvm)) {
  2563. kvm_run->ready_for_interrupt_injection = 1;
  2564. kvm_run->ready_for_nmi_injection = 1;
  2565. } else {
  2566. kvm_run->ready_for_interrupt_injection =
  2567. (vcpu->arch.interrupt_window_open &&
  2568. vcpu->arch.irq_summary == 0);
  2569. kvm_run->ready_for_nmi_injection =
  2570. (vcpu->arch.nmi_window_open &&
  2571. vcpu->arch.nmi_pending == 0);
  2572. }
  2573. }
  2574. static void vapic_enter(struct kvm_vcpu *vcpu)
  2575. {
  2576. struct kvm_lapic *apic = vcpu->arch.apic;
  2577. struct page *page;
  2578. if (!apic || !apic->vapic_addr)
  2579. return;
  2580. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2581. vcpu->arch.apic->vapic_page = page;
  2582. }
  2583. static void vapic_exit(struct kvm_vcpu *vcpu)
  2584. {
  2585. struct kvm_lapic *apic = vcpu->arch.apic;
  2586. if (!apic || !apic->vapic_addr)
  2587. return;
  2588. down_read(&vcpu->kvm->slots_lock);
  2589. kvm_release_page_dirty(apic->vapic_page);
  2590. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2591. up_read(&vcpu->kvm->slots_lock);
  2592. }
  2593. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2594. {
  2595. int r;
  2596. if (vcpu->requests)
  2597. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2598. kvm_mmu_unload(vcpu);
  2599. r = kvm_mmu_reload(vcpu);
  2600. if (unlikely(r))
  2601. goto out;
  2602. if (vcpu->requests) {
  2603. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2604. __kvm_migrate_timers(vcpu);
  2605. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2606. kvm_mmu_sync_roots(vcpu);
  2607. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2608. kvm_x86_ops->tlb_flush(vcpu);
  2609. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2610. &vcpu->requests)) {
  2611. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2612. r = 0;
  2613. goto out;
  2614. }
  2615. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2616. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2617. r = 0;
  2618. goto out;
  2619. }
  2620. }
  2621. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2622. kvm_inject_pending_timer_irqs(vcpu);
  2623. preempt_disable();
  2624. kvm_x86_ops->prepare_guest_switch(vcpu);
  2625. kvm_load_guest_fpu(vcpu);
  2626. local_irq_disable();
  2627. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2628. local_irq_enable();
  2629. preempt_enable();
  2630. r = 1;
  2631. goto out;
  2632. }
  2633. if (vcpu->guest_debug.enabled)
  2634. kvm_x86_ops->guest_debug_pre(vcpu);
  2635. vcpu->guest_mode = 1;
  2636. /*
  2637. * Make sure that guest_mode assignment won't happen after
  2638. * testing the pending IRQ vector bitmap.
  2639. */
  2640. smp_wmb();
  2641. if (vcpu->arch.exception.pending)
  2642. __queue_exception(vcpu);
  2643. else if (irqchip_in_kernel(vcpu->kvm))
  2644. kvm_x86_ops->inject_pending_irq(vcpu);
  2645. else
  2646. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2647. kvm_lapic_sync_to_vapic(vcpu);
  2648. up_read(&vcpu->kvm->slots_lock);
  2649. kvm_guest_enter();
  2650. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2651. kvm_x86_ops->run(vcpu, kvm_run);
  2652. vcpu->guest_mode = 0;
  2653. local_irq_enable();
  2654. ++vcpu->stat.exits;
  2655. /*
  2656. * We must have an instruction between local_irq_enable() and
  2657. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2658. * the interrupt shadow. The stat.exits increment will do nicely.
  2659. * But we need to prevent reordering, hence this barrier():
  2660. */
  2661. barrier();
  2662. kvm_guest_exit();
  2663. preempt_enable();
  2664. down_read(&vcpu->kvm->slots_lock);
  2665. /*
  2666. * Profile KVM exit RIPs:
  2667. */
  2668. if (unlikely(prof_on == KVM_PROFILING)) {
  2669. unsigned long rip = kvm_rip_read(vcpu);
  2670. profile_hit(KVM_PROFILING, (void *)rip);
  2671. }
  2672. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2673. vcpu->arch.exception.pending = false;
  2674. kvm_lapic_sync_from_vapic(vcpu);
  2675. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2676. out:
  2677. return r;
  2678. }
  2679. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2680. {
  2681. int r;
  2682. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2683. pr_debug("vcpu %d received sipi with vector # %x\n",
  2684. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2685. kvm_lapic_reset(vcpu);
  2686. r = kvm_arch_vcpu_reset(vcpu);
  2687. if (r)
  2688. return r;
  2689. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2690. }
  2691. down_read(&vcpu->kvm->slots_lock);
  2692. vapic_enter(vcpu);
  2693. r = 1;
  2694. while (r > 0) {
  2695. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2696. r = vcpu_enter_guest(vcpu, kvm_run);
  2697. else {
  2698. up_read(&vcpu->kvm->slots_lock);
  2699. kvm_vcpu_block(vcpu);
  2700. down_read(&vcpu->kvm->slots_lock);
  2701. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2702. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  2703. vcpu->arch.mp_state =
  2704. KVM_MP_STATE_RUNNABLE;
  2705. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  2706. r = -EINTR;
  2707. }
  2708. if (r > 0) {
  2709. if (dm_request_for_nmi_injection(vcpu, kvm_run)) {
  2710. r = -EINTR;
  2711. kvm_run->exit_reason = KVM_EXIT_NMI;
  2712. ++vcpu->stat.request_nmi_exits;
  2713. }
  2714. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2715. r = -EINTR;
  2716. kvm_run->exit_reason = KVM_EXIT_INTR;
  2717. ++vcpu->stat.request_irq_exits;
  2718. }
  2719. if (signal_pending(current)) {
  2720. r = -EINTR;
  2721. kvm_run->exit_reason = KVM_EXIT_INTR;
  2722. ++vcpu->stat.signal_exits;
  2723. }
  2724. if (need_resched()) {
  2725. up_read(&vcpu->kvm->slots_lock);
  2726. kvm_resched(vcpu);
  2727. down_read(&vcpu->kvm->slots_lock);
  2728. }
  2729. }
  2730. }
  2731. up_read(&vcpu->kvm->slots_lock);
  2732. post_kvm_run_save(vcpu, kvm_run);
  2733. vapic_exit(vcpu);
  2734. return r;
  2735. }
  2736. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2737. {
  2738. int r;
  2739. sigset_t sigsaved;
  2740. vcpu_load(vcpu);
  2741. if (vcpu->sigset_active)
  2742. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2743. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2744. kvm_vcpu_block(vcpu);
  2745. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  2746. r = -EAGAIN;
  2747. goto out;
  2748. }
  2749. /* re-sync apic's tpr */
  2750. if (!irqchip_in_kernel(vcpu->kvm))
  2751. kvm_set_cr8(vcpu, kvm_run->cr8);
  2752. if (vcpu->arch.pio.cur_count) {
  2753. r = complete_pio(vcpu);
  2754. if (r)
  2755. goto out;
  2756. }
  2757. #if CONFIG_HAS_IOMEM
  2758. if (vcpu->mmio_needed) {
  2759. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2760. vcpu->mmio_read_completed = 1;
  2761. vcpu->mmio_needed = 0;
  2762. down_read(&vcpu->kvm->slots_lock);
  2763. r = emulate_instruction(vcpu, kvm_run,
  2764. vcpu->arch.mmio_fault_cr2, 0,
  2765. EMULTYPE_NO_DECODE);
  2766. up_read(&vcpu->kvm->slots_lock);
  2767. if (r == EMULATE_DO_MMIO) {
  2768. /*
  2769. * Read-modify-write. Back to userspace.
  2770. */
  2771. r = 0;
  2772. goto out;
  2773. }
  2774. }
  2775. #endif
  2776. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  2777. kvm_register_write(vcpu, VCPU_REGS_RAX,
  2778. kvm_run->hypercall.ret);
  2779. r = __vcpu_run(vcpu, kvm_run);
  2780. out:
  2781. if (vcpu->sigset_active)
  2782. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2783. vcpu_put(vcpu);
  2784. return r;
  2785. }
  2786. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2787. {
  2788. vcpu_load(vcpu);
  2789. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2790. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2791. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2792. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2793. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2794. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2795. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  2796. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  2797. #ifdef CONFIG_X86_64
  2798. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  2799. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  2800. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  2801. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  2802. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  2803. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  2804. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  2805. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  2806. #endif
  2807. regs->rip = kvm_rip_read(vcpu);
  2808. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2809. /*
  2810. * Don't leak debug flags in case they were set for guest debugging
  2811. */
  2812. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2813. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2814. vcpu_put(vcpu);
  2815. return 0;
  2816. }
  2817. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2818. {
  2819. vcpu_load(vcpu);
  2820. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  2821. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  2822. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  2823. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  2824. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  2825. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  2826. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  2827. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  2828. #ifdef CONFIG_X86_64
  2829. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  2830. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  2831. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  2832. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  2833. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  2834. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  2835. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  2836. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  2837. #endif
  2838. kvm_rip_write(vcpu, regs->rip);
  2839. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2840. vcpu->arch.exception.pending = false;
  2841. vcpu_put(vcpu);
  2842. return 0;
  2843. }
  2844. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2845. struct kvm_segment *var, int seg)
  2846. {
  2847. kvm_x86_ops->get_segment(vcpu, var, seg);
  2848. }
  2849. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2850. {
  2851. struct kvm_segment cs;
  2852. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2853. *db = cs.db;
  2854. *l = cs.l;
  2855. }
  2856. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2857. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2858. struct kvm_sregs *sregs)
  2859. {
  2860. struct descriptor_table dt;
  2861. int pending_vec;
  2862. vcpu_load(vcpu);
  2863. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2864. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2865. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2866. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2867. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2868. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2869. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2870. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2871. kvm_x86_ops->get_idt(vcpu, &dt);
  2872. sregs->idt.limit = dt.limit;
  2873. sregs->idt.base = dt.base;
  2874. kvm_x86_ops->get_gdt(vcpu, &dt);
  2875. sregs->gdt.limit = dt.limit;
  2876. sregs->gdt.base = dt.base;
  2877. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2878. sregs->cr0 = vcpu->arch.cr0;
  2879. sregs->cr2 = vcpu->arch.cr2;
  2880. sregs->cr3 = vcpu->arch.cr3;
  2881. sregs->cr4 = vcpu->arch.cr4;
  2882. sregs->cr8 = kvm_get_cr8(vcpu);
  2883. sregs->efer = vcpu->arch.shadow_efer;
  2884. sregs->apic_base = kvm_get_apic_base(vcpu);
  2885. if (irqchip_in_kernel(vcpu->kvm)) {
  2886. memset(sregs->interrupt_bitmap, 0,
  2887. sizeof sregs->interrupt_bitmap);
  2888. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2889. if (pending_vec >= 0)
  2890. set_bit(pending_vec,
  2891. (unsigned long *)sregs->interrupt_bitmap);
  2892. } else
  2893. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2894. sizeof sregs->interrupt_bitmap);
  2895. vcpu_put(vcpu);
  2896. return 0;
  2897. }
  2898. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  2899. struct kvm_mp_state *mp_state)
  2900. {
  2901. vcpu_load(vcpu);
  2902. mp_state->mp_state = vcpu->arch.mp_state;
  2903. vcpu_put(vcpu);
  2904. return 0;
  2905. }
  2906. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  2907. struct kvm_mp_state *mp_state)
  2908. {
  2909. vcpu_load(vcpu);
  2910. vcpu->arch.mp_state = mp_state->mp_state;
  2911. vcpu_put(vcpu);
  2912. return 0;
  2913. }
  2914. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2915. struct kvm_segment *var, int seg)
  2916. {
  2917. kvm_x86_ops->set_segment(vcpu, var, seg);
  2918. }
  2919. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2920. struct kvm_segment *kvm_desct)
  2921. {
  2922. kvm_desct->base = seg_desc->base0;
  2923. kvm_desct->base |= seg_desc->base1 << 16;
  2924. kvm_desct->base |= seg_desc->base2 << 24;
  2925. kvm_desct->limit = seg_desc->limit0;
  2926. kvm_desct->limit |= seg_desc->limit << 16;
  2927. if (seg_desc->g) {
  2928. kvm_desct->limit <<= 12;
  2929. kvm_desct->limit |= 0xfff;
  2930. }
  2931. kvm_desct->selector = selector;
  2932. kvm_desct->type = seg_desc->type;
  2933. kvm_desct->present = seg_desc->p;
  2934. kvm_desct->dpl = seg_desc->dpl;
  2935. kvm_desct->db = seg_desc->d;
  2936. kvm_desct->s = seg_desc->s;
  2937. kvm_desct->l = seg_desc->l;
  2938. kvm_desct->g = seg_desc->g;
  2939. kvm_desct->avl = seg_desc->avl;
  2940. if (!selector)
  2941. kvm_desct->unusable = 1;
  2942. else
  2943. kvm_desct->unusable = 0;
  2944. kvm_desct->padding = 0;
  2945. }
  2946. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  2947. u16 selector,
  2948. struct descriptor_table *dtable)
  2949. {
  2950. if (selector & 1 << 2) {
  2951. struct kvm_segment kvm_seg;
  2952. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2953. if (kvm_seg.unusable)
  2954. dtable->limit = 0;
  2955. else
  2956. dtable->limit = kvm_seg.limit;
  2957. dtable->base = kvm_seg.base;
  2958. }
  2959. else
  2960. kvm_x86_ops->get_gdt(vcpu, dtable);
  2961. }
  2962. /* allowed just for 8 bytes segments */
  2963. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2964. struct desc_struct *seg_desc)
  2965. {
  2966. gpa_t gpa;
  2967. struct descriptor_table dtable;
  2968. u16 index = selector >> 3;
  2969. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  2970. if (dtable.limit < index * 8 + 7) {
  2971. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2972. return 1;
  2973. }
  2974. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2975. gpa += index * 8;
  2976. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  2977. }
  2978. /* allowed just for 8 bytes segments */
  2979. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2980. struct desc_struct *seg_desc)
  2981. {
  2982. gpa_t gpa;
  2983. struct descriptor_table dtable;
  2984. u16 index = selector >> 3;
  2985. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  2986. if (dtable.limit < index * 8 + 7)
  2987. return 1;
  2988. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2989. gpa += index * 8;
  2990. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  2991. }
  2992. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  2993. struct desc_struct *seg_desc)
  2994. {
  2995. u32 base_addr;
  2996. base_addr = seg_desc->base0;
  2997. base_addr |= (seg_desc->base1 << 16);
  2998. base_addr |= (seg_desc->base2 << 24);
  2999. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3000. }
  3001. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3002. {
  3003. struct kvm_segment kvm_seg;
  3004. kvm_get_segment(vcpu, &kvm_seg, seg);
  3005. return kvm_seg.selector;
  3006. }
  3007. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3008. u16 selector,
  3009. struct kvm_segment *kvm_seg)
  3010. {
  3011. struct desc_struct seg_desc;
  3012. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3013. return 1;
  3014. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3015. return 0;
  3016. }
  3017. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3018. {
  3019. struct kvm_segment segvar = {
  3020. .base = selector << 4,
  3021. .limit = 0xffff,
  3022. .selector = selector,
  3023. .type = 3,
  3024. .present = 1,
  3025. .dpl = 3,
  3026. .db = 0,
  3027. .s = 1,
  3028. .l = 0,
  3029. .g = 0,
  3030. .avl = 0,
  3031. .unusable = 0,
  3032. };
  3033. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3034. return 0;
  3035. }
  3036. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3037. int type_bits, int seg)
  3038. {
  3039. struct kvm_segment kvm_seg;
  3040. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3041. return kvm_load_realmode_segment(vcpu, selector, seg);
  3042. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3043. return 1;
  3044. kvm_seg.type |= type_bits;
  3045. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3046. seg != VCPU_SREG_LDTR)
  3047. if (!kvm_seg.s)
  3048. kvm_seg.unusable = 1;
  3049. kvm_set_segment(vcpu, &kvm_seg, seg);
  3050. return 0;
  3051. }
  3052. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3053. struct tss_segment_32 *tss)
  3054. {
  3055. tss->cr3 = vcpu->arch.cr3;
  3056. tss->eip = kvm_rip_read(vcpu);
  3057. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3058. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3059. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3060. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3061. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3062. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3063. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3064. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3065. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3066. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3067. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3068. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3069. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3070. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3071. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3072. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3073. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3074. }
  3075. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3076. struct tss_segment_32 *tss)
  3077. {
  3078. kvm_set_cr3(vcpu, tss->cr3);
  3079. kvm_rip_write(vcpu, tss->eip);
  3080. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3081. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3082. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3083. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3084. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3085. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3086. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3087. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3088. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3089. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3090. return 1;
  3091. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3092. return 1;
  3093. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3094. return 1;
  3095. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3096. return 1;
  3097. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3098. return 1;
  3099. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3100. return 1;
  3101. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3102. return 1;
  3103. return 0;
  3104. }
  3105. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3106. struct tss_segment_16 *tss)
  3107. {
  3108. tss->ip = kvm_rip_read(vcpu);
  3109. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3110. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3111. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3112. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3113. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3114. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3115. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3116. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3117. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3118. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3119. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3120. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3121. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3122. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3123. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3124. }
  3125. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3126. struct tss_segment_16 *tss)
  3127. {
  3128. kvm_rip_write(vcpu, tss->ip);
  3129. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3130. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3131. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3132. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3133. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3134. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3135. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3136. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3137. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3138. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3139. return 1;
  3140. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3141. return 1;
  3142. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3143. return 1;
  3144. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3145. return 1;
  3146. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3147. return 1;
  3148. return 0;
  3149. }
  3150. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3151. u32 old_tss_base,
  3152. struct desc_struct *nseg_desc)
  3153. {
  3154. struct tss_segment_16 tss_segment_16;
  3155. int ret = 0;
  3156. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3157. sizeof tss_segment_16))
  3158. goto out;
  3159. save_state_to_tss16(vcpu, &tss_segment_16);
  3160. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3161. sizeof tss_segment_16))
  3162. goto out;
  3163. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3164. &tss_segment_16, sizeof tss_segment_16))
  3165. goto out;
  3166. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3167. goto out;
  3168. ret = 1;
  3169. out:
  3170. return ret;
  3171. }
  3172. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3173. u32 old_tss_base,
  3174. struct desc_struct *nseg_desc)
  3175. {
  3176. struct tss_segment_32 tss_segment_32;
  3177. int ret = 0;
  3178. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3179. sizeof tss_segment_32))
  3180. goto out;
  3181. save_state_to_tss32(vcpu, &tss_segment_32);
  3182. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3183. sizeof tss_segment_32))
  3184. goto out;
  3185. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3186. &tss_segment_32, sizeof tss_segment_32))
  3187. goto out;
  3188. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3189. goto out;
  3190. ret = 1;
  3191. out:
  3192. return ret;
  3193. }
  3194. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3195. {
  3196. struct kvm_segment tr_seg;
  3197. struct desc_struct cseg_desc;
  3198. struct desc_struct nseg_desc;
  3199. int ret = 0;
  3200. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3201. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3202. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3203. /* FIXME: Handle errors. Failure to read either TSS or their
  3204. * descriptors should generate a pagefault.
  3205. */
  3206. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3207. goto out;
  3208. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3209. goto out;
  3210. if (reason != TASK_SWITCH_IRET) {
  3211. int cpl;
  3212. cpl = kvm_x86_ops->get_cpl(vcpu);
  3213. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3214. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3215. return 1;
  3216. }
  3217. }
  3218. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3219. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3220. return 1;
  3221. }
  3222. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3223. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3224. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3225. }
  3226. if (reason == TASK_SWITCH_IRET) {
  3227. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3228. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3229. }
  3230. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3231. if (nseg_desc.type & 8)
  3232. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
  3233. &nseg_desc);
  3234. else
  3235. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
  3236. &nseg_desc);
  3237. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3238. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3239. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3240. }
  3241. if (reason != TASK_SWITCH_IRET) {
  3242. nseg_desc.type |= (1 << 1);
  3243. save_guest_segment_descriptor(vcpu, tss_selector,
  3244. &nseg_desc);
  3245. }
  3246. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3247. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3248. tr_seg.type = 11;
  3249. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3250. out:
  3251. return ret;
  3252. }
  3253. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3254. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3255. struct kvm_sregs *sregs)
  3256. {
  3257. int mmu_reset_needed = 0;
  3258. int i, pending_vec, max_bits;
  3259. struct descriptor_table dt;
  3260. vcpu_load(vcpu);
  3261. dt.limit = sregs->idt.limit;
  3262. dt.base = sregs->idt.base;
  3263. kvm_x86_ops->set_idt(vcpu, &dt);
  3264. dt.limit = sregs->gdt.limit;
  3265. dt.base = sregs->gdt.base;
  3266. kvm_x86_ops->set_gdt(vcpu, &dt);
  3267. vcpu->arch.cr2 = sregs->cr2;
  3268. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3269. vcpu->arch.cr3 = sregs->cr3;
  3270. kvm_set_cr8(vcpu, sregs->cr8);
  3271. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3272. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3273. kvm_set_apic_base(vcpu, sregs->apic_base);
  3274. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3275. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3276. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3277. vcpu->arch.cr0 = sregs->cr0;
  3278. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3279. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3280. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3281. load_pdptrs(vcpu, vcpu->arch.cr3);
  3282. if (mmu_reset_needed)
  3283. kvm_mmu_reset_context(vcpu);
  3284. if (!irqchip_in_kernel(vcpu->kvm)) {
  3285. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3286. sizeof vcpu->arch.irq_pending);
  3287. vcpu->arch.irq_summary = 0;
  3288. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3289. if (vcpu->arch.irq_pending[i])
  3290. __set_bit(i, &vcpu->arch.irq_summary);
  3291. } else {
  3292. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3293. pending_vec = find_first_bit(
  3294. (const unsigned long *)sregs->interrupt_bitmap,
  3295. max_bits);
  3296. /* Only pending external irq is handled here */
  3297. if (pending_vec < max_bits) {
  3298. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3299. pr_debug("Set back pending irq %d\n",
  3300. pending_vec);
  3301. }
  3302. kvm_pic_clear_isr_ack(vcpu->kvm);
  3303. }
  3304. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3305. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3306. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3307. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3308. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3309. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3310. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3311. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3312. /* Older userspace won't unhalt the vcpu on reset. */
  3313. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3314. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3315. !(vcpu->arch.cr0 & X86_CR0_PE))
  3316. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3317. vcpu_put(vcpu);
  3318. return 0;
  3319. }
  3320. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  3321. struct kvm_debug_guest *dbg)
  3322. {
  3323. int r;
  3324. vcpu_load(vcpu);
  3325. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3326. vcpu_put(vcpu);
  3327. return r;
  3328. }
  3329. /*
  3330. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3331. * we have asm/x86/processor.h
  3332. */
  3333. struct fxsave {
  3334. u16 cwd;
  3335. u16 swd;
  3336. u16 twd;
  3337. u16 fop;
  3338. u64 rip;
  3339. u64 rdp;
  3340. u32 mxcsr;
  3341. u32 mxcsr_mask;
  3342. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3343. #ifdef CONFIG_X86_64
  3344. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3345. #else
  3346. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3347. #endif
  3348. };
  3349. /*
  3350. * Translate a guest virtual address to a guest physical address.
  3351. */
  3352. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3353. struct kvm_translation *tr)
  3354. {
  3355. unsigned long vaddr = tr->linear_address;
  3356. gpa_t gpa;
  3357. vcpu_load(vcpu);
  3358. down_read(&vcpu->kvm->slots_lock);
  3359. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3360. up_read(&vcpu->kvm->slots_lock);
  3361. tr->physical_address = gpa;
  3362. tr->valid = gpa != UNMAPPED_GVA;
  3363. tr->writeable = 1;
  3364. tr->usermode = 0;
  3365. vcpu_put(vcpu);
  3366. return 0;
  3367. }
  3368. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3369. {
  3370. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3371. vcpu_load(vcpu);
  3372. memcpy(fpu->fpr, fxsave->st_space, 128);
  3373. fpu->fcw = fxsave->cwd;
  3374. fpu->fsw = fxsave->swd;
  3375. fpu->ftwx = fxsave->twd;
  3376. fpu->last_opcode = fxsave->fop;
  3377. fpu->last_ip = fxsave->rip;
  3378. fpu->last_dp = fxsave->rdp;
  3379. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3380. vcpu_put(vcpu);
  3381. return 0;
  3382. }
  3383. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3384. {
  3385. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3386. vcpu_load(vcpu);
  3387. memcpy(fxsave->st_space, fpu->fpr, 128);
  3388. fxsave->cwd = fpu->fcw;
  3389. fxsave->swd = fpu->fsw;
  3390. fxsave->twd = fpu->ftwx;
  3391. fxsave->fop = fpu->last_opcode;
  3392. fxsave->rip = fpu->last_ip;
  3393. fxsave->rdp = fpu->last_dp;
  3394. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3395. vcpu_put(vcpu);
  3396. return 0;
  3397. }
  3398. void fx_init(struct kvm_vcpu *vcpu)
  3399. {
  3400. unsigned after_mxcsr_mask;
  3401. /*
  3402. * Touch the fpu the first time in non atomic context as if
  3403. * this is the first fpu instruction the exception handler
  3404. * will fire before the instruction returns and it'll have to
  3405. * allocate ram with GFP_KERNEL.
  3406. */
  3407. if (!used_math())
  3408. kvm_fx_save(&vcpu->arch.host_fx_image);
  3409. /* Initialize guest FPU by resetting ours and saving into guest's */
  3410. preempt_disable();
  3411. kvm_fx_save(&vcpu->arch.host_fx_image);
  3412. kvm_fx_finit();
  3413. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3414. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3415. preempt_enable();
  3416. vcpu->arch.cr0 |= X86_CR0_ET;
  3417. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3418. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3419. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3420. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3421. }
  3422. EXPORT_SYMBOL_GPL(fx_init);
  3423. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3424. {
  3425. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3426. return;
  3427. vcpu->guest_fpu_loaded = 1;
  3428. kvm_fx_save(&vcpu->arch.host_fx_image);
  3429. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3430. }
  3431. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3432. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3433. {
  3434. if (!vcpu->guest_fpu_loaded)
  3435. return;
  3436. vcpu->guest_fpu_loaded = 0;
  3437. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3438. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3439. ++vcpu->stat.fpu_reload;
  3440. }
  3441. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3442. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3443. {
  3444. kvm_x86_ops->vcpu_free(vcpu);
  3445. }
  3446. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3447. unsigned int id)
  3448. {
  3449. return kvm_x86_ops->vcpu_create(kvm, id);
  3450. }
  3451. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3452. {
  3453. int r;
  3454. /* We do fxsave: this must be aligned. */
  3455. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3456. vcpu->arch.mtrr_state.have_fixed = 1;
  3457. vcpu_load(vcpu);
  3458. r = kvm_arch_vcpu_reset(vcpu);
  3459. if (r == 0)
  3460. r = kvm_mmu_setup(vcpu);
  3461. vcpu_put(vcpu);
  3462. if (r < 0)
  3463. goto free_vcpu;
  3464. return 0;
  3465. free_vcpu:
  3466. kvm_x86_ops->vcpu_free(vcpu);
  3467. return r;
  3468. }
  3469. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3470. {
  3471. vcpu_load(vcpu);
  3472. kvm_mmu_unload(vcpu);
  3473. vcpu_put(vcpu);
  3474. kvm_x86_ops->vcpu_free(vcpu);
  3475. }
  3476. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3477. {
  3478. vcpu->arch.nmi_pending = false;
  3479. vcpu->arch.nmi_injected = false;
  3480. return kvm_x86_ops->vcpu_reset(vcpu);
  3481. }
  3482. void kvm_arch_hardware_enable(void *garbage)
  3483. {
  3484. kvm_x86_ops->hardware_enable(garbage);
  3485. }
  3486. void kvm_arch_hardware_disable(void *garbage)
  3487. {
  3488. kvm_x86_ops->hardware_disable(garbage);
  3489. }
  3490. int kvm_arch_hardware_setup(void)
  3491. {
  3492. return kvm_x86_ops->hardware_setup();
  3493. }
  3494. void kvm_arch_hardware_unsetup(void)
  3495. {
  3496. kvm_x86_ops->hardware_unsetup();
  3497. }
  3498. void kvm_arch_check_processor_compat(void *rtn)
  3499. {
  3500. kvm_x86_ops->check_processor_compatibility(rtn);
  3501. }
  3502. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3503. {
  3504. struct page *page;
  3505. struct kvm *kvm;
  3506. int r;
  3507. BUG_ON(vcpu->kvm == NULL);
  3508. kvm = vcpu->kvm;
  3509. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3510. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3511. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3512. else
  3513. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3514. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3515. if (!page) {
  3516. r = -ENOMEM;
  3517. goto fail;
  3518. }
  3519. vcpu->arch.pio_data = page_address(page);
  3520. r = kvm_mmu_create(vcpu);
  3521. if (r < 0)
  3522. goto fail_free_pio_data;
  3523. if (irqchip_in_kernel(kvm)) {
  3524. r = kvm_create_lapic(vcpu);
  3525. if (r < 0)
  3526. goto fail_mmu_destroy;
  3527. }
  3528. return 0;
  3529. fail_mmu_destroy:
  3530. kvm_mmu_destroy(vcpu);
  3531. fail_free_pio_data:
  3532. free_page((unsigned long)vcpu->arch.pio_data);
  3533. fail:
  3534. return r;
  3535. }
  3536. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3537. {
  3538. kvm_free_lapic(vcpu);
  3539. down_read(&vcpu->kvm->slots_lock);
  3540. kvm_mmu_destroy(vcpu);
  3541. up_read(&vcpu->kvm->slots_lock);
  3542. free_page((unsigned long)vcpu->arch.pio_data);
  3543. }
  3544. struct kvm *kvm_arch_create_vm(void)
  3545. {
  3546. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3547. if (!kvm)
  3548. return ERR_PTR(-ENOMEM);
  3549. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3550. INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
  3551. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3552. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3553. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3554. return kvm;
  3555. }
  3556. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3557. {
  3558. vcpu_load(vcpu);
  3559. kvm_mmu_unload(vcpu);
  3560. vcpu_put(vcpu);
  3561. }
  3562. static void kvm_free_vcpus(struct kvm *kvm)
  3563. {
  3564. unsigned int i;
  3565. /*
  3566. * Unpin any mmu pages first.
  3567. */
  3568. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3569. if (kvm->vcpus[i])
  3570. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3571. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3572. if (kvm->vcpus[i]) {
  3573. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3574. kvm->vcpus[i] = NULL;
  3575. }
  3576. }
  3577. }
  3578. void kvm_arch_destroy_vm(struct kvm *kvm)
  3579. {
  3580. kvm_free_all_assigned_devices(kvm);
  3581. kvm_iommu_unmap_guest(kvm);
  3582. kvm_free_pit(kvm);
  3583. kfree(kvm->arch.vpic);
  3584. kfree(kvm->arch.vioapic);
  3585. kvm_free_vcpus(kvm);
  3586. kvm_free_physmem(kvm);
  3587. if (kvm->arch.apic_access_page)
  3588. put_page(kvm->arch.apic_access_page);
  3589. if (kvm->arch.ept_identity_pagetable)
  3590. put_page(kvm->arch.ept_identity_pagetable);
  3591. kfree(kvm);
  3592. }
  3593. int kvm_arch_set_memory_region(struct kvm *kvm,
  3594. struct kvm_userspace_memory_region *mem,
  3595. struct kvm_memory_slot old,
  3596. int user_alloc)
  3597. {
  3598. int npages = mem->memory_size >> PAGE_SHIFT;
  3599. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3600. /*To keep backward compatibility with older userspace,
  3601. *x86 needs to hanlde !user_alloc case.
  3602. */
  3603. if (!user_alloc) {
  3604. if (npages && !old.rmap) {
  3605. unsigned long userspace_addr;
  3606. down_write(&current->mm->mmap_sem);
  3607. userspace_addr = do_mmap(NULL, 0,
  3608. npages * PAGE_SIZE,
  3609. PROT_READ | PROT_WRITE,
  3610. MAP_PRIVATE | MAP_ANONYMOUS,
  3611. 0);
  3612. up_write(&current->mm->mmap_sem);
  3613. if (IS_ERR((void *)userspace_addr))
  3614. return PTR_ERR((void *)userspace_addr);
  3615. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3616. spin_lock(&kvm->mmu_lock);
  3617. memslot->userspace_addr = userspace_addr;
  3618. spin_unlock(&kvm->mmu_lock);
  3619. } else {
  3620. if (!old.user_alloc && old.rmap) {
  3621. int ret;
  3622. down_write(&current->mm->mmap_sem);
  3623. ret = do_munmap(current->mm, old.userspace_addr,
  3624. old.npages * PAGE_SIZE);
  3625. up_write(&current->mm->mmap_sem);
  3626. if (ret < 0)
  3627. printk(KERN_WARNING
  3628. "kvm_vm_ioctl_set_memory_region: "
  3629. "failed to munmap memory\n");
  3630. }
  3631. }
  3632. }
  3633. if (!kvm->arch.n_requested_mmu_pages) {
  3634. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3635. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3636. }
  3637. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3638. kvm_flush_remote_tlbs(kvm);
  3639. return 0;
  3640. }
  3641. void kvm_arch_flush_shadow(struct kvm *kvm)
  3642. {
  3643. kvm_mmu_zap_all(kvm);
  3644. }
  3645. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3646. {
  3647. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3648. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3649. || vcpu->arch.nmi_pending;
  3650. }
  3651. static void vcpu_kick_intr(void *info)
  3652. {
  3653. #ifdef DEBUG
  3654. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3655. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3656. #endif
  3657. }
  3658. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3659. {
  3660. int ipi_pcpu = vcpu->cpu;
  3661. int cpu = get_cpu();
  3662. if (waitqueue_active(&vcpu->wq)) {
  3663. wake_up_interruptible(&vcpu->wq);
  3664. ++vcpu->stat.halt_wakeup;
  3665. }
  3666. /*
  3667. * We may be called synchronously with irqs disabled in guest mode,
  3668. * So need not to call smp_call_function_single() in that case.
  3669. */
  3670. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3671. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3672. put_cpu();
  3673. }