process_kern.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. /*
  2. * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
  3. * Copyright 2003 PathScale, Inc.
  4. * Licensed under the GPL
  5. */
  6. #include "linux/config.h"
  7. #include "linux/kernel.h"
  8. #include "linux/sched.h"
  9. #include "linux/interrupt.h"
  10. #include "linux/string.h"
  11. #include "linux/mm.h"
  12. #include "linux/slab.h"
  13. #include "linux/utsname.h"
  14. #include "linux/fs.h"
  15. #include "linux/utime.h"
  16. #include "linux/smp_lock.h"
  17. #include "linux/module.h"
  18. #include "linux/init.h"
  19. #include "linux/capability.h"
  20. #include "linux/vmalloc.h"
  21. #include "linux/spinlock.h"
  22. #include "linux/proc_fs.h"
  23. #include "linux/ptrace.h"
  24. #include "linux/random.h"
  25. #include "asm/unistd.h"
  26. #include "asm/mman.h"
  27. #include "asm/segment.h"
  28. #include "asm/stat.h"
  29. #include "asm/pgtable.h"
  30. #include "asm/processor.h"
  31. #include "asm/tlbflush.h"
  32. #include "asm/uaccess.h"
  33. #include "asm/user.h"
  34. #include "user_util.h"
  35. #include "kern_util.h"
  36. #include "kern.h"
  37. #include "signal_kern.h"
  38. #include "init.h"
  39. #include "irq_user.h"
  40. #include "mem_user.h"
  41. #include "time_user.h"
  42. #include "tlb.h"
  43. #include "frame_kern.h"
  44. #include "sigcontext.h"
  45. #include "os.h"
  46. #include "mode.h"
  47. #include "mode_kern.h"
  48. #include "choose-mode.h"
  49. /* This is a per-cpu array. A processor only modifies its entry and it only
  50. * cares about its entry, so it's OK if another processor is modifying its
  51. * entry.
  52. */
  53. struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
  54. int external_pid(void *t)
  55. {
  56. struct task_struct *task = t ? t : current;
  57. return(CHOOSE_MODE_PROC(external_pid_tt, external_pid_skas, task));
  58. }
  59. int pid_to_processor_id(int pid)
  60. {
  61. int i;
  62. for(i = 0; i < ncpus; i++){
  63. if(cpu_tasks[i].pid == pid) return(i);
  64. }
  65. return(-1);
  66. }
  67. void free_stack(unsigned long stack, int order)
  68. {
  69. free_pages(stack, order);
  70. }
  71. unsigned long alloc_stack(int order, int atomic)
  72. {
  73. unsigned long page;
  74. gfp_t flags = GFP_KERNEL;
  75. if (atomic)
  76. flags = GFP_ATOMIC;
  77. page = __get_free_pages(flags, order);
  78. if(page == 0)
  79. return(0);
  80. stack_protections(page);
  81. return(page);
  82. }
  83. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  84. {
  85. int pid;
  86. current->thread.request.u.thread.proc = fn;
  87. current->thread.request.u.thread.arg = arg;
  88. pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
  89. &current->thread.regs, 0, NULL, NULL);
  90. if(pid < 0)
  91. panic("do_fork failed in kernel_thread, errno = %d", pid);
  92. return(pid);
  93. }
  94. void set_current(void *t)
  95. {
  96. struct task_struct *task = t;
  97. cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
  98. { external_pid(task), task });
  99. }
  100. void *_switch_to(void *prev, void *next, void *last)
  101. {
  102. struct task_struct *from = prev;
  103. struct task_struct *to= next;
  104. to->thread.prev_sched = from;
  105. set_current(to);
  106. do {
  107. current->thread.saved_task = NULL ;
  108. CHOOSE_MODE_PROC(switch_to_tt, switch_to_skas, prev, next);
  109. if(current->thread.saved_task)
  110. show_regs(&(current->thread.regs));
  111. next= current->thread.saved_task;
  112. prev= current;
  113. } while(current->thread.saved_task);
  114. return(current->thread.prev_sched);
  115. }
  116. void interrupt_end(void)
  117. {
  118. if(need_resched()) schedule();
  119. if(test_tsk_thread_flag(current, TIF_SIGPENDING)) do_signal();
  120. }
  121. void release_thread(struct task_struct *task)
  122. {
  123. CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task));
  124. }
  125. void exit_thread(void)
  126. {
  127. unprotect_stack((unsigned long) current_thread);
  128. }
  129. void *get_current(void)
  130. {
  131. return(current);
  132. }
  133. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  134. unsigned long stack_top, struct task_struct * p,
  135. struct pt_regs *regs)
  136. {
  137. p->thread = (struct thread_struct) INIT_THREAD;
  138. return(CHOOSE_MODE_PROC(copy_thread_tt, copy_thread_skas, nr,
  139. clone_flags, sp, stack_top, p, regs));
  140. }
  141. void initial_thread_cb(void (*proc)(void *), void *arg)
  142. {
  143. int save_kmalloc_ok = kmalloc_ok;
  144. kmalloc_ok = 0;
  145. CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc,
  146. arg);
  147. kmalloc_ok = save_kmalloc_ok;
  148. }
  149. unsigned long stack_sp(unsigned long page)
  150. {
  151. return(page + PAGE_SIZE - sizeof(void *));
  152. }
  153. int current_pid(void)
  154. {
  155. return(current->pid);
  156. }
  157. void default_idle(void)
  158. {
  159. CHOOSE_MODE(uml_idle_timer(), (void) 0);
  160. atomic_inc(&init_mm.mm_count);
  161. current->mm = &init_mm;
  162. current->active_mm = &init_mm;
  163. while(1){
  164. /* endless idle loop with no priority at all */
  165. /*
  166. * although we are an idle CPU, we do not want to
  167. * get into the scheduler unnecessarily.
  168. */
  169. if(need_resched())
  170. schedule();
  171. idle_sleep(10);
  172. }
  173. }
  174. void cpu_idle(void)
  175. {
  176. CHOOSE_MODE(init_idle_tt(), init_idle_skas());
  177. }
  178. int page_size(void)
  179. {
  180. return(PAGE_SIZE);
  181. }
  182. void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
  183. pte_t *pte_out)
  184. {
  185. pgd_t *pgd;
  186. pud_t *pud;
  187. pmd_t *pmd;
  188. pte_t *pte;
  189. pte_t ptent;
  190. if(task->mm == NULL)
  191. return(ERR_PTR(-EINVAL));
  192. pgd = pgd_offset(task->mm, addr);
  193. if(!pgd_present(*pgd))
  194. return(ERR_PTR(-EINVAL));
  195. pud = pud_offset(pgd, addr);
  196. if(!pud_present(*pud))
  197. return(ERR_PTR(-EINVAL));
  198. pmd = pmd_offset(pud, addr);
  199. if(!pmd_present(*pmd))
  200. return(ERR_PTR(-EINVAL));
  201. pte = pte_offset_kernel(pmd, addr);
  202. ptent = *pte;
  203. if(!pte_present(ptent))
  204. return(ERR_PTR(-EINVAL));
  205. if(pte_out != NULL)
  206. *pte_out = ptent;
  207. return((void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK));
  208. }
  209. char *current_cmd(void)
  210. {
  211. #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
  212. return("(Unknown)");
  213. #else
  214. void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
  215. return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
  216. #endif
  217. }
  218. void force_sigbus(void)
  219. {
  220. printk(KERN_ERR "Killing pid %d because of a lack of memory\n",
  221. current->pid);
  222. lock_kernel();
  223. sigaddset(&current->pending.signal, SIGBUS);
  224. recalc_sigpending();
  225. current->flags |= PF_SIGNALED;
  226. do_exit(SIGBUS | 0x80);
  227. }
  228. void dump_thread(struct pt_regs *regs, struct user *u)
  229. {
  230. }
  231. void enable_hlt(void)
  232. {
  233. panic("enable_hlt");
  234. }
  235. EXPORT_SYMBOL(enable_hlt);
  236. void disable_hlt(void)
  237. {
  238. panic("disable_hlt");
  239. }
  240. EXPORT_SYMBOL(disable_hlt);
  241. void *um_kmalloc(int size)
  242. {
  243. return(kmalloc(size, GFP_KERNEL));
  244. }
  245. void *um_kmalloc_atomic(int size)
  246. {
  247. return(kmalloc(size, GFP_ATOMIC));
  248. }
  249. void *um_vmalloc(int size)
  250. {
  251. return(vmalloc(size));
  252. }
  253. unsigned long get_fault_addr(void)
  254. {
  255. return((unsigned long) current->thread.fault_addr);
  256. }
  257. EXPORT_SYMBOL(get_fault_addr);
  258. void not_implemented(void)
  259. {
  260. printk(KERN_DEBUG "Something isn't implemented in here\n");
  261. }
  262. EXPORT_SYMBOL(not_implemented);
  263. int user_context(unsigned long sp)
  264. {
  265. unsigned long stack;
  266. stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
  267. return(stack != (unsigned long) current_thread);
  268. }
  269. extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
  270. void do_uml_exitcalls(void)
  271. {
  272. exitcall_t *call;
  273. call = &__uml_exitcall_end;
  274. while (--call >= &__uml_exitcall_begin)
  275. (*call)();
  276. }
  277. char *uml_strdup(char *string)
  278. {
  279. return kstrdup(string, GFP_KERNEL);
  280. }
  281. int copy_to_user_proc(void __user *to, void *from, int size)
  282. {
  283. return(copy_to_user(to, from, size));
  284. }
  285. int copy_from_user_proc(void *to, void __user *from, int size)
  286. {
  287. return(copy_from_user(to, from, size));
  288. }
  289. int clear_user_proc(void __user *buf, int size)
  290. {
  291. return(clear_user(buf, size));
  292. }
  293. int strlen_user_proc(char __user *str)
  294. {
  295. return(strlen_user(str));
  296. }
  297. int smp_sigio_handler(void)
  298. {
  299. #ifdef CONFIG_SMP
  300. int cpu = current_thread->cpu;
  301. IPI_handler(cpu);
  302. if(cpu != 0)
  303. return(1);
  304. #endif
  305. return(0);
  306. }
  307. int um_in_interrupt(void)
  308. {
  309. return(in_interrupt());
  310. }
  311. int cpu(void)
  312. {
  313. return(current_thread->cpu);
  314. }
  315. static atomic_t using_sysemu = ATOMIC_INIT(0);
  316. int sysemu_supported;
  317. void set_using_sysemu(int value)
  318. {
  319. if (value > sysemu_supported)
  320. return;
  321. atomic_set(&using_sysemu, value);
  322. }
  323. int get_using_sysemu(void)
  324. {
  325. return atomic_read(&using_sysemu);
  326. }
  327. static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
  328. {
  329. if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/
  330. *eof = 1;
  331. return strlen(buf);
  332. }
  333. static int proc_write_sysemu(struct file *file,const char *buf, unsigned long count,void *data)
  334. {
  335. char tmp[2];
  336. if (copy_from_user(tmp, buf, 1))
  337. return -EFAULT;
  338. if (tmp[0] >= '0' && tmp[0] <= '2')
  339. set_using_sysemu(tmp[0] - '0');
  340. return count; /*We use the first char, but pretend to write everything*/
  341. }
  342. int __init make_proc_sysemu(void)
  343. {
  344. struct proc_dir_entry *ent;
  345. if (!sysemu_supported)
  346. return 0;
  347. ent = create_proc_entry("sysemu", 0600, &proc_root);
  348. if (ent == NULL)
  349. {
  350. printk(KERN_WARNING "Failed to register /proc/sysemu\n");
  351. return(0);
  352. }
  353. ent->read_proc = proc_read_sysemu;
  354. ent->write_proc = proc_write_sysemu;
  355. return 0;
  356. }
  357. late_initcall(make_proc_sysemu);
  358. int singlestepping(void * t)
  359. {
  360. struct task_struct *task = t ? t : current;
  361. if ( ! (task->ptrace & PT_DTRACE) )
  362. return(0);
  363. if (task->thread.singlestep_syscall)
  364. return(1);
  365. return 2;
  366. }
  367. /*
  368. * Only x86 and x86_64 have an arch_align_stack().
  369. * All other arches have "#define arch_align_stack(x) (x)"
  370. * in their asm/system.h
  371. * As this is included in UML from asm-um/system-generic.h,
  372. * we can use it to behave as the subarch does.
  373. */
  374. #ifndef arch_align_stack
  375. unsigned long arch_align_stack(unsigned long sp)
  376. {
  377. if (randomize_va_space)
  378. sp -= get_random_int() % 8192;
  379. return sp & ~0xf;
  380. }
  381. #endif