sched.c 259 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/reciprocal_div.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. #ifdef CONFIG_SMP
  113. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  114. /*
  115. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  116. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  117. */
  118. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  119. {
  120. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  121. }
  122. /*
  123. * Each time a sched group cpu_power is changed,
  124. * we must compute its reciprocal value
  125. */
  126. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  127. {
  128. sg->__cpu_power += val;
  129. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  130. }
  131. #endif
  132. static inline int rt_policy(int policy)
  133. {
  134. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  135. return 1;
  136. return 0;
  137. }
  138. static inline int task_has_rt_policy(struct task_struct *p)
  139. {
  140. return rt_policy(p->policy);
  141. }
  142. /*
  143. * This is the priority-queue data structure of the RT scheduling class:
  144. */
  145. struct rt_prio_array {
  146. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  147. struct list_head queue[MAX_RT_PRIO];
  148. };
  149. struct rt_bandwidth {
  150. /* nests inside the rq lock: */
  151. spinlock_t rt_runtime_lock;
  152. ktime_t rt_period;
  153. u64 rt_runtime;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. }
  184. static inline int rt_bandwidth_enabled(void)
  185. {
  186. return sysctl_sched_rt_runtime >= 0;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. unsigned long delta;
  198. ktime_t soft, hard;
  199. if (hrtimer_active(&rt_b->rt_period_timer))
  200. break;
  201. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  202. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  203. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  204. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  205. delta = ktime_to_ns(ktime_sub(hard, soft));
  206. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  207. HRTIMER_MODE_ABS, 0);
  208. }
  209. spin_unlock(&rt_b->rt_runtime_lock);
  210. }
  211. #ifdef CONFIG_RT_GROUP_SCHED
  212. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  213. {
  214. hrtimer_cancel(&rt_b->rt_period_timer);
  215. }
  216. #endif
  217. /*
  218. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  219. * detach_destroy_domains and partition_sched_domains.
  220. */
  221. static DEFINE_MUTEX(sched_domains_mutex);
  222. #ifdef CONFIG_GROUP_SCHED
  223. #include <linux/cgroup.h>
  224. struct cfs_rq;
  225. static LIST_HEAD(task_groups);
  226. /* task group related information */
  227. struct task_group {
  228. #ifdef CONFIG_CGROUP_SCHED
  229. struct cgroup_subsys_state css;
  230. #endif
  231. #ifdef CONFIG_USER_SCHED
  232. uid_t uid;
  233. #endif
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* schedulable entities of this group on each cpu */
  236. struct sched_entity **se;
  237. /* runqueue "owned" by this group on each cpu */
  238. struct cfs_rq **cfs_rq;
  239. unsigned long shares;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. struct sched_rt_entity **rt_se;
  243. struct rt_rq **rt_rq;
  244. struct rt_bandwidth rt_bandwidth;
  245. #endif
  246. struct rcu_head rcu;
  247. struct list_head list;
  248. struct task_group *parent;
  249. struct list_head siblings;
  250. struct list_head children;
  251. };
  252. #ifdef CONFIG_USER_SCHED
  253. /* Helper function to pass uid information to create_sched_user() */
  254. void set_tg_uid(struct user_struct *user)
  255. {
  256. user->tg->uid = user->uid;
  257. }
  258. /*
  259. * Root task group.
  260. * Every UID task group (including init_task_group aka UID-0) will
  261. * be a child to this group.
  262. */
  263. struct task_group root_task_group;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. /* Default task group's sched entity on each cpu */
  266. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  267. /* Default task group's cfs_rq on each cpu */
  268. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  269. #endif /* CONFIG_FAIR_GROUP_SCHED */
  270. #ifdef CONFIG_RT_GROUP_SCHED
  271. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  272. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_RT_GROUP_SCHED */
  274. #else /* !CONFIG_USER_SCHED */
  275. #define root_task_group init_task_group
  276. #endif /* CONFIG_USER_SCHED */
  277. /* task_group_lock serializes add/remove of task groups and also changes to
  278. * a task group's cpu shares.
  279. */
  280. static DEFINE_SPINLOCK(task_group_lock);
  281. #ifdef CONFIG_SMP
  282. static int root_task_group_empty(void)
  283. {
  284. return list_empty(&root_task_group.children);
  285. }
  286. #endif
  287. #ifdef CONFIG_FAIR_GROUP_SCHED
  288. #ifdef CONFIG_USER_SCHED
  289. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  290. #else /* !CONFIG_USER_SCHED */
  291. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  292. #endif /* CONFIG_USER_SCHED */
  293. /*
  294. * A weight of 0 or 1 can cause arithmetics problems.
  295. * A weight of a cfs_rq is the sum of weights of which entities
  296. * are queued on this cfs_rq, so a weight of a entity should not be
  297. * too large, so as the shares value of a task group.
  298. * (The default weight is 1024 - so there's no practical
  299. * limitation from this.)
  300. */
  301. #define MIN_SHARES 2
  302. #define MAX_SHARES (1UL << 18)
  303. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  304. #endif
  305. /* Default task group.
  306. * Every task in system belong to this group at bootup.
  307. */
  308. struct task_group init_task_group;
  309. /* return group to which a task belongs */
  310. static inline struct task_group *task_group(struct task_struct *p)
  311. {
  312. struct task_group *tg;
  313. #ifdef CONFIG_USER_SCHED
  314. rcu_read_lock();
  315. tg = __task_cred(p)->user->tg;
  316. rcu_read_unlock();
  317. #elif defined(CONFIG_CGROUP_SCHED)
  318. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  319. struct task_group, css);
  320. #else
  321. tg = &init_task_group;
  322. #endif
  323. return tg;
  324. }
  325. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  326. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  327. {
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  330. p->se.parent = task_group(p)->se[cpu];
  331. #endif
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  334. p->rt.parent = task_group(p)->rt_se[cpu];
  335. #endif
  336. }
  337. #else
  338. #ifdef CONFIG_SMP
  339. static int root_task_group_empty(void)
  340. {
  341. return 1;
  342. }
  343. #endif
  344. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  345. static inline struct task_group *task_group(struct task_struct *p)
  346. {
  347. return NULL;
  348. }
  349. #endif /* CONFIG_GROUP_SCHED */
  350. /* CFS-related fields in a runqueue */
  351. struct cfs_rq {
  352. struct load_weight load;
  353. unsigned long nr_running;
  354. u64 exec_clock;
  355. u64 min_vruntime;
  356. struct rb_root tasks_timeline;
  357. struct rb_node *rb_leftmost;
  358. struct list_head tasks;
  359. struct list_head *balance_iterator;
  360. /*
  361. * 'curr' points to currently running entity on this cfs_rq.
  362. * It is set to NULL otherwise (i.e when none are currently running).
  363. */
  364. struct sched_entity *curr, *next, *last;
  365. unsigned int nr_spread_over;
  366. #ifdef CONFIG_FAIR_GROUP_SCHED
  367. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  368. /*
  369. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  370. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  371. * (like users, containers etc.)
  372. *
  373. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  374. * list is used during load balance.
  375. */
  376. struct list_head leaf_cfs_rq_list;
  377. struct task_group *tg; /* group that "owns" this runqueue */
  378. #ifdef CONFIG_SMP
  379. /*
  380. * the part of load.weight contributed by tasks
  381. */
  382. unsigned long task_weight;
  383. /*
  384. * h_load = weight * f(tg)
  385. *
  386. * Where f(tg) is the recursive weight fraction assigned to
  387. * this group.
  388. */
  389. unsigned long h_load;
  390. /*
  391. * this cpu's part of tg->shares
  392. */
  393. unsigned long shares;
  394. /*
  395. * load.weight at the time we set shares
  396. */
  397. unsigned long rq_weight;
  398. #endif
  399. #endif
  400. };
  401. /* Real-Time classes' related field in a runqueue: */
  402. struct rt_rq {
  403. struct rt_prio_array active;
  404. unsigned long rt_nr_running;
  405. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  406. struct {
  407. int curr; /* highest queued rt task prio */
  408. #ifdef CONFIG_SMP
  409. int next; /* next highest */
  410. #endif
  411. } highest_prio;
  412. #endif
  413. #ifdef CONFIG_SMP
  414. unsigned long rt_nr_migratory;
  415. int overloaded;
  416. struct plist_head pushable_tasks;
  417. #endif
  418. int rt_throttled;
  419. u64 rt_time;
  420. u64 rt_runtime;
  421. /* Nests inside the rq lock: */
  422. spinlock_t rt_runtime_lock;
  423. #ifdef CONFIG_RT_GROUP_SCHED
  424. unsigned long rt_nr_boosted;
  425. struct rq *rq;
  426. struct list_head leaf_rt_rq_list;
  427. struct task_group *tg;
  428. struct sched_rt_entity *rt_se;
  429. #endif
  430. };
  431. #ifdef CONFIG_SMP
  432. /*
  433. * We add the notion of a root-domain which will be used to define per-domain
  434. * variables. Each exclusive cpuset essentially defines an island domain by
  435. * fully partitioning the member cpus from any other cpuset. Whenever a new
  436. * exclusive cpuset is created, we also create and attach a new root-domain
  437. * object.
  438. *
  439. */
  440. struct root_domain {
  441. atomic_t refcount;
  442. cpumask_var_t span;
  443. cpumask_var_t online;
  444. /*
  445. * The "RT overload" flag: it gets set if a CPU has more than
  446. * one runnable RT task.
  447. */
  448. cpumask_var_t rto_mask;
  449. atomic_t rto_count;
  450. #ifdef CONFIG_SMP
  451. struct cpupri cpupri;
  452. #endif
  453. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  454. /*
  455. * Preferred wake up cpu nominated by sched_mc balance that will be
  456. * used when most cpus are idle in the system indicating overall very
  457. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  458. */
  459. unsigned int sched_mc_preferred_wakeup_cpu;
  460. #endif
  461. };
  462. /*
  463. * By default the system creates a single root-domain with all cpus as
  464. * members (mimicking the global state we have today).
  465. */
  466. static struct root_domain def_root_domain;
  467. #endif
  468. /*
  469. * This is the main, per-CPU runqueue data structure.
  470. *
  471. * Locking rule: those places that want to lock multiple runqueues
  472. * (such as the load balancing or the thread migration code), lock
  473. * acquire operations must be ordered by ascending &runqueue.
  474. */
  475. struct rq {
  476. /* runqueue lock: */
  477. spinlock_t lock;
  478. /*
  479. * nr_running and cpu_load should be in the same cacheline because
  480. * remote CPUs use both these fields when doing load calculation.
  481. */
  482. unsigned long nr_running;
  483. #define CPU_LOAD_IDX_MAX 5
  484. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  485. #ifdef CONFIG_NO_HZ
  486. unsigned long last_tick_seen;
  487. unsigned char in_nohz_recently;
  488. #endif
  489. /* capture load from *all* tasks on this cpu: */
  490. struct load_weight load;
  491. unsigned long nr_load_updates;
  492. u64 nr_switches;
  493. u64 nr_migrations_in;
  494. struct cfs_rq cfs;
  495. struct rt_rq rt;
  496. #ifdef CONFIG_FAIR_GROUP_SCHED
  497. /* list of leaf cfs_rq on this cpu: */
  498. struct list_head leaf_cfs_rq_list;
  499. #endif
  500. #ifdef CONFIG_RT_GROUP_SCHED
  501. struct list_head leaf_rt_rq_list;
  502. #endif
  503. /*
  504. * This is part of a global counter where only the total sum
  505. * over all CPUs matters. A task can increase this counter on
  506. * one CPU and if it got migrated afterwards it may decrease
  507. * it on another CPU. Always updated under the runqueue lock:
  508. */
  509. unsigned long nr_uninterruptible;
  510. struct task_struct *curr, *idle;
  511. unsigned long next_balance;
  512. struct mm_struct *prev_mm;
  513. u64 clock;
  514. atomic_t nr_iowait;
  515. #ifdef CONFIG_SMP
  516. struct root_domain *rd;
  517. struct sched_domain *sd;
  518. unsigned char idle_at_tick;
  519. /* For active balancing */
  520. int active_balance;
  521. int push_cpu;
  522. /* cpu of this runqueue: */
  523. int cpu;
  524. int online;
  525. unsigned long avg_load_per_task;
  526. struct task_struct *migration_thread;
  527. struct list_head migration_queue;
  528. #endif
  529. /* calc_load related fields */
  530. unsigned long calc_load_update;
  531. long calc_load_active;
  532. #ifdef CONFIG_SCHED_HRTICK
  533. #ifdef CONFIG_SMP
  534. int hrtick_csd_pending;
  535. struct call_single_data hrtick_csd;
  536. #endif
  537. struct hrtimer hrtick_timer;
  538. #endif
  539. #ifdef CONFIG_SCHEDSTATS
  540. /* latency stats */
  541. struct sched_info rq_sched_info;
  542. unsigned long long rq_cpu_time;
  543. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  544. /* sys_sched_yield() stats */
  545. unsigned int yld_count;
  546. /* schedule() stats */
  547. unsigned int sched_switch;
  548. unsigned int sched_count;
  549. unsigned int sched_goidle;
  550. /* try_to_wake_up() stats */
  551. unsigned int ttwu_count;
  552. unsigned int ttwu_local;
  553. /* BKL stats */
  554. unsigned int bkl_count;
  555. #endif
  556. };
  557. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  558. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  559. {
  560. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  561. }
  562. static inline int cpu_of(struct rq *rq)
  563. {
  564. #ifdef CONFIG_SMP
  565. return rq->cpu;
  566. #else
  567. return 0;
  568. #endif
  569. }
  570. /*
  571. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  572. * See detach_destroy_domains: synchronize_sched for details.
  573. *
  574. * The domain tree of any CPU may only be accessed from within
  575. * preempt-disabled sections.
  576. */
  577. #define for_each_domain(cpu, __sd) \
  578. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  579. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  580. #define this_rq() (&__get_cpu_var(runqueues))
  581. #define task_rq(p) cpu_rq(task_cpu(p))
  582. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  583. inline void update_rq_clock(struct rq *rq)
  584. {
  585. rq->clock = sched_clock_cpu(cpu_of(rq));
  586. }
  587. /*
  588. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  589. */
  590. #ifdef CONFIG_SCHED_DEBUG
  591. # define const_debug __read_mostly
  592. #else
  593. # define const_debug static const
  594. #endif
  595. /**
  596. * runqueue_is_locked
  597. *
  598. * Returns true if the current cpu runqueue is locked.
  599. * This interface allows printk to be called with the runqueue lock
  600. * held and know whether or not it is OK to wake up the klogd.
  601. */
  602. int runqueue_is_locked(void)
  603. {
  604. int cpu = get_cpu();
  605. struct rq *rq = cpu_rq(cpu);
  606. int ret;
  607. ret = spin_is_locked(&rq->lock);
  608. put_cpu();
  609. return ret;
  610. }
  611. /*
  612. * Debugging: various feature bits
  613. */
  614. #define SCHED_FEAT(name, enabled) \
  615. __SCHED_FEAT_##name ,
  616. enum {
  617. #include "sched_features.h"
  618. };
  619. #undef SCHED_FEAT
  620. #define SCHED_FEAT(name, enabled) \
  621. (1UL << __SCHED_FEAT_##name) * enabled |
  622. const_debug unsigned int sysctl_sched_features =
  623. #include "sched_features.h"
  624. 0;
  625. #undef SCHED_FEAT
  626. #ifdef CONFIG_SCHED_DEBUG
  627. #define SCHED_FEAT(name, enabled) \
  628. #name ,
  629. static __read_mostly char *sched_feat_names[] = {
  630. #include "sched_features.h"
  631. NULL
  632. };
  633. #undef SCHED_FEAT
  634. static int sched_feat_show(struct seq_file *m, void *v)
  635. {
  636. int i;
  637. for (i = 0; sched_feat_names[i]; i++) {
  638. if (!(sysctl_sched_features & (1UL << i)))
  639. seq_puts(m, "NO_");
  640. seq_printf(m, "%s ", sched_feat_names[i]);
  641. }
  642. seq_puts(m, "\n");
  643. return 0;
  644. }
  645. static ssize_t
  646. sched_feat_write(struct file *filp, const char __user *ubuf,
  647. size_t cnt, loff_t *ppos)
  648. {
  649. char buf[64];
  650. char *cmp = buf;
  651. int neg = 0;
  652. int i;
  653. if (cnt > 63)
  654. cnt = 63;
  655. if (copy_from_user(&buf, ubuf, cnt))
  656. return -EFAULT;
  657. buf[cnt] = 0;
  658. if (strncmp(buf, "NO_", 3) == 0) {
  659. neg = 1;
  660. cmp += 3;
  661. }
  662. for (i = 0; sched_feat_names[i]; i++) {
  663. int len = strlen(sched_feat_names[i]);
  664. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  665. if (neg)
  666. sysctl_sched_features &= ~(1UL << i);
  667. else
  668. sysctl_sched_features |= (1UL << i);
  669. break;
  670. }
  671. }
  672. if (!sched_feat_names[i])
  673. return -EINVAL;
  674. filp->f_pos += cnt;
  675. return cnt;
  676. }
  677. static int sched_feat_open(struct inode *inode, struct file *filp)
  678. {
  679. return single_open(filp, sched_feat_show, NULL);
  680. }
  681. static struct file_operations sched_feat_fops = {
  682. .open = sched_feat_open,
  683. .write = sched_feat_write,
  684. .read = seq_read,
  685. .llseek = seq_lseek,
  686. .release = single_release,
  687. };
  688. static __init int sched_init_debug(void)
  689. {
  690. debugfs_create_file("sched_features", 0644, NULL, NULL,
  691. &sched_feat_fops);
  692. return 0;
  693. }
  694. late_initcall(sched_init_debug);
  695. #endif
  696. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  697. /*
  698. * Number of tasks to iterate in a single balance run.
  699. * Limited because this is done with IRQs disabled.
  700. */
  701. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  702. /*
  703. * ratelimit for updating the group shares.
  704. * default: 0.25ms
  705. */
  706. unsigned int sysctl_sched_shares_ratelimit = 250000;
  707. /*
  708. * Inject some fuzzyness into changing the per-cpu group shares
  709. * this avoids remote rq-locks at the expense of fairness.
  710. * default: 4
  711. */
  712. unsigned int sysctl_sched_shares_thresh = 4;
  713. /*
  714. * period over which we measure -rt task cpu usage in us.
  715. * default: 1s
  716. */
  717. unsigned int sysctl_sched_rt_period = 1000000;
  718. static __read_mostly int scheduler_running;
  719. /*
  720. * part of the period that we allow rt tasks to run in us.
  721. * default: 0.95s
  722. */
  723. int sysctl_sched_rt_runtime = 950000;
  724. static inline u64 global_rt_period(void)
  725. {
  726. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  727. }
  728. static inline u64 global_rt_runtime(void)
  729. {
  730. if (sysctl_sched_rt_runtime < 0)
  731. return RUNTIME_INF;
  732. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  733. }
  734. #ifndef prepare_arch_switch
  735. # define prepare_arch_switch(next) do { } while (0)
  736. #endif
  737. #ifndef finish_arch_switch
  738. # define finish_arch_switch(prev) do { } while (0)
  739. #endif
  740. static inline int task_current(struct rq *rq, struct task_struct *p)
  741. {
  742. return rq->curr == p;
  743. }
  744. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  745. static inline int task_running(struct rq *rq, struct task_struct *p)
  746. {
  747. return task_current(rq, p);
  748. }
  749. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  750. {
  751. }
  752. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  753. {
  754. #ifdef CONFIG_DEBUG_SPINLOCK
  755. /* this is a valid case when another task releases the spinlock */
  756. rq->lock.owner = current;
  757. #endif
  758. /*
  759. * If we are tracking spinlock dependencies then we have to
  760. * fix up the runqueue lock - which gets 'carried over' from
  761. * prev into current:
  762. */
  763. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  764. spin_unlock_irq(&rq->lock);
  765. }
  766. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. static inline int task_running(struct rq *rq, struct task_struct *p)
  768. {
  769. #ifdef CONFIG_SMP
  770. return p->oncpu;
  771. #else
  772. return task_current(rq, p);
  773. #endif
  774. }
  775. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  776. {
  777. #ifdef CONFIG_SMP
  778. /*
  779. * We can optimise this out completely for !SMP, because the
  780. * SMP rebalancing from interrupt is the only thing that cares
  781. * here.
  782. */
  783. next->oncpu = 1;
  784. #endif
  785. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  786. spin_unlock_irq(&rq->lock);
  787. #else
  788. spin_unlock(&rq->lock);
  789. #endif
  790. }
  791. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  792. {
  793. #ifdef CONFIG_SMP
  794. /*
  795. * After ->oncpu is cleared, the task can be moved to a different CPU.
  796. * We must ensure this doesn't happen until the switch is completely
  797. * finished.
  798. */
  799. smp_wmb();
  800. prev->oncpu = 0;
  801. #endif
  802. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  803. local_irq_enable();
  804. #endif
  805. }
  806. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  807. /*
  808. * __task_rq_lock - lock the runqueue a given task resides on.
  809. * Must be called interrupts disabled.
  810. */
  811. static inline struct rq *__task_rq_lock(struct task_struct *p)
  812. __acquires(rq->lock)
  813. {
  814. for (;;) {
  815. struct rq *rq = task_rq(p);
  816. spin_lock(&rq->lock);
  817. if (likely(rq == task_rq(p)))
  818. return rq;
  819. spin_unlock(&rq->lock);
  820. }
  821. }
  822. /*
  823. * task_rq_lock - lock the runqueue a given task resides on and disable
  824. * interrupts. Note the ordering: we can safely lookup the task_rq without
  825. * explicitly disabling preemption.
  826. */
  827. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  828. __acquires(rq->lock)
  829. {
  830. struct rq *rq;
  831. for (;;) {
  832. local_irq_save(*flags);
  833. rq = task_rq(p);
  834. spin_lock(&rq->lock);
  835. if (likely(rq == task_rq(p)))
  836. return rq;
  837. spin_unlock_irqrestore(&rq->lock, *flags);
  838. }
  839. }
  840. void task_rq_unlock_wait(struct task_struct *p)
  841. {
  842. struct rq *rq = task_rq(p);
  843. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  844. spin_unlock_wait(&rq->lock);
  845. }
  846. static void __task_rq_unlock(struct rq *rq)
  847. __releases(rq->lock)
  848. {
  849. spin_unlock(&rq->lock);
  850. }
  851. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  852. __releases(rq->lock)
  853. {
  854. spin_unlock_irqrestore(&rq->lock, *flags);
  855. }
  856. /*
  857. * this_rq_lock - lock this runqueue and disable interrupts.
  858. */
  859. static struct rq *this_rq_lock(void)
  860. __acquires(rq->lock)
  861. {
  862. struct rq *rq;
  863. local_irq_disable();
  864. rq = this_rq();
  865. spin_lock(&rq->lock);
  866. return rq;
  867. }
  868. #ifdef CONFIG_SCHED_HRTICK
  869. /*
  870. * Use HR-timers to deliver accurate preemption points.
  871. *
  872. * Its all a bit involved since we cannot program an hrt while holding the
  873. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  874. * reschedule event.
  875. *
  876. * When we get rescheduled we reprogram the hrtick_timer outside of the
  877. * rq->lock.
  878. */
  879. /*
  880. * Use hrtick when:
  881. * - enabled by features
  882. * - hrtimer is actually high res
  883. */
  884. static inline int hrtick_enabled(struct rq *rq)
  885. {
  886. if (!sched_feat(HRTICK))
  887. return 0;
  888. if (!cpu_active(cpu_of(rq)))
  889. return 0;
  890. return hrtimer_is_hres_active(&rq->hrtick_timer);
  891. }
  892. static void hrtick_clear(struct rq *rq)
  893. {
  894. if (hrtimer_active(&rq->hrtick_timer))
  895. hrtimer_cancel(&rq->hrtick_timer);
  896. }
  897. /*
  898. * High-resolution timer tick.
  899. * Runs from hardirq context with interrupts disabled.
  900. */
  901. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  902. {
  903. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  904. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  905. spin_lock(&rq->lock);
  906. update_rq_clock(rq);
  907. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  908. spin_unlock(&rq->lock);
  909. return HRTIMER_NORESTART;
  910. }
  911. #ifdef CONFIG_SMP
  912. /*
  913. * called from hardirq (IPI) context
  914. */
  915. static void __hrtick_start(void *arg)
  916. {
  917. struct rq *rq = arg;
  918. spin_lock(&rq->lock);
  919. hrtimer_restart(&rq->hrtick_timer);
  920. rq->hrtick_csd_pending = 0;
  921. spin_unlock(&rq->lock);
  922. }
  923. /*
  924. * Called to set the hrtick timer state.
  925. *
  926. * called with rq->lock held and irqs disabled
  927. */
  928. static void hrtick_start(struct rq *rq, u64 delay)
  929. {
  930. struct hrtimer *timer = &rq->hrtick_timer;
  931. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  932. hrtimer_set_expires(timer, time);
  933. if (rq == this_rq()) {
  934. hrtimer_restart(timer);
  935. } else if (!rq->hrtick_csd_pending) {
  936. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  937. rq->hrtick_csd_pending = 1;
  938. }
  939. }
  940. static int
  941. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  942. {
  943. int cpu = (int)(long)hcpu;
  944. switch (action) {
  945. case CPU_UP_CANCELED:
  946. case CPU_UP_CANCELED_FROZEN:
  947. case CPU_DOWN_PREPARE:
  948. case CPU_DOWN_PREPARE_FROZEN:
  949. case CPU_DEAD:
  950. case CPU_DEAD_FROZEN:
  951. hrtick_clear(cpu_rq(cpu));
  952. return NOTIFY_OK;
  953. }
  954. return NOTIFY_DONE;
  955. }
  956. static __init void init_hrtick(void)
  957. {
  958. hotcpu_notifier(hotplug_hrtick, 0);
  959. }
  960. #else
  961. /*
  962. * Called to set the hrtick timer state.
  963. *
  964. * called with rq->lock held and irqs disabled
  965. */
  966. static void hrtick_start(struct rq *rq, u64 delay)
  967. {
  968. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  969. HRTIMER_MODE_REL, 0);
  970. }
  971. static inline void init_hrtick(void)
  972. {
  973. }
  974. #endif /* CONFIG_SMP */
  975. static void init_rq_hrtick(struct rq *rq)
  976. {
  977. #ifdef CONFIG_SMP
  978. rq->hrtick_csd_pending = 0;
  979. rq->hrtick_csd.flags = 0;
  980. rq->hrtick_csd.func = __hrtick_start;
  981. rq->hrtick_csd.info = rq;
  982. #endif
  983. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  984. rq->hrtick_timer.function = hrtick;
  985. }
  986. #else /* CONFIG_SCHED_HRTICK */
  987. static inline void hrtick_clear(struct rq *rq)
  988. {
  989. }
  990. static inline void init_rq_hrtick(struct rq *rq)
  991. {
  992. }
  993. static inline void init_hrtick(void)
  994. {
  995. }
  996. #endif /* CONFIG_SCHED_HRTICK */
  997. /*
  998. * resched_task - mark a task 'to be rescheduled now'.
  999. *
  1000. * On UP this means the setting of the need_resched flag, on SMP it
  1001. * might also involve a cross-CPU call to trigger the scheduler on
  1002. * the target CPU.
  1003. */
  1004. #ifdef CONFIG_SMP
  1005. #ifndef tsk_is_polling
  1006. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1007. #endif
  1008. static void resched_task(struct task_struct *p)
  1009. {
  1010. int cpu;
  1011. assert_spin_locked(&task_rq(p)->lock);
  1012. if (test_tsk_need_resched(p))
  1013. return;
  1014. set_tsk_need_resched(p);
  1015. cpu = task_cpu(p);
  1016. if (cpu == smp_processor_id())
  1017. return;
  1018. /* NEED_RESCHED must be visible before we test polling */
  1019. smp_mb();
  1020. if (!tsk_is_polling(p))
  1021. smp_send_reschedule(cpu);
  1022. }
  1023. static void resched_cpu(int cpu)
  1024. {
  1025. struct rq *rq = cpu_rq(cpu);
  1026. unsigned long flags;
  1027. if (!spin_trylock_irqsave(&rq->lock, flags))
  1028. return;
  1029. resched_task(cpu_curr(cpu));
  1030. spin_unlock_irqrestore(&rq->lock, flags);
  1031. }
  1032. #ifdef CONFIG_NO_HZ
  1033. /*
  1034. * When add_timer_on() enqueues a timer into the timer wheel of an
  1035. * idle CPU then this timer might expire before the next timer event
  1036. * which is scheduled to wake up that CPU. In case of a completely
  1037. * idle system the next event might even be infinite time into the
  1038. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1039. * leaves the inner idle loop so the newly added timer is taken into
  1040. * account when the CPU goes back to idle and evaluates the timer
  1041. * wheel for the next timer event.
  1042. */
  1043. void wake_up_idle_cpu(int cpu)
  1044. {
  1045. struct rq *rq = cpu_rq(cpu);
  1046. if (cpu == smp_processor_id())
  1047. return;
  1048. /*
  1049. * This is safe, as this function is called with the timer
  1050. * wheel base lock of (cpu) held. When the CPU is on the way
  1051. * to idle and has not yet set rq->curr to idle then it will
  1052. * be serialized on the timer wheel base lock and take the new
  1053. * timer into account automatically.
  1054. */
  1055. if (rq->curr != rq->idle)
  1056. return;
  1057. /*
  1058. * We can set TIF_RESCHED on the idle task of the other CPU
  1059. * lockless. The worst case is that the other CPU runs the
  1060. * idle task through an additional NOOP schedule()
  1061. */
  1062. set_tsk_need_resched(rq->idle);
  1063. /* NEED_RESCHED must be visible before we test polling */
  1064. smp_mb();
  1065. if (!tsk_is_polling(rq->idle))
  1066. smp_send_reschedule(cpu);
  1067. }
  1068. #endif /* CONFIG_NO_HZ */
  1069. #else /* !CONFIG_SMP */
  1070. static void resched_task(struct task_struct *p)
  1071. {
  1072. assert_spin_locked(&task_rq(p)->lock);
  1073. set_tsk_need_resched(p);
  1074. }
  1075. #endif /* CONFIG_SMP */
  1076. #if BITS_PER_LONG == 32
  1077. # define WMULT_CONST (~0UL)
  1078. #else
  1079. # define WMULT_CONST (1UL << 32)
  1080. #endif
  1081. #define WMULT_SHIFT 32
  1082. /*
  1083. * Shift right and round:
  1084. */
  1085. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1086. /*
  1087. * delta *= weight / lw
  1088. */
  1089. static unsigned long
  1090. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1091. struct load_weight *lw)
  1092. {
  1093. u64 tmp;
  1094. if (!lw->inv_weight) {
  1095. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1096. lw->inv_weight = 1;
  1097. else
  1098. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1099. / (lw->weight+1);
  1100. }
  1101. tmp = (u64)delta_exec * weight;
  1102. /*
  1103. * Check whether we'd overflow the 64-bit multiplication:
  1104. */
  1105. if (unlikely(tmp > WMULT_CONST))
  1106. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1107. WMULT_SHIFT/2);
  1108. else
  1109. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1110. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1111. }
  1112. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1113. {
  1114. lw->weight += inc;
  1115. lw->inv_weight = 0;
  1116. }
  1117. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1118. {
  1119. lw->weight -= dec;
  1120. lw->inv_weight = 0;
  1121. }
  1122. /*
  1123. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1124. * of tasks with abnormal "nice" values across CPUs the contribution that
  1125. * each task makes to its run queue's load is weighted according to its
  1126. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1127. * scaled version of the new time slice allocation that they receive on time
  1128. * slice expiry etc.
  1129. */
  1130. #define WEIGHT_IDLEPRIO 3
  1131. #define WMULT_IDLEPRIO 1431655765
  1132. /*
  1133. * Nice levels are multiplicative, with a gentle 10% change for every
  1134. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1135. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1136. * that remained on nice 0.
  1137. *
  1138. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1139. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1140. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1141. * If a task goes up by ~10% and another task goes down by ~10% then
  1142. * the relative distance between them is ~25%.)
  1143. */
  1144. static const int prio_to_weight[40] = {
  1145. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1146. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1147. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1148. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1149. /* 0 */ 1024, 820, 655, 526, 423,
  1150. /* 5 */ 335, 272, 215, 172, 137,
  1151. /* 10 */ 110, 87, 70, 56, 45,
  1152. /* 15 */ 36, 29, 23, 18, 15,
  1153. };
  1154. /*
  1155. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1156. *
  1157. * In cases where the weight does not change often, we can use the
  1158. * precalculated inverse to speed up arithmetics by turning divisions
  1159. * into multiplications:
  1160. */
  1161. static const u32 prio_to_wmult[40] = {
  1162. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1163. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1164. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1165. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1166. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1167. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1168. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1169. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1170. };
  1171. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1172. /*
  1173. * runqueue iterator, to support SMP load-balancing between different
  1174. * scheduling classes, without having to expose their internal data
  1175. * structures to the load-balancing proper:
  1176. */
  1177. struct rq_iterator {
  1178. void *arg;
  1179. struct task_struct *(*start)(void *);
  1180. struct task_struct *(*next)(void *);
  1181. };
  1182. #ifdef CONFIG_SMP
  1183. static unsigned long
  1184. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1185. unsigned long max_load_move, struct sched_domain *sd,
  1186. enum cpu_idle_type idle, int *all_pinned,
  1187. int *this_best_prio, struct rq_iterator *iterator);
  1188. static int
  1189. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1190. struct sched_domain *sd, enum cpu_idle_type idle,
  1191. struct rq_iterator *iterator);
  1192. #endif
  1193. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1194. enum cpuacct_stat_index {
  1195. CPUACCT_STAT_USER, /* ... user mode */
  1196. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1197. CPUACCT_STAT_NSTATS,
  1198. };
  1199. #ifdef CONFIG_CGROUP_CPUACCT
  1200. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1201. static void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val);
  1203. #else
  1204. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1205. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1206. enum cpuacct_stat_index idx, cputime_t val) {}
  1207. #endif
  1208. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_add(&rq->load, load);
  1211. }
  1212. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1213. {
  1214. update_load_sub(&rq->load, load);
  1215. }
  1216. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1217. typedef int (*tg_visitor)(struct task_group *, void *);
  1218. /*
  1219. * Iterate the full tree, calling @down when first entering a node and @up when
  1220. * leaving it for the final time.
  1221. */
  1222. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1223. {
  1224. struct task_group *parent, *child;
  1225. int ret;
  1226. rcu_read_lock();
  1227. parent = &root_task_group;
  1228. down:
  1229. ret = (*down)(parent, data);
  1230. if (ret)
  1231. goto out_unlock;
  1232. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1233. parent = child;
  1234. goto down;
  1235. up:
  1236. continue;
  1237. }
  1238. ret = (*up)(parent, data);
  1239. if (ret)
  1240. goto out_unlock;
  1241. child = parent;
  1242. parent = parent->parent;
  1243. if (parent)
  1244. goto up;
  1245. out_unlock:
  1246. rcu_read_unlock();
  1247. return ret;
  1248. }
  1249. static int tg_nop(struct task_group *tg, void *data)
  1250. {
  1251. return 0;
  1252. }
  1253. #endif
  1254. #ifdef CONFIG_SMP
  1255. static unsigned long source_load(int cpu, int type);
  1256. static unsigned long target_load(int cpu, int type);
  1257. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1258. static unsigned long cpu_avg_load_per_task(int cpu)
  1259. {
  1260. struct rq *rq = cpu_rq(cpu);
  1261. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1262. if (nr_running)
  1263. rq->avg_load_per_task = rq->load.weight / nr_running;
  1264. else
  1265. rq->avg_load_per_task = 0;
  1266. return rq->avg_load_per_task;
  1267. }
  1268. #ifdef CONFIG_FAIR_GROUP_SCHED
  1269. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1270. /*
  1271. * Calculate and set the cpu's group shares.
  1272. */
  1273. static void
  1274. update_group_shares_cpu(struct task_group *tg, int cpu,
  1275. unsigned long sd_shares, unsigned long sd_rq_weight)
  1276. {
  1277. unsigned long shares;
  1278. unsigned long rq_weight;
  1279. if (!tg->se[cpu])
  1280. return;
  1281. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1282. /*
  1283. * \Sum shares * rq_weight
  1284. * shares = -----------------------
  1285. * \Sum rq_weight
  1286. *
  1287. */
  1288. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1289. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1290. if (abs(shares - tg->se[cpu]->load.weight) >
  1291. sysctl_sched_shares_thresh) {
  1292. struct rq *rq = cpu_rq(cpu);
  1293. unsigned long flags;
  1294. spin_lock_irqsave(&rq->lock, flags);
  1295. tg->cfs_rq[cpu]->shares = shares;
  1296. __set_se_shares(tg->se[cpu], shares);
  1297. spin_unlock_irqrestore(&rq->lock, flags);
  1298. }
  1299. }
  1300. /*
  1301. * Re-compute the task group their per cpu shares over the given domain.
  1302. * This needs to be done in a bottom-up fashion because the rq weight of a
  1303. * parent group depends on the shares of its child groups.
  1304. */
  1305. static int tg_shares_up(struct task_group *tg, void *data)
  1306. {
  1307. unsigned long weight, rq_weight = 0;
  1308. unsigned long shares = 0;
  1309. struct sched_domain *sd = data;
  1310. int i;
  1311. for_each_cpu(i, sched_domain_span(sd)) {
  1312. /*
  1313. * If there are currently no tasks on the cpu pretend there
  1314. * is one of average load so that when a new task gets to
  1315. * run here it will not get delayed by group starvation.
  1316. */
  1317. weight = tg->cfs_rq[i]->load.weight;
  1318. if (!weight)
  1319. weight = NICE_0_LOAD;
  1320. tg->cfs_rq[i]->rq_weight = weight;
  1321. rq_weight += weight;
  1322. shares += tg->cfs_rq[i]->shares;
  1323. }
  1324. if ((!shares && rq_weight) || shares > tg->shares)
  1325. shares = tg->shares;
  1326. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1327. shares = tg->shares;
  1328. for_each_cpu(i, sched_domain_span(sd))
  1329. update_group_shares_cpu(tg, i, shares, rq_weight);
  1330. return 0;
  1331. }
  1332. /*
  1333. * Compute the cpu's hierarchical load factor for each task group.
  1334. * This needs to be done in a top-down fashion because the load of a child
  1335. * group is a fraction of its parents load.
  1336. */
  1337. static int tg_load_down(struct task_group *tg, void *data)
  1338. {
  1339. unsigned long load;
  1340. long cpu = (long)data;
  1341. if (!tg->parent) {
  1342. load = cpu_rq(cpu)->load.weight;
  1343. } else {
  1344. load = tg->parent->cfs_rq[cpu]->h_load;
  1345. load *= tg->cfs_rq[cpu]->shares;
  1346. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1347. }
  1348. tg->cfs_rq[cpu]->h_load = load;
  1349. return 0;
  1350. }
  1351. static void update_shares(struct sched_domain *sd)
  1352. {
  1353. u64 now = cpu_clock(raw_smp_processor_id());
  1354. s64 elapsed = now - sd->last_update;
  1355. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1356. sd->last_update = now;
  1357. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1358. }
  1359. }
  1360. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1361. {
  1362. spin_unlock(&rq->lock);
  1363. update_shares(sd);
  1364. spin_lock(&rq->lock);
  1365. }
  1366. static void update_h_load(long cpu)
  1367. {
  1368. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1369. }
  1370. #else
  1371. static inline void update_shares(struct sched_domain *sd)
  1372. {
  1373. }
  1374. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1375. {
  1376. }
  1377. #endif
  1378. #ifdef CONFIG_PREEMPT
  1379. /*
  1380. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1381. * way at the expense of forcing extra atomic operations in all
  1382. * invocations. This assures that the double_lock is acquired using the
  1383. * same underlying policy as the spinlock_t on this architecture, which
  1384. * reduces latency compared to the unfair variant below. However, it
  1385. * also adds more overhead and therefore may reduce throughput.
  1386. */
  1387. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1388. __releases(this_rq->lock)
  1389. __acquires(busiest->lock)
  1390. __acquires(this_rq->lock)
  1391. {
  1392. spin_unlock(&this_rq->lock);
  1393. double_rq_lock(this_rq, busiest);
  1394. return 1;
  1395. }
  1396. #else
  1397. /*
  1398. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1399. * latency by eliminating extra atomic operations when the locks are
  1400. * already in proper order on entry. This favors lower cpu-ids and will
  1401. * grant the double lock to lower cpus over higher ids under contention,
  1402. * regardless of entry order into the function.
  1403. */
  1404. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1405. __releases(this_rq->lock)
  1406. __acquires(busiest->lock)
  1407. __acquires(this_rq->lock)
  1408. {
  1409. int ret = 0;
  1410. if (unlikely(!spin_trylock(&busiest->lock))) {
  1411. if (busiest < this_rq) {
  1412. spin_unlock(&this_rq->lock);
  1413. spin_lock(&busiest->lock);
  1414. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1415. ret = 1;
  1416. } else
  1417. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1418. }
  1419. return ret;
  1420. }
  1421. #endif /* CONFIG_PREEMPT */
  1422. /*
  1423. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1424. */
  1425. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1426. {
  1427. if (unlikely(!irqs_disabled())) {
  1428. /* printk() doesn't work good under rq->lock */
  1429. spin_unlock(&this_rq->lock);
  1430. BUG_ON(1);
  1431. }
  1432. return _double_lock_balance(this_rq, busiest);
  1433. }
  1434. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1435. __releases(busiest->lock)
  1436. {
  1437. spin_unlock(&busiest->lock);
  1438. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1439. }
  1440. #endif
  1441. #ifdef CONFIG_FAIR_GROUP_SCHED
  1442. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1443. {
  1444. #ifdef CONFIG_SMP
  1445. cfs_rq->shares = shares;
  1446. #endif
  1447. }
  1448. #endif
  1449. static void calc_load_account_active(struct rq *this_rq);
  1450. #include "sched_stats.h"
  1451. #include "sched_idletask.c"
  1452. #include "sched_fair.c"
  1453. #include "sched_rt.c"
  1454. #ifdef CONFIG_SCHED_DEBUG
  1455. # include "sched_debug.c"
  1456. #endif
  1457. #define sched_class_highest (&rt_sched_class)
  1458. #define for_each_class(class) \
  1459. for (class = sched_class_highest; class; class = class->next)
  1460. static void inc_nr_running(struct rq *rq)
  1461. {
  1462. rq->nr_running++;
  1463. }
  1464. static void dec_nr_running(struct rq *rq)
  1465. {
  1466. rq->nr_running--;
  1467. }
  1468. static void set_load_weight(struct task_struct *p)
  1469. {
  1470. if (task_has_rt_policy(p)) {
  1471. p->se.load.weight = prio_to_weight[0] * 2;
  1472. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1473. return;
  1474. }
  1475. /*
  1476. * SCHED_IDLE tasks get minimal weight:
  1477. */
  1478. if (p->policy == SCHED_IDLE) {
  1479. p->se.load.weight = WEIGHT_IDLEPRIO;
  1480. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1481. return;
  1482. }
  1483. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1484. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1485. }
  1486. static void update_avg(u64 *avg, u64 sample)
  1487. {
  1488. s64 diff = sample - *avg;
  1489. *avg += diff >> 3;
  1490. }
  1491. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1492. {
  1493. if (wakeup)
  1494. p->se.start_runtime = p->se.sum_exec_runtime;
  1495. sched_info_queued(p);
  1496. p->sched_class->enqueue_task(rq, p, wakeup);
  1497. p->se.on_rq = 1;
  1498. }
  1499. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1500. {
  1501. if (sleep) {
  1502. if (p->se.last_wakeup) {
  1503. update_avg(&p->se.avg_overlap,
  1504. p->se.sum_exec_runtime - p->se.last_wakeup);
  1505. p->se.last_wakeup = 0;
  1506. } else {
  1507. update_avg(&p->se.avg_wakeup,
  1508. sysctl_sched_wakeup_granularity);
  1509. }
  1510. }
  1511. sched_info_dequeued(p);
  1512. p->sched_class->dequeue_task(rq, p, sleep);
  1513. p->se.on_rq = 0;
  1514. }
  1515. /*
  1516. * __normal_prio - return the priority that is based on the static prio
  1517. */
  1518. static inline int __normal_prio(struct task_struct *p)
  1519. {
  1520. return p->static_prio;
  1521. }
  1522. /*
  1523. * Calculate the expected normal priority: i.e. priority
  1524. * without taking RT-inheritance into account. Might be
  1525. * boosted by interactivity modifiers. Changes upon fork,
  1526. * setprio syscalls, and whenever the interactivity
  1527. * estimator recalculates.
  1528. */
  1529. static inline int normal_prio(struct task_struct *p)
  1530. {
  1531. int prio;
  1532. if (task_has_rt_policy(p))
  1533. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1534. else
  1535. prio = __normal_prio(p);
  1536. return prio;
  1537. }
  1538. /*
  1539. * Calculate the current priority, i.e. the priority
  1540. * taken into account by the scheduler. This value might
  1541. * be boosted by RT tasks, or might be boosted by
  1542. * interactivity modifiers. Will be RT if the task got
  1543. * RT-boosted. If not then it returns p->normal_prio.
  1544. */
  1545. static int effective_prio(struct task_struct *p)
  1546. {
  1547. p->normal_prio = normal_prio(p);
  1548. /*
  1549. * If we are RT tasks or we were boosted to RT priority,
  1550. * keep the priority unchanged. Otherwise, update priority
  1551. * to the normal priority:
  1552. */
  1553. if (!rt_prio(p->prio))
  1554. return p->normal_prio;
  1555. return p->prio;
  1556. }
  1557. /*
  1558. * activate_task - move a task to the runqueue.
  1559. */
  1560. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1561. {
  1562. if (task_contributes_to_load(p))
  1563. rq->nr_uninterruptible--;
  1564. enqueue_task(rq, p, wakeup);
  1565. inc_nr_running(rq);
  1566. }
  1567. /*
  1568. * deactivate_task - remove a task from the runqueue.
  1569. */
  1570. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1571. {
  1572. if (task_contributes_to_load(p))
  1573. rq->nr_uninterruptible++;
  1574. dequeue_task(rq, p, sleep);
  1575. dec_nr_running(rq);
  1576. }
  1577. /**
  1578. * task_curr - is this task currently executing on a CPU?
  1579. * @p: the task in question.
  1580. */
  1581. inline int task_curr(const struct task_struct *p)
  1582. {
  1583. return cpu_curr(task_cpu(p)) == p;
  1584. }
  1585. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1586. {
  1587. set_task_rq(p, cpu);
  1588. #ifdef CONFIG_SMP
  1589. /*
  1590. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1591. * successfuly executed on another CPU. We must ensure that updates of
  1592. * per-task data have been completed by this moment.
  1593. */
  1594. smp_wmb();
  1595. task_thread_info(p)->cpu = cpu;
  1596. #endif
  1597. }
  1598. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1599. const struct sched_class *prev_class,
  1600. int oldprio, int running)
  1601. {
  1602. if (prev_class != p->sched_class) {
  1603. if (prev_class->switched_from)
  1604. prev_class->switched_from(rq, p, running);
  1605. p->sched_class->switched_to(rq, p, running);
  1606. } else
  1607. p->sched_class->prio_changed(rq, p, oldprio, running);
  1608. }
  1609. #ifdef CONFIG_SMP
  1610. /* Used instead of source_load when we know the type == 0 */
  1611. static unsigned long weighted_cpuload(const int cpu)
  1612. {
  1613. return cpu_rq(cpu)->load.weight;
  1614. }
  1615. /*
  1616. * Is this task likely cache-hot:
  1617. */
  1618. static int
  1619. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1620. {
  1621. s64 delta;
  1622. /*
  1623. * Buddy candidates are cache hot:
  1624. */
  1625. if (sched_feat(CACHE_HOT_BUDDY) &&
  1626. (&p->se == cfs_rq_of(&p->se)->next ||
  1627. &p->se == cfs_rq_of(&p->se)->last))
  1628. return 1;
  1629. if (p->sched_class != &fair_sched_class)
  1630. return 0;
  1631. if (sysctl_sched_migration_cost == -1)
  1632. return 1;
  1633. if (sysctl_sched_migration_cost == 0)
  1634. return 0;
  1635. delta = now - p->se.exec_start;
  1636. return delta < (s64)sysctl_sched_migration_cost;
  1637. }
  1638. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1639. {
  1640. int old_cpu = task_cpu(p);
  1641. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1642. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1643. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1644. u64 clock_offset;
  1645. clock_offset = old_rq->clock - new_rq->clock;
  1646. trace_sched_migrate_task(p, new_cpu);
  1647. #ifdef CONFIG_SCHEDSTATS
  1648. if (p->se.wait_start)
  1649. p->se.wait_start -= clock_offset;
  1650. if (p->se.sleep_start)
  1651. p->se.sleep_start -= clock_offset;
  1652. if (p->se.block_start)
  1653. p->se.block_start -= clock_offset;
  1654. #endif
  1655. if (old_cpu != new_cpu) {
  1656. p->se.nr_migrations++;
  1657. new_rq->nr_migrations_in++;
  1658. #ifdef CONFIG_SCHEDSTATS
  1659. if (task_hot(p, old_rq->clock, NULL))
  1660. schedstat_inc(p, se.nr_forced2_migrations);
  1661. #endif
  1662. perf_counter_task_migration(p, new_cpu);
  1663. }
  1664. p->se.vruntime -= old_cfsrq->min_vruntime -
  1665. new_cfsrq->min_vruntime;
  1666. __set_task_cpu(p, new_cpu);
  1667. }
  1668. struct migration_req {
  1669. struct list_head list;
  1670. struct task_struct *task;
  1671. int dest_cpu;
  1672. struct completion done;
  1673. };
  1674. /*
  1675. * The task's runqueue lock must be held.
  1676. * Returns true if you have to wait for migration thread.
  1677. */
  1678. static int
  1679. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1680. {
  1681. struct rq *rq = task_rq(p);
  1682. /*
  1683. * If the task is not on a runqueue (and not running), then
  1684. * it is sufficient to simply update the task's cpu field.
  1685. */
  1686. if (!p->se.on_rq && !task_running(rq, p)) {
  1687. set_task_cpu(p, dest_cpu);
  1688. return 0;
  1689. }
  1690. init_completion(&req->done);
  1691. req->task = p;
  1692. req->dest_cpu = dest_cpu;
  1693. list_add(&req->list, &rq->migration_queue);
  1694. return 1;
  1695. }
  1696. /*
  1697. * wait_task_context_switch - wait for a thread to complete at least one
  1698. * context switch.
  1699. *
  1700. * @p must not be current.
  1701. */
  1702. void wait_task_context_switch(struct task_struct *p)
  1703. {
  1704. unsigned long nvcsw, nivcsw, flags;
  1705. int running;
  1706. struct rq *rq;
  1707. nvcsw = p->nvcsw;
  1708. nivcsw = p->nivcsw;
  1709. for (;;) {
  1710. /*
  1711. * The runqueue is assigned before the actual context
  1712. * switch. We need to take the runqueue lock.
  1713. *
  1714. * We could check initially without the lock but it is
  1715. * very likely that we need to take the lock in every
  1716. * iteration.
  1717. */
  1718. rq = task_rq_lock(p, &flags);
  1719. running = task_running(rq, p);
  1720. task_rq_unlock(rq, &flags);
  1721. if (likely(!running))
  1722. break;
  1723. /*
  1724. * The switch count is incremented before the actual
  1725. * context switch. We thus wait for two switches to be
  1726. * sure at least one completed.
  1727. */
  1728. if ((p->nvcsw - nvcsw) > 1)
  1729. break;
  1730. if ((p->nivcsw - nivcsw) > 1)
  1731. break;
  1732. cpu_relax();
  1733. }
  1734. }
  1735. /*
  1736. * wait_task_inactive - wait for a thread to unschedule.
  1737. *
  1738. * If @match_state is nonzero, it's the @p->state value just checked and
  1739. * not expected to change. If it changes, i.e. @p might have woken up,
  1740. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1741. * we return a positive number (its total switch count). If a second call
  1742. * a short while later returns the same number, the caller can be sure that
  1743. * @p has remained unscheduled the whole time.
  1744. *
  1745. * The caller must ensure that the task *will* unschedule sometime soon,
  1746. * else this function might spin for a *long* time. This function can't
  1747. * be called with interrupts off, or it may introduce deadlock with
  1748. * smp_call_function() if an IPI is sent by the same process we are
  1749. * waiting to become inactive.
  1750. */
  1751. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1752. {
  1753. unsigned long flags;
  1754. int running, on_rq;
  1755. unsigned long ncsw;
  1756. struct rq *rq;
  1757. for (;;) {
  1758. /*
  1759. * We do the initial early heuristics without holding
  1760. * any task-queue locks at all. We'll only try to get
  1761. * the runqueue lock when things look like they will
  1762. * work out!
  1763. */
  1764. rq = task_rq(p);
  1765. /*
  1766. * If the task is actively running on another CPU
  1767. * still, just relax and busy-wait without holding
  1768. * any locks.
  1769. *
  1770. * NOTE! Since we don't hold any locks, it's not
  1771. * even sure that "rq" stays as the right runqueue!
  1772. * But we don't care, since "task_running()" will
  1773. * return false if the runqueue has changed and p
  1774. * is actually now running somewhere else!
  1775. */
  1776. while (task_running(rq, p)) {
  1777. if (match_state && unlikely(p->state != match_state))
  1778. return 0;
  1779. cpu_relax();
  1780. }
  1781. /*
  1782. * Ok, time to look more closely! We need the rq
  1783. * lock now, to be *sure*. If we're wrong, we'll
  1784. * just go back and repeat.
  1785. */
  1786. rq = task_rq_lock(p, &flags);
  1787. trace_sched_wait_task(rq, p);
  1788. running = task_running(rq, p);
  1789. on_rq = p->se.on_rq;
  1790. ncsw = 0;
  1791. if (!match_state || p->state == match_state)
  1792. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1793. task_rq_unlock(rq, &flags);
  1794. /*
  1795. * If it changed from the expected state, bail out now.
  1796. */
  1797. if (unlikely(!ncsw))
  1798. break;
  1799. /*
  1800. * Was it really running after all now that we
  1801. * checked with the proper locks actually held?
  1802. *
  1803. * Oops. Go back and try again..
  1804. */
  1805. if (unlikely(running)) {
  1806. cpu_relax();
  1807. continue;
  1808. }
  1809. /*
  1810. * It's not enough that it's not actively running,
  1811. * it must be off the runqueue _entirely_, and not
  1812. * preempted!
  1813. *
  1814. * So if it was still runnable (but just not actively
  1815. * running right now), it's preempted, and we should
  1816. * yield - it could be a while.
  1817. */
  1818. if (unlikely(on_rq)) {
  1819. schedule_timeout_uninterruptible(1);
  1820. continue;
  1821. }
  1822. /*
  1823. * Ahh, all good. It wasn't running, and it wasn't
  1824. * runnable, which means that it will never become
  1825. * running in the future either. We're all done!
  1826. */
  1827. break;
  1828. }
  1829. return ncsw;
  1830. }
  1831. /***
  1832. * kick_process - kick a running thread to enter/exit the kernel
  1833. * @p: the to-be-kicked thread
  1834. *
  1835. * Cause a process which is running on another CPU to enter
  1836. * kernel-mode, without any delay. (to get signals handled.)
  1837. *
  1838. * NOTE: this function doesnt have to take the runqueue lock,
  1839. * because all it wants to ensure is that the remote task enters
  1840. * the kernel. If the IPI races and the task has been migrated
  1841. * to another CPU then no harm is done and the purpose has been
  1842. * achieved as well.
  1843. */
  1844. void kick_process(struct task_struct *p)
  1845. {
  1846. int cpu;
  1847. preempt_disable();
  1848. cpu = task_cpu(p);
  1849. if ((cpu != smp_processor_id()) && task_curr(p))
  1850. smp_send_reschedule(cpu);
  1851. preempt_enable();
  1852. }
  1853. EXPORT_SYMBOL_GPL(kick_process);
  1854. /*
  1855. * Return a low guess at the load of a migration-source cpu weighted
  1856. * according to the scheduling class and "nice" value.
  1857. *
  1858. * We want to under-estimate the load of migration sources, to
  1859. * balance conservatively.
  1860. */
  1861. static unsigned long source_load(int cpu, int type)
  1862. {
  1863. struct rq *rq = cpu_rq(cpu);
  1864. unsigned long total = weighted_cpuload(cpu);
  1865. if (type == 0 || !sched_feat(LB_BIAS))
  1866. return total;
  1867. return min(rq->cpu_load[type-1], total);
  1868. }
  1869. /*
  1870. * Return a high guess at the load of a migration-target cpu weighted
  1871. * according to the scheduling class and "nice" value.
  1872. */
  1873. static unsigned long target_load(int cpu, int type)
  1874. {
  1875. struct rq *rq = cpu_rq(cpu);
  1876. unsigned long total = weighted_cpuload(cpu);
  1877. if (type == 0 || !sched_feat(LB_BIAS))
  1878. return total;
  1879. return max(rq->cpu_load[type-1], total);
  1880. }
  1881. /*
  1882. * find_idlest_group finds and returns the least busy CPU group within the
  1883. * domain.
  1884. */
  1885. static struct sched_group *
  1886. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1887. {
  1888. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1889. unsigned long min_load = ULONG_MAX, this_load = 0;
  1890. int load_idx = sd->forkexec_idx;
  1891. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1892. do {
  1893. unsigned long load, avg_load;
  1894. int local_group;
  1895. int i;
  1896. /* Skip over this group if it has no CPUs allowed */
  1897. if (!cpumask_intersects(sched_group_cpus(group),
  1898. &p->cpus_allowed))
  1899. continue;
  1900. local_group = cpumask_test_cpu(this_cpu,
  1901. sched_group_cpus(group));
  1902. /* Tally up the load of all CPUs in the group */
  1903. avg_load = 0;
  1904. for_each_cpu(i, sched_group_cpus(group)) {
  1905. /* Bias balancing toward cpus of our domain */
  1906. if (local_group)
  1907. load = source_load(i, load_idx);
  1908. else
  1909. load = target_load(i, load_idx);
  1910. avg_load += load;
  1911. }
  1912. /* Adjust by relative CPU power of the group */
  1913. avg_load = sg_div_cpu_power(group,
  1914. avg_load * SCHED_LOAD_SCALE);
  1915. if (local_group) {
  1916. this_load = avg_load;
  1917. this = group;
  1918. } else if (avg_load < min_load) {
  1919. min_load = avg_load;
  1920. idlest = group;
  1921. }
  1922. } while (group = group->next, group != sd->groups);
  1923. if (!idlest || 100*this_load < imbalance*min_load)
  1924. return NULL;
  1925. return idlest;
  1926. }
  1927. /*
  1928. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1929. */
  1930. static int
  1931. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1932. {
  1933. unsigned long load, min_load = ULONG_MAX;
  1934. int idlest = -1;
  1935. int i;
  1936. /* Traverse only the allowed CPUs */
  1937. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1938. load = weighted_cpuload(i);
  1939. if (load < min_load || (load == min_load && i == this_cpu)) {
  1940. min_load = load;
  1941. idlest = i;
  1942. }
  1943. }
  1944. return idlest;
  1945. }
  1946. /*
  1947. * sched_balance_self: balance the current task (running on cpu) in domains
  1948. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1949. * SD_BALANCE_EXEC.
  1950. *
  1951. * Balance, ie. select the least loaded group.
  1952. *
  1953. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1954. *
  1955. * preempt must be disabled.
  1956. */
  1957. static int sched_balance_self(int cpu, int flag)
  1958. {
  1959. struct task_struct *t = current;
  1960. struct sched_domain *tmp, *sd = NULL;
  1961. for_each_domain(cpu, tmp) {
  1962. /*
  1963. * If power savings logic is enabled for a domain, stop there.
  1964. */
  1965. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1966. break;
  1967. if (tmp->flags & flag)
  1968. sd = tmp;
  1969. }
  1970. if (sd)
  1971. update_shares(sd);
  1972. while (sd) {
  1973. struct sched_group *group;
  1974. int new_cpu, weight;
  1975. if (!(sd->flags & flag)) {
  1976. sd = sd->child;
  1977. continue;
  1978. }
  1979. group = find_idlest_group(sd, t, cpu);
  1980. if (!group) {
  1981. sd = sd->child;
  1982. continue;
  1983. }
  1984. new_cpu = find_idlest_cpu(group, t, cpu);
  1985. if (new_cpu == -1 || new_cpu == cpu) {
  1986. /* Now try balancing at a lower domain level of cpu */
  1987. sd = sd->child;
  1988. continue;
  1989. }
  1990. /* Now try balancing at a lower domain level of new_cpu */
  1991. cpu = new_cpu;
  1992. weight = cpumask_weight(sched_domain_span(sd));
  1993. sd = NULL;
  1994. for_each_domain(cpu, tmp) {
  1995. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1996. break;
  1997. if (tmp->flags & flag)
  1998. sd = tmp;
  1999. }
  2000. /* while loop will break here if sd == NULL */
  2001. }
  2002. return cpu;
  2003. }
  2004. #endif /* CONFIG_SMP */
  2005. /**
  2006. * task_oncpu_function_call - call a function on the cpu on which a task runs
  2007. * @p: the task to evaluate
  2008. * @func: the function to be called
  2009. * @info: the function call argument
  2010. *
  2011. * Calls the function @func when the task is currently running. This might
  2012. * be on the current CPU, which just calls the function directly
  2013. */
  2014. void task_oncpu_function_call(struct task_struct *p,
  2015. void (*func) (void *info), void *info)
  2016. {
  2017. int cpu;
  2018. preempt_disable();
  2019. cpu = task_cpu(p);
  2020. if (task_curr(p))
  2021. smp_call_function_single(cpu, func, info, 1);
  2022. preempt_enable();
  2023. }
  2024. /***
  2025. * try_to_wake_up - wake up a thread
  2026. * @p: the to-be-woken-up thread
  2027. * @state: the mask of task states that can be woken
  2028. * @sync: do a synchronous wakeup?
  2029. *
  2030. * Put it on the run-queue if it's not already there. The "current"
  2031. * thread is always on the run-queue (except when the actual
  2032. * re-schedule is in progress), and as such you're allowed to do
  2033. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2034. * runnable without the overhead of this.
  2035. *
  2036. * returns failure only if the task is already active.
  2037. */
  2038. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2039. {
  2040. int cpu, orig_cpu, this_cpu, success = 0;
  2041. unsigned long flags;
  2042. long old_state;
  2043. struct rq *rq;
  2044. if (!sched_feat(SYNC_WAKEUPS))
  2045. sync = 0;
  2046. #ifdef CONFIG_SMP
  2047. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2048. struct sched_domain *sd;
  2049. this_cpu = raw_smp_processor_id();
  2050. cpu = task_cpu(p);
  2051. for_each_domain(this_cpu, sd) {
  2052. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2053. update_shares(sd);
  2054. break;
  2055. }
  2056. }
  2057. }
  2058. #endif
  2059. smp_wmb();
  2060. rq = task_rq_lock(p, &flags);
  2061. update_rq_clock(rq);
  2062. old_state = p->state;
  2063. if (!(old_state & state))
  2064. goto out;
  2065. if (p->se.on_rq)
  2066. goto out_running;
  2067. cpu = task_cpu(p);
  2068. orig_cpu = cpu;
  2069. this_cpu = smp_processor_id();
  2070. #ifdef CONFIG_SMP
  2071. if (unlikely(task_running(rq, p)))
  2072. goto out_activate;
  2073. cpu = p->sched_class->select_task_rq(p, sync);
  2074. if (cpu != orig_cpu) {
  2075. set_task_cpu(p, cpu);
  2076. task_rq_unlock(rq, &flags);
  2077. /* might preempt at this point */
  2078. rq = task_rq_lock(p, &flags);
  2079. old_state = p->state;
  2080. if (!(old_state & state))
  2081. goto out;
  2082. if (p->se.on_rq)
  2083. goto out_running;
  2084. this_cpu = smp_processor_id();
  2085. cpu = task_cpu(p);
  2086. }
  2087. #ifdef CONFIG_SCHEDSTATS
  2088. schedstat_inc(rq, ttwu_count);
  2089. if (cpu == this_cpu)
  2090. schedstat_inc(rq, ttwu_local);
  2091. else {
  2092. struct sched_domain *sd;
  2093. for_each_domain(this_cpu, sd) {
  2094. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2095. schedstat_inc(sd, ttwu_wake_remote);
  2096. break;
  2097. }
  2098. }
  2099. }
  2100. #endif /* CONFIG_SCHEDSTATS */
  2101. out_activate:
  2102. #endif /* CONFIG_SMP */
  2103. schedstat_inc(p, se.nr_wakeups);
  2104. if (sync)
  2105. schedstat_inc(p, se.nr_wakeups_sync);
  2106. if (orig_cpu != cpu)
  2107. schedstat_inc(p, se.nr_wakeups_migrate);
  2108. if (cpu == this_cpu)
  2109. schedstat_inc(p, se.nr_wakeups_local);
  2110. else
  2111. schedstat_inc(p, se.nr_wakeups_remote);
  2112. activate_task(rq, p, 1);
  2113. success = 1;
  2114. /*
  2115. * Only attribute actual wakeups done by this task.
  2116. */
  2117. if (!in_interrupt()) {
  2118. struct sched_entity *se = &current->se;
  2119. u64 sample = se->sum_exec_runtime;
  2120. if (se->last_wakeup)
  2121. sample -= se->last_wakeup;
  2122. else
  2123. sample -= se->start_runtime;
  2124. update_avg(&se->avg_wakeup, sample);
  2125. se->last_wakeup = se->sum_exec_runtime;
  2126. }
  2127. out_running:
  2128. trace_sched_wakeup(rq, p, success);
  2129. check_preempt_curr(rq, p, sync);
  2130. p->state = TASK_RUNNING;
  2131. #ifdef CONFIG_SMP
  2132. if (p->sched_class->task_wake_up)
  2133. p->sched_class->task_wake_up(rq, p);
  2134. #endif
  2135. out:
  2136. task_rq_unlock(rq, &flags);
  2137. return success;
  2138. }
  2139. /**
  2140. * wake_up_process - Wake up a specific process
  2141. * @p: The process to be woken up.
  2142. *
  2143. * Attempt to wake up the nominated process and move it to the set of runnable
  2144. * processes. Returns 1 if the process was woken up, 0 if it was already
  2145. * running.
  2146. *
  2147. * It may be assumed that this function implies a write memory barrier before
  2148. * changing the task state if and only if any tasks are woken up.
  2149. */
  2150. int wake_up_process(struct task_struct *p)
  2151. {
  2152. return try_to_wake_up(p, TASK_ALL, 0);
  2153. }
  2154. EXPORT_SYMBOL(wake_up_process);
  2155. int wake_up_state(struct task_struct *p, unsigned int state)
  2156. {
  2157. return try_to_wake_up(p, state, 0);
  2158. }
  2159. /*
  2160. * Perform scheduler related setup for a newly forked process p.
  2161. * p is forked by current.
  2162. *
  2163. * __sched_fork() is basic setup used by init_idle() too:
  2164. */
  2165. static void __sched_fork(struct task_struct *p)
  2166. {
  2167. p->se.exec_start = 0;
  2168. p->se.sum_exec_runtime = 0;
  2169. p->se.prev_sum_exec_runtime = 0;
  2170. p->se.nr_migrations = 0;
  2171. p->se.last_wakeup = 0;
  2172. p->se.avg_overlap = 0;
  2173. p->se.start_runtime = 0;
  2174. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2175. #ifdef CONFIG_SCHEDSTATS
  2176. p->se.wait_start = 0;
  2177. p->se.sum_sleep_runtime = 0;
  2178. p->se.sleep_start = 0;
  2179. p->se.block_start = 0;
  2180. p->se.sleep_max = 0;
  2181. p->se.block_max = 0;
  2182. p->se.exec_max = 0;
  2183. p->se.slice_max = 0;
  2184. p->se.wait_max = 0;
  2185. #endif
  2186. INIT_LIST_HEAD(&p->rt.run_list);
  2187. p->se.on_rq = 0;
  2188. INIT_LIST_HEAD(&p->se.group_node);
  2189. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2190. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2191. #endif
  2192. /*
  2193. * We mark the process as running here, but have not actually
  2194. * inserted it onto the runqueue yet. This guarantees that
  2195. * nobody will actually run it, and a signal or other external
  2196. * event cannot wake it up and insert it on the runqueue either.
  2197. */
  2198. p->state = TASK_RUNNING;
  2199. }
  2200. /*
  2201. * fork()/clone()-time setup:
  2202. */
  2203. void sched_fork(struct task_struct *p, int clone_flags)
  2204. {
  2205. int cpu = get_cpu();
  2206. __sched_fork(p);
  2207. #ifdef CONFIG_SMP
  2208. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2209. #endif
  2210. set_task_cpu(p, cpu);
  2211. /*
  2212. * Revert to default priority/policy on fork if requested. Make sure we
  2213. * do not leak PI boosting priority to the child.
  2214. */
  2215. if (current->sched_reset_on_fork &&
  2216. (p->policy == SCHED_FIFO || p->policy == SCHED_RR))
  2217. p->policy = SCHED_NORMAL;
  2218. if (current->sched_reset_on_fork &&
  2219. (current->normal_prio < DEFAULT_PRIO))
  2220. p->prio = DEFAULT_PRIO;
  2221. else
  2222. p->prio = current->normal_prio;
  2223. if (!rt_prio(p->prio))
  2224. p->sched_class = &fair_sched_class;
  2225. /*
  2226. * We don't need the reset flag anymore after the fork. It has
  2227. * fulfilled its duty:
  2228. */
  2229. p->sched_reset_on_fork = 0;
  2230. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2231. if (likely(sched_info_on()))
  2232. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2233. #endif
  2234. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2235. p->oncpu = 0;
  2236. #endif
  2237. #ifdef CONFIG_PREEMPT
  2238. /* Want to start with kernel preemption disabled. */
  2239. task_thread_info(p)->preempt_count = 1;
  2240. #endif
  2241. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2242. put_cpu();
  2243. }
  2244. /*
  2245. * wake_up_new_task - wake up a newly created task for the first time.
  2246. *
  2247. * This function will do some initial scheduler statistics housekeeping
  2248. * that must be done for every newly created context, then puts the task
  2249. * on the runqueue and wakes it.
  2250. */
  2251. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2252. {
  2253. unsigned long flags;
  2254. struct rq *rq;
  2255. rq = task_rq_lock(p, &flags);
  2256. BUG_ON(p->state != TASK_RUNNING);
  2257. update_rq_clock(rq);
  2258. p->prio = effective_prio(p);
  2259. if (!p->sched_class->task_new || !current->se.on_rq) {
  2260. activate_task(rq, p, 0);
  2261. } else {
  2262. /*
  2263. * Let the scheduling class do new task startup
  2264. * management (if any):
  2265. */
  2266. p->sched_class->task_new(rq, p);
  2267. inc_nr_running(rq);
  2268. }
  2269. trace_sched_wakeup_new(rq, p, 1);
  2270. check_preempt_curr(rq, p, 0);
  2271. #ifdef CONFIG_SMP
  2272. if (p->sched_class->task_wake_up)
  2273. p->sched_class->task_wake_up(rq, p);
  2274. #endif
  2275. task_rq_unlock(rq, &flags);
  2276. }
  2277. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2278. /**
  2279. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2280. * @notifier: notifier struct to register
  2281. */
  2282. void preempt_notifier_register(struct preempt_notifier *notifier)
  2283. {
  2284. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2285. }
  2286. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2287. /**
  2288. * preempt_notifier_unregister - no longer interested in preemption notifications
  2289. * @notifier: notifier struct to unregister
  2290. *
  2291. * This is safe to call from within a preemption notifier.
  2292. */
  2293. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2294. {
  2295. hlist_del(&notifier->link);
  2296. }
  2297. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2298. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2299. {
  2300. struct preempt_notifier *notifier;
  2301. struct hlist_node *node;
  2302. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2303. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2304. }
  2305. static void
  2306. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2307. struct task_struct *next)
  2308. {
  2309. struct preempt_notifier *notifier;
  2310. struct hlist_node *node;
  2311. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2312. notifier->ops->sched_out(notifier, next);
  2313. }
  2314. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2315. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2316. {
  2317. }
  2318. static void
  2319. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2320. struct task_struct *next)
  2321. {
  2322. }
  2323. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2324. /**
  2325. * prepare_task_switch - prepare to switch tasks
  2326. * @rq: the runqueue preparing to switch
  2327. * @prev: the current task that is being switched out
  2328. * @next: the task we are going to switch to.
  2329. *
  2330. * This is called with the rq lock held and interrupts off. It must
  2331. * be paired with a subsequent finish_task_switch after the context
  2332. * switch.
  2333. *
  2334. * prepare_task_switch sets up locking and calls architecture specific
  2335. * hooks.
  2336. */
  2337. static inline void
  2338. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2339. struct task_struct *next)
  2340. {
  2341. fire_sched_out_preempt_notifiers(prev, next);
  2342. prepare_lock_switch(rq, next);
  2343. prepare_arch_switch(next);
  2344. }
  2345. /**
  2346. * finish_task_switch - clean up after a task-switch
  2347. * @rq: runqueue associated with task-switch
  2348. * @prev: the thread we just switched away from.
  2349. *
  2350. * finish_task_switch must be called after the context switch, paired
  2351. * with a prepare_task_switch call before the context switch.
  2352. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2353. * and do any other architecture-specific cleanup actions.
  2354. *
  2355. * Note that we may have delayed dropping an mm in context_switch(). If
  2356. * so, we finish that here outside of the runqueue lock. (Doing it
  2357. * with the lock held can cause deadlocks; see schedule() for
  2358. * details.)
  2359. */
  2360. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2361. __releases(rq->lock)
  2362. {
  2363. struct mm_struct *mm = rq->prev_mm;
  2364. long prev_state;
  2365. #ifdef CONFIG_SMP
  2366. int post_schedule = 0;
  2367. if (current->sched_class->needs_post_schedule)
  2368. post_schedule = current->sched_class->needs_post_schedule(rq);
  2369. #endif
  2370. rq->prev_mm = NULL;
  2371. /*
  2372. * A task struct has one reference for the use as "current".
  2373. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2374. * schedule one last time. The schedule call will never return, and
  2375. * the scheduled task must drop that reference.
  2376. * The test for TASK_DEAD must occur while the runqueue locks are
  2377. * still held, otherwise prev could be scheduled on another cpu, die
  2378. * there before we look at prev->state, and then the reference would
  2379. * be dropped twice.
  2380. * Manfred Spraul <manfred@colorfullife.com>
  2381. */
  2382. prev_state = prev->state;
  2383. finish_arch_switch(prev);
  2384. perf_counter_task_sched_in(current, cpu_of(rq));
  2385. finish_lock_switch(rq, prev);
  2386. #ifdef CONFIG_SMP
  2387. if (post_schedule)
  2388. current->sched_class->post_schedule(rq);
  2389. #endif
  2390. fire_sched_in_preempt_notifiers(current);
  2391. if (mm)
  2392. mmdrop(mm);
  2393. if (unlikely(prev_state == TASK_DEAD)) {
  2394. /*
  2395. * Remove function-return probe instances associated with this
  2396. * task and put them back on the free list.
  2397. */
  2398. kprobe_flush_task(prev);
  2399. put_task_struct(prev);
  2400. }
  2401. }
  2402. /**
  2403. * schedule_tail - first thing a freshly forked thread must call.
  2404. * @prev: the thread we just switched away from.
  2405. */
  2406. asmlinkage void schedule_tail(struct task_struct *prev)
  2407. __releases(rq->lock)
  2408. {
  2409. struct rq *rq = this_rq();
  2410. finish_task_switch(rq, prev);
  2411. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2412. /* In this case, finish_task_switch does not reenable preemption */
  2413. preempt_enable();
  2414. #endif
  2415. if (current->set_child_tid)
  2416. put_user(task_pid_vnr(current), current->set_child_tid);
  2417. }
  2418. /*
  2419. * context_switch - switch to the new MM and the new
  2420. * thread's register state.
  2421. */
  2422. static inline void
  2423. context_switch(struct rq *rq, struct task_struct *prev,
  2424. struct task_struct *next)
  2425. {
  2426. struct mm_struct *mm, *oldmm;
  2427. prepare_task_switch(rq, prev, next);
  2428. trace_sched_switch(rq, prev, next);
  2429. mm = next->mm;
  2430. oldmm = prev->active_mm;
  2431. /*
  2432. * For paravirt, this is coupled with an exit in switch_to to
  2433. * combine the page table reload and the switch backend into
  2434. * one hypercall.
  2435. */
  2436. arch_start_context_switch(prev);
  2437. if (unlikely(!mm)) {
  2438. next->active_mm = oldmm;
  2439. atomic_inc(&oldmm->mm_count);
  2440. enter_lazy_tlb(oldmm, next);
  2441. } else
  2442. switch_mm(oldmm, mm, next);
  2443. if (unlikely(!prev->mm)) {
  2444. prev->active_mm = NULL;
  2445. rq->prev_mm = oldmm;
  2446. }
  2447. /*
  2448. * Since the runqueue lock will be released by the next
  2449. * task (which is an invalid locking op but in the case
  2450. * of the scheduler it's an obvious special-case), so we
  2451. * do an early lockdep release here:
  2452. */
  2453. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2454. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2455. #endif
  2456. /* Here we just switch the register state and the stack. */
  2457. switch_to(prev, next, prev);
  2458. barrier();
  2459. /*
  2460. * this_rq must be evaluated again because prev may have moved
  2461. * CPUs since it called schedule(), thus the 'rq' on its stack
  2462. * frame will be invalid.
  2463. */
  2464. finish_task_switch(this_rq(), prev);
  2465. }
  2466. /*
  2467. * nr_running, nr_uninterruptible and nr_context_switches:
  2468. *
  2469. * externally visible scheduler statistics: current number of runnable
  2470. * threads, current number of uninterruptible-sleeping threads, total
  2471. * number of context switches performed since bootup.
  2472. */
  2473. unsigned long nr_running(void)
  2474. {
  2475. unsigned long i, sum = 0;
  2476. for_each_online_cpu(i)
  2477. sum += cpu_rq(i)->nr_running;
  2478. return sum;
  2479. }
  2480. unsigned long nr_uninterruptible(void)
  2481. {
  2482. unsigned long i, sum = 0;
  2483. for_each_possible_cpu(i)
  2484. sum += cpu_rq(i)->nr_uninterruptible;
  2485. /*
  2486. * Since we read the counters lockless, it might be slightly
  2487. * inaccurate. Do not allow it to go below zero though:
  2488. */
  2489. if (unlikely((long)sum < 0))
  2490. sum = 0;
  2491. return sum;
  2492. }
  2493. unsigned long long nr_context_switches(void)
  2494. {
  2495. int i;
  2496. unsigned long long sum = 0;
  2497. for_each_possible_cpu(i)
  2498. sum += cpu_rq(i)->nr_switches;
  2499. return sum;
  2500. }
  2501. unsigned long nr_iowait(void)
  2502. {
  2503. unsigned long i, sum = 0;
  2504. for_each_possible_cpu(i)
  2505. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2506. return sum;
  2507. }
  2508. /* Variables and functions for calc_load */
  2509. static atomic_long_t calc_load_tasks;
  2510. static unsigned long calc_load_update;
  2511. unsigned long avenrun[3];
  2512. EXPORT_SYMBOL(avenrun);
  2513. /**
  2514. * get_avenrun - get the load average array
  2515. * @loads: pointer to dest load array
  2516. * @offset: offset to add
  2517. * @shift: shift count to shift the result left
  2518. *
  2519. * These values are estimates at best, so no need for locking.
  2520. */
  2521. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2522. {
  2523. loads[0] = (avenrun[0] + offset) << shift;
  2524. loads[1] = (avenrun[1] + offset) << shift;
  2525. loads[2] = (avenrun[2] + offset) << shift;
  2526. }
  2527. static unsigned long
  2528. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2529. {
  2530. load *= exp;
  2531. load += active * (FIXED_1 - exp);
  2532. return load >> FSHIFT;
  2533. }
  2534. /*
  2535. * calc_load - update the avenrun load estimates 10 ticks after the
  2536. * CPUs have updated calc_load_tasks.
  2537. */
  2538. void calc_global_load(void)
  2539. {
  2540. unsigned long upd = calc_load_update + 10;
  2541. long active;
  2542. if (time_before(jiffies, upd))
  2543. return;
  2544. active = atomic_long_read(&calc_load_tasks);
  2545. active = active > 0 ? active * FIXED_1 : 0;
  2546. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2547. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2548. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2549. calc_load_update += LOAD_FREQ;
  2550. }
  2551. /*
  2552. * Either called from update_cpu_load() or from a cpu going idle
  2553. */
  2554. static void calc_load_account_active(struct rq *this_rq)
  2555. {
  2556. long nr_active, delta;
  2557. nr_active = this_rq->nr_running;
  2558. nr_active += (long) this_rq->nr_uninterruptible;
  2559. if (nr_active != this_rq->calc_load_active) {
  2560. delta = nr_active - this_rq->calc_load_active;
  2561. this_rq->calc_load_active = nr_active;
  2562. atomic_long_add(delta, &calc_load_tasks);
  2563. }
  2564. }
  2565. /*
  2566. * Externally visible per-cpu scheduler statistics:
  2567. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2568. */
  2569. u64 cpu_nr_migrations(int cpu)
  2570. {
  2571. return cpu_rq(cpu)->nr_migrations_in;
  2572. }
  2573. /*
  2574. * Update rq->cpu_load[] statistics. This function is usually called every
  2575. * scheduler tick (TICK_NSEC).
  2576. */
  2577. static void update_cpu_load(struct rq *this_rq)
  2578. {
  2579. unsigned long this_load = this_rq->load.weight;
  2580. int i, scale;
  2581. this_rq->nr_load_updates++;
  2582. /* Update our load: */
  2583. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2584. unsigned long old_load, new_load;
  2585. /* scale is effectively 1 << i now, and >> i divides by scale */
  2586. old_load = this_rq->cpu_load[i];
  2587. new_load = this_load;
  2588. /*
  2589. * Round up the averaging division if load is increasing. This
  2590. * prevents us from getting stuck on 9 if the load is 10, for
  2591. * example.
  2592. */
  2593. if (new_load > old_load)
  2594. new_load += scale-1;
  2595. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2596. }
  2597. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2598. this_rq->calc_load_update += LOAD_FREQ;
  2599. calc_load_account_active(this_rq);
  2600. }
  2601. }
  2602. #ifdef CONFIG_SMP
  2603. /*
  2604. * double_rq_lock - safely lock two runqueues
  2605. *
  2606. * Note this does not disable interrupts like task_rq_lock,
  2607. * you need to do so manually before calling.
  2608. */
  2609. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2610. __acquires(rq1->lock)
  2611. __acquires(rq2->lock)
  2612. {
  2613. BUG_ON(!irqs_disabled());
  2614. if (rq1 == rq2) {
  2615. spin_lock(&rq1->lock);
  2616. __acquire(rq2->lock); /* Fake it out ;) */
  2617. } else {
  2618. if (rq1 < rq2) {
  2619. spin_lock(&rq1->lock);
  2620. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2621. } else {
  2622. spin_lock(&rq2->lock);
  2623. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2624. }
  2625. }
  2626. update_rq_clock(rq1);
  2627. update_rq_clock(rq2);
  2628. }
  2629. /*
  2630. * double_rq_unlock - safely unlock two runqueues
  2631. *
  2632. * Note this does not restore interrupts like task_rq_unlock,
  2633. * you need to do so manually after calling.
  2634. */
  2635. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2636. __releases(rq1->lock)
  2637. __releases(rq2->lock)
  2638. {
  2639. spin_unlock(&rq1->lock);
  2640. if (rq1 != rq2)
  2641. spin_unlock(&rq2->lock);
  2642. else
  2643. __release(rq2->lock);
  2644. }
  2645. /*
  2646. * If dest_cpu is allowed for this process, migrate the task to it.
  2647. * This is accomplished by forcing the cpu_allowed mask to only
  2648. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2649. * the cpu_allowed mask is restored.
  2650. */
  2651. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2652. {
  2653. struct migration_req req;
  2654. unsigned long flags;
  2655. struct rq *rq;
  2656. rq = task_rq_lock(p, &flags);
  2657. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2658. || unlikely(!cpu_active(dest_cpu)))
  2659. goto out;
  2660. /* force the process onto the specified CPU */
  2661. if (migrate_task(p, dest_cpu, &req)) {
  2662. /* Need to wait for migration thread (might exit: take ref). */
  2663. struct task_struct *mt = rq->migration_thread;
  2664. get_task_struct(mt);
  2665. task_rq_unlock(rq, &flags);
  2666. wake_up_process(mt);
  2667. put_task_struct(mt);
  2668. wait_for_completion(&req.done);
  2669. return;
  2670. }
  2671. out:
  2672. task_rq_unlock(rq, &flags);
  2673. }
  2674. /*
  2675. * sched_exec - execve() is a valuable balancing opportunity, because at
  2676. * this point the task has the smallest effective memory and cache footprint.
  2677. */
  2678. void sched_exec(void)
  2679. {
  2680. int new_cpu, this_cpu = get_cpu();
  2681. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2682. put_cpu();
  2683. if (new_cpu != this_cpu)
  2684. sched_migrate_task(current, new_cpu);
  2685. }
  2686. /*
  2687. * pull_task - move a task from a remote runqueue to the local runqueue.
  2688. * Both runqueues must be locked.
  2689. */
  2690. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2691. struct rq *this_rq, int this_cpu)
  2692. {
  2693. deactivate_task(src_rq, p, 0);
  2694. set_task_cpu(p, this_cpu);
  2695. activate_task(this_rq, p, 0);
  2696. /*
  2697. * Note that idle threads have a prio of MAX_PRIO, for this test
  2698. * to be always true for them.
  2699. */
  2700. check_preempt_curr(this_rq, p, 0);
  2701. }
  2702. /*
  2703. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2704. */
  2705. static
  2706. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2707. struct sched_domain *sd, enum cpu_idle_type idle,
  2708. int *all_pinned)
  2709. {
  2710. int tsk_cache_hot = 0;
  2711. /*
  2712. * We do not migrate tasks that are:
  2713. * 1) running (obviously), or
  2714. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2715. * 3) are cache-hot on their current CPU.
  2716. */
  2717. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2718. schedstat_inc(p, se.nr_failed_migrations_affine);
  2719. return 0;
  2720. }
  2721. *all_pinned = 0;
  2722. if (task_running(rq, p)) {
  2723. schedstat_inc(p, se.nr_failed_migrations_running);
  2724. return 0;
  2725. }
  2726. /*
  2727. * Aggressive migration if:
  2728. * 1) task is cache cold, or
  2729. * 2) too many balance attempts have failed.
  2730. */
  2731. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2732. if (!tsk_cache_hot ||
  2733. sd->nr_balance_failed > sd->cache_nice_tries) {
  2734. #ifdef CONFIG_SCHEDSTATS
  2735. if (tsk_cache_hot) {
  2736. schedstat_inc(sd, lb_hot_gained[idle]);
  2737. schedstat_inc(p, se.nr_forced_migrations);
  2738. }
  2739. #endif
  2740. return 1;
  2741. }
  2742. if (tsk_cache_hot) {
  2743. schedstat_inc(p, se.nr_failed_migrations_hot);
  2744. return 0;
  2745. }
  2746. return 1;
  2747. }
  2748. static unsigned long
  2749. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2750. unsigned long max_load_move, struct sched_domain *sd,
  2751. enum cpu_idle_type idle, int *all_pinned,
  2752. int *this_best_prio, struct rq_iterator *iterator)
  2753. {
  2754. int loops = 0, pulled = 0, pinned = 0;
  2755. struct task_struct *p;
  2756. long rem_load_move = max_load_move;
  2757. if (max_load_move == 0)
  2758. goto out;
  2759. pinned = 1;
  2760. /*
  2761. * Start the load-balancing iterator:
  2762. */
  2763. p = iterator->start(iterator->arg);
  2764. next:
  2765. if (!p || loops++ > sysctl_sched_nr_migrate)
  2766. goto out;
  2767. if ((p->se.load.weight >> 1) > rem_load_move ||
  2768. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2769. p = iterator->next(iterator->arg);
  2770. goto next;
  2771. }
  2772. pull_task(busiest, p, this_rq, this_cpu);
  2773. pulled++;
  2774. rem_load_move -= p->se.load.weight;
  2775. #ifdef CONFIG_PREEMPT
  2776. /*
  2777. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2778. * will stop after the first task is pulled to minimize the critical
  2779. * section.
  2780. */
  2781. if (idle == CPU_NEWLY_IDLE)
  2782. goto out;
  2783. #endif
  2784. /*
  2785. * We only want to steal up to the prescribed amount of weighted load.
  2786. */
  2787. if (rem_load_move > 0) {
  2788. if (p->prio < *this_best_prio)
  2789. *this_best_prio = p->prio;
  2790. p = iterator->next(iterator->arg);
  2791. goto next;
  2792. }
  2793. out:
  2794. /*
  2795. * Right now, this is one of only two places pull_task() is called,
  2796. * so we can safely collect pull_task() stats here rather than
  2797. * inside pull_task().
  2798. */
  2799. schedstat_add(sd, lb_gained[idle], pulled);
  2800. if (all_pinned)
  2801. *all_pinned = pinned;
  2802. return max_load_move - rem_load_move;
  2803. }
  2804. /*
  2805. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2806. * this_rq, as part of a balancing operation within domain "sd".
  2807. * Returns 1 if successful and 0 otherwise.
  2808. *
  2809. * Called with both runqueues locked.
  2810. */
  2811. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2812. unsigned long max_load_move,
  2813. struct sched_domain *sd, enum cpu_idle_type idle,
  2814. int *all_pinned)
  2815. {
  2816. const struct sched_class *class = sched_class_highest;
  2817. unsigned long total_load_moved = 0;
  2818. int this_best_prio = this_rq->curr->prio;
  2819. do {
  2820. total_load_moved +=
  2821. class->load_balance(this_rq, this_cpu, busiest,
  2822. max_load_move - total_load_moved,
  2823. sd, idle, all_pinned, &this_best_prio);
  2824. class = class->next;
  2825. #ifdef CONFIG_PREEMPT
  2826. /*
  2827. * NEWIDLE balancing is a source of latency, so preemptible
  2828. * kernels will stop after the first task is pulled to minimize
  2829. * the critical section.
  2830. */
  2831. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2832. break;
  2833. #endif
  2834. } while (class && max_load_move > total_load_moved);
  2835. return total_load_moved > 0;
  2836. }
  2837. static int
  2838. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2839. struct sched_domain *sd, enum cpu_idle_type idle,
  2840. struct rq_iterator *iterator)
  2841. {
  2842. struct task_struct *p = iterator->start(iterator->arg);
  2843. int pinned = 0;
  2844. while (p) {
  2845. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2846. pull_task(busiest, p, this_rq, this_cpu);
  2847. /*
  2848. * Right now, this is only the second place pull_task()
  2849. * is called, so we can safely collect pull_task()
  2850. * stats here rather than inside pull_task().
  2851. */
  2852. schedstat_inc(sd, lb_gained[idle]);
  2853. return 1;
  2854. }
  2855. p = iterator->next(iterator->arg);
  2856. }
  2857. return 0;
  2858. }
  2859. /*
  2860. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2861. * part of active balancing operations within "domain".
  2862. * Returns 1 if successful and 0 otherwise.
  2863. *
  2864. * Called with both runqueues locked.
  2865. */
  2866. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2867. struct sched_domain *sd, enum cpu_idle_type idle)
  2868. {
  2869. const struct sched_class *class;
  2870. for (class = sched_class_highest; class; class = class->next)
  2871. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2872. return 1;
  2873. return 0;
  2874. }
  2875. /********** Helpers for find_busiest_group ************************/
  2876. /*
  2877. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2878. * during load balancing.
  2879. */
  2880. struct sd_lb_stats {
  2881. struct sched_group *busiest; /* Busiest group in this sd */
  2882. struct sched_group *this; /* Local group in this sd */
  2883. unsigned long total_load; /* Total load of all groups in sd */
  2884. unsigned long total_pwr; /* Total power of all groups in sd */
  2885. unsigned long avg_load; /* Average load across all groups in sd */
  2886. /** Statistics of this group */
  2887. unsigned long this_load;
  2888. unsigned long this_load_per_task;
  2889. unsigned long this_nr_running;
  2890. /* Statistics of the busiest group */
  2891. unsigned long max_load;
  2892. unsigned long busiest_load_per_task;
  2893. unsigned long busiest_nr_running;
  2894. int group_imb; /* Is there imbalance in this sd */
  2895. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2896. int power_savings_balance; /* Is powersave balance needed for this sd */
  2897. struct sched_group *group_min; /* Least loaded group in sd */
  2898. struct sched_group *group_leader; /* Group which relieves group_min */
  2899. unsigned long min_load_per_task; /* load_per_task in group_min */
  2900. unsigned long leader_nr_running; /* Nr running of group_leader */
  2901. unsigned long min_nr_running; /* Nr running of group_min */
  2902. #endif
  2903. };
  2904. /*
  2905. * sg_lb_stats - stats of a sched_group required for load_balancing
  2906. */
  2907. struct sg_lb_stats {
  2908. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2909. unsigned long group_load; /* Total load over the CPUs of the group */
  2910. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2911. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2912. unsigned long group_capacity;
  2913. int group_imb; /* Is there an imbalance in the group ? */
  2914. };
  2915. /**
  2916. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2917. * @group: The group whose first cpu is to be returned.
  2918. */
  2919. static inline unsigned int group_first_cpu(struct sched_group *group)
  2920. {
  2921. return cpumask_first(sched_group_cpus(group));
  2922. }
  2923. /**
  2924. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2925. * @sd: The sched_domain whose load_idx is to be obtained.
  2926. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2927. */
  2928. static inline int get_sd_load_idx(struct sched_domain *sd,
  2929. enum cpu_idle_type idle)
  2930. {
  2931. int load_idx;
  2932. switch (idle) {
  2933. case CPU_NOT_IDLE:
  2934. load_idx = sd->busy_idx;
  2935. break;
  2936. case CPU_NEWLY_IDLE:
  2937. load_idx = sd->newidle_idx;
  2938. break;
  2939. default:
  2940. load_idx = sd->idle_idx;
  2941. break;
  2942. }
  2943. return load_idx;
  2944. }
  2945. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2946. /**
  2947. * init_sd_power_savings_stats - Initialize power savings statistics for
  2948. * the given sched_domain, during load balancing.
  2949. *
  2950. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2951. * @sds: Variable containing the statistics for sd.
  2952. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2953. */
  2954. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2955. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2956. {
  2957. /*
  2958. * Busy processors will not participate in power savings
  2959. * balance.
  2960. */
  2961. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2962. sds->power_savings_balance = 0;
  2963. else {
  2964. sds->power_savings_balance = 1;
  2965. sds->min_nr_running = ULONG_MAX;
  2966. sds->leader_nr_running = 0;
  2967. }
  2968. }
  2969. /**
  2970. * update_sd_power_savings_stats - Update the power saving stats for a
  2971. * sched_domain while performing load balancing.
  2972. *
  2973. * @group: sched_group belonging to the sched_domain under consideration.
  2974. * @sds: Variable containing the statistics of the sched_domain
  2975. * @local_group: Does group contain the CPU for which we're performing
  2976. * load balancing ?
  2977. * @sgs: Variable containing the statistics of the group.
  2978. */
  2979. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2980. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2981. {
  2982. if (!sds->power_savings_balance)
  2983. return;
  2984. /*
  2985. * If the local group is idle or completely loaded
  2986. * no need to do power savings balance at this domain
  2987. */
  2988. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2989. !sds->this_nr_running))
  2990. sds->power_savings_balance = 0;
  2991. /*
  2992. * If a group is already running at full capacity or idle,
  2993. * don't include that group in power savings calculations
  2994. */
  2995. if (!sds->power_savings_balance ||
  2996. sgs->sum_nr_running >= sgs->group_capacity ||
  2997. !sgs->sum_nr_running)
  2998. return;
  2999. /*
  3000. * Calculate the group which has the least non-idle load.
  3001. * This is the group from where we need to pick up the load
  3002. * for saving power
  3003. */
  3004. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3005. (sgs->sum_nr_running == sds->min_nr_running &&
  3006. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3007. sds->group_min = group;
  3008. sds->min_nr_running = sgs->sum_nr_running;
  3009. sds->min_load_per_task = sgs->sum_weighted_load /
  3010. sgs->sum_nr_running;
  3011. }
  3012. /*
  3013. * Calculate the group which is almost near its
  3014. * capacity but still has some space to pick up some load
  3015. * from other group and save more power
  3016. */
  3017. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  3018. return;
  3019. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3020. (sgs->sum_nr_running == sds->leader_nr_running &&
  3021. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3022. sds->group_leader = group;
  3023. sds->leader_nr_running = sgs->sum_nr_running;
  3024. }
  3025. }
  3026. /**
  3027. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3028. * @sds: Variable containing the statistics of the sched_domain
  3029. * under consideration.
  3030. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3031. * @imbalance: Variable to store the imbalance.
  3032. *
  3033. * Description:
  3034. * Check if we have potential to perform some power-savings balance.
  3035. * If yes, set the busiest group to be the least loaded group in the
  3036. * sched_domain, so that it's CPUs can be put to idle.
  3037. *
  3038. * Returns 1 if there is potential to perform power-savings balance.
  3039. * Else returns 0.
  3040. */
  3041. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3042. int this_cpu, unsigned long *imbalance)
  3043. {
  3044. if (!sds->power_savings_balance)
  3045. return 0;
  3046. if (sds->this != sds->group_leader ||
  3047. sds->group_leader == sds->group_min)
  3048. return 0;
  3049. *imbalance = sds->min_load_per_task;
  3050. sds->busiest = sds->group_min;
  3051. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  3052. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  3053. group_first_cpu(sds->group_leader);
  3054. }
  3055. return 1;
  3056. }
  3057. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3058. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3059. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3060. {
  3061. return;
  3062. }
  3063. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3064. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3065. {
  3066. return;
  3067. }
  3068. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3069. int this_cpu, unsigned long *imbalance)
  3070. {
  3071. return 0;
  3072. }
  3073. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3074. /**
  3075. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3076. * @group: sched_group whose statistics are to be updated.
  3077. * @this_cpu: Cpu for which load balance is currently performed.
  3078. * @idle: Idle status of this_cpu
  3079. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3080. * @sd_idle: Idle status of the sched_domain containing group.
  3081. * @local_group: Does group contain this_cpu.
  3082. * @cpus: Set of cpus considered for load balancing.
  3083. * @balance: Should we balance.
  3084. * @sgs: variable to hold the statistics for this group.
  3085. */
  3086. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  3087. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3088. int local_group, const struct cpumask *cpus,
  3089. int *balance, struct sg_lb_stats *sgs)
  3090. {
  3091. unsigned long load, max_cpu_load, min_cpu_load;
  3092. int i;
  3093. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3094. unsigned long sum_avg_load_per_task;
  3095. unsigned long avg_load_per_task;
  3096. if (local_group)
  3097. balance_cpu = group_first_cpu(group);
  3098. /* Tally up the load of all CPUs in the group */
  3099. sum_avg_load_per_task = avg_load_per_task = 0;
  3100. max_cpu_load = 0;
  3101. min_cpu_load = ~0UL;
  3102. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3103. struct rq *rq = cpu_rq(i);
  3104. if (*sd_idle && rq->nr_running)
  3105. *sd_idle = 0;
  3106. /* Bias balancing toward cpus of our domain */
  3107. if (local_group) {
  3108. if (idle_cpu(i) && !first_idle_cpu) {
  3109. first_idle_cpu = 1;
  3110. balance_cpu = i;
  3111. }
  3112. load = target_load(i, load_idx);
  3113. } else {
  3114. load = source_load(i, load_idx);
  3115. if (load > max_cpu_load)
  3116. max_cpu_load = load;
  3117. if (min_cpu_load > load)
  3118. min_cpu_load = load;
  3119. }
  3120. sgs->group_load += load;
  3121. sgs->sum_nr_running += rq->nr_running;
  3122. sgs->sum_weighted_load += weighted_cpuload(i);
  3123. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3124. }
  3125. /*
  3126. * First idle cpu or the first cpu(busiest) in this sched group
  3127. * is eligible for doing load balancing at this and above
  3128. * domains. In the newly idle case, we will allow all the cpu's
  3129. * to do the newly idle load balance.
  3130. */
  3131. if (idle != CPU_NEWLY_IDLE && local_group &&
  3132. balance_cpu != this_cpu && balance) {
  3133. *balance = 0;
  3134. return;
  3135. }
  3136. /* Adjust by relative CPU power of the group */
  3137. sgs->avg_load = sg_div_cpu_power(group,
  3138. sgs->group_load * SCHED_LOAD_SCALE);
  3139. /*
  3140. * Consider the group unbalanced when the imbalance is larger
  3141. * than the average weight of two tasks.
  3142. *
  3143. * APZ: with cgroup the avg task weight can vary wildly and
  3144. * might not be a suitable number - should we keep a
  3145. * normalized nr_running number somewhere that negates
  3146. * the hierarchy?
  3147. */
  3148. avg_load_per_task = sg_div_cpu_power(group,
  3149. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3150. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3151. sgs->group_imb = 1;
  3152. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3153. }
  3154. /**
  3155. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3156. * @sd: sched_domain whose statistics are to be updated.
  3157. * @this_cpu: Cpu for which load balance is currently performed.
  3158. * @idle: Idle status of this_cpu
  3159. * @sd_idle: Idle status of the sched_domain containing group.
  3160. * @cpus: Set of cpus considered for load balancing.
  3161. * @balance: Should we balance.
  3162. * @sds: variable to hold the statistics for this sched_domain.
  3163. */
  3164. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3165. enum cpu_idle_type idle, int *sd_idle,
  3166. const struct cpumask *cpus, int *balance,
  3167. struct sd_lb_stats *sds)
  3168. {
  3169. struct sched_group *group = sd->groups;
  3170. struct sg_lb_stats sgs;
  3171. int load_idx;
  3172. init_sd_power_savings_stats(sd, sds, idle);
  3173. load_idx = get_sd_load_idx(sd, idle);
  3174. do {
  3175. int local_group;
  3176. local_group = cpumask_test_cpu(this_cpu,
  3177. sched_group_cpus(group));
  3178. memset(&sgs, 0, sizeof(sgs));
  3179. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3180. local_group, cpus, balance, &sgs);
  3181. if (local_group && balance && !(*balance))
  3182. return;
  3183. sds->total_load += sgs.group_load;
  3184. sds->total_pwr += group->__cpu_power;
  3185. if (local_group) {
  3186. sds->this_load = sgs.avg_load;
  3187. sds->this = group;
  3188. sds->this_nr_running = sgs.sum_nr_running;
  3189. sds->this_load_per_task = sgs.sum_weighted_load;
  3190. } else if (sgs.avg_load > sds->max_load &&
  3191. (sgs.sum_nr_running > sgs.group_capacity ||
  3192. sgs.group_imb)) {
  3193. sds->max_load = sgs.avg_load;
  3194. sds->busiest = group;
  3195. sds->busiest_nr_running = sgs.sum_nr_running;
  3196. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3197. sds->group_imb = sgs.group_imb;
  3198. }
  3199. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3200. group = group->next;
  3201. } while (group != sd->groups);
  3202. }
  3203. /**
  3204. * fix_small_imbalance - Calculate the minor imbalance that exists
  3205. * amongst the groups of a sched_domain, during
  3206. * load balancing.
  3207. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3208. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3209. * @imbalance: Variable to store the imbalance.
  3210. */
  3211. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3212. int this_cpu, unsigned long *imbalance)
  3213. {
  3214. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3215. unsigned int imbn = 2;
  3216. if (sds->this_nr_running) {
  3217. sds->this_load_per_task /= sds->this_nr_running;
  3218. if (sds->busiest_load_per_task >
  3219. sds->this_load_per_task)
  3220. imbn = 1;
  3221. } else
  3222. sds->this_load_per_task =
  3223. cpu_avg_load_per_task(this_cpu);
  3224. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3225. sds->busiest_load_per_task * imbn) {
  3226. *imbalance = sds->busiest_load_per_task;
  3227. return;
  3228. }
  3229. /*
  3230. * OK, we don't have enough imbalance to justify moving tasks,
  3231. * however we may be able to increase total CPU power used by
  3232. * moving them.
  3233. */
  3234. pwr_now += sds->busiest->__cpu_power *
  3235. min(sds->busiest_load_per_task, sds->max_load);
  3236. pwr_now += sds->this->__cpu_power *
  3237. min(sds->this_load_per_task, sds->this_load);
  3238. pwr_now /= SCHED_LOAD_SCALE;
  3239. /* Amount of load we'd subtract */
  3240. tmp = sg_div_cpu_power(sds->busiest,
  3241. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3242. if (sds->max_load > tmp)
  3243. pwr_move += sds->busiest->__cpu_power *
  3244. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3245. /* Amount of load we'd add */
  3246. if (sds->max_load * sds->busiest->__cpu_power <
  3247. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3248. tmp = sg_div_cpu_power(sds->this,
  3249. sds->max_load * sds->busiest->__cpu_power);
  3250. else
  3251. tmp = sg_div_cpu_power(sds->this,
  3252. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3253. pwr_move += sds->this->__cpu_power *
  3254. min(sds->this_load_per_task, sds->this_load + tmp);
  3255. pwr_move /= SCHED_LOAD_SCALE;
  3256. /* Move if we gain throughput */
  3257. if (pwr_move > pwr_now)
  3258. *imbalance = sds->busiest_load_per_task;
  3259. }
  3260. /**
  3261. * calculate_imbalance - Calculate the amount of imbalance present within the
  3262. * groups of a given sched_domain during load balance.
  3263. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3264. * @this_cpu: Cpu for which currently load balance is being performed.
  3265. * @imbalance: The variable to store the imbalance.
  3266. */
  3267. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3268. unsigned long *imbalance)
  3269. {
  3270. unsigned long max_pull;
  3271. /*
  3272. * In the presence of smp nice balancing, certain scenarios can have
  3273. * max load less than avg load(as we skip the groups at or below
  3274. * its cpu_power, while calculating max_load..)
  3275. */
  3276. if (sds->max_load < sds->avg_load) {
  3277. *imbalance = 0;
  3278. return fix_small_imbalance(sds, this_cpu, imbalance);
  3279. }
  3280. /* Don't want to pull so many tasks that a group would go idle */
  3281. max_pull = min(sds->max_load - sds->avg_load,
  3282. sds->max_load - sds->busiest_load_per_task);
  3283. /* How much load to actually move to equalise the imbalance */
  3284. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3285. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3286. / SCHED_LOAD_SCALE;
  3287. /*
  3288. * if *imbalance is less than the average load per runnable task
  3289. * there is no gaurantee that any tasks will be moved so we'll have
  3290. * a think about bumping its value to force at least one task to be
  3291. * moved
  3292. */
  3293. if (*imbalance < sds->busiest_load_per_task)
  3294. return fix_small_imbalance(sds, this_cpu, imbalance);
  3295. }
  3296. /******* find_busiest_group() helpers end here *********************/
  3297. /**
  3298. * find_busiest_group - Returns the busiest group within the sched_domain
  3299. * if there is an imbalance. If there isn't an imbalance, and
  3300. * the user has opted for power-savings, it returns a group whose
  3301. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3302. * such a group exists.
  3303. *
  3304. * Also calculates the amount of weighted load which should be moved
  3305. * to restore balance.
  3306. *
  3307. * @sd: The sched_domain whose busiest group is to be returned.
  3308. * @this_cpu: The cpu for which load balancing is currently being performed.
  3309. * @imbalance: Variable which stores amount of weighted load which should
  3310. * be moved to restore balance/put a group to idle.
  3311. * @idle: The idle status of this_cpu.
  3312. * @sd_idle: The idleness of sd
  3313. * @cpus: The set of CPUs under consideration for load-balancing.
  3314. * @balance: Pointer to a variable indicating if this_cpu
  3315. * is the appropriate cpu to perform load balancing at this_level.
  3316. *
  3317. * Returns: - the busiest group if imbalance exists.
  3318. * - If no imbalance and user has opted for power-savings balance,
  3319. * return the least loaded group whose CPUs can be
  3320. * put to idle by rebalancing its tasks onto our group.
  3321. */
  3322. static struct sched_group *
  3323. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3324. unsigned long *imbalance, enum cpu_idle_type idle,
  3325. int *sd_idle, const struct cpumask *cpus, int *balance)
  3326. {
  3327. struct sd_lb_stats sds;
  3328. memset(&sds, 0, sizeof(sds));
  3329. /*
  3330. * Compute the various statistics relavent for load balancing at
  3331. * this level.
  3332. */
  3333. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3334. balance, &sds);
  3335. /* Cases where imbalance does not exist from POV of this_cpu */
  3336. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3337. * at this level.
  3338. * 2) There is no busy sibling group to pull from.
  3339. * 3) This group is the busiest group.
  3340. * 4) This group is more busy than the avg busieness at this
  3341. * sched_domain.
  3342. * 5) The imbalance is within the specified limit.
  3343. * 6) Any rebalance would lead to ping-pong
  3344. */
  3345. if (balance && !(*balance))
  3346. goto ret;
  3347. if (!sds.busiest || sds.busiest_nr_running == 0)
  3348. goto out_balanced;
  3349. if (sds.this_load >= sds.max_load)
  3350. goto out_balanced;
  3351. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3352. if (sds.this_load >= sds.avg_load)
  3353. goto out_balanced;
  3354. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3355. goto out_balanced;
  3356. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3357. if (sds.group_imb)
  3358. sds.busiest_load_per_task =
  3359. min(sds.busiest_load_per_task, sds.avg_load);
  3360. /*
  3361. * We're trying to get all the cpus to the average_load, so we don't
  3362. * want to push ourselves above the average load, nor do we wish to
  3363. * reduce the max loaded cpu below the average load, as either of these
  3364. * actions would just result in more rebalancing later, and ping-pong
  3365. * tasks around. Thus we look for the minimum possible imbalance.
  3366. * Negative imbalances (*we* are more loaded than anyone else) will
  3367. * be counted as no imbalance for these purposes -- we can't fix that
  3368. * by pulling tasks to us. Be careful of negative numbers as they'll
  3369. * appear as very large values with unsigned longs.
  3370. */
  3371. if (sds.max_load <= sds.busiest_load_per_task)
  3372. goto out_balanced;
  3373. /* Looks like there is an imbalance. Compute it */
  3374. calculate_imbalance(&sds, this_cpu, imbalance);
  3375. return sds.busiest;
  3376. out_balanced:
  3377. /*
  3378. * There is no obvious imbalance. But check if we can do some balancing
  3379. * to save power.
  3380. */
  3381. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3382. return sds.busiest;
  3383. ret:
  3384. *imbalance = 0;
  3385. return NULL;
  3386. }
  3387. /*
  3388. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3389. */
  3390. static struct rq *
  3391. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3392. unsigned long imbalance, const struct cpumask *cpus)
  3393. {
  3394. struct rq *busiest = NULL, *rq;
  3395. unsigned long max_load = 0;
  3396. int i;
  3397. for_each_cpu(i, sched_group_cpus(group)) {
  3398. unsigned long wl;
  3399. if (!cpumask_test_cpu(i, cpus))
  3400. continue;
  3401. rq = cpu_rq(i);
  3402. wl = weighted_cpuload(i);
  3403. if (rq->nr_running == 1 && wl > imbalance)
  3404. continue;
  3405. if (wl > max_load) {
  3406. max_load = wl;
  3407. busiest = rq;
  3408. }
  3409. }
  3410. return busiest;
  3411. }
  3412. /*
  3413. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3414. * so long as it is large enough.
  3415. */
  3416. #define MAX_PINNED_INTERVAL 512
  3417. /* Working cpumask for load_balance and load_balance_newidle. */
  3418. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3419. /*
  3420. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3421. * tasks if there is an imbalance.
  3422. */
  3423. static int load_balance(int this_cpu, struct rq *this_rq,
  3424. struct sched_domain *sd, enum cpu_idle_type idle,
  3425. int *balance)
  3426. {
  3427. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3428. struct sched_group *group;
  3429. unsigned long imbalance;
  3430. struct rq *busiest;
  3431. unsigned long flags;
  3432. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3433. cpumask_setall(cpus);
  3434. /*
  3435. * When power savings policy is enabled for the parent domain, idle
  3436. * sibling can pick up load irrespective of busy siblings. In this case,
  3437. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3438. * portraying it as CPU_NOT_IDLE.
  3439. */
  3440. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3441. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3442. sd_idle = 1;
  3443. schedstat_inc(sd, lb_count[idle]);
  3444. redo:
  3445. update_shares(sd);
  3446. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3447. cpus, balance);
  3448. if (*balance == 0)
  3449. goto out_balanced;
  3450. if (!group) {
  3451. schedstat_inc(sd, lb_nobusyg[idle]);
  3452. goto out_balanced;
  3453. }
  3454. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3455. if (!busiest) {
  3456. schedstat_inc(sd, lb_nobusyq[idle]);
  3457. goto out_balanced;
  3458. }
  3459. BUG_ON(busiest == this_rq);
  3460. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3461. ld_moved = 0;
  3462. if (busiest->nr_running > 1) {
  3463. /*
  3464. * Attempt to move tasks. If find_busiest_group has found
  3465. * an imbalance but busiest->nr_running <= 1, the group is
  3466. * still unbalanced. ld_moved simply stays zero, so it is
  3467. * correctly treated as an imbalance.
  3468. */
  3469. local_irq_save(flags);
  3470. double_rq_lock(this_rq, busiest);
  3471. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3472. imbalance, sd, idle, &all_pinned);
  3473. double_rq_unlock(this_rq, busiest);
  3474. local_irq_restore(flags);
  3475. /*
  3476. * some other cpu did the load balance for us.
  3477. */
  3478. if (ld_moved && this_cpu != smp_processor_id())
  3479. resched_cpu(this_cpu);
  3480. /* All tasks on this runqueue were pinned by CPU affinity */
  3481. if (unlikely(all_pinned)) {
  3482. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3483. if (!cpumask_empty(cpus))
  3484. goto redo;
  3485. goto out_balanced;
  3486. }
  3487. }
  3488. if (!ld_moved) {
  3489. schedstat_inc(sd, lb_failed[idle]);
  3490. sd->nr_balance_failed++;
  3491. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3492. spin_lock_irqsave(&busiest->lock, flags);
  3493. /* don't kick the migration_thread, if the curr
  3494. * task on busiest cpu can't be moved to this_cpu
  3495. */
  3496. if (!cpumask_test_cpu(this_cpu,
  3497. &busiest->curr->cpus_allowed)) {
  3498. spin_unlock_irqrestore(&busiest->lock, flags);
  3499. all_pinned = 1;
  3500. goto out_one_pinned;
  3501. }
  3502. if (!busiest->active_balance) {
  3503. busiest->active_balance = 1;
  3504. busiest->push_cpu = this_cpu;
  3505. active_balance = 1;
  3506. }
  3507. spin_unlock_irqrestore(&busiest->lock, flags);
  3508. if (active_balance)
  3509. wake_up_process(busiest->migration_thread);
  3510. /*
  3511. * We've kicked active balancing, reset the failure
  3512. * counter.
  3513. */
  3514. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3515. }
  3516. } else
  3517. sd->nr_balance_failed = 0;
  3518. if (likely(!active_balance)) {
  3519. /* We were unbalanced, so reset the balancing interval */
  3520. sd->balance_interval = sd->min_interval;
  3521. } else {
  3522. /*
  3523. * If we've begun active balancing, start to back off. This
  3524. * case may not be covered by the all_pinned logic if there
  3525. * is only 1 task on the busy runqueue (because we don't call
  3526. * move_tasks).
  3527. */
  3528. if (sd->balance_interval < sd->max_interval)
  3529. sd->balance_interval *= 2;
  3530. }
  3531. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3532. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3533. ld_moved = -1;
  3534. goto out;
  3535. out_balanced:
  3536. schedstat_inc(sd, lb_balanced[idle]);
  3537. sd->nr_balance_failed = 0;
  3538. out_one_pinned:
  3539. /* tune up the balancing interval */
  3540. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3541. (sd->balance_interval < sd->max_interval))
  3542. sd->balance_interval *= 2;
  3543. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3544. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3545. ld_moved = -1;
  3546. else
  3547. ld_moved = 0;
  3548. out:
  3549. if (ld_moved)
  3550. update_shares(sd);
  3551. return ld_moved;
  3552. }
  3553. /*
  3554. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3555. * tasks if there is an imbalance.
  3556. *
  3557. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3558. * this_rq is locked.
  3559. */
  3560. static int
  3561. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3562. {
  3563. struct sched_group *group;
  3564. struct rq *busiest = NULL;
  3565. unsigned long imbalance;
  3566. int ld_moved = 0;
  3567. int sd_idle = 0;
  3568. int all_pinned = 0;
  3569. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3570. cpumask_setall(cpus);
  3571. /*
  3572. * When power savings policy is enabled for the parent domain, idle
  3573. * sibling can pick up load irrespective of busy siblings. In this case,
  3574. * let the state of idle sibling percolate up as IDLE, instead of
  3575. * portraying it as CPU_NOT_IDLE.
  3576. */
  3577. if (sd->flags & SD_SHARE_CPUPOWER &&
  3578. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3579. sd_idle = 1;
  3580. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3581. redo:
  3582. update_shares_locked(this_rq, sd);
  3583. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3584. &sd_idle, cpus, NULL);
  3585. if (!group) {
  3586. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3587. goto out_balanced;
  3588. }
  3589. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3590. if (!busiest) {
  3591. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3592. goto out_balanced;
  3593. }
  3594. BUG_ON(busiest == this_rq);
  3595. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3596. ld_moved = 0;
  3597. if (busiest->nr_running > 1) {
  3598. /* Attempt to move tasks */
  3599. double_lock_balance(this_rq, busiest);
  3600. /* this_rq->clock is already updated */
  3601. update_rq_clock(busiest);
  3602. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3603. imbalance, sd, CPU_NEWLY_IDLE,
  3604. &all_pinned);
  3605. double_unlock_balance(this_rq, busiest);
  3606. if (unlikely(all_pinned)) {
  3607. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3608. if (!cpumask_empty(cpus))
  3609. goto redo;
  3610. }
  3611. }
  3612. if (!ld_moved) {
  3613. int active_balance = 0;
  3614. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3615. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3616. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3617. return -1;
  3618. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3619. return -1;
  3620. if (sd->nr_balance_failed++ < 2)
  3621. return -1;
  3622. /*
  3623. * The only task running in a non-idle cpu can be moved to this
  3624. * cpu in an attempt to completely freeup the other CPU
  3625. * package. The same method used to move task in load_balance()
  3626. * have been extended for load_balance_newidle() to speedup
  3627. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3628. *
  3629. * The package power saving logic comes from
  3630. * find_busiest_group(). If there are no imbalance, then
  3631. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3632. * f_b_g() will select a group from which a running task may be
  3633. * pulled to this cpu in order to make the other package idle.
  3634. * If there is no opportunity to make a package idle and if
  3635. * there are no imbalance, then f_b_g() will return NULL and no
  3636. * action will be taken in load_balance_newidle().
  3637. *
  3638. * Under normal task pull operation due to imbalance, there
  3639. * will be more than one task in the source run queue and
  3640. * move_tasks() will succeed. ld_moved will be true and this
  3641. * active balance code will not be triggered.
  3642. */
  3643. /* Lock busiest in correct order while this_rq is held */
  3644. double_lock_balance(this_rq, busiest);
  3645. /*
  3646. * don't kick the migration_thread, if the curr
  3647. * task on busiest cpu can't be moved to this_cpu
  3648. */
  3649. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3650. double_unlock_balance(this_rq, busiest);
  3651. all_pinned = 1;
  3652. return ld_moved;
  3653. }
  3654. if (!busiest->active_balance) {
  3655. busiest->active_balance = 1;
  3656. busiest->push_cpu = this_cpu;
  3657. active_balance = 1;
  3658. }
  3659. double_unlock_balance(this_rq, busiest);
  3660. /*
  3661. * Should not call ttwu while holding a rq->lock
  3662. */
  3663. spin_unlock(&this_rq->lock);
  3664. if (active_balance)
  3665. wake_up_process(busiest->migration_thread);
  3666. spin_lock(&this_rq->lock);
  3667. } else
  3668. sd->nr_balance_failed = 0;
  3669. update_shares_locked(this_rq, sd);
  3670. return ld_moved;
  3671. out_balanced:
  3672. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3673. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3674. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3675. return -1;
  3676. sd->nr_balance_failed = 0;
  3677. return 0;
  3678. }
  3679. /*
  3680. * idle_balance is called by schedule() if this_cpu is about to become
  3681. * idle. Attempts to pull tasks from other CPUs.
  3682. */
  3683. static void idle_balance(int this_cpu, struct rq *this_rq)
  3684. {
  3685. struct sched_domain *sd;
  3686. int pulled_task = 0;
  3687. unsigned long next_balance = jiffies + HZ;
  3688. for_each_domain(this_cpu, sd) {
  3689. unsigned long interval;
  3690. if (!(sd->flags & SD_LOAD_BALANCE))
  3691. continue;
  3692. if (sd->flags & SD_BALANCE_NEWIDLE)
  3693. /* If we've pulled tasks over stop searching: */
  3694. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3695. sd);
  3696. interval = msecs_to_jiffies(sd->balance_interval);
  3697. if (time_after(next_balance, sd->last_balance + interval))
  3698. next_balance = sd->last_balance + interval;
  3699. if (pulled_task)
  3700. break;
  3701. }
  3702. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3703. /*
  3704. * We are going idle. next_balance may be set based on
  3705. * a busy processor. So reset next_balance.
  3706. */
  3707. this_rq->next_balance = next_balance;
  3708. }
  3709. }
  3710. /*
  3711. * active_load_balance is run by migration threads. It pushes running tasks
  3712. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3713. * running on each physical CPU where possible, and avoids physical /
  3714. * logical imbalances.
  3715. *
  3716. * Called with busiest_rq locked.
  3717. */
  3718. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3719. {
  3720. int target_cpu = busiest_rq->push_cpu;
  3721. struct sched_domain *sd;
  3722. struct rq *target_rq;
  3723. /* Is there any task to move? */
  3724. if (busiest_rq->nr_running <= 1)
  3725. return;
  3726. target_rq = cpu_rq(target_cpu);
  3727. /*
  3728. * This condition is "impossible", if it occurs
  3729. * we need to fix it. Originally reported by
  3730. * Bjorn Helgaas on a 128-cpu setup.
  3731. */
  3732. BUG_ON(busiest_rq == target_rq);
  3733. /* move a task from busiest_rq to target_rq */
  3734. double_lock_balance(busiest_rq, target_rq);
  3735. update_rq_clock(busiest_rq);
  3736. update_rq_clock(target_rq);
  3737. /* Search for an sd spanning us and the target CPU. */
  3738. for_each_domain(target_cpu, sd) {
  3739. if ((sd->flags & SD_LOAD_BALANCE) &&
  3740. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3741. break;
  3742. }
  3743. if (likely(sd)) {
  3744. schedstat_inc(sd, alb_count);
  3745. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3746. sd, CPU_IDLE))
  3747. schedstat_inc(sd, alb_pushed);
  3748. else
  3749. schedstat_inc(sd, alb_failed);
  3750. }
  3751. double_unlock_balance(busiest_rq, target_rq);
  3752. }
  3753. #ifdef CONFIG_NO_HZ
  3754. static struct {
  3755. atomic_t load_balancer;
  3756. cpumask_var_t cpu_mask;
  3757. cpumask_var_t ilb_grp_nohz_mask;
  3758. } nohz ____cacheline_aligned = {
  3759. .load_balancer = ATOMIC_INIT(-1),
  3760. };
  3761. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3762. /**
  3763. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3764. * @cpu: The cpu whose lowest level of sched domain is to
  3765. * be returned.
  3766. * @flag: The flag to check for the lowest sched_domain
  3767. * for the given cpu.
  3768. *
  3769. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3770. */
  3771. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3772. {
  3773. struct sched_domain *sd;
  3774. for_each_domain(cpu, sd)
  3775. if (sd && (sd->flags & flag))
  3776. break;
  3777. return sd;
  3778. }
  3779. /**
  3780. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3781. * @cpu: The cpu whose domains we're iterating over.
  3782. * @sd: variable holding the value of the power_savings_sd
  3783. * for cpu.
  3784. * @flag: The flag to filter the sched_domains to be iterated.
  3785. *
  3786. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3787. * set, starting from the lowest sched_domain to the highest.
  3788. */
  3789. #define for_each_flag_domain(cpu, sd, flag) \
  3790. for (sd = lowest_flag_domain(cpu, flag); \
  3791. (sd && (sd->flags & flag)); sd = sd->parent)
  3792. /**
  3793. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3794. * @ilb_group: group to be checked for semi-idleness
  3795. *
  3796. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3797. *
  3798. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3799. * and atleast one non-idle CPU. This helper function checks if the given
  3800. * sched_group is semi-idle or not.
  3801. */
  3802. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3803. {
  3804. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3805. sched_group_cpus(ilb_group));
  3806. /*
  3807. * A sched_group is semi-idle when it has atleast one busy cpu
  3808. * and atleast one idle cpu.
  3809. */
  3810. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3811. return 0;
  3812. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3813. return 0;
  3814. return 1;
  3815. }
  3816. /**
  3817. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3818. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3819. *
  3820. * Returns: Returns the id of the idle load balancer if it exists,
  3821. * Else, returns >= nr_cpu_ids.
  3822. *
  3823. * This algorithm picks the idle load balancer such that it belongs to a
  3824. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3825. * completely idle packages/cores just for the purpose of idle load balancing
  3826. * when there are other idle cpu's which are better suited for that job.
  3827. */
  3828. static int find_new_ilb(int cpu)
  3829. {
  3830. struct sched_domain *sd;
  3831. struct sched_group *ilb_group;
  3832. /*
  3833. * Have idle load balancer selection from semi-idle packages only
  3834. * when power-aware load balancing is enabled
  3835. */
  3836. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3837. goto out_done;
  3838. /*
  3839. * Optimize for the case when we have no idle CPUs or only one
  3840. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3841. */
  3842. if (cpumask_weight(nohz.cpu_mask) < 2)
  3843. goto out_done;
  3844. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3845. ilb_group = sd->groups;
  3846. do {
  3847. if (is_semi_idle_group(ilb_group))
  3848. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3849. ilb_group = ilb_group->next;
  3850. } while (ilb_group != sd->groups);
  3851. }
  3852. out_done:
  3853. return cpumask_first(nohz.cpu_mask);
  3854. }
  3855. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3856. static inline int find_new_ilb(int call_cpu)
  3857. {
  3858. return cpumask_first(nohz.cpu_mask);
  3859. }
  3860. #endif
  3861. /*
  3862. * This routine will try to nominate the ilb (idle load balancing)
  3863. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3864. * load balancing on behalf of all those cpus. If all the cpus in the system
  3865. * go into this tickless mode, then there will be no ilb owner (as there is
  3866. * no need for one) and all the cpus will sleep till the next wakeup event
  3867. * arrives...
  3868. *
  3869. * For the ilb owner, tick is not stopped. And this tick will be used
  3870. * for idle load balancing. ilb owner will still be part of
  3871. * nohz.cpu_mask..
  3872. *
  3873. * While stopping the tick, this cpu will become the ilb owner if there
  3874. * is no other owner. And will be the owner till that cpu becomes busy
  3875. * or if all cpus in the system stop their ticks at which point
  3876. * there is no need for ilb owner.
  3877. *
  3878. * When the ilb owner becomes busy, it nominates another owner, during the
  3879. * next busy scheduler_tick()
  3880. */
  3881. int select_nohz_load_balancer(int stop_tick)
  3882. {
  3883. int cpu = smp_processor_id();
  3884. if (stop_tick) {
  3885. cpu_rq(cpu)->in_nohz_recently = 1;
  3886. if (!cpu_active(cpu)) {
  3887. if (atomic_read(&nohz.load_balancer) != cpu)
  3888. return 0;
  3889. /*
  3890. * If we are going offline and still the leader,
  3891. * give up!
  3892. */
  3893. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3894. BUG();
  3895. return 0;
  3896. }
  3897. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3898. /* time for ilb owner also to sleep */
  3899. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3900. if (atomic_read(&nohz.load_balancer) == cpu)
  3901. atomic_set(&nohz.load_balancer, -1);
  3902. return 0;
  3903. }
  3904. if (atomic_read(&nohz.load_balancer) == -1) {
  3905. /* make me the ilb owner */
  3906. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3907. return 1;
  3908. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3909. int new_ilb;
  3910. if (!(sched_smt_power_savings ||
  3911. sched_mc_power_savings))
  3912. return 1;
  3913. /*
  3914. * Check to see if there is a more power-efficient
  3915. * ilb.
  3916. */
  3917. new_ilb = find_new_ilb(cpu);
  3918. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3919. atomic_set(&nohz.load_balancer, -1);
  3920. resched_cpu(new_ilb);
  3921. return 0;
  3922. }
  3923. return 1;
  3924. }
  3925. } else {
  3926. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3927. return 0;
  3928. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3929. if (atomic_read(&nohz.load_balancer) == cpu)
  3930. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3931. BUG();
  3932. }
  3933. return 0;
  3934. }
  3935. #endif
  3936. static DEFINE_SPINLOCK(balancing);
  3937. /*
  3938. * It checks each scheduling domain to see if it is due to be balanced,
  3939. * and initiates a balancing operation if so.
  3940. *
  3941. * Balancing parameters are set up in arch_init_sched_domains.
  3942. */
  3943. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3944. {
  3945. int balance = 1;
  3946. struct rq *rq = cpu_rq(cpu);
  3947. unsigned long interval;
  3948. struct sched_domain *sd;
  3949. /* Earliest time when we have to do rebalance again */
  3950. unsigned long next_balance = jiffies + 60*HZ;
  3951. int update_next_balance = 0;
  3952. int need_serialize;
  3953. for_each_domain(cpu, sd) {
  3954. if (!(sd->flags & SD_LOAD_BALANCE))
  3955. continue;
  3956. interval = sd->balance_interval;
  3957. if (idle != CPU_IDLE)
  3958. interval *= sd->busy_factor;
  3959. /* scale ms to jiffies */
  3960. interval = msecs_to_jiffies(interval);
  3961. if (unlikely(!interval))
  3962. interval = 1;
  3963. if (interval > HZ*NR_CPUS/10)
  3964. interval = HZ*NR_CPUS/10;
  3965. need_serialize = sd->flags & SD_SERIALIZE;
  3966. if (need_serialize) {
  3967. if (!spin_trylock(&balancing))
  3968. goto out;
  3969. }
  3970. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3971. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3972. /*
  3973. * We've pulled tasks over so either we're no
  3974. * longer idle, or one of our SMT siblings is
  3975. * not idle.
  3976. */
  3977. idle = CPU_NOT_IDLE;
  3978. }
  3979. sd->last_balance = jiffies;
  3980. }
  3981. if (need_serialize)
  3982. spin_unlock(&balancing);
  3983. out:
  3984. if (time_after(next_balance, sd->last_balance + interval)) {
  3985. next_balance = sd->last_balance + interval;
  3986. update_next_balance = 1;
  3987. }
  3988. /*
  3989. * Stop the load balance at this level. There is another
  3990. * CPU in our sched group which is doing load balancing more
  3991. * actively.
  3992. */
  3993. if (!balance)
  3994. break;
  3995. }
  3996. /*
  3997. * next_balance will be updated only when there is a need.
  3998. * When the cpu is attached to null domain for ex, it will not be
  3999. * updated.
  4000. */
  4001. if (likely(update_next_balance))
  4002. rq->next_balance = next_balance;
  4003. }
  4004. /*
  4005. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4006. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4007. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4008. */
  4009. static void run_rebalance_domains(struct softirq_action *h)
  4010. {
  4011. int this_cpu = smp_processor_id();
  4012. struct rq *this_rq = cpu_rq(this_cpu);
  4013. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4014. CPU_IDLE : CPU_NOT_IDLE;
  4015. rebalance_domains(this_cpu, idle);
  4016. #ifdef CONFIG_NO_HZ
  4017. /*
  4018. * If this cpu is the owner for idle load balancing, then do the
  4019. * balancing on behalf of the other idle cpus whose ticks are
  4020. * stopped.
  4021. */
  4022. if (this_rq->idle_at_tick &&
  4023. atomic_read(&nohz.load_balancer) == this_cpu) {
  4024. struct rq *rq;
  4025. int balance_cpu;
  4026. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4027. if (balance_cpu == this_cpu)
  4028. continue;
  4029. /*
  4030. * If this cpu gets work to do, stop the load balancing
  4031. * work being done for other cpus. Next load
  4032. * balancing owner will pick it up.
  4033. */
  4034. if (need_resched())
  4035. break;
  4036. rebalance_domains(balance_cpu, CPU_IDLE);
  4037. rq = cpu_rq(balance_cpu);
  4038. if (time_after(this_rq->next_balance, rq->next_balance))
  4039. this_rq->next_balance = rq->next_balance;
  4040. }
  4041. }
  4042. #endif
  4043. }
  4044. static inline int on_null_domain(int cpu)
  4045. {
  4046. return !rcu_dereference(cpu_rq(cpu)->sd);
  4047. }
  4048. /*
  4049. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4050. *
  4051. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4052. * idle load balancing owner or decide to stop the periodic load balancing,
  4053. * if the whole system is idle.
  4054. */
  4055. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4056. {
  4057. #ifdef CONFIG_NO_HZ
  4058. /*
  4059. * If we were in the nohz mode recently and busy at the current
  4060. * scheduler tick, then check if we need to nominate new idle
  4061. * load balancer.
  4062. */
  4063. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4064. rq->in_nohz_recently = 0;
  4065. if (atomic_read(&nohz.load_balancer) == cpu) {
  4066. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4067. atomic_set(&nohz.load_balancer, -1);
  4068. }
  4069. if (atomic_read(&nohz.load_balancer) == -1) {
  4070. int ilb = find_new_ilb(cpu);
  4071. if (ilb < nr_cpu_ids)
  4072. resched_cpu(ilb);
  4073. }
  4074. }
  4075. /*
  4076. * If this cpu is idle and doing idle load balancing for all the
  4077. * cpus with ticks stopped, is it time for that to stop?
  4078. */
  4079. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4080. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4081. resched_cpu(cpu);
  4082. return;
  4083. }
  4084. /*
  4085. * If this cpu is idle and the idle load balancing is done by
  4086. * someone else, then no need raise the SCHED_SOFTIRQ
  4087. */
  4088. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4089. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4090. return;
  4091. #endif
  4092. /* Don't need to rebalance while attached to NULL domain */
  4093. if (time_after_eq(jiffies, rq->next_balance) &&
  4094. likely(!on_null_domain(cpu)))
  4095. raise_softirq(SCHED_SOFTIRQ);
  4096. }
  4097. #else /* CONFIG_SMP */
  4098. /*
  4099. * on UP we do not need to balance between CPUs:
  4100. */
  4101. static inline void idle_balance(int cpu, struct rq *rq)
  4102. {
  4103. }
  4104. #endif
  4105. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4106. EXPORT_PER_CPU_SYMBOL(kstat);
  4107. /*
  4108. * Return any ns on the sched_clock that have not yet been accounted in
  4109. * @p in case that task is currently running.
  4110. *
  4111. * Called with task_rq_lock() held on @rq.
  4112. */
  4113. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4114. {
  4115. u64 ns = 0;
  4116. if (task_current(rq, p)) {
  4117. update_rq_clock(rq);
  4118. ns = rq->clock - p->se.exec_start;
  4119. if ((s64)ns < 0)
  4120. ns = 0;
  4121. }
  4122. return ns;
  4123. }
  4124. unsigned long long task_delta_exec(struct task_struct *p)
  4125. {
  4126. unsigned long flags;
  4127. struct rq *rq;
  4128. u64 ns = 0;
  4129. rq = task_rq_lock(p, &flags);
  4130. ns = do_task_delta_exec(p, rq);
  4131. task_rq_unlock(rq, &flags);
  4132. return ns;
  4133. }
  4134. /*
  4135. * Return accounted runtime for the task.
  4136. * In case the task is currently running, return the runtime plus current's
  4137. * pending runtime that have not been accounted yet.
  4138. */
  4139. unsigned long long task_sched_runtime(struct task_struct *p)
  4140. {
  4141. unsigned long flags;
  4142. struct rq *rq;
  4143. u64 ns = 0;
  4144. rq = task_rq_lock(p, &flags);
  4145. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4146. task_rq_unlock(rq, &flags);
  4147. return ns;
  4148. }
  4149. /*
  4150. * Return sum_exec_runtime for the thread group.
  4151. * In case the task is currently running, return the sum plus current's
  4152. * pending runtime that have not been accounted yet.
  4153. *
  4154. * Note that the thread group might have other running tasks as well,
  4155. * so the return value not includes other pending runtime that other
  4156. * running tasks might have.
  4157. */
  4158. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4159. {
  4160. struct task_cputime totals;
  4161. unsigned long flags;
  4162. struct rq *rq;
  4163. u64 ns;
  4164. rq = task_rq_lock(p, &flags);
  4165. thread_group_cputime(p, &totals);
  4166. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4167. task_rq_unlock(rq, &flags);
  4168. return ns;
  4169. }
  4170. /*
  4171. * Account user cpu time to a process.
  4172. * @p: the process that the cpu time gets accounted to
  4173. * @cputime: the cpu time spent in user space since the last update
  4174. * @cputime_scaled: cputime scaled by cpu frequency
  4175. */
  4176. void account_user_time(struct task_struct *p, cputime_t cputime,
  4177. cputime_t cputime_scaled)
  4178. {
  4179. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4180. cputime64_t tmp;
  4181. /* Add user time to process. */
  4182. p->utime = cputime_add(p->utime, cputime);
  4183. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4184. account_group_user_time(p, cputime);
  4185. /* Add user time to cpustat. */
  4186. tmp = cputime_to_cputime64(cputime);
  4187. if (TASK_NICE(p) > 0)
  4188. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4189. else
  4190. cpustat->user = cputime64_add(cpustat->user, tmp);
  4191. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4192. /* Account for user time used */
  4193. acct_update_integrals(p);
  4194. }
  4195. /*
  4196. * Account guest cpu time to a process.
  4197. * @p: the process that the cpu time gets accounted to
  4198. * @cputime: the cpu time spent in virtual machine since the last update
  4199. * @cputime_scaled: cputime scaled by cpu frequency
  4200. */
  4201. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4202. cputime_t cputime_scaled)
  4203. {
  4204. cputime64_t tmp;
  4205. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4206. tmp = cputime_to_cputime64(cputime);
  4207. /* Add guest time to process. */
  4208. p->utime = cputime_add(p->utime, cputime);
  4209. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4210. account_group_user_time(p, cputime);
  4211. p->gtime = cputime_add(p->gtime, cputime);
  4212. /* Add guest time to cpustat. */
  4213. cpustat->user = cputime64_add(cpustat->user, tmp);
  4214. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4215. }
  4216. /*
  4217. * Account system cpu time to a process.
  4218. * @p: the process that the cpu time gets accounted to
  4219. * @hardirq_offset: the offset to subtract from hardirq_count()
  4220. * @cputime: the cpu time spent in kernel space since the last update
  4221. * @cputime_scaled: cputime scaled by cpu frequency
  4222. */
  4223. void account_system_time(struct task_struct *p, int hardirq_offset,
  4224. cputime_t cputime, cputime_t cputime_scaled)
  4225. {
  4226. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4227. cputime64_t tmp;
  4228. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4229. account_guest_time(p, cputime, cputime_scaled);
  4230. return;
  4231. }
  4232. /* Add system time to process. */
  4233. p->stime = cputime_add(p->stime, cputime);
  4234. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4235. account_group_system_time(p, cputime);
  4236. /* Add system time to cpustat. */
  4237. tmp = cputime_to_cputime64(cputime);
  4238. if (hardirq_count() - hardirq_offset)
  4239. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4240. else if (softirq_count())
  4241. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4242. else
  4243. cpustat->system = cputime64_add(cpustat->system, tmp);
  4244. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4245. /* Account for system time used */
  4246. acct_update_integrals(p);
  4247. }
  4248. /*
  4249. * Account for involuntary wait time.
  4250. * @steal: the cpu time spent in involuntary wait
  4251. */
  4252. void account_steal_time(cputime_t cputime)
  4253. {
  4254. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4255. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4256. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4257. }
  4258. /*
  4259. * Account for idle time.
  4260. * @cputime: the cpu time spent in idle wait
  4261. */
  4262. void account_idle_time(cputime_t cputime)
  4263. {
  4264. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4265. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4266. struct rq *rq = this_rq();
  4267. if (atomic_read(&rq->nr_iowait) > 0)
  4268. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4269. else
  4270. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4271. }
  4272. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4273. /*
  4274. * Account a single tick of cpu time.
  4275. * @p: the process that the cpu time gets accounted to
  4276. * @user_tick: indicates if the tick is a user or a system tick
  4277. */
  4278. void account_process_tick(struct task_struct *p, int user_tick)
  4279. {
  4280. cputime_t one_jiffy = jiffies_to_cputime(1);
  4281. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4282. struct rq *rq = this_rq();
  4283. if (user_tick)
  4284. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4285. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4286. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4287. one_jiffy_scaled);
  4288. else
  4289. account_idle_time(one_jiffy);
  4290. }
  4291. /*
  4292. * Account multiple ticks of steal time.
  4293. * @p: the process from which the cpu time has been stolen
  4294. * @ticks: number of stolen ticks
  4295. */
  4296. void account_steal_ticks(unsigned long ticks)
  4297. {
  4298. account_steal_time(jiffies_to_cputime(ticks));
  4299. }
  4300. /*
  4301. * Account multiple ticks of idle time.
  4302. * @ticks: number of stolen ticks
  4303. */
  4304. void account_idle_ticks(unsigned long ticks)
  4305. {
  4306. account_idle_time(jiffies_to_cputime(ticks));
  4307. }
  4308. #endif
  4309. /*
  4310. * Use precise platform statistics if available:
  4311. */
  4312. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4313. cputime_t task_utime(struct task_struct *p)
  4314. {
  4315. return p->utime;
  4316. }
  4317. cputime_t task_stime(struct task_struct *p)
  4318. {
  4319. return p->stime;
  4320. }
  4321. #else
  4322. cputime_t task_utime(struct task_struct *p)
  4323. {
  4324. clock_t utime = cputime_to_clock_t(p->utime),
  4325. total = utime + cputime_to_clock_t(p->stime);
  4326. u64 temp;
  4327. /*
  4328. * Use CFS's precise accounting:
  4329. */
  4330. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4331. if (total) {
  4332. temp *= utime;
  4333. do_div(temp, total);
  4334. }
  4335. utime = (clock_t)temp;
  4336. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4337. return p->prev_utime;
  4338. }
  4339. cputime_t task_stime(struct task_struct *p)
  4340. {
  4341. clock_t stime;
  4342. /*
  4343. * Use CFS's precise accounting. (we subtract utime from
  4344. * the total, to make sure the total observed by userspace
  4345. * grows monotonically - apps rely on that):
  4346. */
  4347. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4348. cputime_to_clock_t(task_utime(p));
  4349. if (stime >= 0)
  4350. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4351. return p->prev_stime;
  4352. }
  4353. #endif
  4354. inline cputime_t task_gtime(struct task_struct *p)
  4355. {
  4356. return p->gtime;
  4357. }
  4358. /*
  4359. * This function gets called by the timer code, with HZ frequency.
  4360. * We call it with interrupts disabled.
  4361. *
  4362. * It also gets called by the fork code, when changing the parent's
  4363. * timeslices.
  4364. */
  4365. void scheduler_tick(void)
  4366. {
  4367. int cpu = smp_processor_id();
  4368. struct rq *rq = cpu_rq(cpu);
  4369. struct task_struct *curr = rq->curr;
  4370. sched_clock_tick();
  4371. spin_lock(&rq->lock);
  4372. update_rq_clock(rq);
  4373. update_cpu_load(rq);
  4374. curr->sched_class->task_tick(rq, curr, 0);
  4375. spin_unlock(&rq->lock);
  4376. perf_counter_task_tick(curr, cpu);
  4377. #ifdef CONFIG_SMP
  4378. rq->idle_at_tick = idle_cpu(cpu);
  4379. trigger_load_balance(rq, cpu);
  4380. #endif
  4381. }
  4382. notrace unsigned long get_parent_ip(unsigned long addr)
  4383. {
  4384. if (in_lock_functions(addr)) {
  4385. addr = CALLER_ADDR2;
  4386. if (in_lock_functions(addr))
  4387. addr = CALLER_ADDR3;
  4388. }
  4389. return addr;
  4390. }
  4391. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4392. defined(CONFIG_PREEMPT_TRACER))
  4393. void __kprobes add_preempt_count(int val)
  4394. {
  4395. #ifdef CONFIG_DEBUG_PREEMPT
  4396. /*
  4397. * Underflow?
  4398. */
  4399. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4400. return;
  4401. #endif
  4402. preempt_count() += val;
  4403. #ifdef CONFIG_DEBUG_PREEMPT
  4404. /*
  4405. * Spinlock count overflowing soon?
  4406. */
  4407. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4408. PREEMPT_MASK - 10);
  4409. #endif
  4410. if (preempt_count() == val)
  4411. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4412. }
  4413. EXPORT_SYMBOL(add_preempt_count);
  4414. void __kprobes sub_preempt_count(int val)
  4415. {
  4416. #ifdef CONFIG_DEBUG_PREEMPT
  4417. /*
  4418. * Underflow?
  4419. */
  4420. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4421. return;
  4422. /*
  4423. * Is the spinlock portion underflowing?
  4424. */
  4425. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4426. !(preempt_count() & PREEMPT_MASK)))
  4427. return;
  4428. #endif
  4429. if (preempt_count() == val)
  4430. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4431. preempt_count() -= val;
  4432. }
  4433. EXPORT_SYMBOL(sub_preempt_count);
  4434. #endif
  4435. /*
  4436. * Print scheduling while atomic bug:
  4437. */
  4438. static noinline void __schedule_bug(struct task_struct *prev)
  4439. {
  4440. struct pt_regs *regs = get_irq_regs();
  4441. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4442. prev->comm, prev->pid, preempt_count());
  4443. debug_show_held_locks(prev);
  4444. print_modules();
  4445. if (irqs_disabled())
  4446. print_irqtrace_events(prev);
  4447. if (regs)
  4448. show_regs(regs);
  4449. else
  4450. dump_stack();
  4451. }
  4452. /*
  4453. * Various schedule()-time debugging checks and statistics:
  4454. */
  4455. static inline void schedule_debug(struct task_struct *prev)
  4456. {
  4457. /*
  4458. * Test if we are atomic. Since do_exit() needs to call into
  4459. * schedule() atomically, we ignore that path for now.
  4460. * Otherwise, whine if we are scheduling when we should not be.
  4461. */
  4462. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4463. __schedule_bug(prev);
  4464. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4465. schedstat_inc(this_rq(), sched_count);
  4466. #ifdef CONFIG_SCHEDSTATS
  4467. if (unlikely(prev->lock_depth >= 0)) {
  4468. schedstat_inc(this_rq(), bkl_count);
  4469. schedstat_inc(prev, sched_info.bkl_count);
  4470. }
  4471. #endif
  4472. }
  4473. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4474. {
  4475. if (prev->state == TASK_RUNNING) {
  4476. u64 runtime = prev->se.sum_exec_runtime;
  4477. runtime -= prev->se.prev_sum_exec_runtime;
  4478. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4479. /*
  4480. * In order to avoid avg_overlap growing stale when we are
  4481. * indeed overlapping and hence not getting put to sleep, grow
  4482. * the avg_overlap on preemption.
  4483. *
  4484. * We use the average preemption runtime because that
  4485. * correlates to the amount of cache footprint a task can
  4486. * build up.
  4487. */
  4488. update_avg(&prev->se.avg_overlap, runtime);
  4489. }
  4490. prev->sched_class->put_prev_task(rq, prev);
  4491. }
  4492. /*
  4493. * Pick up the highest-prio task:
  4494. */
  4495. static inline struct task_struct *
  4496. pick_next_task(struct rq *rq)
  4497. {
  4498. const struct sched_class *class;
  4499. struct task_struct *p;
  4500. /*
  4501. * Optimization: we know that if all tasks are in
  4502. * the fair class we can call that function directly:
  4503. */
  4504. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4505. p = fair_sched_class.pick_next_task(rq);
  4506. if (likely(p))
  4507. return p;
  4508. }
  4509. class = sched_class_highest;
  4510. for ( ; ; ) {
  4511. p = class->pick_next_task(rq);
  4512. if (p)
  4513. return p;
  4514. /*
  4515. * Will never be NULL as the idle class always
  4516. * returns a non-NULL p:
  4517. */
  4518. class = class->next;
  4519. }
  4520. }
  4521. /*
  4522. * schedule() is the main scheduler function.
  4523. */
  4524. asmlinkage void __sched schedule(void)
  4525. {
  4526. struct task_struct *prev, *next;
  4527. unsigned long *switch_count;
  4528. struct rq *rq;
  4529. int cpu;
  4530. need_resched:
  4531. preempt_disable();
  4532. cpu = smp_processor_id();
  4533. rq = cpu_rq(cpu);
  4534. rcu_qsctr_inc(cpu);
  4535. prev = rq->curr;
  4536. switch_count = &prev->nivcsw;
  4537. release_kernel_lock(prev);
  4538. need_resched_nonpreemptible:
  4539. schedule_debug(prev);
  4540. if (sched_feat(HRTICK))
  4541. hrtick_clear(rq);
  4542. spin_lock_irq(&rq->lock);
  4543. update_rq_clock(rq);
  4544. clear_tsk_need_resched(prev);
  4545. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4546. if (unlikely(signal_pending_state(prev->state, prev)))
  4547. prev->state = TASK_RUNNING;
  4548. else
  4549. deactivate_task(rq, prev, 1);
  4550. switch_count = &prev->nvcsw;
  4551. }
  4552. #ifdef CONFIG_SMP
  4553. if (prev->sched_class->pre_schedule)
  4554. prev->sched_class->pre_schedule(rq, prev);
  4555. #endif
  4556. if (unlikely(!rq->nr_running))
  4557. idle_balance(cpu, rq);
  4558. put_prev_task(rq, prev);
  4559. next = pick_next_task(rq);
  4560. if (likely(prev != next)) {
  4561. sched_info_switch(prev, next);
  4562. perf_counter_task_sched_out(prev, next, cpu);
  4563. rq->nr_switches++;
  4564. rq->curr = next;
  4565. ++*switch_count;
  4566. context_switch(rq, prev, next); /* unlocks the rq */
  4567. /*
  4568. * the context switch might have flipped the stack from under
  4569. * us, hence refresh the local variables.
  4570. */
  4571. cpu = smp_processor_id();
  4572. rq = cpu_rq(cpu);
  4573. } else
  4574. spin_unlock_irq(&rq->lock);
  4575. if (unlikely(reacquire_kernel_lock(current) < 0))
  4576. goto need_resched_nonpreemptible;
  4577. preempt_enable_no_resched();
  4578. if (need_resched())
  4579. goto need_resched;
  4580. }
  4581. EXPORT_SYMBOL(schedule);
  4582. #ifdef CONFIG_SMP
  4583. /*
  4584. * Look out! "owner" is an entirely speculative pointer
  4585. * access and not reliable.
  4586. */
  4587. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4588. {
  4589. unsigned int cpu;
  4590. struct rq *rq;
  4591. if (!sched_feat(OWNER_SPIN))
  4592. return 0;
  4593. #ifdef CONFIG_DEBUG_PAGEALLOC
  4594. /*
  4595. * Need to access the cpu field knowing that
  4596. * DEBUG_PAGEALLOC could have unmapped it if
  4597. * the mutex owner just released it and exited.
  4598. */
  4599. if (probe_kernel_address(&owner->cpu, cpu))
  4600. goto out;
  4601. #else
  4602. cpu = owner->cpu;
  4603. #endif
  4604. /*
  4605. * Even if the access succeeded (likely case),
  4606. * the cpu field may no longer be valid.
  4607. */
  4608. if (cpu >= nr_cpumask_bits)
  4609. goto out;
  4610. /*
  4611. * We need to validate that we can do a
  4612. * get_cpu() and that we have the percpu area.
  4613. */
  4614. if (!cpu_online(cpu))
  4615. goto out;
  4616. rq = cpu_rq(cpu);
  4617. for (;;) {
  4618. /*
  4619. * Owner changed, break to re-assess state.
  4620. */
  4621. if (lock->owner != owner)
  4622. break;
  4623. /*
  4624. * Is that owner really running on that cpu?
  4625. */
  4626. if (task_thread_info(rq->curr) != owner || need_resched())
  4627. return 0;
  4628. cpu_relax();
  4629. }
  4630. out:
  4631. return 1;
  4632. }
  4633. #endif
  4634. #ifdef CONFIG_PREEMPT
  4635. /*
  4636. * this is the entry point to schedule() from in-kernel preemption
  4637. * off of preempt_enable. Kernel preemptions off return from interrupt
  4638. * occur there and call schedule directly.
  4639. */
  4640. asmlinkage void __sched preempt_schedule(void)
  4641. {
  4642. struct thread_info *ti = current_thread_info();
  4643. /*
  4644. * If there is a non-zero preempt_count or interrupts are disabled,
  4645. * we do not want to preempt the current task. Just return..
  4646. */
  4647. if (likely(ti->preempt_count || irqs_disabled()))
  4648. return;
  4649. do {
  4650. add_preempt_count(PREEMPT_ACTIVE);
  4651. schedule();
  4652. sub_preempt_count(PREEMPT_ACTIVE);
  4653. /*
  4654. * Check again in case we missed a preemption opportunity
  4655. * between schedule and now.
  4656. */
  4657. barrier();
  4658. } while (need_resched());
  4659. }
  4660. EXPORT_SYMBOL(preempt_schedule);
  4661. /*
  4662. * this is the entry point to schedule() from kernel preemption
  4663. * off of irq context.
  4664. * Note, that this is called and return with irqs disabled. This will
  4665. * protect us against recursive calling from irq.
  4666. */
  4667. asmlinkage void __sched preempt_schedule_irq(void)
  4668. {
  4669. struct thread_info *ti = current_thread_info();
  4670. /* Catch callers which need to be fixed */
  4671. BUG_ON(ti->preempt_count || !irqs_disabled());
  4672. do {
  4673. add_preempt_count(PREEMPT_ACTIVE);
  4674. local_irq_enable();
  4675. schedule();
  4676. local_irq_disable();
  4677. sub_preempt_count(PREEMPT_ACTIVE);
  4678. /*
  4679. * Check again in case we missed a preemption opportunity
  4680. * between schedule and now.
  4681. */
  4682. barrier();
  4683. } while (need_resched());
  4684. }
  4685. #endif /* CONFIG_PREEMPT */
  4686. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4687. void *key)
  4688. {
  4689. return try_to_wake_up(curr->private, mode, sync);
  4690. }
  4691. EXPORT_SYMBOL(default_wake_function);
  4692. /*
  4693. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4694. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4695. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4696. *
  4697. * There are circumstances in which we can try to wake a task which has already
  4698. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4699. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4700. */
  4701. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4702. int nr_exclusive, int sync, void *key)
  4703. {
  4704. wait_queue_t *curr, *next;
  4705. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4706. unsigned flags = curr->flags;
  4707. if (curr->func(curr, mode, sync, key) &&
  4708. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4709. break;
  4710. }
  4711. }
  4712. /**
  4713. * __wake_up - wake up threads blocked on a waitqueue.
  4714. * @q: the waitqueue
  4715. * @mode: which threads
  4716. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4717. * @key: is directly passed to the wakeup function
  4718. *
  4719. * It may be assumed that this function implies a write memory barrier before
  4720. * changing the task state if and only if any tasks are woken up.
  4721. */
  4722. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4723. int nr_exclusive, void *key)
  4724. {
  4725. unsigned long flags;
  4726. spin_lock_irqsave(&q->lock, flags);
  4727. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4728. spin_unlock_irqrestore(&q->lock, flags);
  4729. }
  4730. EXPORT_SYMBOL(__wake_up);
  4731. /*
  4732. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4733. */
  4734. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4735. {
  4736. __wake_up_common(q, mode, 1, 0, NULL);
  4737. }
  4738. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4739. {
  4740. __wake_up_common(q, mode, 1, 0, key);
  4741. }
  4742. /**
  4743. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4744. * @q: the waitqueue
  4745. * @mode: which threads
  4746. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4747. * @key: opaque value to be passed to wakeup targets
  4748. *
  4749. * The sync wakeup differs that the waker knows that it will schedule
  4750. * away soon, so while the target thread will be woken up, it will not
  4751. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4752. * with each other. This can prevent needless bouncing between CPUs.
  4753. *
  4754. * On UP it can prevent extra preemption.
  4755. *
  4756. * It may be assumed that this function implies a write memory barrier before
  4757. * changing the task state if and only if any tasks are woken up.
  4758. */
  4759. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4760. int nr_exclusive, void *key)
  4761. {
  4762. unsigned long flags;
  4763. int sync = 1;
  4764. if (unlikely(!q))
  4765. return;
  4766. if (unlikely(!nr_exclusive))
  4767. sync = 0;
  4768. spin_lock_irqsave(&q->lock, flags);
  4769. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4770. spin_unlock_irqrestore(&q->lock, flags);
  4771. }
  4772. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4773. /*
  4774. * __wake_up_sync - see __wake_up_sync_key()
  4775. */
  4776. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4777. {
  4778. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4779. }
  4780. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4781. /**
  4782. * complete: - signals a single thread waiting on this completion
  4783. * @x: holds the state of this particular completion
  4784. *
  4785. * This will wake up a single thread waiting on this completion. Threads will be
  4786. * awakened in the same order in which they were queued.
  4787. *
  4788. * See also complete_all(), wait_for_completion() and related routines.
  4789. *
  4790. * It may be assumed that this function implies a write memory barrier before
  4791. * changing the task state if and only if any tasks are woken up.
  4792. */
  4793. void complete(struct completion *x)
  4794. {
  4795. unsigned long flags;
  4796. spin_lock_irqsave(&x->wait.lock, flags);
  4797. x->done++;
  4798. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4799. spin_unlock_irqrestore(&x->wait.lock, flags);
  4800. }
  4801. EXPORT_SYMBOL(complete);
  4802. /**
  4803. * complete_all: - signals all threads waiting on this completion
  4804. * @x: holds the state of this particular completion
  4805. *
  4806. * This will wake up all threads waiting on this particular completion event.
  4807. *
  4808. * It may be assumed that this function implies a write memory barrier before
  4809. * changing the task state if and only if any tasks are woken up.
  4810. */
  4811. void complete_all(struct completion *x)
  4812. {
  4813. unsigned long flags;
  4814. spin_lock_irqsave(&x->wait.lock, flags);
  4815. x->done += UINT_MAX/2;
  4816. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4817. spin_unlock_irqrestore(&x->wait.lock, flags);
  4818. }
  4819. EXPORT_SYMBOL(complete_all);
  4820. static inline long __sched
  4821. do_wait_for_common(struct completion *x, long timeout, int state)
  4822. {
  4823. if (!x->done) {
  4824. DECLARE_WAITQUEUE(wait, current);
  4825. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4826. __add_wait_queue_tail(&x->wait, &wait);
  4827. do {
  4828. if (signal_pending_state(state, current)) {
  4829. timeout = -ERESTARTSYS;
  4830. break;
  4831. }
  4832. __set_current_state(state);
  4833. spin_unlock_irq(&x->wait.lock);
  4834. timeout = schedule_timeout(timeout);
  4835. spin_lock_irq(&x->wait.lock);
  4836. } while (!x->done && timeout);
  4837. __remove_wait_queue(&x->wait, &wait);
  4838. if (!x->done)
  4839. return timeout;
  4840. }
  4841. x->done--;
  4842. return timeout ?: 1;
  4843. }
  4844. static long __sched
  4845. wait_for_common(struct completion *x, long timeout, int state)
  4846. {
  4847. might_sleep();
  4848. spin_lock_irq(&x->wait.lock);
  4849. timeout = do_wait_for_common(x, timeout, state);
  4850. spin_unlock_irq(&x->wait.lock);
  4851. return timeout;
  4852. }
  4853. /**
  4854. * wait_for_completion: - waits for completion of a task
  4855. * @x: holds the state of this particular completion
  4856. *
  4857. * This waits to be signaled for completion of a specific task. It is NOT
  4858. * interruptible and there is no timeout.
  4859. *
  4860. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4861. * and interrupt capability. Also see complete().
  4862. */
  4863. void __sched wait_for_completion(struct completion *x)
  4864. {
  4865. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4866. }
  4867. EXPORT_SYMBOL(wait_for_completion);
  4868. /**
  4869. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4870. * @x: holds the state of this particular completion
  4871. * @timeout: timeout value in jiffies
  4872. *
  4873. * This waits for either a completion of a specific task to be signaled or for a
  4874. * specified timeout to expire. The timeout is in jiffies. It is not
  4875. * interruptible.
  4876. */
  4877. unsigned long __sched
  4878. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4879. {
  4880. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4881. }
  4882. EXPORT_SYMBOL(wait_for_completion_timeout);
  4883. /**
  4884. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4885. * @x: holds the state of this particular completion
  4886. *
  4887. * This waits for completion of a specific task to be signaled. It is
  4888. * interruptible.
  4889. */
  4890. int __sched wait_for_completion_interruptible(struct completion *x)
  4891. {
  4892. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4893. if (t == -ERESTARTSYS)
  4894. return t;
  4895. return 0;
  4896. }
  4897. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4898. /**
  4899. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4900. * @x: holds the state of this particular completion
  4901. * @timeout: timeout value in jiffies
  4902. *
  4903. * This waits for either a completion of a specific task to be signaled or for a
  4904. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4905. */
  4906. unsigned long __sched
  4907. wait_for_completion_interruptible_timeout(struct completion *x,
  4908. unsigned long timeout)
  4909. {
  4910. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4911. }
  4912. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4913. /**
  4914. * wait_for_completion_killable: - waits for completion of a task (killable)
  4915. * @x: holds the state of this particular completion
  4916. *
  4917. * This waits to be signaled for completion of a specific task. It can be
  4918. * interrupted by a kill signal.
  4919. */
  4920. int __sched wait_for_completion_killable(struct completion *x)
  4921. {
  4922. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4923. if (t == -ERESTARTSYS)
  4924. return t;
  4925. return 0;
  4926. }
  4927. EXPORT_SYMBOL(wait_for_completion_killable);
  4928. /**
  4929. * try_wait_for_completion - try to decrement a completion without blocking
  4930. * @x: completion structure
  4931. *
  4932. * Returns: 0 if a decrement cannot be done without blocking
  4933. * 1 if a decrement succeeded.
  4934. *
  4935. * If a completion is being used as a counting completion,
  4936. * attempt to decrement the counter without blocking. This
  4937. * enables us to avoid waiting if the resource the completion
  4938. * is protecting is not available.
  4939. */
  4940. bool try_wait_for_completion(struct completion *x)
  4941. {
  4942. int ret = 1;
  4943. spin_lock_irq(&x->wait.lock);
  4944. if (!x->done)
  4945. ret = 0;
  4946. else
  4947. x->done--;
  4948. spin_unlock_irq(&x->wait.lock);
  4949. return ret;
  4950. }
  4951. EXPORT_SYMBOL(try_wait_for_completion);
  4952. /**
  4953. * completion_done - Test to see if a completion has any waiters
  4954. * @x: completion structure
  4955. *
  4956. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4957. * 1 if there are no waiters.
  4958. *
  4959. */
  4960. bool completion_done(struct completion *x)
  4961. {
  4962. int ret = 1;
  4963. spin_lock_irq(&x->wait.lock);
  4964. if (!x->done)
  4965. ret = 0;
  4966. spin_unlock_irq(&x->wait.lock);
  4967. return ret;
  4968. }
  4969. EXPORT_SYMBOL(completion_done);
  4970. static long __sched
  4971. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4972. {
  4973. unsigned long flags;
  4974. wait_queue_t wait;
  4975. init_waitqueue_entry(&wait, current);
  4976. __set_current_state(state);
  4977. spin_lock_irqsave(&q->lock, flags);
  4978. __add_wait_queue(q, &wait);
  4979. spin_unlock(&q->lock);
  4980. timeout = schedule_timeout(timeout);
  4981. spin_lock_irq(&q->lock);
  4982. __remove_wait_queue(q, &wait);
  4983. spin_unlock_irqrestore(&q->lock, flags);
  4984. return timeout;
  4985. }
  4986. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4987. {
  4988. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4989. }
  4990. EXPORT_SYMBOL(interruptible_sleep_on);
  4991. long __sched
  4992. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4993. {
  4994. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4995. }
  4996. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4997. void __sched sleep_on(wait_queue_head_t *q)
  4998. {
  4999. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5000. }
  5001. EXPORT_SYMBOL(sleep_on);
  5002. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5003. {
  5004. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5005. }
  5006. EXPORT_SYMBOL(sleep_on_timeout);
  5007. #ifdef CONFIG_RT_MUTEXES
  5008. /*
  5009. * rt_mutex_setprio - set the current priority of a task
  5010. * @p: task
  5011. * @prio: prio value (kernel-internal form)
  5012. *
  5013. * This function changes the 'effective' priority of a task. It does
  5014. * not touch ->normal_prio like __setscheduler().
  5015. *
  5016. * Used by the rt_mutex code to implement priority inheritance logic.
  5017. */
  5018. void rt_mutex_setprio(struct task_struct *p, int prio)
  5019. {
  5020. unsigned long flags;
  5021. int oldprio, on_rq, running;
  5022. struct rq *rq;
  5023. const struct sched_class *prev_class = p->sched_class;
  5024. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5025. rq = task_rq_lock(p, &flags);
  5026. update_rq_clock(rq);
  5027. oldprio = p->prio;
  5028. on_rq = p->se.on_rq;
  5029. running = task_current(rq, p);
  5030. if (on_rq)
  5031. dequeue_task(rq, p, 0);
  5032. if (running)
  5033. p->sched_class->put_prev_task(rq, p);
  5034. if (rt_prio(prio))
  5035. p->sched_class = &rt_sched_class;
  5036. else
  5037. p->sched_class = &fair_sched_class;
  5038. p->prio = prio;
  5039. if (running)
  5040. p->sched_class->set_curr_task(rq);
  5041. if (on_rq) {
  5042. enqueue_task(rq, p, 0);
  5043. check_class_changed(rq, p, prev_class, oldprio, running);
  5044. }
  5045. task_rq_unlock(rq, &flags);
  5046. }
  5047. #endif
  5048. void set_user_nice(struct task_struct *p, long nice)
  5049. {
  5050. int old_prio, delta, on_rq;
  5051. unsigned long flags;
  5052. struct rq *rq;
  5053. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5054. return;
  5055. /*
  5056. * We have to be careful, if called from sys_setpriority(),
  5057. * the task might be in the middle of scheduling on another CPU.
  5058. */
  5059. rq = task_rq_lock(p, &flags);
  5060. update_rq_clock(rq);
  5061. /*
  5062. * The RT priorities are set via sched_setscheduler(), but we still
  5063. * allow the 'normal' nice value to be set - but as expected
  5064. * it wont have any effect on scheduling until the task is
  5065. * SCHED_FIFO/SCHED_RR:
  5066. */
  5067. if (task_has_rt_policy(p)) {
  5068. p->static_prio = NICE_TO_PRIO(nice);
  5069. goto out_unlock;
  5070. }
  5071. on_rq = p->se.on_rq;
  5072. if (on_rq)
  5073. dequeue_task(rq, p, 0);
  5074. p->static_prio = NICE_TO_PRIO(nice);
  5075. set_load_weight(p);
  5076. old_prio = p->prio;
  5077. p->prio = effective_prio(p);
  5078. delta = p->prio - old_prio;
  5079. if (on_rq) {
  5080. enqueue_task(rq, p, 0);
  5081. /*
  5082. * If the task increased its priority or is running and
  5083. * lowered its priority, then reschedule its CPU:
  5084. */
  5085. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5086. resched_task(rq->curr);
  5087. }
  5088. out_unlock:
  5089. task_rq_unlock(rq, &flags);
  5090. }
  5091. EXPORT_SYMBOL(set_user_nice);
  5092. /*
  5093. * can_nice - check if a task can reduce its nice value
  5094. * @p: task
  5095. * @nice: nice value
  5096. */
  5097. int can_nice(const struct task_struct *p, const int nice)
  5098. {
  5099. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5100. int nice_rlim = 20 - nice;
  5101. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5102. capable(CAP_SYS_NICE));
  5103. }
  5104. #ifdef __ARCH_WANT_SYS_NICE
  5105. /*
  5106. * sys_nice - change the priority of the current process.
  5107. * @increment: priority increment
  5108. *
  5109. * sys_setpriority is a more generic, but much slower function that
  5110. * does similar things.
  5111. */
  5112. SYSCALL_DEFINE1(nice, int, increment)
  5113. {
  5114. long nice, retval;
  5115. /*
  5116. * Setpriority might change our priority at the same moment.
  5117. * We don't have to worry. Conceptually one call occurs first
  5118. * and we have a single winner.
  5119. */
  5120. if (increment < -40)
  5121. increment = -40;
  5122. if (increment > 40)
  5123. increment = 40;
  5124. nice = TASK_NICE(current) + increment;
  5125. if (nice < -20)
  5126. nice = -20;
  5127. if (nice > 19)
  5128. nice = 19;
  5129. if (increment < 0 && !can_nice(current, nice))
  5130. return -EPERM;
  5131. retval = security_task_setnice(current, nice);
  5132. if (retval)
  5133. return retval;
  5134. set_user_nice(current, nice);
  5135. return 0;
  5136. }
  5137. #endif
  5138. /**
  5139. * task_prio - return the priority value of a given task.
  5140. * @p: the task in question.
  5141. *
  5142. * This is the priority value as seen by users in /proc.
  5143. * RT tasks are offset by -200. Normal tasks are centered
  5144. * around 0, value goes from -16 to +15.
  5145. */
  5146. int task_prio(const struct task_struct *p)
  5147. {
  5148. return p->prio - MAX_RT_PRIO;
  5149. }
  5150. /**
  5151. * task_nice - return the nice value of a given task.
  5152. * @p: the task in question.
  5153. */
  5154. int task_nice(const struct task_struct *p)
  5155. {
  5156. return TASK_NICE(p);
  5157. }
  5158. EXPORT_SYMBOL(task_nice);
  5159. /**
  5160. * idle_cpu - is a given cpu idle currently?
  5161. * @cpu: the processor in question.
  5162. */
  5163. int idle_cpu(int cpu)
  5164. {
  5165. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5166. }
  5167. /**
  5168. * idle_task - return the idle task for a given cpu.
  5169. * @cpu: the processor in question.
  5170. */
  5171. struct task_struct *idle_task(int cpu)
  5172. {
  5173. return cpu_rq(cpu)->idle;
  5174. }
  5175. /**
  5176. * find_process_by_pid - find a process with a matching PID value.
  5177. * @pid: the pid in question.
  5178. */
  5179. static struct task_struct *find_process_by_pid(pid_t pid)
  5180. {
  5181. return pid ? find_task_by_vpid(pid) : current;
  5182. }
  5183. /* Actually do priority change: must hold rq lock. */
  5184. static void
  5185. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5186. {
  5187. BUG_ON(p->se.on_rq);
  5188. p->policy = policy;
  5189. switch (p->policy) {
  5190. case SCHED_NORMAL:
  5191. case SCHED_BATCH:
  5192. case SCHED_IDLE:
  5193. p->sched_class = &fair_sched_class;
  5194. break;
  5195. case SCHED_FIFO:
  5196. case SCHED_RR:
  5197. p->sched_class = &rt_sched_class;
  5198. break;
  5199. }
  5200. p->rt_priority = prio;
  5201. p->normal_prio = normal_prio(p);
  5202. /* we are holding p->pi_lock already */
  5203. p->prio = rt_mutex_getprio(p);
  5204. set_load_weight(p);
  5205. }
  5206. /*
  5207. * check the target process has a UID that matches the current process's
  5208. */
  5209. static bool check_same_owner(struct task_struct *p)
  5210. {
  5211. const struct cred *cred = current_cred(), *pcred;
  5212. bool match;
  5213. rcu_read_lock();
  5214. pcred = __task_cred(p);
  5215. match = (cred->euid == pcred->euid ||
  5216. cred->euid == pcred->uid);
  5217. rcu_read_unlock();
  5218. return match;
  5219. }
  5220. static int __sched_setscheduler(struct task_struct *p, int policy,
  5221. struct sched_param *param, bool user)
  5222. {
  5223. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5224. unsigned long flags;
  5225. const struct sched_class *prev_class = p->sched_class;
  5226. struct rq *rq;
  5227. int reset_on_fork;
  5228. /* may grab non-irq protected spin_locks */
  5229. BUG_ON(in_interrupt());
  5230. recheck:
  5231. /* double check policy once rq lock held */
  5232. if (policy < 0) {
  5233. reset_on_fork = p->sched_reset_on_fork;
  5234. policy = oldpolicy = p->policy;
  5235. } else {
  5236. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5237. policy &= ~SCHED_RESET_ON_FORK;
  5238. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5239. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5240. policy != SCHED_IDLE)
  5241. return -EINVAL;
  5242. }
  5243. /*
  5244. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5245. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5246. * SCHED_BATCH and SCHED_IDLE is 0.
  5247. */
  5248. if (param->sched_priority < 0 ||
  5249. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5250. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5251. return -EINVAL;
  5252. if (rt_policy(policy) != (param->sched_priority != 0))
  5253. return -EINVAL;
  5254. /*
  5255. * Allow unprivileged RT tasks to decrease priority:
  5256. */
  5257. if (user && !capable(CAP_SYS_NICE)) {
  5258. if (rt_policy(policy)) {
  5259. unsigned long rlim_rtprio;
  5260. if (!lock_task_sighand(p, &flags))
  5261. return -ESRCH;
  5262. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5263. unlock_task_sighand(p, &flags);
  5264. /* can't set/change the rt policy */
  5265. if (policy != p->policy && !rlim_rtprio)
  5266. return -EPERM;
  5267. /* can't increase priority */
  5268. if (param->sched_priority > p->rt_priority &&
  5269. param->sched_priority > rlim_rtprio)
  5270. return -EPERM;
  5271. }
  5272. /*
  5273. * Like positive nice levels, dont allow tasks to
  5274. * move out of SCHED_IDLE either:
  5275. */
  5276. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5277. return -EPERM;
  5278. /* can't change other user's priorities */
  5279. if (!check_same_owner(p))
  5280. return -EPERM;
  5281. /* Normal users shall not reset the sched_reset_on_fork flag */
  5282. if (p->sched_reset_on_fork && !reset_on_fork)
  5283. return -EPERM;
  5284. }
  5285. if (user) {
  5286. #ifdef CONFIG_RT_GROUP_SCHED
  5287. /*
  5288. * Do not allow realtime tasks into groups that have no runtime
  5289. * assigned.
  5290. */
  5291. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5292. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5293. return -EPERM;
  5294. #endif
  5295. retval = security_task_setscheduler(p, policy, param);
  5296. if (retval)
  5297. return retval;
  5298. }
  5299. /*
  5300. * make sure no PI-waiters arrive (or leave) while we are
  5301. * changing the priority of the task:
  5302. */
  5303. spin_lock_irqsave(&p->pi_lock, flags);
  5304. /*
  5305. * To be able to change p->policy safely, the apropriate
  5306. * runqueue lock must be held.
  5307. */
  5308. rq = __task_rq_lock(p);
  5309. /* recheck policy now with rq lock held */
  5310. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5311. policy = oldpolicy = -1;
  5312. __task_rq_unlock(rq);
  5313. spin_unlock_irqrestore(&p->pi_lock, flags);
  5314. goto recheck;
  5315. }
  5316. update_rq_clock(rq);
  5317. on_rq = p->se.on_rq;
  5318. running = task_current(rq, p);
  5319. if (on_rq)
  5320. deactivate_task(rq, p, 0);
  5321. if (running)
  5322. p->sched_class->put_prev_task(rq, p);
  5323. p->sched_reset_on_fork = reset_on_fork;
  5324. oldprio = p->prio;
  5325. __setscheduler(rq, p, policy, param->sched_priority);
  5326. if (running)
  5327. p->sched_class->set_curr_task(rq);
  5328. if (on_rq) {
  5329. activate_task(rq, p, 0);
  5330. check_class_changed(rq, p, prev_class, oldprio, running);
  5331. }
  5332. __task_rq_unlock(rq);
  5333. spin_unlock_irqrestore(&p->pi_lock, flags);
  5334. rt_mutex_adjust_pi(p);
  5335. return 0;
  5336. }
  5337. /**
  5338. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5339. * @p: the task in question.
  5340. * @policy: new policy.
  5341. * @param: structure containing the new RT priority.
  5342. *
  5343. * NOTE that the task may be already dead.
  5344. */
  5345. int sched_setscheduler(struct task_struct *p, int policy,
  5346. struct sched_param *param)
  5347. {
  5348. return __sched_setscheduler(p, policy, param, true);
  5349. }
  5350. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5351. /**
  5352. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5353. * @p: the task in question.
  5354. * @policy: new policy.
  5355. * @param: structure containing the new RT priority.
  5356. *
  5357. * Just like sched_setscheduler, only don't bother checking if the
  5358. * current context has permission. For example, this is needed in
  5359. * stop_machine(): we create temporary high priority worker threads,
  5360. * but our caller might not have that capability.
  5361. */
  5362. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5363. struct sched_param *param)
  5364. {
  5365. return __sched_setscheduler(p, policy, param, false);
  5366. }
  5367. static int
  5368. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5369. {
  5370. struct sched_param lparam;
  5371. struct task_struct *p;
  5372. int retval;
  5373. if (!param || pid < 0)
  5374. return -EINVAL;
  5375. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5376. return -EFAULT;
  5377. rcu_read_lock();
  5378. retval = -ESRCH;
  5379. p = find_process_by_pid(pid);
  5380. if (p != NULL)
  5381. retval = sched_setscheduler(p, policy, &lparam);
  5382. rcu_read_unlock();
  5383. return retval;
  5384. }
  5385. /**
  5386. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5387. * @pid: the pid in question.
  5388. * @policy: new policy.
  5389. * @param: structure containing the new RT priority.
  5390. */
  5391. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5392. struct sched_param __user *, param)
  5393. {
  5394. /* negative values for policy are not valid */
  5395. if (policy < 0)
  5396. return -EINVAL;
  5397. return do_sched_setscheduler(pid, policy, param);
  5398. }
  5399. /**
  5400. * sys_sched_setparam - set/change the RT priority of a thread
  5401. * @pid: the pid in question.
  5402. * @param: structure containing the new RT priority.
  5403. */
  5404. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5405. {
  5406. return do_sched_setscheduler(pid, -1, param);
  5407. }
  5408. /**
  5409. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5410. * @pid: the pid in question.
  5411. */
  5412. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5413. {
  5414. struct task_struct *p;
  5415. int retval;
  5416. if (pid < 0)
  5417. return -EINVAL;
  5418. retval = -ESRCH;
  5419. read_lock(&tasklist_lock);
  5420. p = find_process_by_pid(pid);
  5421. if (p) {
  5422. retval = security_task_getscheduler(p);
  5423. if (!retval)
  5424. retval = p->policy
  5425. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5426. }
  5427. read_unlock(&tasklist_lock);
  5428. return retval;
  5429. }
  5430. /**
  5431. * sys_sched_getparam - get the RT priority of a thread
  5432. * @pid: the pid in question.
  5433. * @param: structure containing the RT priority.
  5434. */
  5435. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5436. {
  5437. struct sched_param lp;
  5438. struct task_struct *p;
  5439. int retval;
  5440. if (!param || pid < 0)
  5441. return -EINVAL;
  5442. read_lock(&tasklist_lock);
  5443. p = find_process_by_pid(pid);
  5444. retval = -ESRCH;
  5445. if (!p)
  5446. goto out_unlock;
  5447. retval = security_task_getscheduler(p);
  5448. if (retval)
  5449. goto out_unlock;
  5450. lp.sched_priority = p->rt_priority;
  5451. read_unlock(&tasklist_lock);
  5452. /*
  5453. * This one might sleep, we cannot do it with a spinlock held ...
  5454. */
  5455. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5456. return retval;
  5457. out_unlock:
  5458. read_unlock(&tasklist_lock);
  5459. return retval;
  5460. }
  5461. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5462. {
  5463. cpumask_var_t cpus_allowed, new_mask;
  5464. struct task_struct *p;
  5465. int retval;
  5466. get_online_cpus();
  5467. read_lock(&tasklist_lock);
  5468. p = find_process_by_pid(pid);
  5469. if (!p) {
  5470. read_unlock(&tasklist_lock);
  5471. put_online_cpus();
  5472. return -ESRCH;
  5473. }
  5474. /*
  5475. * It is not safe to call set_cpus_allowed with the
  5476. * tasklist_lock held. We will bump the task_struct's
  5477. * usage count and then drop tasklist_lock.
  5478. */
  5479. get_task_struct(p);
  5480. read_unlock(&tasklist_lock);
  5481. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5482. retval = -ENOMEM;
  5483. goto out_put_task;
  5484. }
  5485. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5486. retval = -ENOMEM;
  5487. goto out_free_cpus_allowed;
  5488. }
  5489. retval = -EPERM;
  5490. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5491. goto out_unlock;
  5492. retval = security_task_setscheduler(p, 0, NULL);
  5493. if (retval)
  5494. goto out_unlock;
  5495. cpuset_cpus_allowed(p, cpus_allowed);
  5496. cpumask_and(new_mask, in_mask, cpus_allowed);
  5497. again:
  5498. retval = set_cpus_allowed_ptr(p, new_mask);
  5499. if (!retval) {
  5500. cpuset_cpus_allowed(p, cpus_allowed);
  5501. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5502. /*
  5503. * We must have raced with a concurrent cpuset
  5504. * update. Just reset the cpus_allowed to the
  5505. * cpuset's cpus_allowed
  5506. */
  5507. cpumask_copy(new_mask, cpus_allowed);
  5508. goto again;
  5509. }
  5510. }
  5511. out_unlock:
  5512. free_cpumask_var(new_mask);
  5513. out_free_cpus_allowed:
  5514. free_cpumask_var(cpus_allowed);
  5515. out_put_task:
  5516. put_task_struct(p);
  5517. put_online_cpus();
  5518. return retval;
  5519. }
  5520. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5521. struct cpumask *new_mask)
  5522. {
  5523. if (len < cpumask_size())
  5524. cpumask_clear(new_mask);
  5525. else if (len > cpumask_size())
  5526. len = cpumask_size();
  5527. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5528. }
  5529. /**
  5530. * sys_sched_setaffinity - set the cpu affinity of a process
  5531. * @pid: pid of the process
  5532. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5533. * @user_mask_ptr: user-space pointer to the new cpu mask
  5534. */
  5535. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5536. unsigned long __user *, user_mask_ptr)
  5537. {
  5538. cpumask_var_t new_mask;
  5539. int retval;
  5540. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5541. return -ENOMEM;
  5542. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5543. if (retval == 0)
  5544. retval = sched_setaffinity(pid, new_mask);
  5545. free_cpumask_var(new_mask);
  5546. return retval;
  5547. }
  5548. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5549. {
  5550. struct task_struct *p;
  5551. int retval;
  5552. get_online_cpus();
  5553. read_lock(&tasklist_lock);
  5554. retval = -ESRCH;
  5555. p = find_process_by_pid(pid);
  5556. if (!p)
  5557. goto out_unlock;
  5558. retval = security_task_getscheduler(p);
  5559. if (retval)
  5560. goto out_unlock;
  5561. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5562. out_unlock:
  5563. read_unlock(&tasklist_lock);
  5564. put_online_cpus();
  5565. return retval;
  5566. }
  5567. /**
  5568. * sys_sched_getaffinity - get the cpu affinity of a process
  5569. * @pid: pid of the process
  5570. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5571. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5572. */
  5573. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5574. unsigned long __user *, user_mask_ptr)
  5575. {
  5576. int ret;
  5577. cpumask_var_t mask;
  5578. if (len < cpumask_size())
  5579. return -EINVAL;
  5580. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5581. return -ENOMEM;
  5582. ret = sched_getaffinity(pid, mask);
  5583. if (ret == 0) {
  5584. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5585. ret = -EFAULT;
  5586. else
  5587. ret = cpumask_size();
  5588. }
  5589. free_cpumask_var(mask);
  5590. return ret;
  5591. }
  5592. /**
  5593. * sys_sched_yield - yield the current processor to other threads.
  5594. *
  5595. * This function yields the current CPU to other tasks. If there are no
  5596. * other threads running on this CPU then this function will return.
  5597. */
  5598. SYSCALL_DEFINE0(sched_yield)
  5599. {
  5600. struct rq *rq = this_rq_lock();
  5601. schedstat_inc(rq, yld_count);
  5602. current->sched_class->yield_task(rq);
  5603. /*
  5604. * Since we are going to call schedule() anyway, there's
  5605. * no need to preempt or enable interrupts:
  5606. */
  5607. __release(rq->lock);
  5608. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5609. _raw_spin_unlock(&rq->lock);
  5610. preempt_enable_no_resched();
  5611. schedule();
  5612. return 0;
  5613. }
  5614. static void __cond_resched(void)
  5615. {
  5616. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5617. __might_sleep(__FILE__, __LINE__);
  5618. #endif
  5619. /*
  5620. * The BKS might be reacquired before we have dropped
  5621. * PREEMPT_ACTIVE, which could trigger a second
  5622. * cond_resched() call.
  5623. */
  5624. do {
  5625. add_preempt_count(PREEMPT_ACTIVE);
  5626. schedule();
  5627. sub_preempt_count(PREEMPT_ACTIVE);
  5628. } while (need_resched());
  5629. }
  5630. int __sched _cond_resched(void)
  5631. {
  5632. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5633. system_state == SYSTEM_RUNNING) {
  5634. __cond_resched();
  5635. return 1;
  5636. }
  5637. return 0;
  5638. }
  5639. EXPORT_SYMBOL(_cond_resched);
  5640. /*
  5641. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5642. * call schedule, and on return reacquire the lock.
  5643. *
  5644. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5645. * operations here to prevent schedule() from being called twice (once via
  5646. * spin_unlock(), once by hand).
  5647. */
  5648. int cond_resched_lock(spinlock_t *lock)
  5649. {
  5650. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5651. int ret = 0;
  5652. if (spin_needbreak(lock) || resched) {
  5653. spin_unlock(lock);
  5654. if (resched && need_resched())
  5655. __cond_resched();
  5656. else
  5657. cpu_relax();
  5658. ret = 1;
  5659. spin_lock(lock);
  5660. }
  5661. return ret;
  5662. }
  5663. EXPORT_SYMBOL(cond_resched_lock);
  5664. int __sched cond_resched_softirq(void)
  5665. {
  5666. BUG_ON(!in_softirq());
  5667. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5668. local_bh_enable();
  5669. __cond_resched();
  5670. local_bh_disable();
  5671. return 1;
  5672. }
  5673. return 0;
  5674. }
  5675. EXPORT_SYMBOL(cond_resched_softirq);
  5676. /**
  5677. * yield - yield the current processor to other threads.
  5678. *
  5679. * This is a shortcut for kernel-space yielding - it marks the
  5680. * thread runnable and calls sys_sched_yield().
  5681. */
  5682. void __sched yield(void)
  5683. {
  5684. set_current_state(TASK_RUNNING);
  5685. sys_sched_yield();
  5686. }
  5687. EXPORT_SYMBOL(yield);
  5688. /*
  5689. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5690. * that process accounting knows that this is a task in IO wait state.
  5691. *
  5692. * But don't do that if it is a deliberate, throttling IO wait (this task
  5693. * has set its backing_dev_info: the queue against which it should throttle)
  5694. */
  5695. void __sched io_schedule(void)
  5696. {
  5697. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5698. delayacct_blkio_start();
  5699. atomic_inc(&rq->nr_iowait);
  5700. schedule();
  5701. atomic_dec(&rq->nr_iowait);
  5702. delayacct_blkio_end();
  5703. }
  5704. EXPORT_SYMBOL(io_schedule);
  5705. long __sched io_schedule_timeout(long timeout)
  5706. {
  5707. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5708. long ret;
  5709. delayacct_blkio_start();
  5710. atomic_inc(&rq->nr_iowait);
  5711. ret = schedule_timeout(timeout);
  5712. atomic_dec(&rq->nr_iowait);
  5713. delayacct_blkio_end();
  5714. return ret;
  5715. }
  5716. /**
  5717. * sys_sched_get_priority_max - return maximum RT priority.
  5718. * @policy: scheduling class.
  5719. *
  5720. * this syscall returns the maximum rt_priority that can be used
  5721. * by a given scheduling class.
  5722. */
  5723. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5724. {
  5725. int ret = -EINVAL;
  5726. switch (policy) {
  5727. case SCHED_FIFO:
  5728. case SCHED_RR:
  5729. ret = MAX_USER_RT_PRIO-1;
  5730. break;
  5731. case SCHED_NORMAL:
  5732. case SCHED_BATCH:
  5733. case SCHED_IDLE:
  5734. ret = 0;
  5735. break;
  5736. }
  5737. return ret;
  5738. }
  5739. /**
  5740. * sys_sched_get_priority_min - return minimum RT priority.
  5741. * @policy: scheduling class.
  5742. *
  5743. * this syscall returns the minimum rt_priority that can be used
  5744. * by a given scheduling class.
  5745. */
  5746. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5747. {
  5748. int ret = -EINVAL;
  5749. switch (policy) {
  5750. case SCHED_FIFO:
  5751. case SCHED_RR:
  5752. ret = 1;
  5753. break;
  5754. case SCHED_NORMAL:
  5755. case SCHED_BATCH:
  5756. case SCHED_IDLE:
  5757. ret = 0;
  5758. }
  5759. return ret;
  5760. }
  5761. /**
  5762. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5763. * @pid: pid of the process.
  5764. * @interval: userspace pointer to the timeslice value.
  5765. *
  5766. * this syscall writes the default timeslice value of a given process
  5767. * into the user-space timespec buffer. A value of '0' means infinity.
  5768. */
  5769. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5770. struct timespec __user *, interval)
  5771. {
  5772. struct task_struct *p;
  5773. unsigned int time_slice;
  5774. int retval;
  5775. struct timespec t;
  5776. if (pid < 0)
  5777. return -EINVAL;
  5778. retval = -ESRCH;
  5779. read_lock(&tasklist_lock);
  5780. p = find_process_by_pid(pid);
  5781. if (!p)
  5782. goto out_unlock;
  5783. retval = security_task_getscheduler(p);
  5784. if (retval)
  5785. goto out_unlock;
  5786. /*
  5787. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5788. * tasks that are on an otherwise idle runqueue:
  5789. */
  5790. time_slice = 0;
  5791. if (p->policy == SCHED_RR) {
  5792. time_slice = DEF_TIMESLICE;
  5793. } else if (p->policy != SCHED_FIFO) {
  5794. struct sched_entity *se = &p->se;
  5795. unsigned long flags;
  5796. struct rq *rq;
  5797. rq = task_rq_lock(p, &flags);
  5798. if (rq->cfs.load.weight)
  5799. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5800. task_rq_unlock(rq, &flags);
  5801. }
  5802. read_unlock(&tasklist_lock);
  5803. jiffies_to_timespec(time_slice, &t);
  5804. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5805. return retval;
  5806. out_unlock:
  5807. read_unlock(&tasklist_lock);
  5808. return retval;
  5809. }
  5810. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5811. void sched_show_task(struct task_struct *p)
  5812. {
  5813. unsigned long free = 0;
  5814. unsigned state;
  5815. state = p->state ? __ffs(p->state) + 1 : 0;
  5816. printk(KERN_INFO "%-13.13s %c", p->comm,
  5817. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5818. #if BITS_PER_LONG == 32
  5819. if (state == TASK_RUNNING)
  5820. printk(KERN_CONT " running ");
  5821. else
  5822. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5823. #else
  5824. if (state == TASK_RUNNING)
  5825. printk(KERN_CONT " running task ");
  5826. else
  5827. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5828. #endif
  5829. #ifdef CONFIG_DEBUG_STACK_USAGE
  5830. free = stack_not_used(p);
  5831. #endif
  5832. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5833. task_pid_nr(p), task_pid_nr(p->real_parent),
  5834. (unsigned long)task_thread_info(p)->flags);
  5835. show_stack(p, NULL);
  5836. }
  5837. void show_state_filter(unsigned long state_filter)
  5838. {
  5839. struct task_struct *g, *p;
  5840. #if BITS_PER_LONG == 32
  5841. printk(KERN_INFO
  5842. " task PC stack pid father\n");
  5843. #else
  5844. printk(KERN_INFO
  5845. " task PC stack pid father\n");
  5846. #endif
  5847. read_lock(&tasklist_lock);
  5848. do_each_thread(g, p) {
  5849. /*
  5850. * reset the NMI-timeout, listing all files on a slow
  5851. * console might take alot of time:
  5852. */
  5853. touch_nmi_watchdog();
  5854. if (!state_filter || (p->state & state_filter))
  5855. sched_show_task(p);
  5856. } while_each_thread(g, p);
  5857. touch_all_softlockup_watchdogs();
  5858. #ifdef CONFIG_SCHED_DEBUG
  5859. sysrq_sched_debug_show();
  5860. #endif
  5861. read_unlock(&tasklist_lock);
  5862. /*
  5863. * Only show locks if all tasks are dumped:
  5864. */
  5865. if (state_filter == -1)
  5866. debug_show_all_locks();
  5867. }
  5868. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5869. {
  5870. idle->sched_class = &idle_sched_class;
  5871. }
  5872. /**
  5873. * init_idle - set up an idle thread for a given CPU
  5874. * @idle: task in question
  5875. * @cpu: cpu the idle task belongs to
  5876. *
  5877. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5878. * flag, to make booting more robust.
  5879. */
  5880. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5881. {
  5882. struct rq *rq = cpu_rq(cpu);
  5883. unsigned long flags;
  5884. spin_lock_irqsave(&rq->lock, flags);
  5885. __sched_fork(idle);
  5886. idle->se.exec_start = sched_clock();
  5887. idle->prio = idle->normal_prio = MAX_PRIO;
  5888. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5889. __set_task_cpu(idle, cpu);
  5890. rq->curr = rq->idle = idle;
  5891. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5892. idle->oncpu = 1;
  5893. #endif
  5894. spin_unlock_irqrestore(&rq->lock, flags);
  5895. /* Set the preempt count _outside_ the spinlocks! */
  5896. #if defined(CONFIG_PREEMPT)
  5897. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5898. #else
  5899. task_thread_info(idle)->preempt_count = 0;
  5900. #endif
  5901. /*
  5902. * The idle tasks have their own, simple scheduling class:
  5903. */
  5904. idle->sched_class = &idle_sched_class;
  5905. ftrace_graph_init_task(idle);
  5906. }
  5907. /*
  5908. * In a system that switches off the HZ timer nohz_cpu_mask
  5909. * indicates which cpus entered this state. This is used
  5910. * in the rcu update to wait only for active cpus. For system
  5911. * which do not switch off the HZ timer nohz_cpu_mask should
  5912. * always be CPU_BITS_NONE.
  5913. */
  5914. cpumask_var_t nohz_cpu_mask;
  5915. /*
  5916. * Increase the granularity value when there are more CPUs,
  5917. * because with more CPUs the 'effective latency' as visible
  5918. * to users decreases. But the relationship is not linear,
  5919. * so pick a second-best guess by going with the log2 of the
  5920. * number of CPUs.
  5921. *
  5922. * This idea comes from the SD scheduler of Con Kolivas:
  5923. */
  5924. static inline void sched_init_granularity(void)
  5925. {
  5926. unsigned int factor = 1 + ilog2(num_online_cpus());
  5927. const unsigned long limit = 200000000;
  5928. sysctl_sched_min_granularity *= factor;
  5929. if (sysctl_sched_min_granularity > limit)
  5930. sysctl_sched_min_granularity = limit;
  5931. sysctl_sched_latency *= factor;
  5932. if (sysctl_sched_latency > limit)
  5933. sysctl_sched_latency = limit;
  5934. sysctl_sched_wakeup_granularity *= factor;
  5935. sysctl_sched_shares_ratelimit *= factor;
  5936. }
  5937. #ifdef CONFIG_SMP
  5938. /*
  5939. * This is how migration works:
  5940. *
  5941. * 1) we queue a struct migration_req structure in the source CPU's
  5942. * runqueue and wake up that CPU's migration thread.
  5943. * 2) we down() the locked semaphore => thread blocks.
  5944. * 3) migration thread wakes up (implicitly it forces the migrated
  5945. * thread off the CPU)
  5946. * 4) it gets the migration request and checks whether the migrated
  5947. * task is still in the wrong runqueue.
  5948. * 5) if it's in the wrong runqueue then the migration thread removes
  5949. * it and puts it into the right queue.
  5950. * 6) migration thread up()s the semaphore.
  5951. * 7) we wake up and the migration is done.
  5952. */
  5953. /*
  5954. * Change a given task's CPU affinity. Migrate the thread to a
  5955. * proper CPU and schedule it away if the CPU it's executing on
  5956. * is removed from the allowed bitmask.
  5957. *
  5958. * NOTE: the caller must have a valid reference to the task, the
  5959. * task must not exit() & deallocate itself prematurely. The
  5960. * call is not atomic; no spinlocks may be held.
  5961. */
  5962. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5963. {
  5964. struct migration_req req;
  5965. unsigned long flags;
  5966. struct rq *rq;
  5967. int ret = 0;
  5968. rq = task_rq_lock(p, &flags);
  5969. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5970. ret = -EINVAL;
  5971. goto out;
  5972. }
  5973. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5974. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5975. ret = -EINVAL;
  5976. goto out;
  5977. }
  5978. if (p->sched_class->set_cpus_allowed)
  5979. p->sched_class->set_cpus_allowed(p, new_mask);
  5980. else {
  5981. cpumask_copy(&p->cpus_allowed, new_mask);
  5982. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5983. }
  5984. /* Can the task run on the task's current CPU? If so, we're done */
  5985. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5986. goto out;
  5987. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5988. /* Need help from migration thread: drop lock and wait. */
  5989. task_rq_unlock(rq, &flags);
  5990. wake_up_process(rq->migration_thread);
  5991. wait_for_completion(&req.done);
  5992. tlb_migrate_finish(p->mm);
  5993. return 0;
  5994. }
  5995. out:
  5996. task_rq_unlock(rq, &flags);
  5997. return ret;
  5998. }
  5999. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6000. /*
  6001. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6002. * this because either it can't run here any more (set_cpus_allowed()
  6003. * away from this CPU, or CPU going down), or because we're
  6004. * attempting to rebalance this task on exec (sched_exec).
  6005. *
  6006. * So we race with normal scheduler movements, but that's OK, as long
  6007. * as the task is no longer on this CPU.
  6008. *
  6009. * Returns non-zero if task was successfully migrated.
  6010. */
  6011. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6012. {
  6013. struct rq *rq_dest, *rq_src;
  6014. int ret = 0, on_rq;
  6015. if (unlikely(!cpu_active(dest_cpu)))
  6016. return ret;
  6017. rq_src = cpu_rq(src_cpu);
  6018. rq_dest = cpu_rq(dest_cpu);
  6019. double_rq_lock(rq_src, rq_dest);
  6020. /* Already moved. */
  6021. if (task_cpu(p) != src_cpu)
  6022. goto done;
  6023. /* Affinity changed (again). */
  6024. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6025. goto fail;
  6026. on_rq = p->se.on_rq;
  6027. if (on_rq)
  6028. deactivate_task(rq_src, p, 0);
  6029. set_task_cpu(p, dest_cpu);
  6030. if (on_rq) {
  6031. activate_task(rq_dest, p, 0);
  6032. check_preempt_curr(rq_dest, p, 0);
  6033. }
  6034. done:
  6035. ret = 1;
  6036. fail:
  6037. double_rq_unlock(rq_src, rq_dest);
  6038. return ret;
  6039. }
  6040. /*
  6041. * migration_thread - this is a highprio system thread that performs
  6042. * thread migration by bumping thread off CPU then 'pushing' onto
  6043. * another runqueue.
  6044. */
  6045. static int migration_thread(void *data)
  6046. {
  6047. int cpu = (long)data;
  6048. struct rq *rq;
  6049. rq = cpu_rq(cpu);
  6050. BUG_ON(rq->migration_thread != current);
  6051. set_current_state(TASK_INTERRUPTIBLE);
  6052. while (!kthread_should_stop()) {
  6053. struct migration_req *req;
  6054. struct list_head *head;
  6055. spin_lock_irq(&rq->lock);
  6056. if (cpu_is_offline(cpu)) {
  6057. spin_unlock_irq(&rq->lock);
  6058. goto wait_to_die;
  6059. }
  6060. if (rq->active_balance) {
  6061. active_load_balance(rq, cpu);
  6062. rq->active_balance = 0;
  6063. }
  6064. head = &rq->migration_queue;
  6065. if (list_empty(head)) {
  6066. spin_unlock_irq(&rq->lock);
  6067. schedule();
  6068. set_current_state(TASK_INTERRUPTIBLE);
  6069. continue;
  6070. }
  6071. req = list_entry(head->next, struct migration_req, list);
  6072. list_del_init(head->next);
  6073. spin_unlock(&rq->lock);
  6074. __migrate_task(req->task, cpu, req->dest_cpu);
  6075. local_irq_enable();
  6076. complete(&req->done);
  6077. }
  6078. __set_current_state(TASK_RUNNING);
  6079. return 0;
  6080. wait_to_die:
  6081. /* Wait for kthread_stop */
  6082. set_current_state(TASK_INTERRUPTIBLE);
  6083. while (!kthread_should_stop()) {
  6084. schedule();
  6085. set_current_state(TASK_INTERRUPTIBLE);
  6086. }
  6087. __set_current_state(TASK_RUNNING);
  6088. return 0;
  6089. }
  6090. #ifdef CONFIG_HOTPLUG_CPU
  6091. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6092. {
  6093. int ret;
  6094. local_irq_disable();
  6095. ret = __migrate_task(p, src_cpu, dest_cpu);
  6096. local_irq_enable();
  6097. return ret;
  6098. }
  6099. /*
  6100. * Figure out where task on dead CPU should go, use force if necessary.
  6101. */
  6102. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6103. {
  6104. int dest_cpu;
  6105. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6106. again:
  6107. /* Look for allowed, online CPU in same node. */
  6108. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6109. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6110. goto move;
  6111. /* Any allowed, online CPU? */
  6112. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6113. if (dest_cpu < nr_cpu_ids)
  6114. goto move;
  6115. /* No more Mr. Nice Guy. */
  6116. if (dest_cpu >= nr_cpu_ids) {
  6117. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6118. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6119. /*
  6120. * Don't tell them about moving exiting tasks or
  6121. * kernel threads (both mm NULL), since they never
  6122. * leave kernel.
  6123. */
  6124. if (p->mm && printk_ratelimit()) {
  6125. printk(KERN_INFO "process %d (%s) no "
  6126. "longer affine to cpu%d\n",
  6127. task_pid_nr(p), p->comm, dead_cpu);
  6128. }
  6129. }
  6130. move:
  6131. /* It can have affinity changed while we were choosing. */
  6132. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6133. goto again;
  6134. }
  6135. /*
  6136. * While a dead CPU has no uninterruptible tasks queued at this point,
  6137. * it might still have a nonzero ->nr_uninterruptible counter, because
  6138. * for performance reasons the counter is not stricly tracking tasks to
  6139. * their home CPUs. So we just add the counter to another CPU's counter,
  6140. * to keep the global sum constant after CPU-down:
  6141. */
  6142. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6143. {
  6144. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6145. unsigned long flags;
  6146. local_irq_save(flags);
  6147. double_rq_lock(rq_src, rq_dest);
  6148. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6149. rq_src->nr_uninterruptible = 0;
  6150. double_rq_unlock(rq_src, rq_dest);
  6151. local_irq_restore(flags);
  6152. }
  6153. /* Run through task list and migrate tasks from the dead cpu. */
  6154. static void migrate_live_tasks(int src_cpu)
  6155. {
  6156. struct task_struct *p, *t;
  6157. read_lock(&tasklist_lock);
  6158. do_each_thread(t, p) {
  6159. if (p == current)
  6160. continue;
  6161. if (task_cpu(p) == src_cpu)
  6162. move_task_off_dead_cpu(src_cpu, p);
  6163. } while_each_thread(t, p);
  6164. read_unlock(&tasklist_lock);
  6165. }
  6166. /*
  6167. * Schedules idle task to be the next runnable task on current CPU.
  6168. * It does so by boosting its priority to highest possible.
  6169. * Used by CPU offline code.
  6170. */
  6171. void sched_idle_next(void)
  6172. {
  6173. int this_cpu = smp_processor_id();
  6174. struct rq *rq = cpu_rq(this_cpu);
  6175. struct task_struct *p = rq->idle;
  6176. unsigned long flags;
  6177. /* cpu has to be offline */
  6178. BUG_ON(cpu_online(this_cpu));
  6179. /*
  6180. * Strictly not necessary since rest of the CPUs are stopped by now
  6181. * and interrupts disabled on the current cpu.
  6182. */
  6183. spin_lock_irqsave(&rq->lock, flags);
  6184. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6185. update_rq_clock(rq);
  6186. activate_task(rq, p, 0);
  6187. spin_unlock_irqrestore(&rq->lock, flags);
  6188. }
  6189. /*
  6190. * Ensures that the idle task is using init_mm right before its cpu goes
  6191. * offline.
  6192. */
  6193. void idle_task_exit(void)
  6194. {
  6195. struct mm_struct *mm = current->active_mm;
  6196. BUG_ON(cpu_online(smp_processor_id()));
  6197. if (mm != &init_mm)
  6198. switch_mm(mm, &init_mm, current);
  6199. mmdrop(mm);
  6200. }
  6201. /* called under rq->lock with disabled interrupts */
  6202. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6203. {
  6204. struct rq *rq = cpu_rq(dead_cpu);
  6205. /* Must be exiting, otherwise would be on tasklist. */
  6206. BUG_ON(!p->exit_state);
  6207. /* Cannot have done final schedule yet: would have vanished. */
  6208. BUG_ON(p->state == TASK_DEAD);
  6209. get_task_struct(p);
  6210. /*
  6211. * Drop lock around migration; if someone else moves it,
  6212. * that's OK. No task can be added to this CPU, so iteration is
  6213. * fine.
  6214. */
  6215. spin_unlock_irq(&rq->lock);
  6216. move_task_off_dead_cpu(dead_cpu, p);
  6217. spin_lock_irq(&rq->lock);
  6218. put_task_struct(p);
  6219. }
  6220. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6221. static void migrate_dead_tasks(unsigned int dead_cpu)
  6222. {
  6223. struct rq *rq = cpu_rq(dead_cpu);
  6224. struct task_struct *next;
  6225. for ( ; ; ) {
  6226. if (!rq->nr_running)
  6227. break;
  6228. update_rq_clock(rq);
  6229. next = pick_next_task(rq);
  6230. if (!next)
  6231. break;
  6232. next->sched_class->put_prev_task(rq, next);
  6233. migrate_dead(dead_cpu, next);
  6234. }
  6235. }
  6236. /*
  6237. * remove the tasks which were accounted by rq from calc_load_tasks.
  6238. */
  6239. static void calc_global_load_remove(struct rq *rq)
  6240. {
  6241. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6242. }
  6243. #endif /* CONFIG_HOTPLUG_CPU */
  6244. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6245. static struct ctl_table sd_ctl_dir[] = {
  6246. {
  6247. .procname = "sched_domain",
  6248. .mode = 0555,
  6249. },
  6250. {0, },
  6251. };
  6252. static struct ctl_table sd_ctl_root[] = {
  6253. {
  6254. .ctl_name = CTL_KERN,
  6255. .procname = "kernel",
  6256. .mode = 0555,
  6257. .child = sd_ctl_dir,
  6258. },
  6259. {0, },
  6260. };
  6261. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6262. {
  6263. struct ctl_table *entry =
  6264. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6265. return entry;
  6266. }
  6267. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6268. {
  6269. struct ctl_table *entry;
  6270. /*
  6271. * In the intermediate directories, both the child directory and
  6272. * procname are dynamically allocated and could fail but the mode
  6273. * will always be set. In the lowest directory the names are
  6274. * static strings and all have proc handlers.
  6275. */
  6276. for (entry = *tablep; entry->mode; entry++) {
  6277. if (entry->child)
  6278. sd_free_ctl_entry(&entry->child);
  6279. if (entry->proc_handler == NULL)
  6280. kfree(entry->procname);
  6281. }
  6282. kfree(*tablep);
  6283. *tablep = NULL;
  6284. }
  6285. static void
  6286. set_table_entry(struct ctl_table *entry,
  6287. const char *procname, void *data, int maxlen,
  6288. mode_t mode, proc_handler *proc_handler)
  6289. {
  6290. entry->procname = procname;
  6291. entry->data = data;
  6292. entry->maxlen = maxlen;
  6293. entry->mode = mode;
  6294. entry->proc_handler = proc_handler;
  6295. }
  6296. static struct ctl_table *
  6297. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6298. {
  6299. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6300. if (table == NULL)
  6301. return NULL;
  6302. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6303. sizeof(long), 0644, proc_doulongvec_minmax);
  6304. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6305. sizeof(long), 0644, proc_doulongvec_minmax);
  6306. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6307. sizeof(int), 0644, proc_dointvec_minmax);
  6308. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6309. sizeof(int), 0644, proc_dointvec_minmax);
  6310. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6311. sizeof(int), 0644, proc_dointvec_minmax);
  6312. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6313. sizeof(int), 0644, proc_dointvec_minmax);
  6314. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6315. sizeof(int), 0644, proc_dointvec_minmax);
  6316. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6317. sizeof(int), 0644, proc_dointvec_minmax);
  6318. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6319. sizeof(int), 0644, proc_dointvec_minmax);
  6320. set_table_entry(&table[9], "cache_nice_tries",
  6321. &sd->cache_nice_tries,
  6322. sizeof(int), 0644, proc_dointvec_minmax);
  6323. set_table_entry(&table[10], "flags", &sd->flags,
  6324. sizeof(int), 0644, proc_dointvec_minmax);
  6325. set_table_entry(&table[11], "name", sd->name,
  6326. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6327. /* &table[12] is terminator */
  6328. return table;
  6329. }
  6330. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6331. {
  6332. struct ctl_table *entry, *table;
  6333. struct sched_domain *sd;
  6334. int domain_num = 0, i;
  6335. char buf[32];
  6336. for_each_domain(cpu, sd)
  6337. domain_num++;
  6338. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6339. if (table == NULL)
  6340. return NULL;
  6341. i = 0;
  6342. for_each_domain(cpu, sd) {
  6343. snprintf(buf, 32, "domain%d", i);
  6344. entry->procname = kstrdup(buf, GFP_KERNEL);
  6345. entry->mode = 0555;
  6346. entry->child = sd_alloc_ctl_domain_table(sd);
  6347. entry++;
  6348. i++;
  6349. }
  6350. return table;
  6351. }
  6352. static struct ctl_table_header *sd_sysctl_header;
  6353. static void register_sched_domain_sysctl(void)
  6354. {
  6355. int i, cpu_num = num_online_cpus();
  6356. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6357. char buf[32];
  6358. WARN_ON(sd_ctl_dir[0].child);
  6359. sd_ctl_dir[0].child = entry;
  6360. if (entry == NULL)
  6361. return;
  6362. for_each_online_cpu(i) {
  6363. snprintf(buf, 32, "cpu%d", i);
  6364. entry->procname = kstrdup(buf, GFP_KERNEL);
  6365. entry->mode = 0555;
  6366. entry->child = sd_alloc_ctl_cpu_table(i);
  6367. entry++;
  6368. }
  6369. WARN_ON(sd_sysctl_header);
  6370. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6371. }
  6372. /* may be called multiple times per register */
  6373. static void unregister_sched_domain_sysctl(void)
  6374. {
  6375. if (sd_sysctl_header)
  6376. unregister_sysctl_table(sd_sysctl_header);
  6377. sd_sysctl_header = NULL;
  6378. if (sd_ctl_dir[0].child)
  6379. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6380. }
  6381. #else
  6382. static void register_sched_domain_sysctl(void)
  6383. {
  6384. }
  6385. static void unregister_sched_domain_sysctl(void)
  6386. {
  6387. }
  6388. #endif
  6389. static void set_rq_online(struct rq *rq)
  6390. {
  6391. if (!rq->online) {
  6392. const struct sched_class *class;
  6393. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6394. rq->online = 1;
  6395. for_each_class(class) {
  6396. if (class->rq_online)
  6397. class->rq_online(rq);
  6398. }
  6399. }
  6400. }
  6401. static void set_rq_offline(struct rq *rq)
  6402. {
  6403. if (rq->online) {
  6404. const struct sched_class *class;
  6405. for_each_class(class) {
  6406. if (class->rq_offline)
  6407. class->rq_offline(rq);
  6408. }
  6409. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6410. rq->online = 0;
  6411. }
  6412. }
  6413. /*
  6414. * migration_call - callback that gets triggered when a CPU is added.
  6415. * Here we can start up the necessary migration thread for the new CPU.
  6416. */
  6417. static int __cpuinit
  6418. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6419. {
  6420. struct task_struct *p;
  6421. int cpu = (long)hcpu;
  6422. unsigned long flags;
  6423. struct rq *rq;
  6424. switch (action) {
  6425. case CPU_UP_PREPARE:
  6426. case CPU_UP_PREPARE_FROZEN:
  6427. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6428. if (IS_ERR(p))
  6429. return NOTIFY_BAD;
  6430. kthread_bind(p, cpu);
  6431. /* Must be high prio: stop_machine expects to yield to it. */
  6432. rq = task_rq_lock(p, &flags);
  6433. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6434. task_rq_unlock(rq, &flags);
  6435. cpu_rq(cpu)->migration_thread = p;
  6436. break;
  6437. case CPU_ONLINE:
  6438. case CPU_ONLINE_FROZEN:
  6439. /* Strictly unnecessary, as first user will wake it. */
  6440. wake_up_process(cpu_rq(cpu)->migration_thread);
  6441. /* Update our root-domain */
  6442. rq = cpu_rq(cpu);
  6443. spin_lock_irqsave(&rq->lock, flags);
  6444. rq->calc_load_update = calc_load_update;
  6445. rq->calc_load_active = 0;
  6446. if (rq->rd) {
  6447. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6448. set_rq_online(rq);
  6449. }
  6450. spin_unlock_irqrestore(&rq->lock, flags);
  6451. break;
  6452. #ifdef CONFIG_HOTPLUG_CPU
  6453. case CPU_UP_CANCELED:
  6454. case CPU_UP_CANCELED_FROZEN:
  6455. if (!cpu_rq(cpu)->migration_thread)
  6456. break;
  6457. /* Unbind it from offline cpu so it can run. Fall thru. */
  6458. kthread_bind(cpu_rq(cpu)->migration_thread,
  6459. cpumask_any(cpu_online_mask));
  6460. kthread_stop(cpu_rq(cpu)->migration_thread);
  6461. cpu_rq(cpu)->migration_thread = NULL;
  6462. break;
  6463. case CPU_DEAD:
  6464. case CPU_DEAD_FROZEN:
  6465. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6466. migrate_live_tasks(cpu);
  6467. rq = cpu_rq(cpu);
  6468. kthread_stop(rq->migration_thread);
  6469. rq->migration_thread = NULL;
  6470. /* Idle task back to normal (off runqueue, low prio) */
  6471. spin_lock_irq(&rq->lock);
  6472. update_rq_clock(rq);
  6473. deactivate_task(rq, rq->idle, 0);
  6474. rq->idle->static_prio = MAX_PRIO;
  6475. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6476. rq->idle->sched_class = &idle_sched_class;
  6477. migrate_dead_tasks(cpu);
  6478. spin_unlock_irq(&rq->lock);
  6479. cpuset_unlock();
  6480. migrate_nr_uninterruptible(rq);
  6481. BUG_ON(rq->nr_running != 0);
  6482. calc_global_load_remove(rq);
  6483. /*
  6484. * No need to migrate the tasks: it was best-effort if
  6485. * they didn't take sched_hotcpu_mutex. Just wake up
  6486. * the requestors.
  6487. */
  6488. spin_lock_irq(&rq->lock);
  6489. while (!list_empty(&rq->migration_queue)) {
  6490. struct migration_req *req;
  6491. req = list_entry(rq->migration_queue.next,
  6492. struct migration_req, list);
  6493. list_del_init(&req->list);
  6494. spin_unlock_irq(&rq->lock);
  6495. complete(&req->done);
  6496. spin_lock_irq(&rq->lock);
  6497. }
  6498. spin_unlock_irq(&rq->lock);
  6499. break;
  6500. case CPU_DYING:
  6501. case CPU_DYING_FROZEN:
  6502. /* Update our root-domain */
  6503. rq = cpu_rq(cpu);
  6504. spin_lock_irqsave(&rq->lock, flags);
  6505. if (rq->rd) {
  6506. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6507. set_rq_offline(rq);
  6508. }
  6509. spin_unlock_irqrestore(&rq->lock, flags);
  6510. break;
  6511. #endif
  6512. }
  6513. return NOTIFY_OK;
  6514. }
  6515. /*
  6516. * Register at high priority so that task migration (migrate_all_tasks)
  6517. * happens before everything else. This has to be lower priority than
  6518. * the notifier in the perf_counter subsystem, though.
  6519. */
  6520. static struct notifier_block __cpuinitdata migration_notifier = {
  6521. .notifier_call = migration_call,
  6522. .priority = 10
  6523. };
  6524. static int __init migration_init(void)
  6525. {
  6526. void *cpu = (void *)(long)smp_processor_id();
  6527. int err;
  6528. /* Start one for the boot CPU: */
  6529. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6530. BUG_ON(err == NOTIFY_BAD);
  6531. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6532. register_cpu_notifier(&migration_notifier);
  6533. return err;
  6534. }
  6535. early_initcall(migration_init);
  6536. #endif
  6537. #ifdef CONFIG_SMP
  6538. #ifdef CONFIG_SCHED_DEBUG
  6539. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6540. struct cpumask *groupmask)
  6541. {
  6542. struct sched_group *group = sd->groups;
  6543. char str[256];
  6544. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6545. cpumask_clear(groupmask);
  6546. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6547. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6548. printk("does not load-balance\n");
  6549. if (sd->parent)
  6550. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6551. " has parent");
  6552. return -1;
  6553. }
  6554. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6555. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6556. printk(KERN_ERR "ERROR: domain->span does not contain "
  6557. "CPU%d\n", cpu);
  6558. }
  6559. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6560. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6561. " CPU%d\n", cpu);
  6562. }
  6563. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6564. do {
  6565. if (!group) {
  6566. printk("\n");
  6567. printk(KERN_ERR "ERROR: group is NULL\n");
  6568. break;
  6569. }
  6570. if (!group->__cpu_power) {
  6571. printk(KERN_CONT "\n");
  6572. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6573. "set\n");
  6574. break;
  6575. }
  6576. if (!cpumask_weight(sched_group_cpus(group))) {
  6577. printk(KERN_CONT "\n");
  6578. printk(KERN_ERR "ERROR: empty group\n");
  6579. break;
  6580. }
  6581. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6582. printk(KERN_CONT "\n");
  6583. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6584. break;
  6585. }
  6586. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6587. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6588. printk(KERN_CONT " %s", str);
  6589. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6590. printk(KERN_CONT " (__cpu_power = %d)",
  6591. group->__cpu_power);
  6592. }
  6593. group = group->next;
  6594. } while (group != sd->groups);
  6595. printk(KERN_CONT "\n");
  6596. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6597. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6598. if (sd->parent &&
  6599. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6600. printk(KERN_ERR "ERROR: parent span is not a superset "
  6601. "of domain->span\n");
  6602. return 0;
  6603. }
  6604. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6605. {
  6606. cpumask_var_t groupmask;
  6607. int level = 0;
  6608. if (!sd) {
  6609. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6610. return;
  6611. }
  6612. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6613. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6614. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6615. return;
  6616. }
  6617. for (;;) {
  6618. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6619. break;
  6620. level++;
  6621. sd = sd->parent;
  6622. if (!sd)
  6623. break;
  6624. }
  6625. free_cpumask_var(groupmask);
  6626. }
  6627. #else /* !CONFIG_SCHED_DEBUG */
  6628. # define sched_domain_debug(sd, cpu) do { } while (0)
  6629. #endif /* CONFIG_SCHED_DEBUG */
  6630. static int sd_degenerate(struct sched_domain *sd)
  6631. {
  6632. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6633. return 1;
  6634. /* Following flags need at least 2 groups */
  6635. if (sd->flags & (SD_LOAD_BALANCE |
  6636. SD_BALANCE_NEWIDLE |
  6637. SD_BALANCE_FORK |
  6638. SD_BALANCE_EXEC |
  6639. SD_SHARE_CPUPOWER |
  6640. SD_SHARE_PKG_RESOURCES)) {
  6641. if (sd->groups != sd->groups->next)
  6642. return 0;
  6643. }
  6644. /* Following flags don't use groups */
  6645. if (sd->flags & (SD_WAKE_IDLE |
  6646. SD_WAKE_AFFINE |
  6647. SD_WAKE_BALANCE))
  6648. return 0;
  6649. return 1;
  6650. }
  6651. static int
  6652. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6653. {
  6654. unsigned long cflags = sd->flags, pflags = parent->flags;
  6655. if (sd_degenerate(parent))
  6656. return 1;
  6657. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6658. return 0;
  6659. /* Does parent contain flags not in child? */
  6660. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6661. if (cflags & SD_WAKE_AFFINE)
  6662. pflags &= ~SD_WAKE_BALANCE;
  6663. /* Flags needing groups don't count if only 1 group in parent */
  6664. if (parent->groups == parent->groups->next) {
  6665. pflags &= ~(SD_LOAD_BALANCE |
  6666. SD_BALANCE_NEWIDLE |
  6667. SD_BALANCE_FORK |
  6668. SD_BALANCE_EXEC |
  6669. SD_SHARE_CPUPOWER |
  6670. SD_SHARE_PKG_RESOURCES);
  6671. if (nr_node_ids == 1)
  6672. pflags &= ~SD_SERIALIZE;
  6673. }
  6674. if (~cflags & pflags)
  6675. return 0;
  6676. return 1;
  6677. }
  6678. static void free_rootdomain(struct root_domain *rd)
  6679. {
  6680. cpupri_cleanup(&rd->cpupri);
  6681. free_cpumask_var(rd->rto_mask);
  6682. free_cpumask_var(rd->online);
  6683. free_cpumask_var(rd->span);
  6684. kfree(rd);
  6685. }
  6686. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6687. {
  6688. struct root_domain *old_rd = NULL;
  6689. unsigned long flags;
  6690. spin_lock_irqsave(&rq->lock, flags);
  6691. if (rq->rd) {
  6692. old_rd = rq->rd;
  6693. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6694. set_rq_offline(rq);
  6695. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6696. /*
  6697. * If we dont want to free the old_rt yet then
  6698. * set old_rd to NULL to skip the freeing later
  6699. * in this function:
  6700. */
  6701. if (!atomic_dec_and_test(&old_rd->refcount))
  6702. old_rd = NULL;
  6703. }
  6704. atomic_inc(&rd->refcount);
  6705. rq->rd = rd;
  6706. cpumask_set_cpu(rq->cpu, rd->span);
  6707. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6708. set_rq_online(rq);
  6709. spin_unlock_irqrestore(&rq->lock, flags);
  6710. if (old_rd)
  6711. free_rootdomain(old_rd);
  6712. }
  6713. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6714. {
  6715. gfp_t gfp = GFP_KERNEL;
  6716. memset(rd, 0, sizeof(*rd));
  6717. if (bootmem)
  6718. gfp = GFP_NOWAIT;
  6719. if (!alloc_cpumask_var(&rd->span, gfp))
  6720. goto out;
  6721. if (!alloc_cpumask_var(&rd->online, gfp))
  6722. goto free_span;
  6723. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6724. goto free_online;
  6725. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6726. goto free_rto_mask;
  6727. return 0;
  6728. free_rto_mask:
  6729. free_cpumask_var(rd->rto_mask);
  6730. free_online:
  6731. free_cpumask_var(rd->online);
  6732. free_span:
  6733. free_cpumask_var(rd->span);
  6734. out:
  6735. return -ENOMEM;
  6736. }
  6737. static void init_defrootdomain(void)
  6738. {
  6739. init_rootdomain(&def_root_domain, true);
  6740. atomic_set(&def_root_domain.refcount, 1);
  6741. }
  6742. static struct root_domain *alloc_rootdomain(void)
  6743. {
  6744. struct root_domain *rd;
  6745. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6746. if (!rd)
  6747. return NULL;
  6748. if (init_rootdomain(rd, false) != 0) {
  6749. kfree(rd);
  6750. return NULL;
  6751. }
  6752. return rd;
  6753. }
  6754. /*
  6755. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6756. * hold the hotplug lock.
  6757. */
  6758. static void
  6759. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6760. {
  6761. struct rq *rq = cpu_rq(cpu);
  6762. struct sched_domain *tmp;
  6763. /* Remove the sched domains which do not contribute to scheduling. */
  6764. for (tmp = sd; tmp; ) {
  6765. struct sched_domain *parent = tmp->parent;
  6766. if (!parent)
  6767. break;
  6768. if (sd_parent_degenerate(tmp, parent)) {
  6769. tmp->parent = parent->parent;
  6770. if (parent->parent)
  6771. parent->parent->child = tmp;
  6772. } else
  6773. tmp = tmp->parent;
  6774. }
  6775. if (sd && sd_degenerate(sd)) {
  6776. sd = sd->parent;
  6777. if (sd)
  6778. sd->child = NULL;
  6779. }
  6780. sched_domain_debug(sd, cpu);
  6781. rq_attach_root(rq, rd);
  6782. rcu_assign_pointer(rq->sd, sd);
  6783. }
  6784. /* cpus with isolated domains */
  6785. static cpumask_var_t cpu_isolated_map;
  6786. /* Setup the mask of cpus configured for isolated domains */
  6787. static int __init isolated_cpu_setup(char *str)
  6788. {
  6789. cpulist_parse(str, cpu_isolated_map);
  6790. return 1;
  6791. }
  6792. __setup("isolcpus=", isolated_cpu_setup);
  6793. /*
  6794. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6795. * to a function which identifies what group(along with sched group) a CPU
  6796. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6797. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6798. *
  6799. * init_sched_build_groups will build a circular linked list of the groups
  6800. * covered by the given span, and will set each group's ->cpumask correctly,
  6801. * and ->cpu_power to 0.
  6802. */
  6803. static void
  6804. init_sched_build_groups(const struct cpumask *span,
  6805. const struct cpumask *cpu_map,
  6806. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6807. struct sched_group **sg,
  6808. struct cpumask *tmpmask),
  6809. struct cpumask *covered, struct cpumask *tmpmask)
  6810. {
  6811. struct sched_group *first = NULL, *last = NULL;
  6812. int i;
  6813. cpumask_clear(covered);
  6814. for_each_cpu(i, span) {
  6815. struct sched_group *sg;
  6816. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6817. int j;
  6818. if (cpumask_test_cpu(i, covered))
  6819. continue;
  6820. cpumask_clear(sched_group_cpus(sg));
  6821. sg->__cpu_power = 0;
  6822. for_each_cpu(j, span) {
  6823. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6824. continue;
  6825. cpumask_set_cpu(j, covered);
  6826. cpumask_set_cpu(j, sched_group_cpus(sg));
  6827. }
  6828. if (!first)
  6829. first = sg;
  6830. if (last)
  6831. last->next = sg;
  6832. last = sg;
  6833. }
  6834. last->next = first;
  6835. }
  6836. #define SD_NODES_PER_DOMAIN 16
  6837. #ifdef CONFIG_NUMA
  6838. /**
  6839. * find_next_best_node - find the next node to include in a sched_domain
  6840. * @node: node whose sched_domain we're building
  6841. * @used_nodes: nodes already in the sched_domain
  6842. *
  6843. * Find the next node to include in a given scheduling domain. Simply
  6844. * finds the closest node not already in the @used_nodes map.
  6845. *
  6846. * Should use nodemask_t.
  6847. */
  6848. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6849. {
  6850. int i, n, val, min_val, best_node = 0;
  6851. min_val = INT_MAX;
  6852. for (i = 0; i < nr_node_ids; i++) {
  6853. /* Start at @node */
  6854. n = (node + i) % nr_node_ids;
  6855. if (!nr_cpus_node(n))
  6856. continue;
  6857. /* Skip already used nodes */
  6858. if (node_isset(n, *used_nodes))
  6859. continue;
  6860. /* Simple min distance search */
  6861. val = node_distance(node, n);
  6862. if (val < min_val) {
  6863. min_val = val;
  6864. best_node = n;
  6865. }
  6866. }
  6867. node_set(best_node, *used_nodes);
  6868. return best_node;
  6869. }
  6870. /**
  6871. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6872. * @node: node whose cpumask we're constructing
  6873. * @span: resulting cpumask
  6874. *
  6875. * Given a node, construct a good cpumask for its sched_domain to span. It
  6876. * should be one that prevents unnecessary balancing, but also spreads tasks
  6877. * out optimally.
  6878. */
  6879. static void sched_domain_node_span(int node, struct cpumask *span)
  6880. {
  6881. nodemask_t used_nodes;
  6882. int i;
  6883. cpumask_clear(span);
  6884. nodes_clear(used_nodes);
  6885. cpumask_or(span, span, cpumask_of_node(node));
  6886. node_set(node, used_nodes);
  6887. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6888. int next_node = find_next_best_node(node, &used_nodes);
  6889. cpumask_or(span, span, cpumask_of_node(next_node));
  6890. }
  6891. }
  6892. #endif /* CONFIG_NUMA */
  6893. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6894. /*
  6895. * The cpus mask in sched_group and sched_domain hangs off the end.
  6896. *
  6897. * ( See the the comments in include/linux/sched.h:struct sched_group
  6898. * and struct sched_domain. )
  6899. */
  6900. struct static_sched_group {
  6901. struct sched_group sg;
  6902. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6903. };
  6904. struct static_sched_domain {
  6905. struct sched_domain sd;
  6906. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6907. };
  6908. /*
  6909. * SMT sched-domains:
  6910. */
  6911. #ifdef CONFIG_SCHED_SMT
  6912. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6913. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6914. static int
  6915. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6916. struct sched_group **sg, struct cpumask *unused)
  6917. {
  6918. if (sg)
  6919. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6920. return cpu;
  6921. }
  6922. #endif /* CONFIG_SCHED_SMT */
  6923. /*
  6924. * multi-core sched-domains:
  6925. */
  6926. #ifdef CONFIG_SCHED_MC
  6927. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6928. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6929. #endif /* CONFIG_SCHED_MC */
  6930. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6931. static int
  6932. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6933. struct sched_group **sg, struct cpumask *mask)
  6934. {
  6935. int group;
  6936. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6937. group = cpumask_first(mask);
  6938. if (sg)
  6939. *sg = &per_cpu(sched_group_core, group).sg;
  6940. return group;
  6941. }
  6942. #elif defined(CONFIG_SCHED_MC)
  6943. static int
  6944. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6945. struct sched_group **sg, struct cpumask *unused)
  6946. {
  6947. if (sg)
  6948. *sg = &per_cpu(sched_group_core, cpu).sg;
  6949. return cpu;
  6950. }
  6951. #endif
  6952. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6953. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6954. static int
  6955. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6956. struct sched_group **sg, struct cpumask *mask)
  6957. {
  6958. int group;
  6959. #ifdef CONFIG_SCHED_MC
  6960. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6961. group = cpumask_first(mask);
  6962. #elif defined(CONFIG_SCHED_SMT)
  6963. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6964. group = cpumask_first(mask);
  6965. #else
  6966. group = cpu;
  6967. #endif
  6968. if (sg)
  6969. *sg = &per_cpu(sched_group_phys, group).sg;
  6970. return group;
  6971. }
  6972. #ifdef CONFIG_NUMA
  6973. /*
  6974. * The init_sched_build_groups can't handle what we want to do with node
  6975. * groups, so roll our own. Now each node has its own list of groups which
  6976. * gets dynamically allocated.
  6977. */
  6978. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6979. static struct sched_group ***sched_group_nodes_bycpu;
  6980. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6981. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6982. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6983. struct sched_group **sg,
  6984. struct cpumask *nodemask)
  6985. {
  6986. int group;
  6987. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6988. group = cpumask_first(nodemask);
  6989. if (sg)
  6990. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6991. return group;
  6992. }
  6993. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6994. {
  6995. struct sched_group *sg = group_head;
  6996. int j;
  6997. if (!sg)
  6998. return;
  6999. do {
  7000. for_each_cpu(j, sched_group_cpus(sg)) {
  7001. struct sched_domain *sd;
  7002. sd = &per_cpu(phys_domains, j).sd;
  7003. if (j != group_first_cpu(sd->groups)) {
  7004. /*
  7005. * Only add "power" once for each
  7006. * physical package.
  7007. */
  7008. continue;
  7009. }
  7010. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  7011. }
  7012. sg = sg->next;
  7013. } while (sg != group_head);
  7014. }
  7015. #endif /* CONFIG_NUMA */
  7016. #ifdef CONFIG_NUMA
  7017. /* Free memory allocated for various sched_group structures */
  7018. static void free_sched_groups(const struct cpumask *cpu_map,
  7019. struct cpumask *nodemask)
  7020. {
  7021. int cpu, i;
  7022. for_each_cpu(cpu, cpu_map) {
  7023. struct sched_group **sched_group_nodes
  7024. = sched_group_nodes_bycpu[cpu];
  7025. if (!sched_group_nodes)
  7026. continue;
  7027. for (i = 0; i < nr_node_ids; i++) {
  7028. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7029. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7030. if (cpumask_empty(nodemask))
  7031. continue;
  7032. if (sg == NULL)
  7033. continue;
  7034. sg = sg->next;
  7035. next_sg:
  7036. oldsg = sg;
  7037. sg = sg->next;
  7038. kfree(oldsg);
  7039. if (oldsg != sched_group_nodes[i])
  7040. goto next_sg;
  7041. }
  7042. kfree(sched_group_nodes);
  7043. sched_group_nodes_bycpu[cpu] = NULL;
  7044. }
  7045. }
  7046. #else /* !CONFIG_NUMA */
  7047. static void free_sched_groups(const struct cpumask *cpu_map,
  7048. struct cpumask *nodemask)
  7049. {
  7050. }
  7051. #endif /* CONFIG_NUMA */
  7052. /*
  7053. * Initialize sched groups cpu_power.
  7054. *
  7055. * cpu_power indicates the capacity of sched group, which is used while
  7056. * distributing the load between different sched groups in a sched domain.
  7057. * Typically cpu_power for all the groups in a sched domain will be same unless
  7058. * there are asymmetries in the topology. If there are asymmetries, group
  7059. * having more cpu_power will pickup more load compared to the group having
  7060. * less cpu_power.
  7061. *
  7062. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  7063. * the maximum number of tasks a group can handle in the presence of other idle
  7064. * or lightly loaded groups in the same sched domain.
  7065. */
  7066. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7067. {
  7068. struct sched_domain *child;
  7069. struct sched_group *group;
  7070. WARN_ON(!sd || !sd->groups);
  7071. if (cpu != group_first_cpu(sd->groups))
  7072. return;
  7073. child = sd->child;
  7074. sd->groups->__cpu_power = 0;
  7075. /*
  7076. * For perf policy, if the groups in child domain share resources
  7077. * (for example cores sharing some portions of the cache hierarchy
  7078. * or SMT), then set this domain groups cpu_power such that each group
  7079. * can handle only one task, when there are other idle groups in the
  7080. * same sched domain.
  7081. */
  7082. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  7083. (child->flags &
  7084. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  7085. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  7086. return;
  7087. }
  7088. /*
  7089. * add cpu_power of each child group to this groups cpu_power
  7090. */
  7091. group = child->groups;
  7092. do {
  7093. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  7094. group = group->next;
  7095. } while (group != child->groups);
  7096. }
  7097. /*
  7098. * Initializers for schedule domains
  7099. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7100. */
  7101. #ifdef CONFIG_SCHED_DEBUG
  7102. # define SD_INIT_NAME(sd, type) sd->name = #type
  7103. #else
  7104. # define SD_INIT_NAME(sd, type) do { } while (0)
  7105. #endif
  7106. #define SD_INIT(sd, type) sd_init_##type(sd)
  7107. #define SD_INIT_FUNC(type) \
  7108. static noinline void sd_init_##type(struct sched_domain *sd) \
  7109. { \
  7110. memset(sd, 0, sizeof(*sd)); \
  7111. *sd = SD_##type##_INIT; \
  7112. sd->level = SD_LV_##type; \
  7113. SD_INIT_NAME(sd, type); \
  7114. }
  7115. SD_INIT_FUNC(CPU)
  7116. #ifdef CONFIG_NUMA
  7117. SD_INIT_FUNC(ALLNODES)
  7118. SD_INIT_FUNC(NODE)
  7119. #endif
  7120. #ifdef CONFIG_SCHED_SMT
  7121. SD_INIT_FUNC(SIBLING)
  7122. #endif
  7123. #ifdef CONFIG_SCHED_MC
  7124. SD_INIT_FUNC(MC)
  7125. #endif
  7126. static int default_relax_domain_level = -1;
  7127. static int __init setup_relax_domain_level(char *str)
  7128. {
  7129. unsigned long val;
  7130. val = simple_strtoul(str, NULL, 0);
  7131. if (val < SD_LV_MAX)
  7132. default_relax_domain_level = val;
  7133. return 1;
  7134. }
  7135. __setup("relax_domain_level=", setup_relax_domain_level);
  7136. static void set_domain_attribute(struct sched_domain *sd,
  7137. struct sched_domain_attr *attr)
  7138. {
  7139. int request;
  7140. if (!attr || attr->relax_domain_level < 0) {
  7141. if (default_relax_domain_level < 0)
  7142. return;
  7143. else
  7144. request = default_relax_domain_level;
  7145. } else
  7146. request = attr->relax_domain_level;
  7147. if (request < sd->level) {
  7148. /* turn off idle balance on this domain */
  7149. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  7150. } else {
  7151. /* turn on idle balance on this domain */
  7152. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  7153. }
  7154. }
  7155. /*
  7156. * Build sched domains for a given set of cpus and attach the sched domains
  7157. * to the individual cpus
  7158. */
  7159. static int __build_sched_domains(const struct cpumask *cpu_map,
  7160. struct sched_domain_attr *attr)
  7161. {
  7162. int i, err = -ENOMEM;
  7163. struct root_domain *rd;
  7164. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  7165. tmpmask;
  7166. #ifdef CONFIG_NUMA
  7167. cpumask_var_t domainspan, covered, notcovered;
  7168. struct sched_group **sched_group_nodes = NULL;
  7169. int sd_allnodes = 0;
  7170. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  7171. goto out;
  7172. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  7173. goto free_domainspan;
  7174. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  7175. goto free_covered;
  7176. #endif
  7177. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  7178. goto free_notcovered;
  7179. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  7180. goto free_nodemask;
  7181. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  7182. goto free_this_sibling_map;
  7183. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  7184. goto free_this_core_map;
  7185. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  7186. goto free_send_covered;
  7187. #ifdef CONFIG_NUMA
  7188. /*
  7189. * Allocate the per-node list of sched groups
  7190. */
  7191. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  7192. GFP_KERNEL);
  7193. if (!sched_group_nodes) {
  7194. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7195. goto free_tmpmask;
  7196. }
  7197. #endif
  7198. rd = alloc_rootdomain();
  7199. if (!rd) {
  7200. printk(KERN_WARNING "Cannot alloc root domain\n");
  7201. goto free_sched_groups;
  7202. }
  7203. #ifdef CONFIG_NUMA
  7204. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  7205. #endif
  7206. /*
  7207. * Set up domains for cpus specified by the cpu_map.
  7208. */
  7209. for_each_cpu(i, cpu_map) {
  7210. struct sched_domain *sd = NULL, *p;
  7211. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  7212. #ifdef CONFIG_NUMA
  7213. if (cpumask_weight(cpu_map) >
  7214. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  7215. sd = &per_cpu(allnodes_domains, i).sd;
  7216. SD_INIT(sd, ALLNODES);
  7217. set_domain_attribute(sd, attr);
  7218. cpumask_copy(sched_domain_span(sd), cpu_map);
  7219. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  7220. p = sd;
  7221. sd_allnodes = 1;
  7222. } else
  7223. p = NULL;
  7224. sd = &per_cpu(node_domains, i).sd;
  7225. SD_INIT(sd, NODE);
  7226. set_domain_attribute(sd, attr);
  7227. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7228. sd->parent = p;
  7229. if (p)
  7230. p->child = sd;
  7231. cpumask_and(sched_domain_span(sd),
  7232. sched_domain_span(sd), cpu_map);
  7233. #endif
  7234. p = sd;
  7235. sd = &per_cpu(phys_domains, i).sd;
  7236. SD_INIT(sd, CPU);
  7237. set_domain_attribute(sd, attr);
  7238. cpumask_copy(sched_domain_span(sd), nodemask);
  7239. sd->parent = p;
  7240. if (p)
  7241. p->child = sd;
  7242. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  7243. #ifdef CONFIG_SCHED_MC
  7244. p = sd;
  7245. sd = &per_cpu(core_domains, i).sd;
  7246. SD_INIT(sd, MC);
  7247. set_domain_attribute(sd, attr);
  7248. cpumask_and(sched_domain_span(sd), cpu_map,
  7249. cpu_coregroup_mask(i));
  7250. sd->parent = p;
  7251. p->child = sd;
  7252. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7253. #endif
  7254. #ifdef CONFIG_SCHED_SMT
  7255. p = sd;
  7256. sd = &per_cpu(cpu_domains, i).sd;
  7257. SD_INIT(sd, SIBLING);
  7258. set_domain_attribute(sd, attr);
  7259. cpumask_and(sched_domain_span(sd),
  7260. topology_thread_cpumask(i), cpu_map);
  7261. sd->parent = p;
  7262. p->child = sd;
  7263. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7264. #endif
  7265. }
  7266. #ifdef CONFIG_SCHED_SMT
  7267. /* Set up CPU (sibling) groups */
  7268. for_each_cpu(i, cpu_map) {
  7269. cpumask_and(this_sibling_map,
  7270. topology_thread_cpumask(i), cpu_map);
  7271. if (i != cpumask_first(this_sibling_map))
  7272. continue;
  7273. init_sched_build_groups(this_sibling_map, cpu_map,
  7274. &cpu_to_cpu_group,
  7275. send_covered, tmpmask);
  7276. }
  7277. #endif
  7278. #ifdef CONFIG_SCHED_MC
  7279. /* Set up multi-core groups */
  7280. for_each_cpu(i, cpu_map) {
  7281. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7282. if (i != cpumask_first(this_core_map))
  7283. continue;
  7284. init_sched_build_groups(this_core_map, cpu_map,
  7285. &cpu_to_core_group,
  7286. send_covered, tmpmask);
  7287. }
  7288. #endif
  7289. /* Set up physical groups */
  7290. for (i = 0; i < nr_node_ids; i++) {
  7291. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7292. if (cpumask_empty(nodemask))
  7293. continue;
  7294. init_sched_build_groups(nodemask, cpu_map,
  7295. &cpu_to_phys_group,
  7296. send_covered, tmpmask);
  7297. }
  7298. #ifdef CONFIG_NUMA
  7299. /* Set up node groups */
  7300. if (sd_allnodes) {
  7301. init_sched_build_groups(cpu_map, cpu_map,
  7302. &cpu_to_allnodes_group,
  7303. send_covered, tmpmask);
  7304. }
  7305. for (i = 0; i < nr_node_ids; i++) {
  7306. /* Set up node groups */
  7307. struct sched_group *sg, *prev;
  7308. int j;
  7309. cpumask_clear(covered);
  7310. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7311. if (cpumask_empty(nodemask)) {
  7312. sched_group_nodes[i] = NULL;
  7313. continue;
  7314. }
  7315. sched_domain_node_span(i, domainspan);
  7316. cpumask_and(domainspan, domainspan, cpu_map);
  7317. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7318. GFP_KERNEL, i);
  7319. if (!sg) {
  7320. printk(KERN_WARNING "Can not alloc domain group for "
  7321. "node %d\n", i);
  7322. goto error;
  7323. }
  7324. sched_group_nodes[i] = sg;
  7325. for_each_cpu(j, nodemask) {
  7326. struct sched_domain *sd;
  7327. sd = &per_cpu(node_domains, j).sd;
  7328. sd->groups = sg;
  7329. }
  7330. sg->__cpu_power = 0;
  7331. cpumask_copy(sched_group_cpus(sg), nodemask);
  7332. sg->next = sg;
  7333. cpumask_or(covered, covered, nodemask);
  7334. prev = sg;
  7335. for (j = 0; j < nr_node_ids; j++) {
  7336. int n = (i + j) % nr_node_ids;
  7337. cpumask_complement(notcovered, covered);
  7338. cpumask_and(tmpmask, notcovered, cpu_map);
  7339. cpumask_and(tmpmask, tmpmask, domainspan);
  7340. if (cpumask_empty(tmpmask))
  7341. break;
  7342. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7343. if (cpumask_empty(tmpmask))
  7344. continue;
  7345. sg = kmalloc_node(sizeof(struct sched_group) +
  7346. cpumask_size(),
  7347. GFP_KERNEL, i);
  7348. if (!sg) {
  7349. printk(KERN_WARNING
  7350. "Can not alloc domain group for node %d\n", j);
  7351. goto error;
  7352. }
  7353. sg->__cpu_power = 0;
  7354. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7355. sg->next = prev->next;
  7356. cpumask_or(covered, covered, tmpmask);
  7357. prev->next = sg;
  7358. prev = sg;
  7359. }
  7360. }
  7361. #endif
  7362. /* Calculate CPU power for physical packages and nodes */
  7363. #ifdef CONFIG_SCHED_SMT
  7364. for_each_cpu(i, cpu_map) {
  7365. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7366. init_sched_groups_power(i, sd);
  7367. }
  7368. #endif
  7369. #ifdef CONFIG_SCHED_MC
  7370. for_each_cpu(i, cpu_map) {
  7371. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7372. init_sched_groups_power(i, sd);
  7373. }
  7374. #endif
  7375. for_each_cpu(i, cpu_map) {
  7376. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7377. init_sched_groups_power(i, sd);
  7378. }
  7379. #ifdef CONFIG_NUMA
  7380. for (i = 0; i < nr_node_ids; i++)
  7381. init_numa_sched_groups_power(sched_group_nodes[i]);
  7382. if (sd_allnodes) {
  7383. struct sched_group *sg;
  7384. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7385. tmpmask);
  7386. init_numa_sched_groups_power(sg);
  7387. }
  7388. #endif
  7389. /* Attach the domains */
  7390. for_each_cpu(i, cpu_map) {
  7391. struct sched_domain *sd;
  7392. #ifdef CONFIG_SCHED_SMT
  7393. sd = &per_cpu(cpu_domains, i).sd;
  7394. #elif defined(CONFIG_SCHED_MC)
  7395. sd = &per_cpu(core_domains, i).sd;
  7396. #else
  7397. sd = &per_cpu(phys_domains, i).sd;
  7398. #endif
  7399. cpu_attach_domain(sd, rd, i);
  7400. }
  7401. err = 0;
  7402. free_tmpmask:
  7403. free_cpumask_var(tmpmask);
  7404. free_send_covered:
  7405. free_cpumask_var(send_covered);
  7406. free_this_core_map:
  7407. free_cpumask_var(this_core_map);
  7408. free_this_sibling_map:
  7409. free_cpumask_var(this_sibling_map);
  7410. free_nodemask:
  7411. free_cpumask_var(nodemask);
  7412. free_notcovered:
  7413. #ifdef CONFIG_NUMA
  7414. free_cpumask_var(notcovered);
  7415. free_covered:
  7416. free_cpumask_var(covered);
  7417. free_domainspan:
  7418. free_cpumask_var(domainspan);
  7419. out:
  7420. #endif
  7421. return err;
  7422. free_sched_groups:
  7423. #ifdef CONFIG_NUMA
  7424. kfree(sched_group_nodes);
  7425. #endif
  7426. goto free_tmpmask;
  7427. #ifdef CONFIG_NUMA
  7428. error:
  7429. free_sched_groups(cpu_map, tmpmask);
  7430. free_rootdomain(rd);
  7431. goto free_tmpmask;
  7432. #endif
  7433. }
  7434. static int build_sched_domains(const struct cpumask *cpu_map)
  7435. {
  7436. return __build_sched_domains(cpu_map, NULL);
  7437. }
  7438. static struct cpumask *doms_cur; /* current sched domains */
  7439. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7440. static struct sched_domain_attr *dattr_cur;
  7441. /* attribues of custom domains in 'doms_cur' */
  7442. /*
  7443. * Special case: If a kmalloc of a doms_cur partition (array of
  7444. * cpumask) fails, then fallback to a single sched domain,
  7445. * as determined by the single cpumask fallback_doms.
  7446. */
  7447. static cpumask_var_t fallback_doms;
  7448. /*
  7449. * arch_update_cpu_topology lets virtualized architectures update the
  7450. * cpu core maps. It is supposed to return 1 if the topology changed
  7451. * or 0 if it stayed the same.
  7452. */
  7453. int __attribute__((weak)) arch_update_cpu_topology(void)
  7454. {
  7455. return 0;
  7456. }
  7457. /*
  7458. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7459. * For now this just excludes isolated cpus, but could be used to
  7460. * exclude other special cases in the future.
  7461. */
  7462. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7463. {
  7464. int err;
  7465. arch_update_cpu_topology();
  7466. ndoms_cur = 1;
  7467. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7468. if (!doms_cur)
  7469. doms_cur = fallback_doms;
  7470. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7471. dattr_cur = NULL;
  7472. err = build_sched_domains(doms_cur);
  7473. register_sched_domain_sysctl();
  7474. return err;
  7475. }
  7476. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7477. struct cpumask *tmpmask)
  7478. {
  7479. free_sched_groups(cpu_map, tmpmask);
  7480. }
  7481. /*
  7482. * Detach sched domains from a group of cpus specified in cpu_map
  7483. * These cpus will now be attached to the NULL domain
  7484. */
  7485. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7486. {
  7487. /* Save because hotplug lock held. */
  7488. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7489. int i;
  7490. for_each_cpu(i, cpu_map)
  7491. cpu_attach_domain(NULL, &def_root_domain, i);
  7492. synchronize_sched();
  7493. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7494. }
  7495. /* handle null as "default" */
  7496. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7497. struct sched_domain_attr *new, int idx_new)
  7498. {
  7499. struct sched_domain_attr tmp;
  7500. /* fast path */
  7501. if (!new && !cur)
  7502. return 1;
  7503. tmp = SD_ATTR_INIT;
  7504. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7505. new ? (new + idx_new) : &tmp,
  7506. sizeof(struct sched_domain_attr));
  7507. }
  7508. /*
  7509. * Partition sched domains as specified by the 'ndoms_new'
  7510. * cpumasks in the array doms_new[] of cpumasks. This compares
  7511. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7512. * It destroys each deleted domain and builds each new domain.
  7513. *
  7514. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7515. * The masks don't intersect (don't overlap.) We should setup one
  7516. * sched domain for each mask. CPUs not in any of the cpumasks will
  7517. * not be load balanced. If the same cpumask appears both in the
  7518. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7519. * it as it is.
  7520. *
  7521. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7522. * ownership of it and will kfree it when done with it. If the caller
  7523. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7524. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7525. * the single partition 'fallback_doms', it also forces the domains
  7526. * to be rebuilt.
  7527. *
  7528. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7529. * ndoms_new == 0 is a special case for destroying existing domains,
  7530. * and it will not create the default domain.
  7531. *
  7532. * Call with hotplug lock held
  7533. */
  7534. /* FIXME: Change to struct cpumask *doms_new[] */
  7535. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7536. struct sched_domain_attr *dattr_new)
  7537. {
  7538. int i, j, n;
  7539. int new_topology;
  7540. mutex_lock(&sched_domains_mutex);
  7541. /* always unregister in case we don't destroy any domains */
  7542. unregister_sched_domain_sysctl();
  7543. /* Let architecture update cpu core mappings. */
  7544. new_topology = arch_update_cpu_topology();
  7545. n = doms_new ? ndoms_new : 0;
  7546. /* Destroy deleted domains */
  7547. for (i = 0; i < ndoms_cur; i++) {
  7548. for (j = 0; j < n && !new_topology; j++) {
  7549. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7550. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7551. goto match1;
  7552. }
  7553. /* no match - a current sched domain not in new doms_new[] */
  7554. detach_destroy_domains(doms_cur + i);
  7555. match1:
  7556. ;
  7557. }
  7558. if (doms_new == NULL) {
  7559. ndoms_cur = 0;
  7560. doms_new = fallback_doms;
  7561. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7562. WARN_ON_ONCE(dattr_new);
  7563. }
  7564. /* Build new domains */
  7565. for (i = 0; i < ndoms_new; i++) {
  7566. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7567. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7568. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7569. goto match2;
  7570. }
  7571. /* no match - add a new doms_new */
  7572. __build_sched_domains(doms_new + i,
  7573. dattr_new ? dattr_new + i : NULL);
  7574. match2:
  7575. ;
  7576. }
  7577. /* Remember the new sched domains */
  7578. if (doms_cur != fallback_doms)
  7579. kfree(doms_cur);
  7580. kfree(dattr_cur); /* kfree(NULL) is safe */
  7581. doms_cur = doms_new;
  7582. dattr_cur = dattr_new;
  7583. ndoms_cur = ndoms_new;
  7584. register_sched_domain_sysctl();
  7585. mutex_unlock(&sched_domains_mutex);
  7586. }
  7587. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7588. static void arch_reinit_sched_domains(void)
  7589. {
  7590. get_online_cpus();
  7591. /* Destroy domains first to force the rebuild */
  7592. partition_sched_domains(0, NULL, NULL);
  7593. rebuild_sched_domains();
  7594. put_online_cpus();
  7595. }
  7596. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7597. {
  7598. unsigned int level = 0;
  7599. if (sscanf(buf, "%u", &level) != 1)
  7600. return -EINVAL;
  7601. /*
  7602. * level is always be positive so don't check for
  7603. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7604. * What happens on 0 or 1 byte write,
  7605. * need to check for count as well?
  7606. */
  7607. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7608. return -EINVAL;
  7609. if (smt)
  7610. sched_smt_power_savings = level;
  7611. else
  7612. sched_mc_power_savings = level;
  7613. arch_reinit_sched_domains();
  7614. return count;
  7615. }
  7616. #ifdef CONFIG_SCHED_MC
  7617. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7618. char *page)
  7619. {
  7620. return sprintf(page, "%u\n", sched_mc_power_savings);
  7621. }
  7622. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7623. const char *buf, size_t count)
  7624. {
  7625. return sched_power_savings_store(buf, count, 0);
  7626. }
  7627. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7628. sched_mc_power_savings_show,
  7629. sched_mc_power_savings_store);
  7630. #endif
  7631. #ifdef CONFIG_SCHED_SMT
  7632. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7633. char *page)
  7634. {
  7635. return sprintf(page, "%u\n", sched_smt_power_savings);
  7636. }
  7637. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7638. const char *buf, size_t count)
  7639. {
  7640. return sched_power_savings_store(buf, count, 1);
  7641. }
  7642. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7643. sched_smt_power_savings_show,
  7644. sched_smt_power_savings_store);
  7645. #endif
  7646. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7647. {
  7648. int err = 0;
  7649. #ifdef CONFIG_SCHED_SMT
  7650. if (smt_capable())
  7651. err = sysfs_create_file(&cls->kset.kobj,
  7652. &attr_sched_smt_power_savings.attr);
  7653. #endif
  7654. #ifdef CONFIG_SCHED_MC
  7655. if (!err && mc_capable())
  7656. err = sysfs_create_file(&cls->kset.kobj,
  7657. &attr_sched_mc_power_savings.attr);
  7658. #endif
  7659. return err;
  7660. }
  7661. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7662. #ifndef CONFIG_CPUSETS
  7663. /*
  7664. * Add online and remove offline CPUs from the scheduler domains.
  7665. * When cpusets are enabled they take over this function.
  7666. */
  7667. static int update_sched_domains(struct notifier_block *nfb,
  7668. unsigned long action, void *hcpu)
  7669. {
  7670. switch (action) {
  7671. case CPU_ONLINE:
  7672. case CPU_ONLINE_FROZEN:
  7673. case CPU_DEAD:
  7674. case CPU_DEAD_FROZEN:
  7675. partition_sched_domains(1, NULL, NULL);
  7676. return NOTIFY_OK;
  7677. default:
  7678. return NOTIFY_DONE;
  7679. }
  7680. }
  7681. #endif
  7682. static int update_runtime(struct notifier_block *nfb,
  7683. unsigned long action, void *hcpu)
  7684. {
  7685. int cpu = (int)(long)hcpu;
  7686. switch (action) {
  7687. case CPU_DOWN_PREPARE:
  7688. case CPU_DOWN_PREPARE_FROZEN:
  7689. disable_runtime(cpu_rq(cpu));
  7690. return NOTIFY_OK;
  7691. case CPU_DOWN_FAILED:
  7692. case CPU_DOWN_FAILED_FROZEN:
  7693. case CPU_ONLINE:
  7694. case CPU_ONLINE_FROZEN:
  7695. enable_runtime(cpu_rq(cpu));
  7696. return NOTIFY_OK;
  7697. default:
  7698. return NOTIFY_DONE;
  7699. }
  7700. }
  7701. void __init sched_init_smp(void)
  7702. {
  7703. cpumask_var_t non_isolated_cpus;
  7704. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7705. #if defined(CONFIG_NUMA)
  7706. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7707. GFP_KERNEL);
  7708. BUG_ON(sched_group_nodes_bycpu == NULL);
  7709. #endif
  7710. get_online_cpus();
  7711. mutex_lock(&sched_domains_mutex);
  7712. arch_init_sched_domains(cpu_online_mask);
  7713. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7714. if (cpumask_empty(non_isolated_cpus))
  7715. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7716. mutex_unlock(&sched_domains_mutex);
  7717. put_online_cpus();
  7718. #ifndef CONFIG_CPUSETS
  7719. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7720. hotcpu_notifier(update_sched_domains, 0);
  7721. #endif
  7722. /* RT runtime code needs to handle some hotplug events */
  7723. hotcpu_notifier(update_runtime, 0);
  7724. init_hrtick();
  7725. /* Move init over to a non-isolated CPU */
  7726. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7727. BUG();
  7728. sched_init_granularity();
  7729. free_cpumask_var(non_isolated_cpus);
  7730. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7731. init_sched_rt_class();
  7732. }
  7733. #else
  7734. void __init sched_init_smp(void)
  7735. {
  7736. sched_init_granularity();
  7737. }
  7738. #endif /* CONFIG_SMP */
  7739. int in_sched_functions(unsigned long addr)
  7740. {
  7741. return in_lock_functions(addr) ||
  7742. (addr >= (unsigned long)__sched_text_start
  7743. && addr < (unsigned long)__sched_text_end);
  7744. }
  7745. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7746. {
  7747. cfs_rq->tasks_timeline = RB_ROOT;
  7748. INIT_LIST_HEAD(&cfs_rq->tasks);
  7749. #ifdef CONFIG_FAIR_GROUP_SCHED
  7750. cfs_rq->rq = rq;
  7751. #endif
  7752. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7753. }
  7754. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7755. {
  7756. struct rt_prio_array *array;
  7757. int i;
  7758. array = &rt_rq->active;
  7759. for (i = 0; i < MAX_RT_PRIO; i++) {
  7760. INIT_LIST_HEAD(array->queue + i);
  7761. __clear_bit(i, array->bitmap);
  7762. }
  7763. /* delimiter for bitsearch: */
  7764. __set_bit(MAX_RT_PRIO, array->bitmap);
  7765. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7766. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7767. #ifdef CONFIG_SMP
  7768. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7769. #endif
  7770. #endif
  7771. #ifdef CONFIG_SMP
  7772. rt_rq->rt_nr_migratory = 0;
  7773. rt_rq->overloaded = 0;
  7774. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7775. #endif
  7776. rt_rq->rt_time = 0;
  7777. rt_rq->rt_throttled = 0;
  7778. rt_rq->rt_runtime = 0;
  7779. spin_lock_init(&rt_rq->rt_runtime_lock);
  7780. #ifdef CONFIG_RT_GROUP_SCHED
  7781. rt_rq->rt_nr_boosted = 0;
  7782. rt_rq->rq = rq;
  7783. #endif
  7784. }
  7785. #ifdef CONFIG_FAIR_GROUP_SCHED
  7786. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7787. struct sched_entity *se, int cpu, int add,
  7788. struct sched_entity *parent)
  7789. {
  7790. struct rq *rq = cpu_rq(cpu);
  7791. tg->cfs_rq[cpu] = cfs_rq;
  7792. init_cfs_rq(cfs_rq, rq);
  7793. cfs_rq->tg = tg;
  7794. if (add)
  7795. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7796. tg->se[cpu] = se;
  7797. /* se could be NULL for init_task_group */
  7798. if (!se)
  7799. return;
  7800. if (!parent)
  7801. se->cfs_rq = &rq->cfs;
  7802. else
  7803. se->cfs_rq = parent->my_q;
  7804. se->my_q = cfs_rq;
  7805. se->load.weight = tg->shares;
  7806. se->load.inv_weight = 0;
  7807. se->parent = parent;
  7808. }
  7809. #endif
  7810. #ifdef CONFIG_RT_GROUP_SCHED
  7811. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7812. struct sched_rt_entity *rt_se, int cpu, int add,
  7813. struct sched_rt_entity *parent)
  7814. {
  7815. struct rq *rq = cpu_rq(cpu);
  7816. tg->rt_rq[cpu] = rt_rq;
  7817. init_rt_rq(rt_rq, rq);
  7818. rt_rq->tg = tg;
  7819. rt_rq->rt_se = rt_se;
  7820. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7821. if (add)
  7822. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7823. tg->rt_se[cpu] = rt_se;
  7824. if (!rt_se)
  7825. return;
  7826. if (!parent)
  7827. rt_se->rt_rq = &rq->rt;
  7828. else
  7829. rt_se->rt_rq = parent->my_q;
  7830. rt_se->my_q = rt_rq;
  7831. rt_se->parent = parent;
  7832. INIT_LIST_HEAD(&rt_se->run_list);
  7833. }
  7834. #endif
  7835. void __init sched_init(void)
  7836. {
  7837. int i, j;
  7838. unsigned long alloc_size = 0, ptr;
  7839. #ifdef CONFIG_FAIR_GROUP_SCHED
  7840. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7841. #endif
  7842. #ifdef CONFIG_RT_GROUP_SCHED
  7843. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7844. #endif
  7845. #ifdef CONFIG_USER_SCHED
  7846. alloc_size *= 2;
  7847. #endif
  7848. #ifdef CONFIG_CPUMASK_OFFSTACK
  7849. alloc_size += num_possible_cpus() * cpumask_size();
  7850. #endif
  7851. /*
  7852. * As sched_init() is called before page_alloc is setup,
  7853. * we use alloc_bootmem().
  7854. */
  7855. if (alloc_size) {
  7856. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  7857. #ifdef CONFIG_FAIR_GROUP_SCHED
  7858. init_task_group.se = (struct sched_entity **)ptr;
  7859. ptr += nr_cpu_ids * sizeof(void **);
  7860. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7861. ptr += nr_cpu_ids * sizeof(void **);
  7862. #ifdef CONFIG_USER_SCHED
  7863. root_task_group.se = (struct sched_entity **)ptr;
  7864. ptr += nr_cpu_ids * sizeof(void **);
  7865. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7866. ptr += nr_cpu_ids * sizeof(void **);
  7867. #endif /* CONFIG_USER_SCHED */
  7868. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7869. #ifdef CONFIG_RT_GROUP_SCHED
  7870. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7871. ptr += nr_cpu_ids * sizeof(void **);
  7872. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7873. ptr += nr_cpu_ids * sizeof(void **);
  7874. #ifdef CONFIG_USER_SCHED
  7875. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7876. ptr += nr_cpu_ids * sizeof(void **);
  7877. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7878. ptr += nr_cpu_ids * sizeof(void **);
  7879. #endif /* CONFIG_USER_SCHED */
  7880. #endif /* CONFIG_RT_GROUP_SCHED */
  7881. #ifdef CONFIG_CPUMASK_OFFSTACK
  7882. for_each_possible_cpu(i) {
  7883. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7884. ptr += cpumask_size();
  7885. }
  7886. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7887. }
  7888. #ifdef CONFIG_SMP
  7889. init_defrootdomain();
  7890. #endif
  7891. init_rt_bandwidth(&def_rt_bandwidth,
  7892. global_rt_period(), global_rt_runtime());
  7893. #ifdef CONFIG_RT_GROUP_SCHED
  7894. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7895. global_rt_period(), global_rt_runtime());
  7896. #ifdef CONFIG_USER_SCHED
  7897. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7898. global_rt_period(), RUNTIME_INF);
  7899. #endif /* CONFIG_USER_SCHED */
  7900. #endif /* CONFIG_RT_GROUP_SCHED */
  7901. #ifdef CONFIG_GROUP_SCHED
  7902. list_add(&init_task_group.list, &task_groups);
  7903. INIT_LIST_HEAD(&init_task_group.children);
  7904. #ifdef CONFIG_USER_SCHED
  7905. INIT_LIST_HEAD(&root_task_group.children);
  7906. init_task_group.parent = &root_task_group;
  7907. list_add(&init_task_group.siblings, &root_task_group.children);
  7908. #endif /* CONFIG_USER_SCHED */
  7909. #endif /* CONFIG_GROUP_SCHED */
  7910. for_each_possible_cpu(i) {
  7911. struct rq *rq;
  7912. rq = cpu_rq(i);
  7913. spin_lock_init(&rq->lock);
  7914. rq->nr_running = 0;
  7915. rq->calc_load_active = 0;
  7916. rq->calc_load_update = jiffies + LOAD_FREQ;
  7917. init_cfs_rq(&rq->cfs, rq);
  7918. init_rt_rq(&rq->rt, rq);
  7919. #ifdef CONFIG_FAIR_GROUP_SCHED
  7920. init_task_group.shares = init_task_group_load;
  7921. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7922. #ifdef CONFIG_CGROUP_SCHED
  7923. /*
  7924. * How much cpu bandwidth does init_task_group get?
  7925. *
  7926. * In case of task-groups formed thr' the cgroup filesystem, it
  7927. * gets 100% of the cpu resources in the system. This overall
  7928. * system cpu resource is divided among the tasks of
  7929. * init_task_group and its child task-groups in a fair manner,
  7930. * based on each entity's (task or task-group's) weight
  7931. * (se->load.weight).
  7932. *
  7933. * In other words, if init_task_group has 10 tasks of weight
  7934. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7935. * then A0's share of the cpu resource is:
  7936. *
  7937. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7938. *
  7939. * We achieve this by letting init_task_group's tasks sit
  7940. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7941. */
  7942. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7943. #elif defined CONFIG_USER_SCHED
  7944. root_task_group.shares = NICE_0_LOAD;
  7945. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7946. /*
  7947. * In case of task-groups formed thr' the user id of tasks,
  7948. * init_task_group represents tasks belonging to root user.
  7949. * Hence it forms a sibling of all subsequent groups formed.
  7950. * In this case, init_task_group gets only a fraction of overall
  7951. * system cpu resource, based on the weight assigned to root
  7952. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7953. * by letting tasks of init_task_group sit in a separate cfs_rq
  7954. * (init_cfs_rq) and having one entity represent this group of
  7955. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7956. */
  7957. init_tg_cfs_entry(&init_task_group,
  7958. &per_cpu(init_cfs_rq, i),
  7959. &per_cpu(init_sched_entity, i), i, 1,
  7960. root_task_group.se[i]);
  7961. #endif
  7962. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7963. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7964. #ifdef CONFIG_RT_GROUP_SCHED
  7965. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7966. #ifdef CONFIG_CGROUP_SCHED
  7967. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7968. #elif defined CONFIG_USER_SCHED
  7969. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7970. init_tg_rt_entry(&init_task_group,
  7971. &per_cpu(init_rt_rq, i),
  7972. &per_cpu(init_sched_rt_entity, i), i, 1,
  7973. root_task_group.rt_se[i]);
  7974. #endif
  7975. #endif
  7976. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7977. rq->cpu_load[j] = 0;
  7978. #ifdef CONFIG_SMP
  7979. rq->sd = NULL;
  7980. rq->rd = NULL;
  7981. rq->active_balance = 0;
  7982. rq->next_balance = jiffies;
  7983. rq->push_cpu = 0;
  7984. rq->cpu = i;
  7985. rq->online = 0;
  7986. rq->migration_thread = NULL;
  7987. INIT_LIST_HEAD(&rq->migration_queue);
  7988. rq_attach_root(rq, &def_root_domain);
  7989. #endif
  7990. init_rq_hrtick(rq);
  7991. atomic_set(&rq->nr_iowait, 0);
  7992. }
  7993. set_load_weight(&init_task);
  7994. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7995. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7996. #endif
  7997. #ifdef CONFIG_SMP
  7998. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7999. #endif
  8000. #ifdef CONFIG_RT_MUTEXES
  8001. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8002. #endif
  8003. /*
  8004. * The boot idle thread does lazy MMU switching as well:
  8005. */
  8006. atomic_inc(&init_mm.mm_count);
  8007. enter_lazy_tlb(&init_mm, current);
  8008. /*
  8009. * Make us the idle thread. Technically, schedule() should not be
  8010. * called from this thread, however somewhere below it might be,
  8011. * but because we are the idle thread, we just pick up running again
  8012. * when this runqueue becomes "idle".
  8013. */
  8014. init_idle(current, smp_processor_id());
  8015. calc_load_update = jiffies + LOAD_FREQ;
  8016. /*
  8017. * During early bootup we pretend to be a normal task:
  8018. */
  8019. current->sched_class = &fair_sched_class;
  8020. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8021. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8022. #ifdef CONFIG_SMP
  8023. #ifdef CONFIG_NO_HZ
  8024. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8025. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8026. #endif
  8027. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8028. #endif /* SMP */
  8029. perf_counter_init();
  8030. scheduler_running = 1;
  8031. }
  8032. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8033. void __might_sleep(char *file, int line)
  8034. {
  8035. #ifdef in_atomic
  8036. static unsigned long prev_jiffy; /* ratelimiting */
  8037. if ((!in_atomic() && !irqs_disabled()) ||
  8038. system_state != SYSTEM_RUNNING || oops_in_progress)
  8039. return;
  8040. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8041. return;
  8042. prev_jiffy = jiffies;
  8043. printk(KERN_ERR
  8044. "BUG: sleeping function called from invalid context at %s:%d\n",
  8045. file, line);
  8046. printk(KERN_ERR
  8047. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8048. in_atomic(), irqs_disabled(),
  8049. current->pid, current->comm);
  8050. debug_show_held_locks(current);
  8051. if (irqs_disabled())
  8052. print_irqtrace_events(current);
  8053. dump_stack();
  8054. #endif
  8055. }
  8056. EXPORT_SYMBOL(__might_sleep);
  8057. #endif
  8058. #ifdef CONFIG_MAGIC_SYSRQ
  8059. static void normalize_task(struct rq *rq, struct task_struct *p)
  8060. {
  8061. int on_rq;
  8062. update_rq_clock(rq);
  8063. on_rq = p->se.on_rq;
  8064. if (on_rq)
  8065. deactivate_task(rq, p, 0);
  8066. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8067. if (on_rq) {
  8068. activate_task(rq, p, 0);
  8069. resched_task(rq->curr);
  8070. }
  8071. }
  8072. void normalize_rt_tasks(void)
  8073. {
  8074. struct task_struct *g, *p;
  8075. unsigned long flags;
  8076. struct rq *rq;
  8077. read_lock_irqsave(&tasklist_lock, flags);
  8078. do_each_thread(g, p) {
  8079. /*
  8080. * Only normalize user tasks:
  8081. */
  8082. if (!p->mm)
  8083. continue;
  8084. p->se.exec_start = 0;
  8085. #ifdef CONFIG_SCHEDSTATS
  8086. p->se.wait_start = 0;
  8087. p->se.sleep_start = 0;
  8088. p->se.block_start = 0;
  8089. #endif
  8090. if (!rt_task(p)) {
  8091. /*
  8092. * Renice negative nice level userspace
  8093. * tasks back to 0:
  8094. */
  8095. if (TASK_NICE(p) < 0 && p->mm)
  8096. set_user_nice(p, 0);
  8097. continue;
  8098. }
  8099. spin_lock(&p->pi_lock);
  8100. rq = __task_rq_lock(p);
  8101. normalize_task(rq, p);
  8102. __task_rq_unlock(rq);
  8103. spin_unlock(&p->pi_lock);
  8104. } while_each_thread(g, p);
  8105. read_unlock_irqrestore(&tasklist_lock, flags);
  8106. }
  8107. #endif /* CONFIG_MAGIC_SYSRQ */
  8108. #ifdef CONFIG_IA64
  8109. /*
  8110. * These functions are only useful for the IA64 MCA handling.
  8111. *
  8112. * They can only be called when the whole system has been
  8113. * stopped - every CPU needs to be quiescent, and no scheduling
  8114. * activity can take place. Using them for anything else would
  8115. * be a serious bug, and as a result, they aren't even visible
  8116. * under any other configuration.
  8117. */
  8118. /**
  8119. * curr_task - return the current task for a given cpu.
  8120. * @cpu: the processor in question.
  8121. *
  8122. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8123. */
  8124. struct task_struct *curr_task(int cpu)
  8125. {
  8126. return cpu_curr(cpu);
  8127. }
  8128. /**
  8129. * set_curr_task - set the current task for a given cpu.
  8130. * @cpu: the processor in question.
  8131. * @p: the task pointer to set.
  8132. *
  8133. * Description: This function must only be used when non-maskable interrupts
  8134. * are serviced on a separate stack. It allows the architecture to switch the
  8135. * notion of the current task on a cpu in a non-blocking manner. This function
  8136. * must be called with all CPU's synchronized, and interrupts disabled, the
  8137. * and caller must save the original value of the current task (see
  8138. * curr_task() above) and restore that value before reenabling interrupts and
  8139. * re-starting the system.
  8140. *
  8141. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8142. */
  8143. void set_curr_task(int cpu, struct task_struct *p)
  8144. {
  8145. cpu_curr(cpu) = p;
  8146. }
  8147. #endif
  8148. #ifdef CONFIG_FAIR_GROUP_SCHED
  8149. static void free_fair_sched_group(struct task_group *tg)
  8150. {
  8151. int i;
  8152. for_each_possible_cpu(i) {
  8153. if (tg->cfs_rq)
  8154. kfree(tg->cfs_rq[i]);
  8155. if (tg->se)
  8156. kfree(tg->se[i]);
  8157. }
  8158. kfree(tg->cfs_rq);
  8159. kfree(tg->se);
  8160. }
  8161. static
  8162. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8163. {
  8164. struct cfs_rq *cfs_rq;
  8165. struct sched_entity *se;
  8166. struct rq *rq;
  8167. int i;
  8168. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8169. if (!tg->cfs_rq)
  8170. goto err;
  8171. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8172. if (!tg->se)
  8173. goto err;
  8174. tg->shares = NICE_0_LOAD;
  8175. for_each_possible_cpu(i) {
  8176. rq = cpu_rq(i);
  8177. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8178. GFP_KERNEL, cpu_to_node(i));
  8179. if (!cfs_rq)
  8180. goto err;
  8181. se = kzalloc_node(sizeof(struct sched_entity),
  8182. GFP_KERNEL, cpu_to_node(i));
  8183. if (!se)
  8184. goto err;
  8185. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8186. }
  8187. return 1;
  8188. err:
  8189. return 0;
  8190. }
  8191. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8192. {
  8193. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8194. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8195. }
  8196. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8197. {
  8198. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8199. }
  8200. #else /* !CONFG_FAIR_GROUP_SCHED */
  8201. static inline void free_fair_sched_group(struct task_group *tg)
  8202. {
  8203. }
  8204. static inline
  8205. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8206. {
  8207. return 1;
  8208. }
  8209. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8210. {
  8211. }
  8212. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8213. {
  8214. }
  8215. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8216. #ifdef CONFIG_RT_GROUP_SCHED
  8217. static void free_rt_sched_group(struct task_group *tg)
  8218. {
  8219. int i;
  8220. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8221. for_each_possible_cpu(i) {
  8222. if (tg->rt_rq)
  8223. kfree(tg->rt_rq[i]);
  8224. if (tg->rt_se)
  8225. kfree(tg->rt_se[i]);
  8226. }
  8227. kfree(tg->rt_rq);
  8228. kfree(tg->rt_se);
  8229. }
  8230. static
  8231. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8232. {
  8233. struct rt_rq *rt_rq;
  8234. struct sched_rt_entity *rt_se;
  8235. struct rq *rq;
  8236. int i;
  8237. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8238. if (!tg->rt_rq)
  8239. goto err;
  8240. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8241. if (!tg->rt_se)
  8242. goto err;
  8243. init_rt_bandwidth(&tg->rt_bandwidth,
  8244. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8245. for_each_possible_cpu(i) {
  8246. rq = cpu_rq(i);
  8247. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8248. GFP_KERNEL, cpu_to_node(i));
  8249. if (!rt_rq)
  8250. goto err;
  8251. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8252. GFP_KERNEL, cpu_to_node(i));
  8253. if (!rt_se)
  8254. goto err;
  8255. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8256. }
  8257. return 1;
  8258. err:
  8259. return 0;
  8260. }
  8261. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8262. {
  8263. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8264. &cpu_rq(cpu)->leaf_rt_rq_list);
  8265. }
  8266. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8267. {
  8268. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8269. }
  8270. #else /* !CONFIG_RT_GROUP_SCHED */
  8271. static inline void free_rt_sched_group(struct task_group *tg)
  8272. {
  8273. }
  8274. static inline
  8275. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8276. {
  8277. return 1;
  8278. }
  8279. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8280. {
  8281. }
  8282. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8283. {
  8284. }
  8285. #endif /* CONFIG_RT_GROUP_SCHED */
  8286. #ifdef CONFIG_GROUP_SCHED
  8287. static void free_sched_group(struct task_group *tg)
  8288. {
  8289. free_fair_sched_group(tg);
  8290. free_rt_sched_group(tg);
  8291. kfree(tg);
  8292. }
  8293. /* allocate runqueue etc for a new task group */
  8294. struct task_group *sched_create_group(struct task_group *parent)
  8295. {
  8296. struct task_group *tg;
  8297. unsigned long flags;
  8298. int i;
  8299. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8300. if (!tg)
  8301. return ERR_PTR(-ENOMEM);
  8302. if (!alloc_fair_sched_group(tg, parent))
  8303. goto err;
  8304. if (!alloc_rt_sched_group(tg, parent))
  8305. goto err;
  8306. spin_lock_irqsave(&task_group_lock, flags);
  8307. for_each_possible_cpu(i) {
  8308. register_fair_sched_group(tg, i);
  8309. register_rt_sched_group(tg, i);
  8310. }
  8311. list_add_rcu(&tg->list, &task_groups);
  8312. WARN_ON(!parent); /* root should already exist */
  8313. tg->parent = parent;
  8314. INIT_LIST_HEAD(&tg->children);
  8315. list_add_rcu(&tg->siblings, &parent->children);
  8316. spin_unlock_irqrestore(&task_group_lock, flags);
  8317. return tg;
  8318. err:
  8319. free_sched_group(tg);
  8320. return ERR_PTR(-ENOMEM);
  8321. }
  8322. /* rcu callback to free various structures associated with a task group */
  8323. static void free_sched_group_rcu(struct rcu_head *rhp)
  8324. {
  8325. /* now it should be safe to free those cfs_rqs */
  8326. free_sched_group(container_of(rhp, struct task_group, rcu));
  8327. }
  8328. /* Destroy runqueue etc associated with a task group */
  8329. void sched_destroy_group(struct task_group *tg)
  8330. {
  8331. unsigned long flags;
  8332. int i;
  8333. spin_lock_irqsave(&task_group_lock, flags);
  8334. for_each_possible_cpu(i) {
  8335. unregister_fair_sched_group(tg, i);
  8336. unregister_rt_sched_group(tg, i);
  8337. }
  8338. list_del_rcu(&tg->list);
  8339. list_del_rcu(&tg->siblings);
  8340. spin_unlock_irqrestore(&task_group_lock, flags);
  8341. /* wait for possible concurrent references to cfs_rqs complete */
  8342. call_rcu(&tg->rcu, free_sched_group_rcu);
  8343. }
  8344. /* change task's runqueue when it moves between groups.
  8345. * The caller of this function should have put the task in its new group
  8346. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8347. * reflect its new group.
  8348. */
  8349. void sched_move_task(struct task_struct *tsk)
  8350. {
  8351. int on_rq, running;
  8352. unsigned long flags;
  8353. struct rq *rq;
  8354. rq = task_rq_lock(tsk, &flags);
  8355. update_rq_clock(rq);
  8356. running = task_current(rq, tsk);
  8357. on_rq = tsk->se.on_rq;
  8358. if (on_rq)
  8359. dequeue_task(rq, tsk, 0);
  8360. if (unlikely(running))
  8361. tsk->sched_class->put_prev_task(rq, tsk);
  8362. set_task_rq(tsk, task_cpu(tsk));
  8363. #ifdef CONFIG_FAIR_GROUP_SCHED
  8364. if (tsk->sched_class->moved_group)
  8365. tsk->sched_class->moved_group(tsk);
  8366. #endif
  8367. if (unlikely(running))
  8368. tsk->sched_class->set_curr_task(rq);
  8369. if (on_rq)
  8370. enqueue_task(rq, tsk, 0);
  8371. task_rq_unlock(rq, &flags);
  8372. }
  8373. #endif /* CONFIG_GROUP_SCHED */
  8374. #ifdef CONFIG_FAIR_GROUP_SCHED
  8375. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8376. {
  8377. struct cfs_rq *cfs_rq = se->cfs_rq;
  8378. int on_rq;
  8379. on_rq = se->on_rq;
  8380. if (on_rq)
  8381. dequeue_entity(cfs_rq, se, 0);
  8382. se->load.weight = shares;
  8383. se->load.inv_weight = 0;
  8384. if (on_rq)
  8385. enqueue_entity(cfs_rq, se, 0);
  8386. }
  8387. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8388. {
  8389. struct cfs_rq *cfs_rq = se->cfs_rq;
  8390. struct rq *rq = cfs_rq->rq;
  8391. unsigned long flags;
  8392. spin_lock_irqsave(&rq->lock, flags);
  8393. __set_se_shares(se, shares);
  8394. spin_unlock_irqrestore(&rq->lock, flags);
  8395. }
  8396. static DEFINE_MUTEX(shares_mutex);
  8397. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8398. {
  8399. int i;
  8400. unsigned long flags;
  8401. /*
  8402. * We can't change the weight of the root cgroup.
  8403. */
  8404. if (!tg->se[0])
  8405. return -EINVAL;
  8406. if (shares < MIN_SHARES)
  8407. shares = MIN_SHARES;
  8408. else if (shares > MAX_SHARES)
  8409. shares = MAX_SHARES;
  8410. mutex_lock(&shares_mutex);
  8411. if (tg->shares == shares)
  8412. goto done;
  8413. spin_lock_irqsave(&task_group_lock, flags);
  8414. for_each_possible_cpu(i)
  8415. unregister_fair_sched_group(tg, i);
  8416. list_del_rcu(&tg->siblings);
  8417. spin_unlock_irqrestore(&task_group_lock, flags);
  8418. /* wait for any ongoing reference to this group to finish */
  8419. synchronize_sched();
  8420. /*
  8421. * Now we are free to modify the group's share on each cpu
  8422. * w/o tripping rebalance_share or load_balance_fair.
  8423. */
  8424. tg->shares = shares;
  8425. for_each_possible_cpu(i) {
  8426. /*
  8427. * force a rebalance
  8428. */
  8429. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8430. set_se_shares(tg->se[i], shares);
  8431. }
  8432. /*
  8433. * Enable load balance activity on this group, by inserting it back on
  8434. * each cpu's rq->leaf_cfs_rq_list.
  8435. */
  8436. spin_lock_irqsave(&task_group_lock, flags);
  8437. for_each_possible_cpu(i)
  8438. register_fair_sched_group(tg, i);
  8439. list_add_rcu(&tg->siblings, &tg->parent->children);
  8440. spin_unlock_irqrestore(&task_group_lock, flags);
  8441. done:
  8442. mutex_unlock(&shares_mutex);
  8443. return 0;
  8444. }
  8445. unsigned long sched_group_shares(struct task_group *tg)
  8446. {
  8447. return tg->shares;
  8448. }
  8449. #endif
  8450. #ifdef CONFIG_RT_GROUP_SCHED
  8451. /*
  8452. * Ensure that the real time constraints are schedulable.
  8453. */
  8454. static DEFINE_MUTEX(rt_constraints_mutex);
  8455. static unsigned long to_ratio(u64 period, u64 runtime)
  8456. {
  8457. if (runtime == RUNTIME_INF)
  8458. return 1ULL << 20;
  8459. return div64_u64(runtime << 20, period);
  8460. }
  8461. /* Must be called with tasklist_lock held */
  8462. static inline int tg_has_rt_tasks(struct task_group *tg)
  8463. {
  8464. struct task_struct *g, *p;
  8465. do_each_thread(g, p) {
  8466. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8467. return 1;
  8468. } while_each_thread(g, p);
  8469. return 0;
  8470. }
  8471. struct rt_schedulable_data {
  8472. struct task_group *tg;
  8473. u64 rt_period;
  8474. u64 rt_runtime;
  8475. };
  8476. static int tg_schedulable(struct task_group *tg, void *data)
  8477. {
  8478. struct rt_schedulable_data *d = data;
  8479. struct task_group *child;
  8480. unsigned long total, sum = 0;
  8481. u64 period, runtime;
  8482. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8483. runtime = tg->rt_bandwidth.rt_runtime;
  8484. if (tg == d->tg) {
  8485. period = d->rt_period;
  8486. runtime = d->rt_runtime;
  8487. }
  8488. #ifdef CONFIG_USER_SCHED
  8489. if (tg == &root_task_group) {
  8490. period = global_rt_period();
  8491. runtime = global_rt_runtime();
  8492. }
  8493. #endif
  8494. /*
  8495. * Cannot have more runtime than the period.
  8496. */
  8497. if (runtime > period && runtime != RUNTIME_INF)
  8498. return -EINVAL;
  8499. /*
  8500. * Ensure we don't starve existing RT tasks.
  8501. */
  8502. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8503. return -EBUSY;
  8504. total = to_ratio(period, runtime);
  8505. /*
  8506. * Nobody can have more than the global setting allows.
  8507. */
  8508. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8509. return -EINVAL;
  8510. /*
  8511. * The sum of our children's runtime should not exceed our own.
  8512. */
  8513. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8514. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8515. runtime = child->rt_bandwidth.rt_runtime;
  8516. if (child == d->tg) {
  8517. period = d->rt_period;
  8518. runtime = d->rt_runtime;
  8519. }
  8520. sum += to_ratio(period, runtime);
  8521. }
  8522. if (sum > total)
  8523. return -EINVAL;
  8524. return 0;
  8525. }
  8526. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8527. {
  8528. struct rt_schedulable_data data = {
  8529. .tg = tg,
  8530. .rt_period = period,
  8531. .rt_runtime = runtime,
  8532. };
  8533. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8534. }
  8535. static int tg_set_bandwidth(struct task_group *tg,
  8536. u64 rt_period, u64 rt_runtime)
  8537. {
  8538. int i, err = 0;
  8539. mutex_lock(&rt_constraints_mutex);
  8540. read_lock(&tasklist_lock);
  8541. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8542. if (err)
  8543. goto unlock;
  8544. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8545. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8546. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8547. for_each_possible_cpu(i) {
  8548. struct rt_rq *rt_rq = tg->rt_rq[i];
  8549. spin_lock(&rt_rq->rt_runtime_lock);
  8550. rt_rq->rt_runtime = rt_runtime;
  8551. spin_unlock(&rt_rq->rt_runtime_lock);
  8552. }
  8553. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8554. unlock:
  8555. read_unlock(&tasklist_lock);
  8556. mutex_unlock(&rt_constraints_mutex);
  8557. return err;
  8558. }
  8559. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8560. {
  8561. u64 rt_runtime, rt_period;
  8562. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8563. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8564. if (rt_runtime_us < 0)
  8565. rt_runtime = RUNTIME_INF;
  8566. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8567. }
  8568. long sched_group_rt_runtime(struct task_group *tg)
  8569. {
  8570. u64 rt_runtime_us;
  8571. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8572. return -1;
  8573. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8574. do_div(rt_runtime_us, NSEC_PER_USEC);
  8575. return rt_runtime_us;
  8576. }
  8577. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8578. {
  8579. u64 rt_runtime, rt_period;
  8580. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8581. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8582. if (rt_period == 0)
  8583. return -EINVAL;
  8584. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8585. }
  8586. long sched_group_rt_period(struct task_group *tg)
  8587. {
  8588. u64 rt_period_us;
  8589. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8590. do_div(rt_period_us, NSEC_PER_USEC);
  8591. return rt_period_us;
  8592. }
  8593. static int sched_rt_global_constraints(void)
  8594. {
  8595. u64 runtime, period;
  8596. int ret = 0;
  8597. if (sysctl_sched_rt_period <= 0)
  8598. return -EINVAL;
  8599. runtime = global_rt_runtime();
  8600. period = global_rt_period();
  8601. /*
  8602. * Sanity check on the sysctl variables.
  8603. */
  8604. if (runtime > period && runtime != RUNTIME_INF)
  8605. return -EINVAL;
  8606. mutex_lock(&rt_constraints_mutex);
  8607. read_lock(&tasklist_lock);
  8608. ret = __rt_schedulable(NULL, 0, 0);
  8609. read_unlock(&tasklist_lock);
  8610. mutex_unlock(&rt_constraints_mutex);
  8611. return ret;
  8612. }
  8613. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8614. {
  8615. /* Don't accept realtime tasks when there is no way for them to run */
  8616. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8617. return 0;
  8618. return 1;
  8619. }
  8620. #else /* !CONFIG_RT_GROUP_SCHED */
  8621. static int sched_rt_global_constraints(void)
  8622. {
  8623. unsigned long flags;
  8624. int i;
  8625. if (sysctl_sched_rt_period <= 0)
  8626. return -EINVAL;
  8627. /*
  8628. * There's always some RT tasks in the root group
  8629. * -- migration, kstopmachine etc..
  8630. */
  8631. if (sysctl_sched_rt_runtime == 0)
  8632. return -EBUSY;
  8633. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8634. for_each_possible_cpu(i) {
  8635. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8636. spin_lock(&rt_rq->rt_runtime_lock);
  8637. rt_rq->rt_runtime = global_rt_runtime();
  8638. spin_unlock(&rt_rq->rt_runtime_lock);
  8639. }
  8640. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8641. return 0;
  8642. }
  8643. #endif /* CONFIG_RT_GROUP_SCHED */
  8644. int sched_rt_handler(struct ctl_table *table, int write,
  8645. struct file *filp, void __user *buffer, size_t *lenp,
  8646. loff_t *ppos)
  8647. {
  8648. int ret;
  8649. int old_period, old_runtime;
  8650. static DEFINE_MUTEX(mutex);
  8651. mutex_lock(&mutex);
  8652. old_period = sysctl_sched_rt_period;
  8653. old_runtime = sysctl_sched_rt_runtime;
  8654. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8655. if (!ret && write) {
  8656. ret = sched_rt_global_constraints();
  8657. if (ret) {
  8658. sysctl_sched_rt_period = old_period;
  8659. sysctl_sched_rt_runtime = old_runtime;
  8660. } else {
  8661. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8662. def_rt_bandwidth.rt_period =
  8663. ns_to_ktime(global_rt_period());
  8664. }
  8665. }
  8666. mutex_unlock(&mutex);
  8667. return ret;
  8668. }
  8669. #ifdef CONFIG_CGROUP_SCHED
  8670. /* return corresponding task_group object of a cgroup */
  8671. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8672. {
  8673. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8674. struct task_group, css);
  8675. }
  8676. static struct cgroup_subsys_state *
  8677. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8678. {
  8679. struct task_group *tg, *parent;
  8680. if (!cgrp->parent) {
  8681. /* This is early initialization for the top cgroup */
  8682. return &init_task_group.css;
  8683. }
  8684. parent = cgroup_tg(cgrp->parent);
  8685. tg = sched_create_group(parent);
  8686. if (IS_ERR(tg))
  8687. return ERR_PTR(-ENOMEM);
  8688. return &tg->css;
  8689. }
  8690. static void
  8691. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8692. {
  8693. struct task_group *tg = cgroup_tg(cgrp);
  8694. sched_destroy_group(tg);
  8695. }
  8696. static int
  8697. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8698. struct task_struct *tsk)
  8699. {
  8700. #ifdef CONFIG_RT_GROUP_SCHED
  8701. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8702. return -EINVAL;
  8703. #else
  8704. /* We don't support RT-tasks being in separate groups */
  8705. if (tsk->sched_class != &fair_sched_class)
  8706. return -EINVAL;
  8707. #endif
  8708. return 0;
  8709. }
  8710. static void
  8711. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8712. struct cgroup *old_cont, struct task_struct *tsk)
  8713. {
  8714. sched_move_task(tsk);
  8715. }
  8716. #ifdef CONFIG_FAIR_GROUP_SCHED
  8717. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8718. u64 shareval)
  8719. {
  8720. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8721. }
  8722. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8723. {
  8724. struct task_group *tg = cgroup_tg(cgrp);
  8725. return (u64) tg->shares;
  8726. }
  8727. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8728. #ifdef CONFIG_RT_GROUP_SCHED
  8729. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8730. s64 val)
  8731. {
  8732. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8733. }
  8734. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8735. {
  8736. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8737. }
  8738. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8739. u64 rt_period_us)
  8740. {
  8741. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8742. }
  8743. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8744. {
  8745. return sched_group_rt_period(cgroup_tg(cgrp));
  8746. }
  8747. #endif /* CONFIG_RT_GROUP_SCHED */
  8748. static struct cftype cpu_files[] = {
  8749. #ifdef CONFIG_FAIR_GROUP_SCHED
  8750. {
  8751. .name = "shares",
  8752. .read_u64 = cpu_shares_read_u64,
  8753. .write_u64 = cpu_shares_write_u64,
  8754. },
  8755. #endif
  8756. #ifdef CONFIG_RT_GROUP_SCHED
  8757. {
  8758. .name = "rt_runtime_us",
  8759. .read_s64 = cpu_rt_runtime_read,
  8760. .write_s64 = cpu_rt_runtime_write,
  8761. },
  8762. {
  8763. .name = "rt_period_us",
  8764. .read_u64 = cpu_rt_period_read_uint,
  8765. .write_u64 = cpu_rt_period_write_uint,
  8766. },
  8767. #endif
  8768. };
  8769. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8770. {
  8771. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8772. }
  8773. struct cgroup_subsys cpu_cgroup_subsys = {
  8774. .name = "cpu",
  8775. .create = cpu_cgroup_create,
  8776. .destroy = cpu_cgroup_destroy,
  8777. .can_attach = cpu_cgroup_can_attach,
  8778. .attach = cpu_cgroup_attach,
  8779. .populate = cpu_cgroup_populate,
  8780. .subsys_id = cpu_cgroup_subsys_id,
  8781. .early_init = 1,
  8782. };
  8783. #endif /* CONFIG_CGROUP_SCHED */
  8784. #ifdef CONFIG_CGROUP_CPUACCT
  8785. /*
  8786. * CPU accounting code for task groups.
  8787. *
  8788. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8789. * (balbir@in.ibm.com).
  8790. */
  8791. /* track cpu usage of a group of tasks and its child groups */
  8792. struct cpuacct {
  8793. struct cgroup_subsys_state css;
  8794. /* cpuusage holds pointer to a u64-type object on every cpu */
  8795. u64 *cpuusage;
  8796. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8797. struct cpuacct *parent;
  8798. };
  8799. struct cgroup_subsys cpuacct_subsys;
  8800. /* return cpu accounting group corresponding to this container */
  8801. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8802. {
  8803. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8804. struct cpuacct, css);
  8805. }
  8806. /* return cpu accounting group to which this task belongs */
  8807. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8808. {
  8809. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8810. struct cpuacct, css);
  8811. }
  8812. /* create a new cpu accounting group */
  8813. static struct cgroup_subsys_state *cpuacct_create(
  8814. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8815. {
  8816. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8817. int i;
  8818. if (!ca)
  8819. goto out;
  8820. ca->cpuusage = alloc_percpu(u64);
  8821. if (!ca->cpuusage)
  8822. goto out_free_ca;
  8823. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8824. if (percpu_counter_init(&ca->cpustat[i], 0))
  8825. goto out_free_counters;
  8826. if (cgrp->parent)
  8827. ca->parent = cgroup_ca(cgrp->parent);
  8828. return &ca->css;
  8829. out_free_counters:
  8830. while (--i >= 0)
  8831. percpu_counter_destroy(&ca->cpustat[i]);
  8832. free_percpu(ca->cpuusage);
  8833. out_free_ca:
  8834. kfree(ca);
  8835. out:
  8836. return ERR_PTR(-ENOMEM);
  8837. }
  8838. /* destroy an existing cpu accounting group */
  8839. static void
  8840. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8841. {
  8842. struct cpuacct *ca = cgroup_ca(cgrp);
  8843. int i;
  8844. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8845. percpu_counter_destroy(&ca->cpustat[i]);
  8846. free_percpu(ca->cpuusage);
  8847. kfree(ca);
  8848. }
  8849. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8850. {
  8851. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8852. u64 data;
  8853. #ifndef CONFIG_64BIT
  8854. /*
  8855. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8856. */
  8857. spin_lock_irq(&cpu_rq(cpu)->lock);
  8858. data = *cpuusage;
  8859. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8860. #else
  8861. data = *cpuusage;
  8862. #endif
  8863. return data;
  8864. }
  8865. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8866. {
  8867. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8868. #ifndef CONFIG_64BIT
  8869. /*
  8870. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8871. */
  8872. spin_lock_irq(&cpu_rq(cpu)->lock);
  8873. *cpuusage = val;
  8874. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8875. #else
  8876. *cpuusage = val;
  8877. #endif
  8878. }
  8879. /* return total cpu usage (in nanoseconds) of a group */
  8880. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8881. {
  8882. struct cpuacct *ca = cgroup_ca(cgrp);
  8883. u64 totalcpuusage = 0;
  8884. int i;
  8885. for_each_present_cpu(i)
  8886. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8887. return totalcpuusage;
  8888. }
  8889. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8890. u64 reset)
  8891. {
  8892. struct cpuacct *ca = cgroup_ca(cgrp);
  8893. int err = 0;
  8894. int i;
  8895. if (reset) {
  8896. err = -EINVAL;
  8897. goto out;
  8898. }
  8899. for_each_present_cpu(i)
  8900. cpuacct_cpuusage_write(ca, i, 0);
  8901. out:
  8902. return err;
  8903. }
  8904. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8905. struct seq_file *m)
  8906. {
  8907. struct cpuacct *ca = cgroup_ca(cgroup);
  8908. u64 percpu;
  8909. int i;
  8910. for_each_present_cpu(i) {
  8911. percpu = cpuacct_cpuusage_read(ca, i);
  8912. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8913. }
  8914. seq_printf(m, "\n");
  8915. return 0;
  8916. }
  8917. static const char *cpuacct_stat_desc[] = {
  8918. [CPUACCT_STAT_USER] = "user",
  8919. [CPUACCT_STAT_SYSTEM] = "system",
  8920. };
  8921. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8922. struct cgroup_map_cb *cb)
  8923. {
  8924. struct cpuacct *ca = cgroup_ca(cgrp);
  8925. int i;
  8926. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8927. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8928. val = cputime64_to_clock_t(val);
  8929. cb->fill(cb, cpuacct_stat_desc[i], val);
  8930. }
  8931. return 0;
  8932. }
  8933. static struct cftype files[] = {
  8934. {
  8935. .name = "usage",
  8936. .read_u64 = cpuusage_read,
  8937. .write_u64 = cpuusage_write,
  8938. },
  8939. {
  8940. .name = "usage_percpu",
  8941. .read_seq_string = cpuacct_percpu_seq_read,
  8942. },
  8943. {
  8944. .name = "stat",
  8945. .read_map = cpuacct_stats_show,
  8946. },
  8947. };
  8948. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8949. {
  8950. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8951. }
  8952. /*
  8953. * charge this task's execution time to its accounting group.
  8954. *
  8955. * called with rq->lock held.
  8956. */
  8957. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8958. {
  8959. struct cpuacct *ca;
  8960. int cpu;
  8961. if (unlikely(!cpuacct_subsys.active))
  8962. return;
  8963. cpu = task_cpu(tsk);
  8964. rcu_read_lock();
  8965. ca = task_ca(tsk);
  8966. for (; ca; ca = ca->parent) {
  8967. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8968. *cpuusage += cputime;
  8969. }
  8970. rcu_read_unlock();
  8971. }
  8972. /*
  8973. * Charge the system/user time to the task's accounting group.
  8974. */
  8975. static void cpuacct_update_stats(struct task_struct *tsk,
  8976. enum cpuacct_stat_index idx, cputime_t val)
  8977. {
  8978. struct cpuacct *ca;
  8979. if (unlikely(!cpuacct_subsys.active))
  8980. return;
  8981. rcu_read_lock();
  8982. ca = task_ca(tsk);
  8983. do {
  8984. percpu_counter_add(&ca->cpustat[idx], val);
  8985. ca = ca->parent;
  8986. } while (ca);
  8987. rcu_read_unlock();
  8988. }
  8989. struct cgroup_subsys cpuacct_subsys = {
  8990. .name = "cpuacct",
  8991. .create = cpuacct_create,
  8992. .destroy = cpuacct_destroy,
  8993. .populate = cpuacct_populate,
  8994. .subsys_id = cpuacct_subsys_id,
  8995. };
  8996. #endif /* CONFIG_CGROUP_CPUACCT */