x86.c 142 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <trace/events/kvm.h>
  45. #define CREATE_TRACE_POINTS
  46. #include "trace.h"
  47. #include <asm/debugreg.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <asm/mtrr.h>
  51. #include <asm/mce.h>
  52. #include <asm/i387.h>
  53. #include <asm/xcr.h>
  54. #define MAX_IO_MSRS 256
  55. #define CR0_RESERVED_BITS \
  56. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  57. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  58. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  59. #define CR4_RESERVED_BITS \
  60. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  61. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  62. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  63. | X86_CR4_OSXSAVE \
  64. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  65. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  66. #define KVM_MAX_MCE_BANKS 32
  67. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  68. /* EFER defaults:
  69. * - enable syscall per default because its emulated by KVM
  70. * - enable LME and LMA per default on 64 bit KVM
  71. */
  72. #ifdef CONFIG_X86_64
  73. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  74. #else
  75. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  76. #endif
  77. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  78. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  79. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  80. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  81. struct kvm_cpuid_entry2 __user *entries);
  82. struct kvm_x86_ops *kvm_x86_ops;
  83. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  84. int ignore_msrs = 0;
  85. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  86. #define KVM_NR_SHARED_MSRS 16
  87. struct kvm_shared_msrs_global {
  88. int nr;
  89. u32 msrs[KVM_NR_SHARED_MSRS];
  90. };
  91. struct kvm_shared_msrs {
  92. struct user_return_notifier urn;
  93. bool registered;
  94. struct kvm_shared_msr_values {
  95. u64 host;
  96. u64 curr;
  97. } values[KVM_NR_SHARED_MSRS];
  98. };
  99. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  100. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  101. struct kvm_stats_debugfs_item debugfs_entries[] = {
  102. { "pf_fixed", VCPU_STAT(pf_fixed) },
  103. { "pf_guest", VCPU_STAT(pf_guest) },
  104. { "tlb_flush", VCPU_STAT(tlb_flush) },
  105. { "invlpg", VCPU_STAT(invlpg) },
  106. { "exits", VCPU_STAT(exits) },
  107. { "io_exits", VCPU_STAT(io_exits) },
  108. { "mmio_exits", VCPU_STAT(mmio_exits) },
  109. { "signal_exits", VCPU_STAT(signal_exits) },
  110. { "irq_window", VCPU_STAT(irq_window_exits) },
  111. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  112. { "halt_exits", VCPU_STAT(halt_exits) },
  113. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  114. { "hypercalls", VCPU_STAT(hypercalls) },
  115. { "request_irq", VCPU_STAT(request_irq_exits) },
  116. { "irq_exits", VCPU_STAT(irq_exits) },
  117. { "host_state_reload", VCPU_STAT(host_state_reload) },
  118. { "efer_reload", VCPU_STAT(efer_reload) },
  119. { "fpu_reload", VCPU_STAT(fpu_reload) },
  120. { "insn_emulation", VCPU_STAT(insn_emulation) },
  121. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  122. { "irq_injections", VCPU_STAT(irq_injections) },
  123. { "nmi_injections", VCPU_STAT(nmi_injections) },
  124. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  125. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  126. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  127. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  128. { "mmu_flooded", VM_STAT(mmu_flooded) },
  129. { "mmu_recycled", VM_STAT(mmu_recycled) },
  130. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  131. { "mmu_unsync", VM_STAT(mmu_unsync) },
  132. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  133. { "largepages", VM_STAT(lpages) },
  134. { NULL }
  135. };
  136. u64 __read_mostly host_xcr0;
  137. static inline u32 bit(int bitno)
  138. {
  139. return 1 << (bitno & 31);
  140. }
  141. static void kvm_on_user_return(struct user_return_notifier *urn)
  142. {
  143. unsigned slot;
  144. struct kvm_shared_msrs *locals
  145. = container_of(urn, struct kvm_shared_msrs, urn);
  146. struct kvm_shared_msr_values *values;
  147. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  148. values = &locals->values[slot];
  149. if (values->host != values->curr) {
  150. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  151. values->curr = values->host;
  152. }
  153. }
  154. locals->registered = false;
  155. user_return_notifier_unregister(urn);
  156. }
  157. static void shared_msr_update(unsigned slot, u32 msr)
  158. {
  159. struct kvm_shared_msrs *smsr;
  160. u64 value;
  161. smsr = &__get_cpu_var(shared_msrs);
  162. /* only read, and nobody should modify it at this time,
  163. * so don't need lock */
  164. if (slot >= shared_msrs_global.nr) {
  165. printk(KERN_ERR "kvm: invalid MSR slot!");
  166. return;
  167. }
  168. rdmsrl_safe(msr, &value);
  169. smsr->values[slot].host = value;
  170. smsr->values[slot].curr = value;
  171. }
  172. void kvm_define_shared_msr(unsigned slot, u32 msr)
  173. {
  174. if (slot >= shared_msrs_global.nr)
  175. shared_msrs_global.nr = slot + 1;
  176. shared_msrs_global.msrs[slot] = msr;
  177. /* we need ensured the shared_msr_global have been updated */
  178. smp_wmb();
  179. }
  180. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  181. static void kvm_shared_msr_cpu_online(void)
  182. {
  183. unsigned i;
  184. for (i = 0; i < shared_msrs_global.nr; ++i)
  185. shared_msr_update(i, shared_msrs_global.msrs[i]);
  186. }
  187. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  188. {
  189. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  190. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  191. return;
  192. smsr->values[slot].curr = value;
  193. wrmsrl(shared_msrs_global.msrs[slot], value);
  194. if (!smsr->registered) {
  195. smsr->urn.on_user_return = kvm_on_user_return;
  196. user_return_notifier_register(&smsr->urn);
  197. smsr->registered = true;
  198. }
  199. }
  200. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  201. static void drop_user_return_notifiers(void *ignore)
  202. {
  203. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  204. if (smsr->registered)
  205. kvm_on_user_return(&smsr->urn);
  206. }
  207. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  208. {
  209. if (irqchip_in_kernel(vcpu->kvm))
  210. return vcpu->arch.apic_base;
  211. else
  212. return vcpu->arch.apic_base;
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  215. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  216. {
  217. /* TODO: reserve bits check */
  218. if (irqchip_in_kernel(vcpu->kvm))
  219. kvm_lapic_set_base(vcpu, data);
  220. else
  221. vcpu->arch.apic_base = data;
  222. }
  223. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  224. #define EXCPT_BENIGN 0
  225. #define EXCPT_CONTRIBUTORY 1
  226. #define EXCPT_PF 2
  227. static int exception_class(int vector)
  228. {
  229. switch (vector) {
  230. case PF_VECTOR:
  231. return EXCPT_PF;
  232. case DE_VECTOR:
  233. case TS_VECTOR:
  234. case NP_VECTOR:
  235. case SS_VECTOR:
  236. case GP_VECTOR:
  237. return EXCPT_CONTRIBUTORY;
  238. default:
  239. break;
  240. }
  241. return EXCPT_BENIGN;
  242. }
  243. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  244. unsigned nr, bool has_error, u32 error_code,
  245. bool reinject)
  246. {
  247. u32 prev_nr;
  248. int class1, class2;
  249. if (!vcpu->arch.exception.pending) {
  250. queue:
  251. vcpu->arch.exception.pending = true;
  252. vcpu->arch.exception.has_error_code = has_error;
  253. vcpu->arch.exception.nr = nr;
  254. vcpu->arch.exception.error_code = error_code;
  255. vcpu->arch.exception.reinject = reinject;
  256. return;
  257. }
  258. /* to check exception */
  259. prev_nr = vcpu->arch.exception.nr;
  260. if (prev_nr == DF_VECTOR) {
  261. /* triple fault -> shutdown */
  262. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  263. return;
  264. }
  265. class1 = exception_class(prev_nr);
  266. class2 = exception_class(nr);
  267. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  268. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  269. /* generate double fault per SDM Table 5-5 */
  270. vcpu->arch.exception.pending = true;
  271. vcpu->arch.exception.has_error_code = true;
  272. vcpu->arch.exception.nr = DF_VECTOR;
  273. vcpu->arch.exception.error_code = 0;
  274. } else
  275. /* replace previous exception with a new one in a hope
  276. that instruction re-execution will regenerate lost
  277. exception */
  278. goto queue;
  279. }
  280. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  281. {
  282. kvm_multiple_exception(vcpu, nr, false, 0, false);
  283. }
  284. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  285. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  286. {
  287. kvm_multiple_exception(vcpu, nr, false, 0, true);
  288. }
  289. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  290. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  291. u32 error_code)
  292. {
  293. ++vcpu->stat.pf_guest;
  294. vcpu->arch.cr2 = addr;
  295. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  296. }
  297. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  298. {
  299. vcpu->arch.nmi_pending = 1;
  300. }
  301. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  302. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  303. {
  304. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  305. }
  306. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  307. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  308. {
  309. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  310. }
  311. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  312. /*
  313. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  314. * a #GP and return false.
  315. */
  316. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  317. {
  318. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  319. return true;
  320. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  321. return false;
  322. }
  323. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  324. /*
  325. * Load the pae pdptrs. Return true is they are all valid.
  326. */
  327. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  328. {
  329. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  330. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  331. int i;
  332. int ret;
  333. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  334. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  335. offset * sizeof(u64), sizeof(pdpte));
  336. if (ret < 0) {
  337. ret = 0;
  338. goto out;
  339. }
  340. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  341. if (is_present_gpte(pdpte[i]) &&
  342. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  343. ret = 0;
  344. goto out;
  345. }
  346. }
  347. ret = 1;
  348. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  349. __set_bit(VCPU_EXREG_PDPTR,
  350. (unsigned long *)&vcpu->arch.regs_avail);
  351. __set_bit(VCPU_EXREG_PDPTR,
  352. (unsigned long *)&vcpu->arch.regs_dirty);
  353. out:
  354. return ret;
  355. }
  356. EXPORT_SYMBOL_GPL(load_pdptrs);
  357. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  358. {
  359. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  360. bool changed = true;
  361. int r;
  362. if (is_long_mode(vcpu) || !is_pae(vcpu))
  363. return false;
  364. if (!test_bit(VCPU_EXREG_PDPTR,
  365. (unsigned long *)&vcpu->arch.regs_avail))
  366. return true;
  367. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  368. if (r < 0)
  369. goto out;
  370. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  371. out:
  372. return changed;
  373. }
  374. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  375. {
  376. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  377. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  378. X86_CR0_CD | X86_CR0_NW;
  379. cr0 |= X86_CR0_ET;
  380. #ifdef CONFIG_X86_64
  381. if (cr0 & 0xffffffff00000000UL)
  382. return 1;
  383. #endif
  384. cr0 &= ~CR0_RESERVED_BITS;
  385. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  386. return 1;
  387. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  388. return 1;
  389. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  390. #ifdef CONFIG_X86_64
  391. if ((vcpu->arch.efer & EFER_LME)) {
  392. int cs_db, cs_l;
  393. if (!is_pae(vcpu))
  394. return 1;
  395. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  396. if (cs_l)
  397. return 1;
  398. } else
  399. #endif
  400. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
  401. return 1;
  402. }
  403. kvm_x86_ops->set_cr0(vcpu, cr0);
  404. if ((cr0 ^ old_cr0) & update_bits)
  405. kvm_mmu_reset_context(vcpu);
  406. return 0;
  407. }
  408. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  409. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  410. {
  411. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  412. }
  413. EXPORT_SYMBOL_GPL(kvm_lmsw);
  414. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  415. {
  416. u64 xcr0;
  417. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  418. if (index != XCR_XFEATURE_ENABLED_MASK)
  419. return 1;
  420. xcr0 = xcr;
  421. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  422. return 1;
  423. if (!(xcr0 & XSTATE_FP))
  424. return 1;
  425. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  426. return 1;
  427. if (xcr0 & ~host_xcr0)
  428. return 1;
  429. vcpu->arch.xcr0 = xcr0;
  430. vcpu->guest_xcr0_loaded = 0;
  431. return 0;
  432. }
  433. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  434. {
  435. if (__kvm_set_xcr(vcpu, index, xcr)) {
  436. kvm_inject_gp(vcpu, 0);
  437. return 1;
  438. }
  439. return 0;
  440. }
  441. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  442. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  443. {
  444. struct kvm_cpuid_entry2 *best;
  445. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  446. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  447. }
  448. static void update_cpuid(struct kvm_vcpu *vcpu)
  449. {
  450. struct kvm_cpuid_entry2 *best;
  451. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  452. if (!best)
  453. return;
  454. /* Update OSXSAVE bit */
  455. if (cpu_has_xsave && best->function == 0x1) {
  456. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  457. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  458. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  459. }
  460. }
  461. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  462. {
  463. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  464. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  465. if (cr4 & CR4_RESERVED_BITS)
  466. return 1;
  467. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  468. return 1;
  469. if (is_long_mode(vcpu)) {
  470. if (!(cr4 & X86_CR4_PAE))
  471. return 1;
  472. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  473. && ((cr4 ^ old_cr4) & pdptr_bits)
  474. && !load_pdptrs(vcpu, vcpu->arch.cr3))
  475. return 1;
  476. if (cr4 & X86_CR4_VMXE)
  477. return 1;
  478. kvm_x86_ops->set_cr4(vcpu, cr4);
  479. if ((cr4 ^ old_cr4) & pdptr_bits)
  480. kvm_mmu_reset_context(vcpu);
  481. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  482. update_cpuid(vcpu);
  483. return 0;
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  486. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  487. {
  488. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  489. kvm_mmu_sync_roots(vcpu);
  490. kvm_mmu_flush_tlb(vcpu);
  491. return 0;
  492. }
  493. if (is_long_mode(vcpu)) {
  494. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  495. return 1;
  496. } else {
  497. if (is_pae(vcpu)) {
  498. if (cr3 & CR3_PAE_RESERVED_BITS)
  499. return 1;
  500. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
  501. return 1;
  502. }
  503. /*
  504. * We don't check reserved bits in nonpae mode, because
  505. * this isn't enforced, and VMware depends on this.
  506. */
  507. }
  508. /*
  509. * Does the new cr3 value map to physical memory? (Note, we
  510. * catch an invalid cr3 even in real-mode, because it would
  511. * cause trouble later on when we turn on paging anyway.)
  512. *
  513. * A real CPU would silently accept an invalid cr3 and would
  514. * attempt to use it - with largely undefined (and often hard
  515. * to debug) behavior on the guest side.
  516. */
  517. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  518. return 1;
  519. vcpu->arch.cr3 = cr3;
  520. vcpu->arch.mmu.new_cr3(vcpu);
  521. return 0;
  522. }
  523. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  524. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  525. {
  526. if (cr8 & CR8_RESERVED_BITS)
  527. return 1;
  528. if (irqchip_in_kernel(vcpu->kvm))
  529. kvm_lapic_set_tpr(vcpu, cr8);
  530. else
  531. vcpu->arch.cr8 = cr8;
  532. return 0;
  533. }
  534. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  535. {
  536. if (__kvm_set_cr8(vcpu, cr8))
  537. kvm_inject_gp(vcpu, 0);
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  540. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  541. {
  542. if (irqchip_in_kernel(vcpu->kvm))
  543. return kvm_lapic_get_cr8(vcpu);
  544. else
  545. return vcpu->arch.cr8;
  546. }
  547. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  548. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  549. {
  550. switch (dr) {
  551. case 0 ... 3:
  552. vcpu->arch.db[dr] = val;
  553. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  554. vcpu->arch.eff_db[dr] = val;
  555. break;
  556. case 4:
  557. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  558. return 1; /* #UD */
  559. /* fall through */
  560. case 6:
  561. if (val & 0xffffffff00000000ULL)
  562. return -1; /* #GP */
  563. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  564. break;
  565. case 5:
  566. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  567. return 1; /* #UD */
  568. /* fall through */
  569. default: /* 7 */
  570. if (val & 0xffffffff00000000ULL)
  571. return -1; /* #GP */
  572. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  573. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  574. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  575. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  576. }
  577. break;
  578. }
  579. return 0;
  580. }
  581. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  582. {
  583. int res;
  584. res = __kvm_set_dr(vcpu, dr, val);
  585. if (res > 0)
  586. kvm_queue_exception(vcpu, UD_VECTOR);
  587. else if (res < 0)
  588. kvm_inject_gp(vcpu, 0);
  589. return res;
  590. }
  591. EXPORT_SYMBOL_GPL(kvm_set_dr);
  592. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  593. {
  594. switch (dr) {
  595. case 0 ... 3:
  596. *val = vcpu->arch.db[dr];
  597. break;
  598. case 4:
  599. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  600. return 1;
  601. /* fall through */
  602. case 6:
  603. *val = vcpu->arch.dr6;
  604. break;
  605. case 5:
  606. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  607. return 1;
  608. /* fall through */
  609. default: /* 7 */
  610. *val = vcpu->arch.dr7;
  611. break;
  612. }
  613. return 0;
  614. }
  615. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  616. {
  617. if (_kvm_get_dr(vcpu, dr, val)) {
  618. kvm_queue_exception(vcpu, UD_VECTOR);
  619. return 1;
  620. }
  621. return 0;
  622. }
  623. EXPORT_SYMBOL_GPL(kvm_get_dr);
  624. /*
  625. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  626. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  627. *
  628. * This list is modified at module load time to reflect the
  629. * capabilities of the host cpu. This capabilities test skips MSRs that are
  630. * kvm-specific. Those are put in the beginning of the list.
  631. */
  632. #define KVM_SAVE_MSRS_BEGIN 7
  633. static u32 msrs_to_save[] = {
  634. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  635. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  636. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  637. HV_X64_MSR_APIC_ASSIST_PAGE,
  638. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  639. MSR_STAR,
  640. #ifdef CONFIG_X86_64
  641. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  642. #endif
  643. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  644. };
  645. static unsigned num_msrs_to_save;
  646. static u32 emulated_msrs[] = {
  647. MSR_IA32_MISC_ENABLE,
  648. MSR_IA32_MCG_STATUS,
  649. MSR_IA32_MCG_CTL,
  650. };
  651. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  652. {
  653. u64 old_efer = vcpu->arch.efer;
  654. if (efer & efer_reserved_bits)
  655. return 1;
  656. if (is_paging(vcpu)
  657. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  658. return 1;
  659. if (efer & EFER_FFXSR) {
  660. struct kvm_cpuid_entry2 *feat;
  661. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  662. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  663. return 1;
  664. }
  665. if (efer & EFER_SVME) {
  666. struct kvm_cpuid_entry2 *feat;
  667. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  668. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  669. return 1;
  670. }
  671. efer &= ~EFER_LMA;
  672. efer |= vcpu->arch.efer & EFER_LMA;
  673. kvm_x86_ops->set_efer(vcpu, efer);
  674. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  675. kvm_mmu_reset_context(vcpu);
  676. /* Update reserved bits */
  677. if ((efer ^ old_efer) & EFER_NX)
  678. kvm_mmu_reset_context(vcpu);
  679. return 0;
  680. }
  681. void kvm_enable_efer_bits(u64 mask)
  682. {
  683. efer_reserved_bits &= ~mask;
  684. }
  685. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  686. /*
  687. * Writes msr value into into the appropriate "register".
  688. * Returns 0 on success, non-0 otherwise.
  689. * Assumes vcpu_load() was already called.
  690. */
  691. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  692. {
  693. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  694. }
  695. /*
  696. * Adapt set_msr() to msr_io()'s calling convention
  697. */
  698. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  699. {
  700. return kvm_set_msr(vcpu, index, *data);
  701. }
  702. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  703. {
  704. int version;
  705. int r;
  706. struct pvclock_wall_clock wc;
  707. struct timespec boot;
  708. if (!wall_clock)
  709. return;
  710. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  711. if (r)
  712. return;
  713. if (version & 1)
  714. ++version; /* first time write, random junk */
  715. ++version;
  716. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  717. /*
  718. * The guest calculates current wall clock time by adding
  719. * system time (updated by kvm_write_guest_time below) to the
  720. * wall clock specified here. guest system time equals host
  721. * system time for us, thus we must fill in host boot time here.
  722. */
  723. getboottime(&boot);
  724. wc.sec = boot.tv_sec;
  725. wc.nsec = boot.tv_nsec;
  726. wc.version = version;
  727. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  728. version++;
  729. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  730. }
  731. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  732. {
  733. uint32_t quotient, remainder;
  734. /* Don't try to replace with do_div(), this one calculates
  735. * "(dividend << 32) / divisor" */
  736. __asm__ ( "divl %4"
  737. : "=a" (quotient), "=d" (remainder)
  738. : "0" (0), "1" (dividend), "r" (divisor) );
  739. return quotient;
  740. }
  741. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  742. {
  743. uint64_t nsecs = 1000000000LL;
  744. int32_t shift = 0;
  745. uint64_t tps64;
  746. uint32_t tps32;
  747. tps64 = tsc_khz * 1000LL;
  748. while (tps64 > nsecs*2) {
  749. tps64 >>= 1;
  750. shift--;
  751. }
  752. tps32 = (uint32_t)tps64;
  753. while (tps32 <= (uint32_t)nsecs) {
  754. tps32 <<= 1;
  755. shift++;
  756. }
  757. hv_clock->tsc_shift = shift;
  758. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  759. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  760. __func__, tsc_khz, hv_clock->tsc_shift,
  761. hv_clock->tsc_to_system_mul);
  762. }
  763. static inline u64 get_kernel_ns(void)
  764. {
  765. struct timespec ts;
  766. WARN_ON(preemptible());
  767. ktime_get_ts(&ts);
  768. monotonic_to_bootbased(&ts);
  769. return timespec_to_ns(&ts);
  770. }
  771. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  772. static inline int kvm_tsc_changes_freq(void)
  773. {
  774. int cpu = get_cpu();
  775. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  776. cpufreq_quick_get(cpu) != 0;
  777. put_cpu();
  778. return ret;
  779. }
  780. static inline u64 nsec_to_cycles(u64 nsec)
  781. {
  782. WARN_ON(preemptible());
  783. if (kvm_tsc_changes_freq())
  784. printk_once(KERN_WARNING
  785. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  786. return (nsec * __get_cpu_var(cpu_tsc_khz)) / USEC_PER_SEC;
  787. }
  788. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  789. {
  790. struct kvm *kvm = vcpu->kvm;
  791. u64 offset, ns, elapsed;
  792. unsigned long flags;
  793. s64 sdiff;
  794. spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  795. offset = data - native_read_tsc();
  796. ns = get_kernel_ns();
  797. elapsed = ns - kvm->arch.last_tsc_nsec;
  798. sdiff = data - kvm->arch.last_tsc_write;
  799. if (sdiff < 0)
  800. sdiff = -sdiff;
  801. /*
  802. * Special case: close write to TSC within 5 seconds of
  803. * another CPU is interpreted as an attempt to synchronize
  804. * The 5 seconds is to accomodate host load / swapping as
  805. * well as any reset of TSC during the boot process.
  806. *
  807. * In that case, for a reliable TSC, we can match TSC offsets,
  808. * or make a best guest using elapsed value.
  809. */
  810. if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
  811. elapsed < 5ULL * NSEC_PER_SEC) {
  812. if (!check_tsc_unstable()) {
  813. offset = kvm->arch.last_tsc_offset;
  814. pr_debug("kvm: matched tsc offset for %llu\n", data);
  815. } else {
  816. u64 delta = nsec_to_cycles(elapsed);
  817. offset += delta;
  818. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  819. }
  820. ns = kvm->arch.last_tsc_nsec;
  821. }
  822. kvm->arch.last_tsc_nsec = ns;
  823. kvm->arch.last_tsc_write = data;
  824. kvm->arch.last_tsc_offset = offset;
  825. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  826. spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  827. /* Reset of TSC must disable overshoot protection below */
  828. vcpu->arch.hv_clock.tsc_timestamp = 0;
  829. }
  830. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  831. static int kvm_write_guest_time(struct kvm_vcpu *v)
  832. {
  833. unsigned long flags;
  834. struct kvm_vcpu_arch *vcpu = &v->arch;
  835. void *shared_kaddr;
  836. unsigned long this_tsc_khz;
  837. s64 kernel_ns;
  838. if ((!vcpu->time_page))
  839. return 0;
  840. /* Keep irq disabled to prevent changes to the clock */
  841. local_irq_save(flags);
  842. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  843. kernel_ns = get_kernel_ns();
  844. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  845. local_irq_restore(flags);
  846. if (unlikely(this_tsc_khz == 0)) {
  847. kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
  848. return 1;
  849. }
  850. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  851. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  852. vcpu->hw_tsc_khz = this_tsc_khz;
  853. }
  854. /* With all the info we got, fill in the values */
  855. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  856. vcpu->hv_clock.flags = 0;
  857. /*
  858. * The interface expects us to write an even number signaling that the
  859. * update is finished. Since the guest won't see the intermediate
  860. * state, we just increase by 2 at the end.
  861. */
  862. vcpu->hv_clock.version += 2;
  863. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  864. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  865. sizeof(vcpu->hv_clock));
  866. kunmap_atomic(shared_kaddr, KM_USER0);
  867. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  868. return 0;
  869. }
  870. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  871. {
  872. struct kvm_vcpu_arch *vcpu = &v->arch;
  873. if (!vcpu->time_page)
  874. return 0;
  875. kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
  876. return 1;
  877. }
  878. static bool msr_mtrr_valid(unsigned msr)
  879. {
  880. switch (msr) {
  881. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  882. case MSR_MTRRfix64K_00000:
  883. case MSR_MTRRfix16K_80000:
  884. case MSR_MTRRfix16K_A0000:
  885. case MSR_MTRRfix4K_C0000:
  886. case MSR_MTRRfix4K_C8000:
  887. case MSR_MTRRfix4K_D0000:
  888. case MSR_MTRRfix4K_D8000:
  889. case MSR_MTRRfix4K_E0000:
  890. case MSR_MTRRfix4K_E8000:
  891. case MSR_MTRRfix4K_F0000:
  892. case MSR_MTRRfix4K_F8000:
  893. case MSR_MTRRdefType:
  894. case MSR_IA32_CR_PAT:
  895. return true;
  896. case 0x2f8:
  897. return true;
  898. }
  899. return false;
  900. }
  901. static bool valid_pat_type(unsigned t)
  902. {
  903. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  904. }
  905. static bool valid_mtrr_type(unsigned t)
  906. {
  907. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  908. }
  909. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  910. {
  911. int i;
  912. if (!msr_mtrr_valid(msr))
  913. return false;
  914. if (msr == MSR_IA32_CR_PAT) {
  915. for (i = 0; i < 8; i++)
  916. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  917. return false;
  918. return true;
  919. } else if (msr == MSR_MTRRdefType) {
  920. if (data & ~0xcff)
  921. return false;
  922. return valid_mtrr_type(data & 0xff);
  923. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  924. for (i = 0; i < 8 ; i++)
  925. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  926. return false;
  927. return true;
  928. }
  929. /* variable MTRRs */
  930. return valid_mtrr_type(data & 0xff);
  931. }
  932. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  933. {
  934. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  935. if (!mtrr_valid(vcpu, msr, data))
  936. return 1;
  937. if (msr == MSR_MTRRdefType) {
  938. vcpu->arch.mtrr_state.def_type = data;
  939. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  940. } else if (msr == MSR_MTRRfix64K_00000)
  941. p[0] = data;
  942. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  943. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  944. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  945. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  946. else if (msr == MSR_IA32_CR_PAT)
  947. vcpu->arch.pat = data;
  948. else { /* Variable MTRRs */
  949. int idx, is_mtrr_mask;
  950. u64 *pt;
  951. idx = (msr - 0x200) / 2;
  952. is_mtrr_mask = msr - 0x200 - 2 * idx;
  953. if (!is_mtrr_mask)
  954. pt =
  955. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  956. else
  957. pt =
  958. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  959. *pt = data;
  960. }
  961. kvm_mmu_reset_context(vcpu);
  962. return 0;
  963. }
  964. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  965. {
  966. u64 mcg_cap = vcpu->arch.mcg_cap;
  967. unsigned bank_num = mcg_cap & 0xff;
  968. switch (msr) {
  969. case MSR_IA32_MCG_STATUS:
  970. vcpu->arch.mcg_status = data;
  971. break;
  972. case MSR_IA32_MCG_CTL:
  973. if (!(mcg_cap & MCG_CTL_P))
  974. return 1;
  975. if (data != 0 && data != ~(u64)0)
  976. return -1;
  977. vcpu->arch.mcg_ctl = data;
  978. break;
  979. default:
  980. if (msr >= MSR_IA32_MC0_CTL &&
  981. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  982. u32 offset = msr - MSR_IA32_MC0_CTL;
  983. /* only 0 or all 1s can be written to IA32_MCi_CTL
  984. * some Linux kernels though clear bit 10 in bank 4 to
  985. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  986. * this to avoid an uncatched #GP in the guest
  987. */
  988. if ((offset & 0x3) == 0 &&
  989. data != 0 && (data | (1 << 10)) != ~(u64)0)
  990. return -1;
  991. vcpu->arch.mce_banks[offset] = data;
  992. break;
  993. }
  994. return 1;
  995. }
  996. return 0;
  997. }
  998. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  999. {
  1000. struct kvm *kvm = vcpu->kvm;
  1001. int lm = is_long_mode(vcpu);
  1002. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1003. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1004. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1005. : kvm->arch.xen_hvm_config.blob_size_32;
  1006. u32 page_num = data & ~PAGE_MASK;
  1007. u64 page_addr = data & PAGE_MASK;
  1008. u8 *page;
  1009. int r;
  1010. r = -E2BIG;
  1011. if (page_num >= blob_size)
  1012. goto out;
  1013. r = -ENOMEM;
  1014. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1015. if (!page)
  1016. goto out;
  1017. r = -EFAULT;
  1018. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1019. goto out_free;
  1020. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1021. goto out_free;
  1022. r = 0;
  1023. out_free:
  1024. kfree(page);
  1025. out:
  1026. return r;
  1027. }
  1028. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1029. {
  1030. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1031. }
  1032. static bool kvm_hv_msr_partition_wide(u32 msr)
  1033. {
  1034. bool r = false;
  1035. switch (msr) {
  1036. case HV_X64_MSR_GUEST_OS_ID:
  1037. case HV_X64_MSR_HYPERCALL:
  1038. r = true;
  1039. break;
  1040. }
  1041. return r;
  1042. }
  1043. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1044. {
  1045. struct kvm *kvm = vcpu->kvm;
  1046. switch (msr) {
  1047. case HV_X64_MSR_GUEST_OS_ID:
  1048. kvm->arch.hv_guest_os_id = data;
  1049. /* setting guest os id to zero disables hypercall page */
  1050. if (!kvm->arch.hv_guest_os_id)
  1051. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1052. break;
  1053. case HV_X64_MSR_HYPERCALL: {
  1054. u64 gfn;
  1055. unsigned long addr;
  1056. u8 instructions[4];
  1057. /* if guest os id is not set hypercall should remain disabled */
  1058. if (!kvm->arch.hv_guest_os_id)
  1059. break;
  1060. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1061. kvm->arch.hv_hypercall = data;
  1062. break;
  1063. }
  1064. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1065. addr = gfn_to_hva(kvm, gfn);
  1066. if (kvm_is_error_hva(addr))
  1067. return 1;
  1068. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1069. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1070. if (copy_to_user((void __user *)addr, instructions, 4))
  1071. return 1;
  1072. kvm->arch.hv_hypercall = data;
  1073. break;
  1074. }
  1075. default:
  1076. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1077. "data 0x%llx\n", msr, data);
  1078. return 1;
  1079. }
  1080. return 0;
  1081. }
  1082. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1083. {
  1084. switch (msr) {
  1085. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1086. unsigned long addr;
  1087. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1088. vcpu->arch.hv_vapic = data;
  1089. break;
  1090. }
  1091. addr = gfn_to_hva(vcpu->kvm, data >>
  1092. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1093. if (kvm_is_error_hva(addr))
  1094. return 1;
  1095. if (clear_user((void __user *)addr, PAGE_SIZE))
  1096. return 1;
  1097. vcpu->arch.hv_vapic = data;
  1098. break;
  1099. }
  1100. case HV_X64_MSR_EOI:
  1101. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1102. case HV_X64_MSR_ICR:
  1103. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1104. case HV_X64_MSR_TPR:
  1105. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1106. default:
  1107. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1108. "data 0x%llx\n", msr, data);
  1109. return 1;
  1110. }
  1111. return 0;
  1112. }
  1113. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1114. {
  1115. switch (msr) {
  1116. case MSR_EFER:
  1117. return set_efer(vcpu, data);
  1118. case MSR_K7_HWCR:
  1119. data &= ~(u64)0x40; /* ignore flush filter disable */
  1120. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1121. if (data != 0) {
  1122. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1123. data);
  1124. return 1;
  1125. }
  1126. break;
  1127. case MSR_FAM10H_MMIO_CONF_BASE:
  1128. if (data != 0) {
  1129. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1130. "0x%llx\n", data);
  1131. return 1;
  1132. }
  1133. break;
  1134. case MSR_AMD64_NB_CFG:
  1135. break;
  1136. case MSR_IA32_DEBUGCTLMSR:
  1137. if (!data) {
  1138. /* We support the non-activated case already */
  1139. break;
  1140. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1141. /* Values other than LBR and BTF are vendor-specific,
  1142. thus reserved and should throw a #GP */
  1143. return 1;
  1144. }
  1145. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1146. __func__, data);
  1147. break;
  1148. case MSR_IA32_UCODE_REV:
  1149. case MSR_IA32_UCODE_WRITE:
  1150. case MSR_VM_HSAVE_PA:
  1151. case MSR_AMD64_PATCH_LOADER:
  1152. break;
  1153. case 0x200 ... 0x2ff:
  1154. return set_msr_mtrr(vcpu, msr, data);
  1155. case MSR_IA32_APICBASE:
  1156. kvm_set_apic_base(vcpu, data);
  1157. break;
  1158. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1159. return kvm_x2apic_msr_write(vcpu, msr, data);
  1160. case MSR_IA32_MISC_ENABLE:
  1161. vcpu->arch.ia32_misc_enable_msr = data;
  1162. break;
  1163. case MSR_KVM_WALL_CLOCK_NEW:
  1164. case MSR_KVM_WALL_CLOCK:
  1165. vcpu->kvm->arch.wall_clock = data;
  1166. kvm_write_wall_clock(vcpu->kvm, data);
  1167. break;
  1168. case MSR_KVM_SYSTEM_TIME_NEW:
  1169. case MSR_KVM_SYSTEM_TIME: {
  1170. if (vcpu->arch.time_page) {
  1171. kvm_release_page_dirty(vcpu->arch.time_page);
  1172. vcpu->arch.time_page = NULL;
  1173. }
  1174. vcpu->arch.time = data;
  1175. /* we verify if the enable bit is set... */
  1176. if (!(data & 1))
  1177. break;
  1178. /* ...but clean it before doing the actual write */
  1179. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1180. vcpu->arch.time_page =
  1181. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1182. if (is_error_page(vcpu->arch.time_page)) {
  1183. kvm_release_page_clean(vcpu->arch.time_page);
  1184. vcpu->arch.time_page = NULL;
  1185. }
  1186. kvm_request_guest_time_update(vcpu);
  1187. break;
  1188. }
  1189. case MSR_IA32_MCG_CTL:
  1190. case MSR_IA32_MCG_STATUS:
  1191. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1192. return set_msr_mce(vcpu, msr, data);
  1193. /* Performance counters are not protected by a CPUID bit,
  1194. * so we should check all of them in the generic path for the sake of
  1195. * cross vendor migration.
  1196. * Writing a zero into the event select MSRs disables them,
  1197. * which we perfectly emulate ;-). Any other value should be at least
  1198. * reported, some guests depend on them.
  1199. */
  1200. case MSR_P6_EVNTSEL0:
  1201. case MSR_P6_EVNTSEL1:
  1202. case MSR_K7_EVNTSEL0:
  1203. case MSR_K7_EVNTSEL1:
  1204. case MSR_K7_EVNTSEL2:
  1205. case MSR_K7_EVNTSEL3:
  1206. if (data != 0)
  1207. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1208. "0x%x data 0x%llx\n", msr, data);
  1209. break;
  1210. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1211. * so we ignore writes to make it happy.
  1212. */
  1213. case MSR_P6_PERFCTR0:
  1214. case MSR_P6_PERFCTR1:
  1215. case MSR_K7_PERFCTR0:
  1216. case MSR_K7_PERFCTR1:
  1217. case MSR_K7_PERFCTR2:
  1218. case MSR_K7_PERFCTR3:
  1219. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1220. "0x%x data 0x%llx\n", msr, data);
  1221. break;
  1222. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1223. if (kvm_hv_msr_partition_wide(msr)) {
  1224. int r;
  1225. mutex_lock(&vcpu->kvm->lock);
  1226. r = set_msr_hyperv_pw(vcpu, msr, data);
  1227. mutex_unlock(&vcpu->kvm->lock);
  1228. return r;
  1229. } else
  1230. return set_msr_hyperv(vcpu, msr, data);
  1231. break;
  1232. default:
  1233. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1234. return xen_hvm_config(vcpu, data);
  1235. if (!ignore_msrs) {
  1236. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1237. msr, data);
  1238. return 1;
  1239. } else {
  1240. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1241. msr, data);
  1242. break;
  1243. }
  1244. }
  1245. return 0;
  1246. }
  1247. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1248. /*
  1249. * Reads an msr value (of 'msr_index') into 'pdata'.
  1250. * Returns 0 on success, non-0 otherwise.
  1251. * Assumes vcpu_load() was already called.
  1252. */
  1253. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1254. {
  1255. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1256. }
  1257. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1258. {
  1259. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1260. if (!msr_mtrr_valid(msr))
  1261. return 1;
  1262. if (msr == MSR_MTRRdefType)
  1263. *pdata = vcpu->arch.mtrr_state.def_type +
  1264. (vcpu->arch.mtrr_state.enabled << 10);
  1265. else if (msr == MSR_MTRRfix64K_00000)
  1266. *pdata = p[0];
  1267. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1268. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1269. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1270. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1271. else if (msr == MSR_IA32_CR_PAT)
  1272. *pdata = vcpu->arch.pat;
  1273. else { /* Variable MTRRs */
  1274. int idx, is_mtrr_mask;
  1275. u64 *pt;
  1276. idx = (msr - 0x200) / 2;
  1277. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1278. if (!is_mtrr_mask)
  1279. pt =
  1280. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1281. else
  1282. pt =
  1283. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1284. *pdata = *pt;
  1285. }
  1286. return 0;
  1287. }
  1288. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1289. {
  1290. u64 data;
  1291. u64 mcg_cap = vcpu->arch.mcg_cap;
  1292. unsigned bank_num = mcg_cap & 0xff;
  1293. switch (msr) {
  1294. case MSR_IA32_P5_MC_ADDR:
  1295. case MSR_IA32_P5_MC_TYPE:
  1296. data = 0;
  1297. break;
  1298. case MSR_IA32_MCG_CAP:
  1299. data = vcpu->arch.mcg_cap;
  1300. break;
  1301. case MSR_IA32_MCG_CTL:
  1302. if (!(mcg_cap & MCG_CTL_P))
  1303. return 1;
  1304. data = vcpu->arch.mcg_ctl;
  1305. break;
  1306. case MSR_IA32_MCG_STATUS:
  1307. data = vcpu->arch.mcg_status;
  1308. break;
  1309. default:
  1310. if (msr >= MSR_IA32_MC0_CTL &&
  1311. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1312. u32 offset = msr - MSR_IA32_MC0_CTL;
  1313. data = vcpu->arch.mce_banks[offset];
  1314. break;
  1315. }
  1316. return 1;
  1317. }
  1318. *pdata = data;
  1319. return 0;
  1320. }
  1321. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1322. {
  1323. u64 data = 0;
  1324. struct kvm *kvm = vcpu->kvm;
  1325. switch (msr) {
  1326. case HV_X64_MSR_GUEST_OS_ID:
  1327. data = kvm->arch.hv_guest_os_id;
  1328. break;
  1329. case HV_X64_MSR_HYPERCALL:
  1330. data = kvm->arch.hv_hypercall;
  1331. break;
  1332. default:
  1333. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1334. return 1;
  1335. }
  1336. *pdata = data;
  1337. return 0;
  1338. }
  1339. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1340. {
  1341. u64 data = 0;
  1342. switch (msr) {
  1343. case HV_X64_MSR_VP_INDEX: {
  1344. int r;
  1345. struct kvm_vcpu *v;
  1346. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1347. if (v == vcpu)
  1348. data = r;
  1349. break;
  1350. }
  1351. case HV_X64_MSR_EOI:
  1352. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1353. case HV_X64_MSR_ICR:
  1354. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1355. case HV_X64_MSR_TPR:
  1356. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1357. default:
  1358. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1359. return 1;
  1360. }
  1361. *pdata = data;
  1362. return 0;
  1363. }
  1364. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1365. {
  1366. u64 data;
  1367. switch (msr) {
  1368. case MSR_IA32_PLATFORM_ID:
  1369. case MSR_IA32_UCODE_REV:
  1370. case MSR_IA32_EBL_CR_POWERON:
  1371. case MSR_IA32_DEBUGCTLMSR:
  1372. case MSR_IA32_LASTBRANCHFROMIP:
  1373. case MSR_IA32_LASTBRANCHTOIP:
  1374. case MSR_IA32_LASTINTFROMIP:
  1375. case MSR_IA32_LASTINTTOIP:
  1376. case MSR_K8_SYSCFG:
  1377. case MSR_K7_HWCR:
  1378. case MSR_VM_HSAVE_PA:
  1379. case MSR_P6_PERFCTR0:
  1380. case MSR_P6_PERFCTR1:
  1381. case MSR_P6_EVNTSEL0:
  1382. case MSR_P6_EVNTSEL1:
  1383. case MSR_K7_EVNTSEL0:
  1384. case MSR_K7_PERFCTR0:
  1385. case MSR_K8_INT_PENDING_MSG:
  1386. case MSR_AMD64_NB_CFG:
  1387. case MSR_FAM10H_MMIO_CONF_BASE:
  1388. data = 0;
  1389. break;
  1390. case MSR_MTRRcap:
  1391. data = 0x500 | KVM_NR_VAR_MTRR;
  1392. break;
  1393. case 0x200 ... 0x2ff:
  1394. return get_msr_mtrr(vcpu, msr, pdata);
  1395. case 0xcd: /* fsb frequency */
  1396. data = 3;
  1397. break;
  1398. case MSR_IA32_APICBASE:
  1399. data = kvm_get_apic_base(vcpu);
  1400. break;
  1401. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1402. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1403. break;
  1404. case MSR_IA32_MISC_ENABLE:
  1405. data = vcpu->arch.ia32_misc_enable_msr;
  1406. break;
  1407. case MSR_IA32_PERF_STATUS:
  1408. /* TSC increment by tick */
  1409. data = 1000ULL;
  1410. /* CPU multiplier */
  1411. data |= (((uint64_t)4ULL) << 40);
  1412. break;
  1413. case MSR_EFER:
  1414. data = vcpu->arch.efer;
  1415. break;
  1416. case MSR_KVM_WALL_CLOCK:
  1417. case MSR_KVM_WALL_CLOCK_NEW:
  1418. data = vcpu->kvm->arch.wall_clock;
  1419. break;
  1420. case MSR_KVM_SYSTEM_TIME:
  1421. case MSR_KVM_SYSTEM_TIME_NEW:
  1422. data = vcpu->arch.time;
  1423. break;
  1424. case MSR_IA32_P5_MC_ADDR:
  1425. case MSR_IA32_P5_MC_TYPE:
  1426. case MSR_IA32_MCG_CAP:
  1427. case MSR_IA32_MCG_CTL:
  1428. case MSR_IA32_MCG_STATUS:
  1429. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1430. return get_msr_mce(vcpu, msr, pdata);
  1431. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1432. if (kvm_hv_msr_partition_wide(msr)) {
  1433. int r;
  1434. mutex_lock(&vcpu->kvm->lock);
  1435. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1436. mutex_unlock(&vcpu->kvm->lock);
  1437. return r;
  1438. } else
  1439. return get_msr_hyperv(vcpu, msr, pdata);
  1440. break;
  1441. default:
  1442. if (!ignore_msrs) {
  1443. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1444. return 1;
  1445. } else {
  1446. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1447. data = 0;
  1448. }
  1449. break;
  1450. }
  1451. *pdata = data;
  1452. return 0;
  1453. }
  1454. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1455. /*
  1456. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1457. *
  1458. * @return number of msrs set successfully.
  1459. */
  1460. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1461. struct kvm_msr_entry *entries,
  1462. int (*do_msr)(struct kvm_vcpu *vcpu,
  1463. unsigned index, u64 *data))
  1464. {
  1465. int i, idx;
  1466. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1467. for (i = 0; i < msrs->nmsrs; ++i)
  1468. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1469. break;
  1470. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1471. return i;
  1472. }
  1473. /*
  1474. * Read or write a bunch of msrs. Parameters are user addresses.
  1475. *
  1476. * @return number of msrs set successfully.
  1477. */
  1478. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1479. int (*do_msr)(struct kvm_vcpu *vcpu,
  1480. unsigned index, u64 *data),
  1481. int writeback)
  1482. {
  1483. struct kvm_msrs msrs;
  1484. struct kvm_msr_entry *entries;
  1485. int r, n;
  1486. unsigned size;
  1487. r = -EFAULT;
  1488. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1489. goto out;
  1490. r = -E2BIG;
  1491. if (msrs.nmsrs >= MAX_IO_MSRS)
  1492. goto out;
  1493. r = -ENOMEM;
  1494. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1495. entries = kmalloc(size, GFP_KERNEL);
  1496. if (!entries)
  1497. goto out;
  1498. r = -EFAULT;
  1499. if (copy_from_user(entries, user_msrs->entries, size))
  1500. goto out_free;
  1501. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1502. if (r < 0)
  1503. goto out_free;
  1504. r = -EFAULT;
  1505. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1506. goto out_free;
  1507. r = n;
  1508. out_free:
  1509. kfree(entries);
  1510. out:
  1511. return r;
  1512. }
  1513. int kvm_dev_ioctl_check_extension(long ext)
  1514. {
  1515. int r;
  1516. switch (ext) {
  1517. case KVM_CAP_IRQCHIP:
  1518. case KVM_CAP_HLT:
  1519. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1520. case KVM_CAP_SET_TSS_ADDR:
  1521. case KVM_CAP_EXT_CPUID:
  1522. case KVM_CAP_CLOCKSOURCE:
  1523. case KVM_CAP_PIT:
  1524. case KVM_CAP_NOP_IO_DELAY:
  1525. case KVM_CAP_MP_STATE:
  1526. case KVM_CAP_SYNC_MMU:
  1527. case KVM_CAP_REINJECT_CONTROL:
  1528. case KVM_CAP_IRQ_INJECT_STATUS:
  1529. case KVM_CAP_ASSIGN_DEV_IRQ:
  1530. case KVM_CAP_IRQFD:
  1531. case KVM_CAP_IOEVENTFD:
  1532. case KVM_CAP_PIT2:
  1533. case KVM_CAP_PIT_STATE2:
  1534. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1535. case KVM_CAP_XEN_HVM:
  1536. case KVM_CAP_ADJUST_CLOCK:
  1537. case KVM_CAP_VCPU_EVENTS:
  1538. case KVM_CAP_HYPERV:
  1539. case KVM_CAP_HYPERV_VAPIC:
  1540. case KVM_CAP_HYPERV_SPIN:
  1541. case KVM_CAP_PCI_SEGMENT:
  1542. case KVM_CAP_DEBUGREGS:
  1543. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1544. case KVM_CAP_XSAVE:
  1545. r = 1;
  1546. break;
  1547. case KVM_CAP_COALESCED_MMIO:
  1548. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1549. break;
  1550. case KVM_CAP_VAPIC:
  1551. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1552. break;
  1553. case KVM_CAP_NR_VCPUS:
  1554. r = KVM_MAX_VCPUS;
  1555. break;
  1556. case KVM_CAP_NR_MEMSLOTS:
  1557. r = KVM_MEMORY_SLOTS;
  1558. break;
  1559. case KVM_CAP_PV_MMU: /* obsolete */
  1560. r = 0;
  1561. break;
  1562. case KVM_CAP_IOMMU:
  1563. r = iommu_found();
  1564. break;
  1565. case KVM_CAP_MCE:
  1566. r = KVM_MAX_MCE_BANKS;
  1567. break;
  1568. case KVM_CAP_XCRS:
  1569. r = cpu_has_xsave;
  1570. break;
  1571. default:
  1572. r = 0;
  1573. break;
  1574. }
  1575. return r;
  1576. }
  1577. long kvm_arch_dev_ioctl(struct file *filp,
  1578. unsigned int ioctl, unsigned long arg)
  1579. {
  1580. void __user *argp = (void __user *)arg;
  1581. long r;
  1582. switch (ioctl) {
  1583. case KVM_GET_MSR_INDEX_LIST: {
  1584. struct kvm_msr_list __user *user_msr_list = argp;
  1585. struct kvm_msr_list msr_list;
  1586. unsigned n;
  1587. r = -EFAULT;
  1588. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1589. goto out;
  1590. n = msr_list.nmsrs;
  1591. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1592. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1593. goto out;
  1594. r = -E2BIG;
  1595. if (n < msr_list.nmsrs)
  1596. goto out;
  1597. r = -EFAULT;
  1598. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1599. num_msrs_to_save * sizeof(u32)))
  1600. goto out;
  1601. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1602. &emulated_msrs,
  1603. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1604. goto out;
  1605. r = 0;
  1606. break;
  1607. }
  1608. case KVM_GET_SUPPORTED_CPUID: {
  1609. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1610. struct kvm_cpuid2 cpuid;
  1611. r = -EFAULT;
  1612. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1613. goto out;
  1614. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1615. cpuid_arg->entries);
  1616. if (r)
  1617. goto out;
  1618. r = -EFAULT;
  1619. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1620. goto out;
  1621. r = 0;
  1622. break;
  1623. }
  1624. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1625. u64 mce_cap;
  1626. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1627. r = -EFAULT;
  1628. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1629. goto out;
  1630. r = 0;
  1631. break;
  1632. }
  1633. default:
  1634. r = -EINVAL;
  1635. }
  1636. out:
  1637. return r;
  1638. }
  1639. static void wbinvd_ipi(void *garbage)
  1640. {
  1641. wbinvd();
  1642. }
  1643. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1644. {
  1645. return vcpu->kvm->arch.iommu_domain &&
  1646. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1647. }
  1648. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1649. {
  1650. /* Address WBINVD may be executed by guest */
  1651. if (need_emulate_wbinvd(vcpu)) {
  1652. if (kvm_x86_ops->has_wbinvd_exit())
  1653. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1654. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1655. smp_call_function_single(vcpu->cpu,
  1656. wbinvd_ipi, NULL, 1);
  1657. }
  1658. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1659. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1660. /* Make sure TSC doesn't go backwards */
  1661. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1662. native_read_tsc() - vcpu->arch.last_host_tsc;
  1663. if (tsc_delta < 0)
  1664. mark_tsc_unstable("KVM discovered backwards TSC");
  1665. if (check_tsc_unstable())
  1666. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1667. kvm_migrate_timers(vcpu);
  1668. vcpu->cpu = cpu;
  1669. }
  1670. }
  1671. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1672. {
  1673. kvm_x86_ops->vcpu_put(vcpu);
  1674. kvm_put_guest_fpu(vcpu);
  1675. vcpu->arch.last_host_tsc = native_read_tsc();
  1676. }
  1677. static int is_efer_nx(void)
  1678. {
  1679. unsigned long long efer = 0;
  1680. rdmsrl_safe(MSR_EFER, &efer);
  1681. return efer & EFER_NX;
  1682. }
  1683. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1684. {
  1685. int i;
  1686. struct kvm_cpuid_entry2 *e, *entry;
  1687. entry = NULL;
  1688. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1689. e = &vcpu->arch.cpuid_entries[i];
  1690. if (e->function == 0x80000001) {
  1691. entry = e;
  1692. break;
  1693. }
  1694. }
  1695. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1696. entry->edx &= ~(1 << 20);
  1697. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1698. }
  1699. }
  1700. /* when an old userspace process fills a new kernel module */
  1701. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1702. struct kvm_cpuid *cpuid,
  1703. struct kvm_cpuid_entry __user *entries)
  1704. {
  1705. int r, i;
  1706. struct kvm_cpuid_entry *cpuid_entries;
  1707. r = -E2BIG;
  1708. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1709. goto out;
  1710. r = -ENOMEM;
  1711. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1712. if (!cpuid_entries)
  1713. goto out;
  1714. r = -EFAULT;
  1715. if (copy_from_user(cpuid_entries, entries,
  1716. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1717. goto out_free;
  1718. for (i = 0; i < cpuid->nent; i++) {
  1719. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1720. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1721. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1722. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1723. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1724. vcpu->arch.cpuid_entries[i].index = 0;
  1725. vcpu->arch.cpuid_entries[i].flags = 0;
  1726. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1727. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1728. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1729. }
  1730. vcpu->arch.cpuid_nent = cpuid->nent;
  1731. cpuid_fix_nx_cap(vcpu);
  1732. r = 0;
  1733. kvm_apic_set_version(vcpu);
  1734. kvm_x86_ops->cpuid_update(vcpu);
  1735. update_cpuid(vcpu);
  1736. out_free:
  1737. vfree(cpuid_entries);
  1738. out:
  1739. return r;
  1740. }
  1741. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1742. struct kvm_cpuid2 *cpuid,
  1743. struct kvm_cpuid_entry2 __user *entries)
  1744. {
  1745. int r;
  1746. r = -E2BIG;
  1747. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1748. goto out;
  1749. r = -EFAULT;
  1750. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1751. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1752. goto out;
  1753. vcpu->arch.cpuid_nent = cpuid->nent;
  1754. kvm_apic_set_version(vcpu);
  1755. kvm_x86_ops->cpuid_update(vcpu);
  1756. update_cpuid(vcpu);
  1757. return 0;
  1758. out:
  1759. return r;
  1760. }
  1761. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1762. struct kvm_cpuid2 *cpuid,
  1763. struct kvm_cpuid_entry2 __user *entries)
  1764. {
  1765. int r;
  1766. r = -E2BIG;
  1767. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1768. goto out;
  1769. r = -EFAULT;
  1770. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1771. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1772. goto out;
  1773. return 0;
  1774. out:
  1775. cpuid->nent = vcpu->arch.cpuid_nent;
  1776. return r;
  1777. }
  1778. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1779. u32 index)
  1780. {
  1781. entry->function = function;
  1782. entry->index = index;
  1783. cpuid_count(entry->function, entry->index,
  1784. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1785. entry->flags = 0;
  1786. }
  1787. #define F(x) bit(X86_FEATURE_##x)
  1788. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1789. u32 index, int *nent, int maxnent)
  1790. {
  1791. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1792. #ifdef CONFIG_X86_64
  1793. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1794. ? F(GBPAGES) : 0;
  1795. unsigned f_lm = F(LM);
  1796. #else
  1797. unsigned f_gbpages = 0;
  1798. unsigned f_lm = 0;
  1799. #endif
  1800. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1801. /* cpuid 1.edx */
  1802. const u32 kvm_supported_word0_x86_features =
  1803. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1804. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1805. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1806. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1807. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1808. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1809. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1810. 0 /* HTT, TM, Reserved, PBE */;
  1811. /* cpuid 0x80000001.edx */
  1812. const u32 kvm_supported_word1_x86_features =
  1813. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1814. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1815. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1816. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1817. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1818. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1819. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1820. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1821. /* cpuid 1.ecx */
  1822. const u32 kvm_supported_word4_x86_features =
  1823. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  1824. 0 /* DS-CPL, VMX, SMX, EST */ |
  1825. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1826. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1827. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1828. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1829. 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
  1830. /* cpuid 0x80000001.ecx */
  1831. const u32 kvm_supported_word6_x86_features =
  1832. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1833. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1834. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1835. 0 /* SKINIT */ | 0 /* WDT */;
  1836. /* all calls to cpuid_count() should be made on the same cpu */
  1837. get_cpu();
  1838. do_cpuid_1_ent(entry, function, index);
  1839. ++*nent;
  1840. switch (function) {
  1841. case 0:
  1842. entry->eax = min(entry->eax, (u32)0xd);
  1843. break;
  1844. case 1:
  1845. entry->edx &= kvm_supported_word0_x86_features;
  1846. entry->ecx &= kvm_supported_word4_x86_features;
  1847. /* we support x2apic emulation even if host does not support
  1848. * it since we emulate x2apic in software */
  1849. entry->ecx |= F(X2APIC);
  1850. break;
  1851. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1852. * may return different values. This forces us to get_cpu() before
  1853. * issuing the first command, and also to emulate this annoying behavior
  1854. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1855. case 2: {
  1856. int t, times = entry->eax & 0xff;
  1857. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1858. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1859. for (t = 1; t < times && *nent < maxnent; ++t) {
  1860. do_cpuid_1_ent(&entry[t], function, 0);
  1861. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1862. ++*nent;
  1863. }
  1864. break;
  1865. }
  1866. /* function 4 and 0xb have additional index. */
  1867. case 4: {
  1868. int i, cache_type;
  1869. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1870. /* read more entries until cache_type is zero */
  1871. for (i = 1; *nent < maxnent; ++i) {
  1872. cache_type = entry[i - 1].eax & 0x1f;
  1873. if (!cache_type)
  1874. break;
  1875. do_cpuid_1_ent(&entry[i], function, i);
  1876. entry[i].flags |=
  1877. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1878. ++*nent;
  1879. }
  1880. break;
  1881. }
  1882. case 0xb: {
  1883. int i, level_type;
  1884. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1885. /* read more entries until level_type is zero */
  1886. for (i = 1; *nent < maxnent; ++i) {
  1887. level_type = entry[i - 1].ecx & 0xff00;
  1888. if (!level_type)
  1889. break;
  1890. do_cpuid_1_ent(&entry[i], function, i);
  1891. entry[i].flags |=
  1892. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1893. ++*nent;
  1894. }
  1895. break;
  1896. }
  1897. case 0xd: {
  1898. int i;
  1899. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1900. for (i = 1; *nent < maxnent; ++i) {
  1901. if (entry[i - 1].eax == 0 && i != 2)
  1902. break;
  1903. do_cpuid_1_ent(&entry[i], function, i);
  1904. entry[i].flags |=
  1905. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1906. ++*nent;
  1907. }
  1908. break;
  1909. }
  1910. case KVM_CPUID_SIGNATURE: {
  1911. char signature[12] = "KVMKVMKVM\0\0";
  1912. u32 *sigptr = (u32 *)signature;
  1913. entry->eax = 0;
  1914. entry->ebx = sigptr[0];
  1915. entry->ecx = sigptr[1];
  1916. entry->edx = sigptr[2];
  1917. break;
  1918. }
  1919. case KVM_CPUID_FEATURES:
  1920. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  1921. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  1922. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  1923. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  1924. entry->ebx = 0;
  1925. entry->ecx = 0;
  1926. entry->edx = 0;
  1927. break;
  1928. case 0x80000000:
  1929. entry->eax = min(entry->eax, 0x8000001a);
  1930. break;
  1931. case 0x80000001:
  1932. entry->edx &= kvm_supported_word1_x86_features;
  1933. entry->ecx &= kvm_supported_word6_x86_features;
  1934. break;
  1935. }
  1936. kvm_x86_ops->set_supported_cpuid(function, entry);
  1937. put_cpu();
  1938. }
  1939. #undef F
  1940. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1941. struct kvm_cpuid_entry2 __user *entries)
  1942. {
  1943. struct kvm_cpuid_entry2 *cpuid_entries;
  1944. int limit, nent = 0, r = -E2BIG;
  1945. u32 func;
  1946. if (cpuid->nent < 1)
  1947. goto out;
  1948. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1949. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1950. r = -ENOMEM;
  1951. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1952. if (!cpuid_entries)
  1953. goto out;
  1954. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1955. limit = cpuid_entries[0].eax;
  1956. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1957. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1958. &nent, cpuid->nent);
  1959. r = -E2BIG;
  1960. if (nent >= cpuid->nent)
  1961. goto out_free;
  1962. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1963. limit = cpuid_entries[nent - 1].eax;
  1964. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1965. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1966. &nent, cpuid->nent);
  1967. r = -E2BIG;
  1968. if (nent >= cpuid->nent)
  1969. goto out_free;
  1970. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  1971. cpuid->nent);
  1972. r = -E2BIG;
  1973. if (nent >= cpuid->nent)
  1974. goto out_free;
  1975. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  1976. cpuid->nent);
  1977. r = -E2BIG;
  1978. if (nent >= cpuid->nent)
  1979. goto out_free;
  1980. r = -EFAULT;
  1981. if (copy_to_user(entries, cpuid_entries,
  1982. nent * sizeof(struct kvm_cpuid_entry2)))
  1983. goto out_free;
  1984. cpuid->nent = nent;
  1985. r = 0;
  1986. out_free:
  1987. vfree(cpuid_entries);
  1988. out:
  1989. return r;
  1990. }
  1991. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1992. struct kvm_lapic_state *s)
  1993. {
  1994. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1995. return 0;
  1996. }
  1997. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1998. struct kvm_lapic_state *s)
  1999. {
  2000. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2001. kvm_apic_post_state_restore(vcpu);
  2002. update_cr8_intercept(vcpu);
  2003. return 0;
  2004. }
  2005. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2006. struct kvm_interrupt *irq)
  2007. {
  2008. if (irq->irq < 0 || irq->irq >= 256)
  2009. return -EINVAL;
  2010. if (irqchip_in_kernel(vcpu->kvm))
  2011. return -ENXIO;
  2012. kvm_queue_interrupt(vcpu, irq->irq, false);
  2013. return 0;
  2014. }
  2015. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2016. {
  2017. kvm_inject_nmi(vcpu);
  2018. return 0;
  2019. }
  2020. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2021. struct kvm_tpr_access_ctl *tac)
  2022. {
  2023. if (tac->flags)
  2024. return -EINVAL;
  2025. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2026. return 0;
  2027. }
  2028. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2029. u64 mcg_cap)
  2030. {
  2031. int r;
  2032. unsigned bank_num = mcg_cap & 0xff, bank;
  2033. r = -EINVAL;
  2034. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2035. goto out;
  2036. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2037. goto out;
  2038. r = 0;
  2039. vcpu->arch.mcg_cap = mcg_cap;
  2040. /* Init IA32_MCG_CTL to all 1s */
  2041. if (mcg_cap & MCG_CTL_P)
  2042. vcpu->arch.mcg_ctl = ~(u64)0;
  2043. /* Init IA32_MCi_CTL to all 1s */
  2044. for (bank = 0; bank < bank_num; bank++)
  2045. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2046. out:
  2047. return r;
  2048. }
  2049. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2050. struct kvm_x86_mce *mce)
  2051. {
  2052. u64 mcg_cap = vcpu->arch.mcg_cap;
  2053. unsigned bank_num = mcg_cap & 0xff;
  2054. u64 *banks = vcpu->arch.mce_banks;
  2055. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2056. return -EINVAL;
  2057. /*
  2058. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2059. * reporting is disabled
  2060. */
  2061. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2062. vcpu->arch.mcg_ctl != ~(u64)0)
  2063. return 0;
  2064. banks += 4 * mce->bank;
  2065. /*
  2066. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2067. * reporting is disabled for the bank
  2068. */
  2069. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2070. return 0;
  2071. if (mce->status & MCI_STATUS_UC) {
  2072. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2073. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2074. printk(KERN_DEBUG "kvm: set_mce: "
  2075. "injects mce exception while "
  2076. "previous one is in progress!\n");
  2077. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2078. return 0;
  2079. }
  2080. if (banks[1] & MCI_STATUS_VAL)
  2081. mce->status |= MCI_STATUS_OVER;
  2082. banks[2] = mce->addr;
  2083. banks[3] = mce->misc;
  2084. vcpu->arch.mcg_status = mce->mcg_status;
  2085. banks[1] = mce->status;
  2086. kvm_queue_exception(vcpu, MC_VECTOR);
  2087. } else if (!(banks[1] & MCI_STATUS_VAL)
  2088. || !(banks[1] & MCI_STATUS_UC)) {
  2089. if (banks[1] & MCI_STATUS_VAL)
  2090. mce->status |= MCI_STATUS_OVER;
  2091. banks[2] = mce->addr;
  2092. banks[3] = mce->misc;
  2093. banks[1] = mce->status;
  2094. } else
  2095. banks[1] |= MCI_STATUS_OVER;
  2096. return 0;
  2097. }
  2098. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2099. struct kvm_vcpu_events *events)
  2100. {
  2101. events->exception.injected =
  2102. vcpu->arch.exception.pending &&
  2103. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2104. events->exception.nr = vcpu->arch.exception.nr;
  2105. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2106. events->exception.error_code = vcpu->arch.exception.error_code;
  2107. events->interrupt.injected =
  2108. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2109. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2110. events->interrupt.soft = 0;
  2111. events->interrupt.shadow =
  2112. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2113. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2114. events->nmi.injected = vcpu->arch.nmi_injected;
  2115. events->nmi.pending = vcpu->arch.nmi_pending;
  2116. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2117. events->sipi_vector = vcpu->arch.sipi_vector;
  2118. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2119. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2120. | KVM_VCPUEVENT_VALID_SHADOW);
  2121. }
  2122. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2123. struct kvm_vcpu_events *events)
  2124. {
  2125. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2126. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2127. | KVM_VCPUEVENT_VALID_SHADOW))
  2128. return -EINVAL;
  2129. vcpu->arch.exception.pending = events->exception.injected;
  2130. vcpu->arch.exception.nr = events->exception.nr;
  2131. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2132. vcpu->arch.exception.error_code = events->exception.error_code;
  2133. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2134. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2135. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2136. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2137. kvm_pic_clear_isr_ack(vcpu->kvm);
  2138. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2139. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2140. events->interrupt.shadow);
  2141. vcpu->arch.nmi_injected = events->nmi.injected;
  2142. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2143. vcpu->arch.nmi_pending = events->nmi.pending;
  2144. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2145. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2146. vcpu->arch.sipi_vector = events->sipi_vector;
  2147. return 0;
  2148. }
  2149. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2150. struct kvm_debugregs *dbgregs)
  2151. {
  2152. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2153. dbgregs->dr6 = vcpu->arch.dr6;
  2154. dbgregs->dr7 = vcpu->arch.dr7;
  2155. dbgregs->flags = 0;
  2156. }
  2157. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2158. struct kvm_debugregs *dbgregs)
  2159. {
  2160. if (dbgregs->flags)
  2161. return -EINVAL;
  2162. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2163. vcpu->arch.dr6 = dbgregs->dr6;
  2164. vcpu->arch.dr7 = dbgregs->dr7;
  2165. return 0;
  2166. }
  2167. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2168. struct kvm_xsave *guest_xsave)
  2169. {
  2170. if (cpu_has_xsave)
  2171. memcpy(guest_xsave->region,
  2172. &vcpu->arch.guest_fpu.state->xsave,
  2173. xstate_size);
  2174. else {
  2175. memcpy(guest_xsave->region,
  2176. &vcpu->arch.guest_fpu.state->fxsave,
  2177. sizeof(struct i387_fxsave_struct));
  2178. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2179. XSTATE_FPSSE;
  2180. }
  2181. }
  2182. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2183. struct kvm_xsave *guest_xsave)
  2184. {
  2185. u64 xstate_bv =
  2186. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2187. if (cpu_has_xsave)
  2188. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2189. guest_xsave->region, xstate_size);
  2190. else {
  2191. if (xstate_bv & ~XSTATE_FPSSE)
  2192. return -EINVAL;
  2193. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2194. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2195. }
  2196. return 0;
  2197. }
  2198. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2199. struct kvm_xcrs *guest_xcrs)
  2200. {
  2201. if (!cpu_has_xsave) {
  2202. guest_xcrs->nr_xcrs = 0;
  2203. return;
  2204. }
  2205. guest_xcrs->nr_xcrs = 1;
  2206. guest_xcrs->flags = 0;
  2207. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2208. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2209. }
  2210. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2211. struct kvm_xcrs *guest_xcrs)
  2212. {
  2213. int i, r = 0;
  2214. if (!cpu_has_xsave)
  2215. return -EINVAL;
  2216. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2217. return -EINVAL;
  2218. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2219. /* Only support XCR0 currently */
  2220. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2221. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2222. guest_xcrs->xcrs[0].value);
  2223. break;
  2224. }
  2225. if (r)
  2226. r = -EINVAL;
  2227. return r;
  2228. }
  2229. long kvm_arch_vcpu_ioctl(struct file *filp,
  2230. unsigned int ioctl, unsigned long arg)
  2231. {
  2232. struct kvm_vcpu *vcpu = filp->private_data;
  2233. void __user *argp = (void __user *)arg;
  2234. int r;
  2235. union {
  2236. struct kvm_lapic_state *lapic;
  2237. struct kvm_xsave *xsave;
  2238. struct kvm_xcrs *xcrs;
  2239. void *buffer;
  2240. } u;
  2241. u.buffer = NULL;
  2242. switch (ioctl) {
  2243. case KVM_GET_LAPIC: {
  2244. r = -EINVAL;
  2245. if (!vcpu->arch.apic)
  2246. goto out;
  2247. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2248. r = -ENOMEM;
  2249. if (!u.lapic)
  2250. goto out;
  2251. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2252. if (r)
  2253. goto out;
  2254. r = -EFAULT;
  2255. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2256. goto out;
  2257. r = 0;
  2258. break;
  2259. }
  2260. case KVM_SET_LAPIC: {
  2261. r = -EINVAL;
  2262. if (!vcpu->arch.apic)
  2263. goto out;
  2264. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2265. r = -ENOMEM;
  2266. if (!u.lapic)
  2267. goto out;
  2268. r = -EFAULT;
  2269. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2270. goto out;
  2271. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2272. if (r)
  2273. goto out;
  2274. r = 0;
  2275. break;
  2276. }
  2277. case KVM_INTERRUPT: {
  2278. struct kvm_interrupt irq;
  2279. r = -EFAULT;
  2280. if (copy_from_user(&irq, argp, sizeof irq))
  2281. goto out;
  2282. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2283. if (r)
  2284. goto out;
  2285. r = 0;
  2286. break;
  2287. }
  2288. case KVM_NMI: {
  2289. r = kvm_vcpu_ioctl_nmi(vcpu);
  2290. if (r)
  2291. goto out;
  2292. r = 0;
  2293. break;
  2294. }
  2295. case KVM_SET_CPUID: {
  2296. struct kvm_cpuid __user *cpuid_arg = argp;
  2297. struct kvm_cpuid cpuid;
  2298. r = -EFAULT;
  2299. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2300. goto out;
  2301. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2302. if (r)
  2303. goto out;
  2304. break;
  2305. }
  2306. case KVM_SET_CPUID2: {
  2307. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2308. struct kvm_cpuid2 cpuid;
  2309. r = -EFAULT;
  2310. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2311. goto out;
  2312. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2313. cpuid_arg->entries);
  2314. if (r)
  2315. goto out;
  2316. break;
  2317. }
  2318. case KVM_GET_CPUID2: {
  2319. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2320. struct kvm_cpuid2 cpuid;
  2321. r = -EFAULT;
  2322. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2323. goto out;
  2324. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2325. cpuid_arg->entries);
  2326. if (r)
  2327. goto out;
  2328. r = -EFAULT;
  2329. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2330. goto out;
  2331. r = 0;
  2332. break;
  2333. }
  2334. case KVM_GET_MSRS:
  2335. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2336. break;
  2337. case KVM_SET_MSRS:
  2338. r = msr_io(vcpu, argp, do_set_msr, 0);
  2339. break;
  2340. case KVM_TPR_ACCESS_REPORTING: {
  2341. struct kvm_tpr_access_ctl tac;
  2342. r = -EFAULT;
  2343. if (copy_from_user(&tac, argp, sizeof tac))
  2344. goto out;
  2345. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2346. if (r)
  2347. goto out;
  2348. r = -EFAULT;
  2349. if (copy_to_user(argp, &tac, sizeof tac))
  2350. goto out;
  2351. r = 0;
  2352. break;
  2353. };
  2354. case KVM_SET_VAPIC_ADDR: {
  2355. struct kvm_vapic_addr va;
  2356. r = -EINVAL;
  2357. if (!irqchip_in_kernel(vcpu->kvm))
  2358. goto out;
  2359. r = -EFAULT;
  2360. if (copy_from_user(&va, argp, sizeof va))
  2361. goto out;
  2362. r = 0;
  2363. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2364. break;
  2365. }
  2366. case KVM_X86_SETUP_MCE: {
  2367. u64 mcg_cap;
  2368. r = -EFAULT;
  2369. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2370. goto out;
  2371. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2372. break;
  2373. }
  2374. case KVM_X86_SET_MCE: {
  2375. struct kvm_x86_mce mce;
  2376. r = -EFAULT;
  2377. if (copy_from_user(&mce, argp, sizeof mce))
  2378. goto out;
  2379. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2380. break;
  2381. }
  2382. case KVM_GET_VCPU_EVENTS: {
  2383. struct kvm_vcpu_events events;
  2384. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2385. r = -EFAULT;
  2386. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2387. break;
  2388. r = 0;
  2389. break;
  2390. }
  2391. case KVM_SET_VCPU_EVENTS: {
  2392. struct kvm_vcpu_events events;
  2393. r = -EFAULT;
  2394. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2395. break;
  2396. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2397. break;
  2398. }
  2399. case KVM_GET_DEBUGREGS: {
  2400. struct kvm_debugregs dbgregs;
  2401. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2402. r = -EFAULT;
  2403. if (copy_to_user(argp, &dbgregs,
  2404. sizeof(struct kvm_debugregs)))
  2405. break;
  2406. r = 0;
  2407. break;
  2408. }
  2409. case KVM_SET_DEBUGREGS: {
  2410. struct kvm_debugregs dbgregs;
  2411. r = -EFAULT;
  2412. if (copy_from_user(&dbgregs, argp,
  2413. sizeof(struct kvm_debugregs)))
  2414. break;
  2415. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2416. break;
  2417. }
  2418. case KVM_GET_XSAVE: {
  2419. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2420. r = -ENOMEM;
  2421. if (!u.xsave)
  2422. break;
  2423. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2424. r = -EFAULT;
  2425. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2426. break;
  2427. r = 0;
  2428. break;
  2429. }
  2430. case KVM_SET_XSAVE: {
  2431. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2432. r = -ENOMEM;
  2433. if (!u.xsave)
  2434. break;
  2435. r = -EFAULT;
  2436. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2437. break;
  2438. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2439. break;
  2440. }
  2441. case KVM_GET_XCRS: {
  2442. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2443. r = -ENOMEM;
  2444. if (!u.xcrs)
  2445. break;
  2446. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2447. r = -EFAULT;
  2448. if (copy_to_user(argp, u.xcrs,
  2449. sizeof(struct kvm_xcrs)))
  2450. break;
  2451. r = 0;
  2452. break;
  2453. }
  2454. case KVM_SET_XCRS: {
  2455. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2456. r = -ENOMEM;
  2457. if (!u.xcrs)
  2458. break;
  2459. r = -EFAULT;
  2460. if (copy_from_user(u.xcrs, argp,
  2461. sizeof(struct kvm_xcrs)))
  2462. break;
  2463. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2464. break;
  2465. }
  2466. default:
  2467. r = -EINVAL;
  2468. }
  2469. out:
  2470. kfree(u.buffer);
  2471. return r;
  2472. }
  2473. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2474. {
  2475. int ret;
  2476. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2477. return -1;
  2478. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2479. return ret;
  2480. }
  2481. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2482. u64 ident_addr)
  2483. {
  2484. kvm->arch.ept_identity_map_addr = ident_addr;
  2485. return 0;
  2486. }
  2487. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2488. u32 kvm_nr_mmu_pages)
  2489. {
  2490. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2491. return -EINVAL;
  2492. mutex_lock(&kvm->slots_lock);
  2493. spin_lock(&kvm->mmu_lock);
  2494. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2495. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2496. spin_unlock(&kvm->mmu_lock);
  2497. mutex_unlock(&kvm->slots_lock);
  2498. return 0;
  2499. }
  2500. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2501. {
  2502. return kvm->arch.n_max_mmu_pages;
  2503. }
  2504. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2505. {
  2506. int r;
  2507. r = 0;
  2508. switch (chip->chip_id) {
  2509. case KVM_IRQCHIP_PIC_MASTER:
  2510. memcpy(&chip->chip.pic,
  2511. &pic_irqchip(kvm)->pics[0],
  2512. sizeof(struct kvm_pic_state));
  2513. break;
  2514. case KVM_IRQCHIP_PIC_SLAVE:
  2515. memcpy(&chip->chip.pic,
  2516. &pic_irqchip(kvm)->pics[1],
  2517. sizeof(struct kvm_pic_state));
  2518. break;
  2519. case KVM_IRQCHIP_IOAPIC:
  2520. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2521. break;
  2522. default:
  2523. r = -EINVAL;
  2524. break;
  2525. }
  2526. return r;
  2527. }
  2528. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2529. {
  2530. int r;
  2531. r = 0;
  2532. switch (chip->chip_id) {
  2533. case KVM_IRQCHIP_PIC_MASTER:
  2534. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2535. memcpy(&pic_irqchip(kvm)->pics[0],
  2536. &chip->chip.pic,
  2537. sizeof(struct kvm_pic_state));
  2538. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2539. break;
  2540. case KVM_IRQCHIP_PIC_SLAVE:
  2541. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2542. memcpy(&pic_irqchip(kvm)->pics[1],
  2543. &chip->chip.pic,
  2544. sizeof(struct kvm_pic_state));
  2545. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2546. break;
  2547. case KVM_IRQCHIP_IOAPIC:
  2548. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2549. break;
  2550. default:
  2551. r = -EINVAL;
  2552. break;
  2553. }
  2554. kvm_pic_update_irq(pic_irqchip(kvm));
  2555. return r;
  2556. }
  2557. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2558. {
  2559. int r = 0;
  2560. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2561. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2562. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2563. return r;
  2564. }
  2565. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2566. {
  2567. int r = 0;
  2568. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2569. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2570. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2571. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2572. return r;
  2573. }
  2574. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2575. {
  2576. int r = 0;
  2577. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2578. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2579. sizeof(ps->channels));
  2580. ps->flags = kvm->arch.vpit->pit_state.flags;
  2581. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2582. return r;
  2583. }
  2584. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2585. {
  2586. int r = 0, start = 0;
  2587. u32 prev_legacy, cur_legacy;
  2588. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2589. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2590. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2591. if (!prev_legacy && cur_legacy)
  2592. start = 1;
  2593. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2594. sizeof(kvm->arch.vpit->pit_state.channels));
  2595. kvm->arch.vpit->pit_state.flags = ps->flags;
  2596. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2597. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2598. return r;
  2599. }
  2600. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2601. struct kvm_reinject_control *control)
  2602. {
  2603. if (!kvm->arch.vpit)
  2604. return -ENXIO;
  2605. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2606. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2607. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2608. return 0;
  2609. }
  2610. /*
  2611. * Get (and clear) the dirty memory log for a memory slot.
  2612. */
  2613. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2614. struct kvm_dirty_log *log)
  2615. {
  2616. int r, i;
  2617. struct kvm_memory_slot *memslot;
  2618. unsigned long n;
  2619. unsigned long is_dirty = 0;
  2620. mutex_lock(&kvm->slots_lock);
  2621. r = -EINVAL;
  2622. if (log->slot >= KVM_MEMORY_SLOTS)
  2623. goto out;
  2624. memslot = &kvm->memslots->memslots[log->slot];
  2625. r = -ENOENT;
  2626. if (!memslot->dirty_bitmap)
  2627. goto out;
  2628. n = kvm_dirty_bitmap_bytes(memslot);
  2629. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2630. is_dirty = memslot->dirty_bitmap[i];
  2631. /* If nothing is dirty, don't bother messing with page tables. */
  2632. if (is_dirty) {
  2633. struct kvm_memslots *slots, *old_slots;
  2634. unsigned long *dirty_bitmap;
  2635. spin_lock(&kvm->mmu_lock);
  2636. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2637. spin_unlock(&kvm->mmu_lock);
  2638. r = -ENOMEM;
  2639. dirty_bitmap = vmalloc(n);
  2640. if (!dirty_bitmap)
  2641. goto out;
  2642. memset(dirty_bitmap, 0, n);
  2643. r = -ENOMEM;
  2644. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2645. if (!slots) {
  2646. vfree(dirty_bitmap);
  2647. goto out;
  2648. }
  2649. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2650. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2651. old_slots = kvm->memslots;
  2652. rcu_assign_pointer(kvm->memslots, slots);
  2653. synchronize_srcu_expedited(&kvm->srcu);
  2654. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2655. kfree(old_slots);
  2656. r = -EFAULT;
  2657. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
  2658. vfree(dirty_bitmap);
  2659. goto out;
  2660. }
  2661. vfree(dirty_bitmap);
  2662. } else {
  2663. r = -EFAULT;
  2664. if (clear_user(log->dirty_bitmap, n))
  2665. goto out;
  2666. }
  2667. r = 0;
  2668. out:
  2669. mutex_unlock(&kvm->slots_lock);
  2670. return r;
  2671. }
  2672. long kvm_arch_vm_ioctl(struct file *filp,
  2673. unsigned int ioctl, unsigned long arg)
  2674. {
  2675. struct kvm *kvm = filp->private_data;
  2676. void __user *argp = (void __user *)arg;
  2677. int r = -ENOTTY;
  2678. /*
  2679. * This union makes it completely explicit to gcc-3.x
  2680. * that these two variables' stack usage should be
  2681. * combined, not added together.
  2682. */
  2683. union {
  2684. struct kvm_pit_state ps;
  2685. struct kvm_pit_state2 ps2;
  2686. struct kvm_pit_config pit_config;
  2687. } u;
  2688. switch (ioctl) {
  2689. case KVM_SET_TSS_ADDR:
  2690. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2691. if (r < 0)
  2692. goto out;
  2693. break;
  2694. case KVM_SET_IDENTITY_MAP_ADDR: {
  2695. u64 ident_addr;
  2696. r = -EFAULT;
  2697. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2698. goto out;
  2699. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2700. if (r < 0)
  2701. goto out;
  2702. break;
  2703. }
  2704. case KVM_SET_NR_MMU_PAGES:
  2705. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2706. if (r)
  2707. goto out;
  2708. break;
  2709. case KVM_GET_NR_MMU_PAGES:
  2710. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2711. break;
  2712. case KVM_CREATE_IRQCHIP: {
  2713. struct kvm_pic *vpic;
  2714. mutex_lock(&kvm->lock);
  2715. r = -EEXIST;
  2716. if (kvm->arch.vpic)
  2717. goto create_irqchip_unlock;
  2718. r = -ENOMEM;
  2719. vpic = kvm_create_pic(kvm);
  2720. if (vpic) {
  2721. r = kvm_ioapic_init(kvm);
  2722. if (r) {
  2723. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2724. &vpic->dev);
  2725. kfree(vpic);
  2726. goto create_irqchip_unlock;
  2727. }
  2728. } else
  2729. goto create_irqchip_unlock;
  2730. smp_wmb();
  2731. kvm->arch.vpic = vpic;
  2732. smp_wmb();
  2733. r = kvm_setup_default_irq_routing(kvm);
  2734. if (r) {
  2735. mutex_lock(&kvm->irq_lock);
  2736. kvm_ioapic_destroy(kvm);
  2737. kvm_destroy_pic(kvm);
  2738. mutex_unlock(&kvm->irq_lock);
  2739. }
  2740. create_irqchip_unlock:
  2741. mutex_unlock(&kvm->lock);
  2742. break;
  2743. }
  2744. case KVM_CREATE_PIT:
  2745. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2746. goto create_pit;
  2747. case KVM_CREATE_PIT2:
  2748. r = -EFAULT;
  2749. if (copy_from_user(&u.pit_config, argp,
  2750. sizeof(struct kvm_pit_config)))
  2751. goto out;
  2752. create_pit:
  2753. mutex_lock(&kvm->slots_lock);
  2754. r = -EEXIST;
  2755. if (kvm->arch.vpit)
  2756. goto create_pit_unlock;
  2757. r = -ENOMEM;
  2758. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2759. if (kvm->arch.vpit)
  2760. r = 0;
  2761. create_pit_unlock:
  2762. mutex_unlock(&kvm->slots_lock);
  2763. break;
  2764. case KVM_IRQ_LINE_STATUS:
  2765. case KVM_IRQ_LINE: {
  2766. struct kvm_irq_level irq_event;
  2767. r = -EFAULT;
  2768. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2769. goto out;
  2770. r = -ENXIO;
  2771. if (irqchip_in_kernel(kvm)) {
  2772. __s32 status;
  2773. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2774. irq_event.irq, irq_event.level);
  2775. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2776. r = -EFAULT;
  2777. irq_event.status = status;
  2778. if (copy_to_user(argp, &irq_event,
  2779. sizeof irq_event))
  2780. goto out;
  2781. }
  2782. r = 0;
  2783. }
  2784. break;
  2785. }
  2786. case KVM_GET_IRQCHIP: {
  2787. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2788. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2789. r = -ENOMEM;
  2790. if (!chip)
  2791. goto out;
  2792. r = -EFAULT;
  2793. if (copy_from_user(chip, argp, sizeof *chip))
  2794. goto get_irqchip_out;
  2795. r = -ENXIO;
  2796. if (!irqchip_in_kernel(kvm))
  2797. goto get_irqchip_out;
  2798. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2799. if (r)
  2800. goto get_irqchip_out;
  2801. r = -EFAULT;
  2802. if (copy_to_user(argp, chip, sizeof *chip))
  2803. goto get_irqchip_out;
  2804. r = 0;
  2805. get_irqchip_out:
  2806. kfree(chip);
  2807. if (r)
  2808. goto out;
  2809. break;
  2810. }
  2811. case KVM_SET_IRQCHIP: {
  2812. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2813. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2814. r = -ENOMEM;
  2815. if (!chip)
  2816. goto out;
  2817. r = -EFAULT;
  2818. if (copy_from_user(chip, argp, sizeof *chip))
  2819. goto set_irqchip_out;
  2820. r = -ENXIO;
  2821. if (!irqchip_in_kernel(kvm))
  2822. goto set_irqchip_out;
  2823. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2824. if (r)
  2825. goto set_irqchip_out;
  2826. r = 0;
  2827. set_irqchip_out:
  2828. kfree(chip);
  2829. if (r)
  2830. goto out;
  2831. break;
  2832. }
  2833. case KVM_GET_PIT: {
  2834. r = -EFAULT;
  2835. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2836. goto out;
  2837. r = -ENXIO;
  2838. if (!kvm->arch.vpit)
  2839. goto out;
  2840. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2841. if (r)
  2842. goto out;
  2843. r = -EFAULT;
  2844. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2845. goto out;
  2846. r = 0;
  2847. break;
  2848. }
  2849. case KVM_SET_PIT: {
  2850. r = -EFAULT;
  2851. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2852. goto out;
  2853. r = -ENXIO;
  2854. if (!kvm->arch.vpit)
  2855. goto out;
  2856. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2857. if (r)
  2858. goto out;
  2859. r = 0;
  2860. break;
  2861. }
  2862. case KVM_GET_PIT2: {
  2863. r = -ENXIO;
  2864. if (!kvm->arch.vpit)
  2865. goto out;
  2866. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2867. if (r)
  2868. goto out;
  2869. r = -EFAULT;
  2870. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2871. goto out;
  2872. r = 0;
  2873. break;
  2874. }
  2875. case KVM_SET_PIT2: {
  2876. r = -EFAULT;
  2877. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2878. goto out;
  2879. r = -ENXIO;
  2880. if (!kvm->arch.vpit)
  2881. goto out;
  2882. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2883. if (r)
  2884. goto out;
  2885. r = 0;
  2886. break;
  2887. }
  2888. case KVM_REINJECT_CONTROL: {
  2889. struct kvm_reinject_control control;
  2890. r = -EFAULT;
  2891. if (copy_from_user(&control, argp, sizeof(control)))
  2892. goto out;
  2893. r = kvm_vm_ioctl_reinject(kvm, &control);
  2894. if (r)
  2895. goto out;
  2896. r = 0;
  2897. break;
  2898. }
  2899. case KVM_XEN_HVM_CONFIG: {
  2900. r = -EFAULT;
  2901. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2902. sizeof(struct kvm_xen_hvm_config)))
  2903. goto out;
  2904. r = -EINVAL;
  2905. if (kvm->arch.xen_hvm_config.flags)
  2906. goto out;
  2907. r = 0;
  2908. break;
  2909. }
  2910. case KVM_SET_CLOCK: {
  2911. struct kvm_clock_data user_ns;
  2912. u64 now_ns;
  2913. s64 delta;
  2914. r = -EFAULT;
  2915. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2916. goto out;
  2917. r = -EINVAL;
  2918. if (user_ns.flags)
  2919. goto out;
  2920. r = 0;
  2921. now_ns = get_kernel_ns();
  2922. delta = user_ns.clock - now_ns;
  2923. kvm->arch.kvmclock_offset = delta;
  2924. break;
  2925. }
  2926. case KVM_GET_CLOCK: {
  2927. struct kvm_clock_data user_ns;
  2928. u64 now_ns;
  2929. now_ns = get_kernel_ns();
  2930. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2931. user_ns.flags = 0;
  2932. r = -EFAULT;
  2933. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2934. goto out;
  2935. r = 0;
  2936. break;
  2937. }
  2938. default:
  2939. ;
  2940. }
  2941. out:
  2942. return r;
  2943. }
  2944. static void kvm_init_msr_list(void)
  2945. {
  2946. u32 dummy[2];
  2947. unsigned i, j;
  2948. /* skip the first msrs in the list. KVM-specific */
  2949. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2950. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2951. continue;
  2952. if (j < i)
  2953. msrs_to_save[j] = msrs_to_save[i];
  2954. j++;
  2955. }
  2956. num_msrs_to_save = j;
  2957. }
  2958. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2959. const void *v)
  2960. {
  2961. if (vcpu->arch.apic &&
  2962. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2963. return 0;
  2964. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2965. }
  2966. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2967. {
  2968. if (vcpu->arch.apic &&
  2969. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2970. return 0;
  2971. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2972. }
  2973. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2974. struct kvm_segment *var, int seg)
  2975. {
  2976. kvm_x86_ops->set_segment(vcpu, var, seg);
  2977. }
  2978. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2979. struct kvm_segment *var, int seg)
  2980. {
  2981. kvm_x86_ops->get_segment(vcpu, var, seg);
  2982. }
  2983. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2984. {
  2985. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2986. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2987. }
  2988. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2989. {
  2990. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2991. access |= PFERR_FETCH_MASK;
  2992. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2993. }
  2994. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2995. {
  2996. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2997. access |= PFERR_WRITE_MASK;
  2998. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2999. }
  3000. /* uses this to access any guest's mapped memory without checking CPL */
  3001. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3002. {
  3003. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  3004. }
  3005. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3006. struct kvm_vcpu *vcpu, u32 access,
  3007. u32 *error)
  3008. {
  3009. void *data = val;
  3010. int r = X86EMUL_CONTINUE;
  3011. while (bytes) {
  3012. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  3013. unsigned offset = addr & (PAGE_SIZE-1);
  3014. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3015. int ret;
  3016. if (gpa == UNMAPPED_GVA) {
  3017. r = X86EMUL_PROPAGATE_FAULT;
  3018. goto out;
  3019. }
  3020. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3021. if (ret < 0) {
  3022. r = X86EMUL_IO_NEEDED;
  3023. goto out;
  3024. }
  3025. bytes -= toread;
  3026. data += toread;
  3027. addr += toread;
  3028. }
  3029. out:
  3030. return r;
  3031. }
  3032. /* used for instruction fetching */
  3033. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3034. struct kvm_vcpu *vcpu, u32 *error)
  3035. {
  3036. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3037. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3038. access | PFERR_FETCH_MASK, error);
  3039. }
  3040. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3041. struct kvm_vcpu *vcpu, u32 *error)
  3042. {
  3043. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3044. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3045. error);
  3046. }
  3047. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3048. struct kvm_vcpu *vcpu, u32 *error)
  3049. {
  3050. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  3051. }
  3052. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3053. unsigned int bytes,
  3054. struct kvm_vcpu *vcpu,
  3055. u32 *error)
  3056. {
  3057. void *data = val;
  3058. int r = X86EMUL_CONTINUE;
  3059. while (bytes) {
  3060. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
  3061. PFERR_WRITE_MASK, error);
  3062. unsigned offset = addr & (PAGE_SIZE-1);
  3063. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3064. int ret;
  3065. if (gpa == UNMAPPED_GVA) {
  3066. r = X86EMUL_PROPAGATE_FAULT;
  3067. goto out;
  3068. }
  3069. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3070. if (ret < 0) {
  3071. r = X86EMUL_IO_NEEDED;
  3072. goto out;
  3073. }
  3074. bytes -= towrite;
  3075. data += towrite;
  3076. addr += towrite;
  3077. }
  3078. out:
  3079. return r;
  3080. }
  3081. static int emulator_read_emulated(unsigned long addr,
  3082. void *val,
  3083. unsigned int bytes,
  3084. unsigned int *error_code,
  3085. struct kvm_vcpu *vcpu)
  3086. {
  3087. gpa_t gpa;
  3088. if (vcpu->mmio_read_completed) {
  3089. memcpy(val, vcpu->mmio_data, bytes);
  3090. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3091. vcpu->mmio_phys_addr, *(u64 *)val);
  3092. vcpu->mmio_read_completed = 0;
  3093. return X86EMUL_CONTINUE;
  3094. }
  3095. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  3096. if (gpa == UNMAPPED_GVA)
  3097. return X86EMUL_PROPAGATE_FAULT;
  3098. /* For APIC access vmexit */
  3099. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3100. goto mmio;
  3101. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  3102. == X86EMUL_CONTINUE)
  3103. return X86EMUL_CONTINUE;
  3104. mmio:
  3105. /*
  3106. * Is this MMIO handled locally?
  3107. */
  3108. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3109. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3110. return X86EMUL_CONTINUE;
  3111. }
  3112. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3113. vcpu->mmio_needed = 1;
  3114. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3115. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3116. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3117. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3118. return X86EMUL_IO_NEEDED;
  3119. }
  3120. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3121. const void *val, int bytes)
  3122. {
  3123. int ret;
  3124. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3125. if (ret < 0)
  3126. return 0;
  3127. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3128. return 1;
  3129. }
  3130. static int emulator_write_emulated_onepage(unsigned long addr,
  3131. const void *val,
  3132. unsigned int bytes,
  3133. unsigned int *error_code,
  3134. struct kvm_vcpu *vcpu)
  3135. {
  3136. gpa_t gpa;
  3137. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  3138. if (gpa == UNMAPPED_GVA)
  3139. return X86EMUL_PROPAGATE_FAULT;
  3140. /* For APIC access vmexit */
  3141. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3142. goto mmio;
  3143. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3144. return X86EMUL_CONTINUE;
  3145. mmio:
  3146. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3147. /*
  3148. * Is this MMIO handled locally?
  3149. */
  3150. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3151. return X86EMUL_CONTINUE;
  3152. vcpu->mmio_needed = 1;
  3153. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3154. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3155. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3156. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3157. memcpy(vcpu->run->mmio.data, val, bytes);
  3158. return X86EMUL_CONTINUE;
  3159. }
  3160. int emulator_write_emulated(unsigned long addr,
  3161. const void *val,
  3162. unsigned int bytes,
  3163. unsigned int *error_code,
  3164. struct kvm_vcpu *vcpu)
  3165. {
  3166. /* Crossing a page boundary? */
  3167. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3168. int rc, now;
  3169. now = -addr & ~PAGE_MASK;
  3170. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3171. vcpu);
  3172. if (rc != X86EMUL_CONTINUE)
  3173. return rc;
  3174. addr += now;
  3175. val += now;
  3176. bytes -= now;
  3177. }
  3178. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3179. vcpu);
  3180. }
  3181. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3182. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3183. #ifdef CONFIG_X86_64
  3184. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3185. #else
  3186. # define CMPXCHG64(ptr, old, new) \
  3187. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3188. #endif
  3189. static int emulator_cmpxchg_emulated(unsigned long addr,
  3190. const void *old,
  3191. const void *new,
  3192. unsigned int bytes,
  3193. unsigned int *error_code,
  3194. struct kvm_vcpu *vcpu)
  3195. {
  3196. gpa_t gpa;
  3197. struct page *page;
  3198. char *kaddr;
  3199. bool exchanged;
  3200. /* guests cmpxchg8b have to be emulated atomically */
  3201. if (bytes > 8 || (bytes & (bytes - 1)))
  3202. goto emul_write;
  3203. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3204. if (gpa == UNMAPPED_GVA ||
  3205. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3206. goto emul_write;
  3207. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3208. goto emul_write;
  3209. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3210. if (is_error_page(page)) {
  3211. kvm_release_page_clean(page);
  3212. goto emul_write;
  3213. }
  3214. kaddr = kmap_atomic(page, KM_USER0);
  3215. kaddr += offset_in_page(gpa);
  3216. switch (bytes) {
  3217. case 1:
  3218. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3219. break;
  3220. case 2:
  3221. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3222. break;
  3223. case 4:
  3224. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3225. break;
  3226. case 8:
  3227. exchanged = CMPXCHG64(kaddr, old, new);
  3228. break;
  3229. default:
  3230. BUG();
  3231. }
  3232. kunmap_atomic(kaddr, KM_USER0);
  3233. kvm_release_page_dirty(page);
  3234. if (!exchanged)
  3235. return X86EMUL_CMPXCHG_FAILED;
  3236. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3237. return X86EMUL_CONTINUE;
  3238. emul_write:
  3239. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3240. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3241. }
  3242. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3243. {
  3244. /* TODO: String I/O for in kernel device */
  3245. int r;
  3246. if (vcpu->arch.pio.in)
  3247. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3248. vcpu->arch.pio.size, pd);
  3249. else
  3250. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3251. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3252. pd);
  3253. return r;
  3254. }
  3255. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3256. unsigned int count, struct kvm_vcpu *vcpu)
  3257. {
  3258. if (vcpu->arch.pio.count)
  3259. goto data_avail;
  3260. trace_kvm_pio(1, port, size, 1);
  3261. vcpu->arch.pio.port = port;
  3262. vcpu->arch.pio.in = 1;
  3263. vcpu->arch.pio.count = count;
  3264. vcpu->arch.pio.size = size;
  3265. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3266. data_avail:
  3267. memcpy(val, vcpu->arch.pio_data, size * count);
  3268. vcpu->arch.pio.count = 0;
  3269. return 1;
  3270. }
  3271. vcpu->run->exit_reason = KVM_EXIT_IO;
  3272. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3273. vcpu->run->io.size = size;
  3274. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3275. vcpu->run->io.count = count;
  3276. vcpu->run->io.port = port;
  3277. return 0;
  3278. }
  3279. static int emulator_pio_out_emulated(int size, unsigned short port,
  3280. const void *val, unsigned int count,
  3281. struct kvm_vcpu *vcpu)
  3282. {
  3283. trace_kvm_pio(0, port, size, 1);
  3284. vcpu->arch.pio.port = port;
  3285. vcpu->arch.pio.in = 0;
  3286. vcpu->arch.pio.count = count;
  3287. vcpu->arch.pio.size = size;
  3288. memcpy(vcpu->arch.pio_data, val, size * count);
  3289. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3290. vcpu->arch.pio.count = 0;
  3291. return 1;
  3292. }
  3293. vcpu->run->exit_reason = KVM_EXIT_IO;
  3294. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3295. vcpu->run->io.size = size;
  3296. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3297. vcpu->run->io.count = count;
  3298. vcpu->run->io.port = port;
  3299. return 0;
  3300. }
  3301. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3302. {
  3303. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3304. }
  3305. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3306. {
  3307. kvm_mmu_invlpg(vcpu, address);
  3308. return X86EMUL_CONTINUE;
  3309. }
  3310. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3311. {
  3312. if (!need_emulate_wbinvd(vcpu))
  3313. return X86EMUL_CONTINUE;
  3314. if (kvm_x86_ops->has_wbinvd_exit()) {
  3315. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3316. wbinvd_ipi, NULL, 1);
  3317. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3318. }
  3319. wbinvd();
  3320. return X86EMUL_CONTINUE;
  3321. }
  3322. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3323. int emulate_clts(struct kvm_vcpu *vcpu)
  3324. {
  3325. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3326. kvm_x86_ops->fpu_activate(vcpu);
  3327. return X86EMUL_CONTINUE;
  3328. }
  3329. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3330. {
  3331. return _kvm_get_dr(vcpu, dr, dest);
  3332. }
  3333. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3334. {
  3335. return __kvm_set_dr(vcpu, dr, value);
  3336. }
  3337. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3338. {
  3339. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3340. }
  3341. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3342. {
  3343. unsigned long value;
  3344. switch (cr) {
  3345. case 0:
  3346. value = kvm_read_cr0(vcpu);
  3347. break;
  3348. case 2:
  3349. value = vcpu->arch.cr2;
  3350. break;
  3351. case 3:
  3352. value = vcpu->arch.cr3;
  3353. break;
  3354. case 4:
  3355. value = kvm_read_cr4(vcpu);
  3356. break;
  3357. case 8:
  3358. value = kvm_get_cr8(vcpu);
  3359. break;
  3360. default:
  3361. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3362. return 0;
  3363. }
  3364. return value;
  3365. }
  3366. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3367. {
  3368. int res = 0;
  3369. switch (cr) {
  3370. case 0:
  3371. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3372. break;
  3373. case 2:
  3374. vcpu->arch.cr2 = val;
  3375. break;
  3376. case 3:
  3377. res = kvm_set_cr3(vcpu, val);
  3378. break;
  3379. case 4:
  3380. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3381. break;
  3382. case 8:
  3383. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3384. break;
  3385. default:
  3386. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3387. res = -1;
  3388. }
  3389. return res;
  3390. }
  3391. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3392. {
  3393. return kvm_x86_ops->get_cpl(vcpu);
  3394. }
  3395. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3396. {
  3397. kvm_x86_ops->get_gdt(vcpu, dt);
  3398. }
  3399. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3400. {
  3401. kvm_x86_ops->get_idt(vcpu, dt);
  3402. }
  3403. static unsigned long emulator_get_cached_segment_base(int seg,
  3404. struct kvm_vcpu *vcpu)
  3405. {
  3406. return get_segment_base(vcpu, seg);
  3407. }
  3408. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3409. struct kvm_vcpu *vcpu)
  3410. {
  3411. struct kvm_segment var;
  3412. kvm_get_segment(vcpu, &var, seg);
  3413. if (var.unusable)
  3414. return false;
  3415. if (var.g)
  3416. var.limit >>= 12;
  3417. set_desc_limit(desc, var.limit);
  3418. set_desc_base(desc, (unsigned long)var.base);
  3419. desc->type = var.type;
  3420. desc->s = var.s;
  3421. desc->dpl = var.dpl;
  3422. desc->p = var.present;
  3423. desc->avl = var.avl;
  3424. desc->l = var.l;
  3425. desc->d = var.db;
  3426. desc->g = var.g;
  3427. return true;
  3428. }
  3429. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3430. struct kvm_vcpu *vcpu)
  3431. {
  3432. struct kvm_segment var;
  3433. /* needed to preserve selector */
  3434. kvm_get_segment(vcpu, &var, seg);
  3435. var.base = get_desc_base(desc);
  3436. var.limit = get_desc_limit(desc);
  3437. if (desc->g)
  3438. var.limit = (var.limit << 12) | 0xfff;
  3439. var.type = desc->type;
  3440. var.present = desc->p;
  3441. var.dpl = desc->dpl;
  3442. var.db = desc->d;
  3443. var.s = desc->s;
  3444. var.l = desc->l;
  3445. var.g = desc->g;
  3446. var.avl = desc->avl;
  3447. var.present = desc->p;
  3448. var.unusable = !var.present;
  3449. var.padding = 0;
  3450. kvm_set_segment(vcpu, &var, seg);
  3451. return;
  3452. }
  3453. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3454. {
  3455. struct kvm_segment kvm_seg;
  3456. kvm_get_segment(vcpu, &kvm_seg, seg);
  3457. return kvm_seg.selector;
  3458. }
  3459. static void emulator_set_segment_selector(u16 sel, int seg,
  3460. struct kvm_vcpu *vcpu)
  3461. {
  3462. struct kvm_segment kvm_seg;
  3463. kvm_get_segment(vcpu, &kvm_seg, seg);
  3464. kvm_seg.selector = sel;
  3465. kvm_set_segment(vcpu, &kvm_seg, seg);
  3466. }
  3467. static struct x86_emulate_ops emulate_ops = {
  3468. .read_std = kvm_read_guest_virt_system,
  3469. .write_std = kvm_write_guest_virt_system,
  3470. .fetch = kvm_fetch_guest_virt,
  3471. .read_emulated = emulator_read_emulated,
  3472. .write_emulated = emulator_write_emulated,
  3473. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3474. .pio_in_emulated = emulator_pio_in_emulated,
  3475. .pio_out_emulated = emulator_pio_out_emulated,
  3476. .get_cached_descriptor = emulator_get_cached_descriptor,
  3477. .set_cached_descriptor = emulator_set_cached_descriptor,
  3478. .get_segment_selector = emulator_get_segment_selector,
  3479. .set_segment_selector = emulator_set_segment_selector,
  3480. .get_cached_segment_base = emulator_get_cached_segment_base,
  3481. .get_gdt = emulator_get_gdt,
  3482. .get_idt = emulator_get_idt,
  3483. .get_cr = emulator_get_cr,
  3484. .set_cr = emulator_set_cr,
  3485. .cpl = emulator_get_cpl,
  3486. .get_dr = emulator_get_dr,
  3487. .set_dr = emulator_set_dr,
  3488. .set_msr = kvm_set_msr,
  3489. .get_msr = kvm_get_msr,
  3490. };
  3491. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3492. {
  3493. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3494. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3495. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3496. vcpu->arch.regs_dirty = ~0;
  3497. }
  3498. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3499. {
  3500. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3501. /*
  3502. * an sti; sti; sequence only disable interrupts for the first
  3503. * instruction. So, if the last instruction, be it emulated or
  3504. * not, left the system with the INT_STI flag enabled, it
  3505. * means that the last instruction is an sti. We should not
  3506. * leave the flag on in this case. The same goes for mov ss
  3507. */
  3508. if (!(int_shadow & mask))
  3509. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3510. }
  3511. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3512. {
  3513. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3514. if (ctxt->exception == PF_VECTOR)
  3515. kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
  3516. else if (ctxt->error_code_valid)
  3517. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3518. else
  3519. kvm_queue_exception(vcpu, ctxt->exception);
  3520. }
  3521. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3522. {
  3523. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3524. int cs_db, cs_l;
  3525. cache_all_regs(vcpu);
  3526. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3527. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3528. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3529. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3530. vcpu->arch.emulate_ctxt.mode =
  3531. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3532. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3533. ? X86EMUL_MODE_VM86 : cs_l
  3534. ? X86EMUL_MODE_PROT64 : cs_db
  3535. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3536. memset(c, 0, sizeof(struct decode_cache));
  3537. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3538. }
  3539. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3540. {
  3541. ++vcpu->stat.insn_emulation_fail;
  3542. trace_kvm_emulate_insn_failed(vcpu);
  3543. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3544. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3545. vcpu->run->internal.ndata = 0;
  3546. kvm_queue_exception(vcpu, UD_VECTOR);
  3547. return EMULATE_FAIL;
  3548. }
  3549. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3550. {
  3551. gpa_t gpa;
  3552. if (tdp_enabled)
  3553. return false;
  3554. /*
  3555. * if emulation was due to access to shadowed page table
  3556. * and it failed try to unshadow page and re-entetr the
  3557. * guest to let CPU execute the instruction.
  3558. */
  3559. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3560. return true;
  3561. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3562. if (gpa == UNMAPPED_GVA)
  3563. return true; /* let cpu generate fault */
  3564. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3565. return true;
  3566. return false;
  3567. }
  3568. int emulate_instruction(struct kvm_vcpu *vcpu,
  3569. unsigned long cr2,
  3570. u16 error_code,
  3571. int emulation_type)
  3572. {
  3573. int r;
  3574. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3575. kvm_clear_exception_queue(vcpu);
  3576. vcpu->arch.mmio_fault_cr2 = cr2;
  3577. /*
  3578. * TODO: fix emulate.c to use guest_read/write_register
  3579. * instead of direct ->regs accesses, can save hundred cycles
  3580. * on Intel for instructions that don't read/change RSP, for
  3581. * for example.
  3582. */
  3583. cache_all_regs(vcpu);
  3584. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3585. init_emulate_ctxt(vcpu);
  3586. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3587. vcpu->arch.emulate_ctxt.exception = -1;
  3588. vcpu->arch.emulate_ctxt.perm_ok = false;
  3589. r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
  3590. trace_kvm_emulate_insn_start(vcpu);
  3591. /* Only allow emulation of specific instructions on #UD
  3592. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3593. if (emulation_type & EMULTYPE_TRAP_UD) {
  3594. if (!c->twobyte)
  3595. return EMULATE_FAIL;
  3596. switch (c->b) {
  3597. case 0x01: /* VMMCALL */
  3598. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3599. return EMULATE_FAIL;
  3600. break;
  3601. case 0x34: /* sysenter */
  3602. case 0x35: /* sysexit */
  3603. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3604. return EMULATE_FAIL;
  3605. break;
  3606. case 0x05: /* syscall */
  3607. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3608. return EMULATE_FAIL;
  3609. break;
  3610. default:
  3611. return EMULATE_FAIL;
  3612. }
  3613. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3614. return EMULATE_FAIL;
  3615. }
  3616. ++vcpu->stat.insn_emulation;
  3617. if (r) {
  3618. if (reexecute_instruction(vcpu, cr2))
  3619. return EMULATE_DONE;
  3620. if (emulation_type & EMULTYPE_SKIP)
  3621. return EMULATE_FAIL;
  3622. return handle_emulation_failure(vcpu);
  3623. }
  3624. }
  3625. if (emulation_type & EMULTYPE_SKIP) {
  3626. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3627. return EMULATE_DONE;
  3628. }
  3629. /* this is needed for vmware backdor interface to work since it
  3630. changes registers values during IO operation */
  3631. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3632. restart:
  3633. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3634. if (r) { /* emulation failed */
  3635. if (reexecute_instruction(vcpu, cr2))
  3636. return EMULATE_DONE;
  3637. return handle_emulation_failure(vcpu);
  3638. }
  3639. r = EMULATE_DONE;
  3640. if (vcpu->arch.emulate_ctxt.exception >= 0)
  3641. inject_emulated_exception(vcpu);
  3642. else if (vcpu->arch.pio.count) {
  3643. if (!vcpu->arch.pio.in)
  3644. vcpu->arch.pio.count = 0;
  3645. r = EMULATE_DO_MMIO;
  3646. } else if (vcpu->mmio_needed) {
  3647. if (vcpu->mmio_is_write)
  3648. vcpu->mmio_needed = 0;
  3649. r = EMULATE_DO_MMIO;
  3650. } else if (vcpu->arch.emulate_ctxt.restart)
  3651. goto restart;
  3652. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3653. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3654. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3655. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3656. return r;
  3657. }
  3658. EXPORT_SYMBOL_GPL(emulate_instruction);
  3659. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3660. {
  3661. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3662. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3663. /* do not return to emulator after return from userspace */
  3664. vcpu->arch.pio.count = 0;
  3665. return ret;
  3666. }
  3667. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3668. static void tsc_bad(void *info)
  3669. {
  3670. __get_cpu_var(cpu_tsc_khz) = 0;
  3671. }
  3672. static void tsc_khz_changed(void *data)
  3673. {
  3674. struct cpufreq_freqs *freq = data;
  3675. unsigned long khz = 0;
  3676. if (data)
  3677. khz = freq->new;
  3678. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3679. khz = cpufreq_quick_get(raw_smp_processor_id());
  3680. if (!khz)
  3681. khz = tsc_khz;
  3682. __get_cpu_var(cpu_tsc_khz) = khz;
  3683. }
  3684. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3685. void *data)
  3686. {
  3687. struct cpufreq_freqs *freq = data;
  3688. struct kvm *kvm;
  3689. struct kvm_vcpu *vcpu;
  3690. int i, send_ipi = 0;
  3691. /*
  3692. * We allow guests to temporarily run on slowing clocks,
  3693. * provided we notify them after, or to run on accelerating
  3694. * clocks, provided we notify them before. Thus time never
  3695. * goes backwards.
  3696. *
  3697. * However, we have a problem. We can't atomically update
  3698. * the frequency of a given CPU from this function; it is
  3699. * merely a notifier, which can be called from any CPU.
  3700. * Changing the TSC frequency at arbitrary points in time
  3701. * requires a recomputation of local variables related to
  3702. * the TSC for each VCPU. We must flag these local variables
  3703. * to be updated and be sure the update takes place with the
  3704. * new frequency before any guests proceed.
  3705. *
  3706. * Unfortunately, the combination of hotplug CPU and frequency
  3707. * change creates an intractable locking scenario; the order
  3708. * of when these callouts happen is undefined with respect to
  3709. * CPU hotplug, and they can race with each other. As such,
  3710. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  3711. * undefined; you can actually have a CPU frequency change take
  3712. * place in between the computation of X and the setting of the
  3713. * variable. To protect against this problem, all updates of
  3714. * the per_cpu tsc_khz variable are done in an interrupt
  3715. * protected IPI, and all callers wishing to update the value
  3716. * must wait for a synchronous IPI to complete (which is trivial
  3717. * if the caller is on the CPU already). This establishes the
  3718. * necessary total order on variable updates.
  3719. *
  3720. * Note that because a guest time update may take place
  3721. * anytime after the setting of the VCPU's request bit, the
  3722. * correct TSC value must be set before the request. However,
  3723. * to ensure the update actually makes it to any guest which
  3724. * starts running in hardware virtualization between the set
  3725. * and the acquisition of the spinlock, we must also ping the
  3726. * CPU after setting the request bit.
  3727. *
  3728. */
  3729. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3730. return 0;
  3731. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3732. return 0;
  3733. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3734. spin_lock(&kvm_lock);
  3735. list_for_each_entry(kvm, &vm_list, vm_list) {
  3736. kvm_for_each_vcpu(i, vcpu, kvm) {
  3737. if (vcpu->cpu != freq->cpu)
  3738. continue;
  3739. if (!kvm_request_guest_time_update(vcpu))
  3740. continue;
  3741. if (vcpu->cpu != smp_processor_id())
  3742. send_ipi = 1;
  3743. }
  3744. }
  3745. spin_unlock(&kvm_lock);
  3746. if (freq->old < freq->new && send_ipi) {
  3747. /*
  3748. * We upscale the frequency. Must make the guest
  3749. * doesn't see old kvmclock values while running with
  3750. * the new frequency, otherwise we risk the guest sees
  3751. * time go backwards.
  3752. *
  3753. * In case we update the frequency for another cpu
  3754. * (which might be in guest context) send an interrupt
  3755. * to kick the cpu out of guest context. Next time
  3756. * guest context is entered kvmclock will be updated,
  3757. * so the guest will not see stale values.
  3758. */
  3759. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3760. }
  3761. return 0;
  3762. }
  3763. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3764. .notifier_call = kvmclock_cpufreq_notifier
  3765. };
  3766. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  3767. unsigned long action, void *hcpu)
  3768. {
  3769. unsigned int cpu = (unsigned long)hcpu;
  3770. switch (action) {
  3771. case CPU_ONLINE:
  3772. case CPU_DOWN_FAILED:
  3773. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  3774. break;
  3775. case CPU_DOWN_PREPARE:
  3776. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  3777. break;
  3778. }
  3779. return NOTIFY_OK;
  3780. }
  3781. static struct notifier_block kvmclock_cpu_notifier_block = {
  3782. .notifier_call = kvmclock_cpu_notifier,
  3783. .priority = -INT_MAX
  3784. };
  3785. static void kvm_timer_init(void)
  3786. {
  3787. int cpu;
  3788. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  3789. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3790. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3791. CPUFREQ_TRANSITION_NOTIFIER);
  3792. }
  3793. for_each_online_cpu(cpu)
  3794. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  3795. }
  3796. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  3797. static int kvm_is_in_guest(void)
  3798. {
  3799. return percpu_read(current_vcpu) != NULL;
  3800. }
  3801. static int kvm_is_user_mode(void)
  3802. {
  3803. int user_mode = 3;
  3804. if (percpu_read(current_vcpu))
  3805. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  3806. return user_mode != 0;
  3807. }
  3808. static unsigned long kvm_get_guest_ip(void)
  3809. {
  3810. unsigned long ip = 0;
  3811. if (percpu_read(current_vcpu))
  3812. ip = kvm_rip_read(percpu_read(current_vcpu));
  3813. return ip;
  3814. }
  3815. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  3816. .is_in_guest = kvm_is_in_guest,
  3817. .is_user_mode = kvm_is_user_mode,
  3818. .get_guest_ip = kvm_get_guest_ip,
  3819. };
  3820. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  3821. {
  3822. percpu_write(current_vcpu, vcpu);
  3823. }
  3824. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  3825. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  3826. {
  3827. percpu_write(current_vcpu, NULL);
  3828. }
  3829. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  3830. int kvm_arch_init(void *opaque)
  3831. {
  3832. int r;
  3833. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3834. if (kvm_x86_ops) {
  3835. printk(KERN_ERR "kvm: already loaded the other module\n");
  3836. r = -EEXIST;
  3837. goto out;
  3838. }
  3839. if (!ops->cpu_has_kvm_support()) {
  3840. printk(KERN_ERR "kvm: no hardware support\n");
  3841. r = -EOPNOTSUPP;
  3842. goto out;
  3843. }
  3844. if (ops->disabled_by_bios()) {
  3845. printk(KERN_ERR "kvm: disabled by bios\n");
  3846. r = -EOPNOTSUPP;
  3847. goto out;
  3848. }
  3849. r = kvm_mmu_module_init();
  3850. if (r)
  3851. goto out;
  3852. kvm_init_msr_list();
  3853. kvm_x86_ops = ops;
  3854. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3855. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3856. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3857. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3858. kvm_timer_init();
  3859. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  3860. if (cpu_has_xsave)
  3861. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  3862. return 0;
  3863. out:
  3864. return r;
  3865. }
  3866. void kvm_arch_exit(void)
  3867. {
  3868. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  3869. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3870. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3871. CPUFREQ_TRANSITION_NOTIFIER);
  3872. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  3873. kvm_x86_ops = NULL;
  3874. kvm_mmu_module_exit();
  3875. }
  3876. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3877. {
  3878. ++vcpu->stat.halt_exits;
  3879. if (irqchip_in_kernel(vcpu->kvm)) {
  3880. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3881. return 1;
  3882. } else {
  3883. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3884. return 0;
  3885. }
  3886. }
  3887. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3888. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3889. unsigned long a1)
  3890. {
  3891. if (is_long_mode(vcpu))
  3892. return a0;
  3893. else
  3894. return a0 | ((gpa_t)a1 << 32);
  3895. }
  3896. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3897. {
  3898. u64 param, ingpa, outgpa, ret;
  3899. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3900. bool fast, longmode;
  3901. int cs_db, cs_l;
  3902. /*
  3903. * hypercall generates UD from non zero cpl and real mode
  3904. * per HYPER-V spec
  3905. */
  3906. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3907. kvm_queue_exception(vcpu, UD_VECTOR);
  3908. return 0;
  3909. }
  3910. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3911. longmode = is_long_mode(vcpu) && cs_l == 1;
  3912. if (!longmode) {
  3913. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3914. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3915. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3916. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3917. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3918. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3919. }
  3920. #ifdef CONFIG_X86_64
  3921. else {
  3922. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3923. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3924. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3925. }
  3926. #endif
  3927. code = param & 0xffff;
  3928. fast = (param >> 16) & 0x1;
  3929. rep_cnt = (param >> 32) & 0xfff;
  3930. rep_idx = (param >> 48) & 0xfff;
  3931. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3932. switch (code) {
  3933. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3934. kvm_vcpu_on_spin(vcpu);
  3935. break;
  3936. default:
  3937. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3938. break;
  3939. }
  3940. ret = res | (((u64)rep_done & 0xfff) << 32);
  3941. if (longmode) {
  3942. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3943. } else {
  3944. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3945. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3946. }
  3947. return 1;
  3948. }
  3949. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3950. {
  3951. unsigned long nr, a0, a1, a2, a3, ret;
  3952. int r = 1;
  3953. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3954. return kvm_hv_hypercall(vcpu);
  3955. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3956. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3957. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3958. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3959. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3960. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3961. if (!is_long_mode(vcpu)) {
  3962. nr &= 0xFFFFFFFF;
  3963. a0 &= 0xFFFFFFFF;
  3964. a1 &= 0xFFFFFFFF;
  3965. a2 &= 0xFFFFFFFF;
  3966. a3 &= 0xFFFFFFFF;
  3967. }
  3968. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3969. ret = -KVM_EPERM;
  3970. goto out;
  3971. }
  3972. switch (nr) {
  3973. case KVM_HC_VAPIC_POLL_IRQ:
  3974. ret = 0;
  3975. break;
  3976. case KVM_HC_MMU_OP:
  3977. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3978. break;
  3979. default:
  3980. ret = -KVM_ENOSYS;
  3981. break;
  3982. }
  3983. out:
  3984. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3985. ++vcpu->stat.hypercalls;
  3986. return r;
  3987. }
  3988. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3989. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3990. {
  3991. char instruction[3];
  3992. unsigned long rip = kvm_rip_read(vcpu);
  3993. /*
  3994. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3995. * to ensure that the updated hypercall appears atomically across all
  3996. * VCPUs.
  3997. */
  3998. kvm_mmu_zap_all(vcpu->kvm);
  3999. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4000. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  4001. }
  4002. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4003. {
  4004. struct desc_ptr dt = { limit, base };
  4005. kvm_x86_ops->set_gdt(vcpu, &dt);
  4006. }
  4007. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4008. {
  4009. struct desc_ptr dt = { limit, base };
  4010. kvm_x86_ops->set_idt(vcpu, &dt);
  4011. }
  4012. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4013. {
  4014. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4015. int j, nent = vcpu->arch.cpuid_nent;
  4016. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4017. /* when no next entry is found, the current entry[i] is reselected */
  4018. for (j = i + 1; ; j = (j + 1) % nent) {
  4019. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4020. if (ej->function == e->function) {
  4021. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4022. return j;
  4023. }
  4024. }
  4025. return 0; /* silence gcc, even though control never reaches here */
  4026. }
  4027. /* find an entry with matching function, matching index (if needed), and that
  4028. * should be read next (if it's stateful) */
  4029. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4030. u32 function, u32 index)
  4031. {
  4032. if (e->function != function)
  4033. return 0;
  4034. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4035. return 0;
  4036. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4037. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4038. return 0;
  4039. return 1;
  4040. }
  4041. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4042. u32 function, u32 index)
  4043. {
  4044. int i;
  4045. struct kvm_cpuid_entry2 *best = NULL;
  4046. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4047. struct kvm_cpuid_entry2 *e;
  4048. e = &vcpu->arch.cpuid_entries[i];
  4049. if (is_matching_cpuid_entry(e, function, index)) {
  4050. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4051. move_to_next_stateful_cpuid_entry(vcpu, i);
  4052. best = e;
  4053. break;
  4054. }
  4055. /*
  4056. * Both basic or both extended?
  4057. */
  4058. if (((e->function ^ function) & 0x80000000) == 0)
  4059. if (!best || e->function > best->function)
  4060. best = e;
  4061. }
  4062. return best;
  4063. }
  4064. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4065. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4066. {
  4067. struct kvm_cpuid_entry2 *best;
  4068. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4069. if (!best || best->eax < 0x80000008)
  4070. goto not_found;
  4071. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4072. if (best)
  4073. return best->eax & 0xff;
  4074. not_found:
  4075. return 36;
  4076. }
  4077. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4078. {
  4079. u32 function, index;
  4080. struct kvm_cpuid_entry2 *best;
  4081. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4082. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4083. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4084. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4085. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4086. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4087. best = kvm_find_cpuid_entry(vcpu, function, index);
  4088. if (best) {
  4089. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4090. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4091. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4092. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4093. }
  4094. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4095. trace_kvm_cpuid(function,
  4096. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4097. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4098. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4099. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4100. }
  4101. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4102. /*
  4103. * Check if userspace requested an interrupt window, and that the
  4104. * interrupt window is open.
  4105. *
  4106. * No need to exit to userspace if we already have an interrupt queued.
  4107. */
  4108. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4109. {
  4110. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4111. vcpu->run->request_interrupt_window &&
  4112. kvm_arch_interrupt_allowed(vcpu));
  4113. }
  4114. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4115. {
  4116. struct kvm_run *kvm_run = vcpu->run;
  4117. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4118. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4119. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4120. if (irqchip_in_kernel(vcpu->kvm))
  4121. kvm_run->ready_for_interrupt_injection = 1;
  4122. else
  4123. kvm_run->ready_for_interrupt_injection =
  4124. kvm_arch_interrupt_allowed(vcpu) &&
  4125. !kvm_cpu_has_interrupt(vcpu) &&
  4126. !kvm_event_needs_reinjection(vcpu);
  4127. }
  4128. static void vapic_enter(struct kvm_vcpu *vcpu)
  4129. {
  4130. struct kvm_lapic *apic = vcpu->arch.apic;
  4131. struct page *page;
  4132. if (!apic || !apic->vapic_addr)
  4133. return;
  4134. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4135. vcpu->arch.apic->vapic_page = page;
  4136. }
  4137. static void vapic_exit(struct kvm_vcpu *vcpu)
  4138. {
  4139. struct kvm_lapic *apic = vcpu->arch.apic;
  4140. int idx;
  4141. if (!apic || !apic->vapic_addr)
  4142. return;
  4143. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4144. kvm_release_page_dirty(apic->vapic_page);
  4145. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4146. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4147. }
  4148. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4149. {
  4150. int max_irr, tpr;
  4151. if (!kvm_x86_ops->update_cr8_intercept)
  4152. return;
  4153. if (!vcpu->arch.apic)
  4154. return;
  4155. if (!vcpu->arch.apic->vapic_addr)
  4156. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4157. else
  4158. max_irr = -1;
  4159. if (max_irr != -1)
  4160. max_irr >>= 4;
  4161. tpr = kvm_lapic_get_cr8(vcpu);
  4162. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4163. }
  4164. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4165. {
  4166. /* try to reinject previous events if any */
  4167. if (vcpu->arch.exception.pending) {
  4168. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4169. vcpu->arch.exception.has_error_code,
  4170. vcpu->arch.exception.error_code);
  4171. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4172. vcpu->arch.exception.has_error_code,
  4173. vcpu->arch.exception.error_code,
  4174. vcpu->arch.exception.reinject);
  4175. return;
  4176. }
  4177. if (vcpu->arch.nmi_injected) {
  4178. kvm_x86_ops->set_nmi(vcpu);
  4179. return;
  4180. }
  4181. if (vcpu->arch.interrupt.pending) {
  4182. kvm_x86_ops->set_irq(vcpu);
  4183. return;
  4184. }
  4185. /* try to inject new event if pending */
  4186. if (vcpu->arch.nmi_pending) {
  4187. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4188. vcpu->arch.nmi_pending = false;
  4189. vcpu->arch.nmi_injected = true;
  4190. kvm_x86_ops->set_nmi(vcpu);
  4191. }
  4192. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4193. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4194. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4195. false);
  4196. kvm_x86_ops->set_irq(vcpu);
  4197. }
  4198. }
  4199. }
  4200. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4201. {
  4202. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4203. !vcpu->guest_xcr0_loaded) {
  4204. /* kvm_set_xcr() also depends on this */
  4205. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4206. vcpu->guest_xcr0_loaded = 1;
  4207. }
  4208. }
  4209. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4210. {
  4211. if (vcpu->guest_xcr0_loaded) {
  4212. if (vcpu->arch.xcr0 != host_xcr0)
  4213. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4214. vcpu->guest_xcr0_loaded = 0;
  4215. }
  4216. }
  4217. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4218. {
  4219. int r;
  4220. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4221. vcpu->run->request_interrupt_window;
  4222. if (vcpu->requests) {
  4223. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4224. kvm_mmu_unload(vcpu);
  4225. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4226. __kvm_migrate_timers(vcpu);
  4227. if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
  4228. r = kvm_write_guest_time(vcpu);
  4229. if (unlikely(r))
  4230. goto out;
  4231. }
  4232. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4233. kvm_mmu_sync_roots(vcpu);
  4234. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4235. kvm_x86_ops->tlb_flush(vcpu);
  4236. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4237. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4238. r = 0;
  4239. goto out;
  4240. }
  4241. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4242. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4243. r = 0;
  4244. goto out;
  4245. }
  4246. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4247. vcpu->fpu_active = 0;
  4248. kvm_x86_ops->fpu_deactivate(vcpu);
  4249. }
  4250. }
  4251. r = kvm_mmu_reload(vcpu);
  4252. if (unlikely(r))
  4253. goto out;
  4254. preempt_disable();
  4255. kvm_x86_ops->prepare_guest_switch(vcpu);
  4256. if (vcpu->fpu_active)
  4257. kvm_load_guest_fpu(vcpu);
  4258. kvm_load_guest_xcr0(vcpu);
  4259. atomic_set(&vcpu->guest_mode, 1);
  4260. smp_wmb();
  4261. local_irq_disable();
  4262. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  4263. || need_resched() || signal_pending(current)) {
  4264. atomic_set(&vcpu->guest_mode, 0);
  4265. smp_wmb();
  4266. local_irq_enable();
  4267. preempt_enable();
  4268. r = 1;
  4269. goto out;
  4270. }
  4271. inject_pending_event(vcpu);
  4272. /* enable NMI/IRQ window open exits if needed */
  4273. if (vcpu->arch.nmi_pending)
  4274. kvm_x86_ops->enable_nmi_window(vcpu);
  4275. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4276. kvm_x86_ops->enable_irq_window(vcpu);
  4277. if (kvm_lapic_enabled(vcpu)) {
  4278. update_cr8_intercept(vcpu);
  4279. kvm_lapic_sync_to_vapic(vcpu);
  4280. }
  4281. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4282. kvm_guest_enter();
  4283. if (unlikely(vcpu->arch.switch_db_regs)) {
  4284. set_debugreg(0, 7);
  4285. set_debugreg(vcpu->arch.eff_db[0], 0);
  4286. set_debugreg(vcpu->arch.eff_db[1], 1);
  4287. set_debugreg(vcpu->arch.eff_db[2], 2);
  4288. set_debugreg(vcpu->arch.eff_db[3], 3);
  4289. }
  4290. trace_kvm_entry(vcpu->vcpu_id);
  4291. kvm_x86_ops->run(vcpu);
  4292. /*
  4293. * If the guest has used debug registers, at least dr7
  4294. * will be disabled while returning to the host.
  4295. * If we don't have active breakpoints in the host, we don't
  4296. * care about the messed up debug address registers. But if
  4297. * we have some of them active, restore the old state.
  4298. */
  4299. if (hw_breakpoint_active())
  4300. hw_breakpoint_restore();
  4301. atomic_set(&vcpu->guest_mode, 0);
  4302. smp_wmb();
  4303. local_irq_enable();
  4304. ++vcpu->stat.exits;
  4305. /*
  4306. * We must have an instruction between local_irq_enable() and
  4307. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4308. * the interrupt shadow. The stat.exits increment will do nicely.
  4309. * But we need to prevent reordering, hence this barrier():
  4310. */
  4311. barrier();
  4312. kvm_guest_exit();
  4313. preempt_enable();
  4314. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4315. /*
  4316. * Profile KVM exit RIPs:
  4317. */
  4318. if (unlikely(prof_on == KVM_PROFILING)) {
  4319. unsigned long rip = kvm_rip_read(vcpu);
  4320. profile_hit(KVM_PROFILING, (void *)rip);
  4321. }
  4322. kvm_lapic_sync_from_vapic(vcpu);
  4323. r = kvm_x86_ops->handle_exit(vcpu);
  4324. out:
  4325. return r;
  4326. }
  4327. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4328. {
  4329. int r;
  4330. struct kvm *kvm = vcpu->kvm;
  4331. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4332. pr_debug("vcpu %d received sipi with vector # %x\n",
  4333. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4334. kvm_lapic_reset(vcpu);
  4335. r = kvm_arch_vcpu_reset(vcpu);
  4336. if (r)
  4337. return r;
  4338. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4339. }
  4340. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4341. vapic_enter(vcpu);
  4342. r = 1;
  4343. while (r > 0) {
  4344. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  4345. r = vcpu_enter_guest(vcpu);
  4346. else {
  4347. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4348. kvm_vcpu_block(vcpu);
  4349. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4350. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4351. {
  4352. switch(vcpu->arch.mp_state) {
  4353. case KVM_MP_STATE_HALTED:
  4354. vcpu->arch.mp_state =
  4355. KVM_MP_STATE_RUNNABLE;
  4356. case KVM_MP_STATE_RUNNABLE:
  4357. break;
  4358. case KVM_MP_STATE_SIPI_RECEIVED:
  4359. default:
  4360. r = -EINTR;
  4361. break;
  4362. }
  4363. }
  4364. }
  4365. if (r <= 0)
  4366. break;
  4367. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4368. if (kvm_cpu_has_pending_timer(vcpu))
  4369. kvm_inject_pending_timer_irqs(vcpu);
  4370. if (dm_request_for_irq_injection(vcpu)) {
  4371. r = -EINTR;
  4372. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4373. ++vcpu->stat.request_irq_exits;
  4374. }
  4375. if (signal_pending(current)) {
  4376. r = -EINTR;
  4377. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4378. ++vcpu->stat.signal_exits;
  4379. }
  4380. if (need_resched()) {
  4381. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4382. kvm_resched(vcpu);
  4383. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4384. }
  4385. }
  4386. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4387. vapic_exit(vcpu);
  4388. return r;
  4389. }
  4390. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4391. {
  4392. int r;
  4393. sigset_t sigsaved;
  4394. if (vcpu->sigset_active)
  4395. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4396. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4397. kvm_vcpu_block(vcpu);
  4398. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4399. r = -EAGAIN;
  4400. goto out;
  4401. }
  4402. /* re-sync apic's tpr */
  4403. if (!irqchip_in_kernel(vcpu->kvm))
  4404. kvm_set_cr8(vcpu, kvm_run->cr8);
  4405. if (vcpu->arch.pio.count || vcpu->mmio_needed ||
  4406. vcpu->arch.emulate_ctxt.restart) {
  4407. if (vcpu->mmio_needed) {
  4408. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4409. vcpu->mmio_read_completed = 1;
  4410. vcpu->mmio_needed = 0;
  4411. }
  4412. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4413. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4414. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4415. if (r != EMULATE_DONE) {
  4416. r = 0;
  4417. goto out;
  4418. }
  4419. }
  4420. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4421. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4422. kvm_run->hypercall.ret);
  4423. r = __vcpu_run(vcpu);
  4424. out:
  4425. post_kvm_run_save(vcpu);
  4426. if (vcpu->sigset_active)
  4427. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4428. return r;
  4429. }
  4430. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4431. {
  4432. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4433. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4434. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4435. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4436. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4437. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4438. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4439. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4440. #ifdef CONFIG_X86_64
  4441. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4442. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4443. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4444. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4445. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4446. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4447. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4448. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4449. #endif
  4450. regs->rip = kvm_rip_read(vcpu);
  4451. regs->rflags = kvm_get_rflags(vcpu);
  4452. return 0;
  4453. }
  4454. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4455. {
  4456. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4457. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4458. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4459. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4460. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4461. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4462. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4463. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4464. #ifdef CONFIG_X86_64
  4465. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4466. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4467. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4468. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4469. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4470. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4471. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4472. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4473. #endif
  4474. kvm_rip_write(vcpu, regs->rip);
  4475. kvm_set_rflags(vcpu, regs->rflags);
  4476. vcpu->arch.exception.pending = false;
  4477. return 0;
  4478. }
  4479. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4480. {
  4481. struct kvm_segment cs;
  4482. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4483. *db = cs.db;
  4484. *l = cs.l;
  4485. }
  4486. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4487. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4488. struct kvm_sregs *sregs)
  4489. {
  4490. struct desc_ptr dt;
  4491. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4492. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4493. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4494. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4495. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4496. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4497. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4498. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4499. kvm_x86_ops->get_idt(vcpu, &dt);
  4500. sregs->idt.limit = dt.size;
  4501. sregs->idt.base = dt.address;
  4502. kvm_x86_ops->get_gdt(vcpu, &dt);
  4503. sregs->gdt.limit = dt.size;
  4504. sregs->gdt.base = dt.address;
  4505. sregs->cr0 = kvm_read_cr0(vcpu);
  4506. sregs->cr2 = vcpu->arch.cr2;
  4507. sregs->cr3 = vcpu->arch.cr3;
  4508. sregs->cr4 = kvm_read_cr4(vcpu);
  4509. sregs->cr8 = kvm_get_cr8(vcpu);
  4510. sregs->efer = vcpu->arch.efer;
  4511. sregs->apic_base = kvm_get_apic_base(vcpu);
  4512. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4513. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4514. set_bit(vcpu->arch.interrupt.nr,
  4515. (unsigned long *)sregs->interrupt_bitmap);
  4516. return 0;
  4517. }
  4518. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4519. struct kvm_mp_state *mp_state)
  4520. {
  4521. mp_state->mp_state = vcpu->arch.mp_state;
  4522. return 0;
  4523. }
  4524. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4525. struct kvm_mp_state *mp_state)
  4526. {
  4527. vcpu->arch.mp_state = mp_state->mp_state;
  4528. return 0;
  4529. }
  4530. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4531. bool has_error_code, u32 error_code)
  4532. {
  4533. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4534. int ret;
  4535. init_emulate_ctxt(vcpu);
  4536. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4537. tss_selector, reason, has_error_code,
  4538. error_code);
  4539. if (ret)
  4540. return EMULATE_FAIL;
  4541. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4542. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4543. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4544. return EMULATE_DONE;
  4545. }
  4546. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4547. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4548. struct kvm_sregs *sregs)
  4549. {
  4550. int mmu_reset_needed = 0;
  4551. int pending_vec, max_bits;
  4552. struct desc_ptr dt;
  4553. dt.size = sregs->idt.limit;
  4554. dt.address = sregs->idt.base;
  4555. kvm_x86_ops->set_idt(vcpu, &dt);
  4556. dt.size = sregs->gdt.limit;
  4557. dt.address = sregs->gdt.base;
  4558. kvm_x86_ops->set_gdt(vcpu, &dt);
  4559. vcpu->arch.cr2 = sregs->cr2;
  4560. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4561. vcpu->arch.cr3 = sregs->cr3;
  4562. kvm_set_cr8(vcpu, sregs->cr8);
  4563. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4564. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4565. kvm_set_apic_base(vcpu, sregs->apic_base);
  4566. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4567. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4568. vcpu->arch.cr0 = sregs->cr0;
  4569. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4570. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4571. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4572. load_pdptrs(vcpu, vcpu->arch.cr3);
  4573. mmu_reset_needed = 1;
  4574. }
  4575. if (mmu_reset_needed)
  4576. kvm_mmu_reset_context(vcpu);
  4577. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4578. pending_vec = find_first_bit(
  4579. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4580. if (pending_vec < max_bits) {
  4581. kvm_queue_interrupt(vcpu, pending_vec, false);
  4582. pr_debug("Set back pending irq %d\n", pending_vec);
  4583. if (irqchip_in_kernel(vcpu->kvm))
  4584. kvm_pic_clear_isr_ack(vcpu->kvm);
  4585. }
  4586. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4587. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4588. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4589. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4590. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4591. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4592. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4593. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4594. update_cr8_intercept(vcpu);
  4595. /* Older userspace won't unhalt the vcpu on reset. */
  4596. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4597. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4598. !is_protmode(vcpu))
  4599. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4600. return 0;
  4601. }
  4602. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4603. struct kvm_guest_debug *dbg)
  4604. {
  4605. unsigned long rflags;
  4606. int i, r;
  4607. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4608. r = -EBUSY;
  4609. if (vcpu->arch.exception.pending)
  4610. goto out;
  4611. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4612. kvm_queue_exception(vcpu, DB_VECTOR);
  4613. else
  4614. kvm_queue_exception(vcpu, BP_VECTOR);
  4615. }
  4616. /*
  4617. * Read rflags as long as potentially injected trace flags are still
  4618. * filtered out.
  4619. */
  4620. rflags = kvm_get_rflags(vcpu);
  4621. vcpu->guest_debug = dbg->control;
  4622. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4623. vcpu->guest_debug = 0;
  4624. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4625. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4626. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4627. vcpu->arch.switch_db_regs =
  4628. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4629. } else {
  4630. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4631. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4632. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4633. }
  4634. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4635. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4636. get_segment_base(vcpu, VCPU_SREG_CS);
  4637. /*
  4638. * Trigger an rflags update that will inject or remove the trace
  4639. * flags.
  4640. */
  4641. kvm_set_rflags(vcpu, rflags);
  4642. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4643. r = 0;
  4644. out:
  4645. return r;
  4646. }
  4647. /*
  4648. * Translate a guest virtual address to a guest physical address.
  4649. */
  4650. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4651. struct kvm_translation *tr)
  4652. {
  4653. unsigned long vaddr = tr->linear_address;
  4654. gpa_t gpa;
  4655. int idx;
  4656. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4657. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4658. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4659. tr->physical_address = gpa;
  4660. tr->valid = gpa != UNMAPPED_GVA;
  4661. tr->writeable = 1;
  4662. tr->usermode = 0;
  4663. return 0;
  4664. }
  4665. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4666. {
  4667. struct i387_fxsave_struct *fxsave =
  4668. &vcpu->arch.guest_fpu.state->fxsave;
  4669. memcpy(fpu->fpr, fxsave->st_space, 128);
  4670. fpu->fcw = fxsave->cwd;
  4671. fpu->fsw = fxsave->swd;
  4672. fpu->ftwx = fxsave->twd;
  4673. fpu->last_opcode = fxsave->fop;
  4674. fpu->last_ip = fxsave->rip;
  4675. fpu->last_dp = fxsave->rdp;
  4676. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4677. return 0;
  4678. }
  4679. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4680. {
  4681. struct i387_fxsave_struct *fxsave =
  4682. &vcpu->arch.guest_fpu.state->fxsave;
  4683. memcpy(fxsave->st_space, fpu->fpr, 128);
  4684. fxsave->cwd = fpu->fcw;
  4685. fxsave->swd = fpu->fsw;
  4686. fxsave->twd = fpu->ftwx;
  4687. fxsave->fop = fpu->last_opcode;
  4688. fxsave->rip = fpu->last_ip;
  4689. fxsave->rdp = fpu->last_dp;
  4690. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4691. return 0;
  4692. }
  4693. int fx_init(struct kvm_vcpu *vcpu)
  4694. {
  4695. int err;
  4696. err = fpu_alloc(&vcpu->arch.guest_fpu);
  4697. if (err)
  4698. return err;
  4699. fpu_finit(&vcpu->arch.guest_fpu);
  4700. /*
  4701. * Ensure guest xcr0 is valid for loading
  4702. */
  4703. vcpu->arch.xcr0 = XSTATE_FP;
  4704. vcpu->arch.cr0 |= X86_CR0_ET;
  4705. return 0;
  4706. }
  4707. EXPORT_SYMBOL_GPL(fx_init);
  4708. static void fx_free(struct kvm_vcpu *vcpu)
  4709. {
  4710. fpu_free(&vcpu->arch.guest_fpu);
  4711. }
  4712. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4713. {
  4714. if (vcpu->guest_fpu_loaded)
  4715. return;
  4716. /*
  4717. * Restore all possible states in the guest,
  4718. * and assume host would use all available bits.
  4719. * Guest xcr0 would be loaded later.
  4720. */
  4721. kvm_put_guest_xcr0(vcpu);
  4722. vcpu->guest_fpu_loaded = 1;
  4723. unlazy_fpu(current);
  4724. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4725. trace_kvm_fpu(1);
  4726. }
  4727. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4728. {
  4729. kvm_put_guest_xcr0(vcpu);
  4730. if (!vcpu->guest_fpu_loaded)
  4731. return;
  4732. vcpu->guest_fpu_loaded = 0;
  4733. fpu_save_init(&vcpu->arch.guest_fpu);
  4734. ++vcpu->stat.fpu_reload;
  4735. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  4736. trace_kvm_fpu(0);
  4737. }
  4738. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4739. {
  4740. if (vcpu->arch.time_page) {
  4741. kvm_release_page_dirty(vcpu->arch.time_page);
  4742. vcpu->arch.time_page = NULL;
  4743. }
  4744. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  4745. fx_free(vcpu);
  4746. kvm_x86_ops->vcpu_free(vcpu);
  4747. }
  4748. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4749. unsigned int id)
  4750. {
  4751. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  4752. printk_once(KERN_WARNING
  4753. "kvm: SMP vm created on host with unstable TSC; "
  4754. "guest TSC will not be reliable\n");
  4755. return kvm_x86_ops->vcpu_create(kvm, id);
  4756. }
  4757. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4758. {
  4759. int r;
  4760. vcpu->arch.mtrr_state.have_fixed = 1;
  4761. vcpu_load(vcpu);
  4762. r = kvm_arch_vcpu_reset(vcpu);
  4763. if (r == 0)
  4764. r = kvm_mmu_setup(vcpu);
  4765. vcpu_put(vcpu);
  4766. if (r < 0)
  4767. goto free_vcpu;
  4768. return 0;
  4769. free_vcpu:
  4770. kvm_x86_ops->vcpu_free(vcpu);
  4771. return r;
  4772. }
  4773. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4774. {
  4775. vcpu_load(vcpu);
  4776. kvm_mmu_unload(vcpu);
  4777. vcpu_put(vcpu);
  4778. fx_free(vcpu);
  4779. kvm_x86_ops->vcpu_free(vcpu);
  4780. }
  4781. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4782. {
  4783. vcpu->arch.nmi_pending = false;
  4784. vcpu->arch.nmi_injected = false;
  4785. vcpu->arch.switch_db_regs = 0;
  4786. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4787. vcpu->arch.dr6 = DR6_FIXED_1;
  4788. vcpu->arch.dr7 = DR7_FIXED_1;
  4789. return kvm_x86_ops->vcpu_reset(vcpu);
  4790. }
  4791. int kvm_arch_hardware_enable(void *garbage)
  4792. {
  4793. struct kvm *kvm;
  4794. struct kvm_vcpu *vcpu;
  4795. int i;
  4796. kvm_shared_msr_cpu_online();
  4797. list_for_each_entry(kvm, &vm_list, vm_list)
  4798. kvm_for_each_vcpu(i, vcpu, kvm)
  4799. if (vcpu->cpu == smp_processor_id())
  4800. kvm_request_guest_time_update(vcpu);
  4801. return kvm_x86_ops->hardware_enable(garbage);
  4802. }
  4803. void kvm_arch_hardware_disable(void *garbage)
  4804. {
  4805. kvm_x86_ops->hardware_disable(garbage);
  4806. drop_user_return_notifiers(garbage);
  4807. }
  4808. int kvm_arch_hardware_setup(void)
  4809. {
  4810. return kvm_x86_ops->hardware_setup();
  4811. }
  4812. void kvm_arch_hardware_unsetup(void)
  4813. {
  4814. kvm_x86_ops->hardware_unsetup();
  4815. }
  4816. void kvm_arch_check_processor_compat(void *rtn)
  4817. {
  4818. kvm_x86_ops->check_processor_compatibility(rtn);
  4819. }
  4820. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4821. {
  4822. struct page *page;
  4823. struct kvm *kvm;
  4824. int r;
  4825. BUG_ON(vcpu->kvm == NULL);
  4826. kvm = vcpu->kvm;
  4827. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  4828. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4829. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4830. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4831. else
  4832. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4833. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4834. if (!page) {
  4835. r = -ENOMEM;
  4836. goto fail;
  4837. }
  4838. vcpu->arch.pio_data = page_address(page);
  4839. r = kvm_mmu_create(vcpu);
  4840. if (r < 0)
  4841. goto fail_free_pio_data;
  4842. if (irqchip_in_kernel(kvm)) {
  4843. r = kvm_create_lapic(vcpu);
  4844. if (r < 0)
  4845. goto fail_mmu_destroy;
  4846. }
  4847. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4848. GFP_KERNEL);
  4849. if (!vcpu->arch.mce_banks) {
  4850. r = -ENOMEM;
  4851. goto fail_free_lapic;
  4852. }
  4853. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4854. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  4855. goto fail_free_mce_banks;
  4856. return 0;
  4857. fail_free_mce_banks:
  4858. kfree(vcpu->arch.mce_banks);
  4859. fail_free_lapic:
  4860. kvm_free_lapic(vcpu);
  4861. fail_mmu_destroy:
  4862. kvm_mmu_destroy(vcpu);
  4863. fail_free_pio_data:
  4864. free_page((unsigned long)vcpu->arch.pio_data);
  4865. fail:
  4866. return r;
  4867. }
  4868. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4869. {
  4870. int idx;
  4871. kfree(vcpu->arch.mce_banks);
  4872. kvm_free_lapic(vcpu);
  4873. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4874. kvm_mmu_destroy(vcpu);
  4875. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4876. free_page((unsigned long)vcpu->arch.pio_data);
  4877. }
  4878. struct kvm *kvm_arch_create_vm(void)
  4879. {
  4880. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4881. if (!kvm)
  4882. return ERR_PTR(-ENOMEM);
  4883. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4884. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4885. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4886. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4887. spin_lock_init(&kvm->arch.tsc_write_lock);
  4888. return kvm;
  4889. }
  4890. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4891. {
  4892. vcpu_load(vcpu);
  4893. kvm_mmu_unload(vcpu);
  4894. vcpu_put(vcpu);
  4895. }
  4896. static void kvm_free_vcpus(struct kvm *kvm)
  4897. {
  4898. unsigned int i;
  4899. struct kvm_vcpu *vcpu;
  4900. /*
  4901. * Unpin any mmu pages first.
  4902. */
  4903. kvm_for_each_vcpu(i, vcpu, kvm)
  4904. kvm_unload_vcpu_mmu(vcpu);
  4905. kvm_for_each_vcpu(i, vcpu, kvm)
  4906. kvm_arch_vcpu_free(vcpu);
  4907. mutex_lock(&kvm->lock);
  4908. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4909. kvm->vcpus[i] = NULL;
  4910. atomic_set(&kvm->online_vcpus, 0);
  4911. mutex_unlock(&kvm->lock);
  4912. }
  4913. void kvm_arch_sync_events(struct kvm *kvm)
  4914. {
  4915. kvm_free_all_assigned_devices(kvm);
  4916. kvm_free_pit(kvm);
  4917. }
  4918. void kvm_arch_destroy_vm(struct kvm *kvm)
  4919. {
  4920. kvm_iommu_unmap_guest(kvm);
  4921. kfree(kvm->arch.vpic);
  4922. kfree(kvm->arch.vioapic);
  4923. kvm_free_vcpus(kvm);
  4924. kvm_free_physmem(kvm);
  4925. if (kvm->arch.apic_access_page)
  4926. put_page(kvm->arch.apic_access_page);
  4927. if (kvm->arch.ept_identity_pagetable)
  4928. put_page(kvm->arch.ept_identity_pagetable);
  4929. cleanup_srcu_struct(&kvm->srcu);
  4930. kfree(kvm);
  4931. }
  4932. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4933. struct kvm_memory_slot *memslot,
  4934. struct kvm_memory_slot old,
  4935. struct kvm_userspace_memory_region *mem,
  4936. int user_alloc)
  4937. {
  4938. int npages = memslot->npages;
  4939. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  4940. /* Prevent internal slot pages from being moved by fork()/COW. */
  4941. if (memslot->id >= KVM_MEMORY_SLOTS)
  4942. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  4943. /*To keep backward compatibility with older userspace,
  4944. *x86 needs to hanlde !user_alloc case.
  4945. */
  4946. if (!user_alloc) {
  4947. if (npages && !old.rmap) {
  4948. unsigned long userspace_addr;
  4949. down_write(&current->mm->mmap_sem);
  4950. userspace_addr = do_mmap(NULL, 0,
  4951. npages * PAGE_SIZE,
  4952. PROT_READ | PROT_WRITE,
  4953. map_flags,
  4954. 0);
  4955. up_write(&current->mm->mmap_sem);
  4956. if (IS_ERR((void *)userspace_addr))
  4957. return PTR_ERR((void *)userspace_addr);
  4958. memslot->userspace_addr = userspace_addr;
  4959. }
  4960. }
  4961. return 0;
  4962. }
  4963. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4964. struct kvm_userspace_memory_region *mem,
  4965. struct kvm_memory_slot old,
  4966. int user_alloc)
  4967. {
  4968. int npages = mem->memory_size >> PAGE_SHIFT;
  4969. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4970. int ret;
  4971. down_write(&current->mm->mmap_sem);
  4972. ret = do_munmap(current->mm, old.userspace_addr,
  4973. old.npages * PAGE_SIZE);
  4974. up_write(&current->mm->mmap_sem);
  4975. if (ret < 0)
  4976. printk(KERN_WARNING
  4977. "kvm_vm_ioctl_set_memory_region: "
  4978. "failed to munmap memory\n");
  4979. }
  4980. spin_lock(&kvm->mmu_lock);
  4981. if (!kvm->arch.n_requested_mmu_pages) {
  4982. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4983. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4984. }
  4985. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4986. spin_unlock(&kvm->mmu_lock);
  4987. }
  4988. void kvm_arch_flush_shadow(struct kvm *kvm)
  4989. {
  4990. kvm_mmu_zap_all(kvm);
  4991. kvm_reload_remote_mmus(kvm);
  4992. }
  4993. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4994. {
  4995. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4996. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4997. || vcpu->arch.nmi_pending ||
  4998. (kvm_arch_interrupt_allowed(vcpu) &&
  4999. kvm_cpu_has_interrupt(vcpu));
  5000. }
  5001. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5002. {
  5003. int me;
  5004. int cpu = vcpu->cpu;
  5005. if (waitqueue_active(&vcpu->wq)) {
  5006. wake_up_interruptible(&vcpu->wq);
  5007. ++vcpu->stat.halt_wakeup;
  5008. }
  5009. me = get_cpu();
  5010. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5011. if (atomic_xchg(&vcpu->guest_mode, 0))
  5012. smp_send_reschedule(cpu);
  5013. put_cpu();
  5014. }
  5015. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5016. {
  5017. return kvm_x86_ops->interrupt_allowed(vcpu);
  5018. }
  5019. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5020. {
  5021. unsigned long current_rip = kvm_rip_read(vcpu) +
  5022. get_segment_base(vcpu, VCPU_SREG_CS);
  5023. return current_rip == linear_rip;
  5024. }
  5025. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5026. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5027. {
  5028. unsigned long rflags;
  5029. rflags = kvm_x86_ops->get_rflags(vcpu);
  5030. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5031. rflags &= ~X86_EFLAGS_TF;
  5032. return rflags;
  5033. }
  5034. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5035. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5036. {
  5037. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5038. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5039. rflags |= X86_EFLAGS_TF;
  5040. kvm_x86_ops->set_rflags(vcpu, rflags);
  5041. }
  5042. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5043. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5044. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5045. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5046. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5047. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5048. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5049. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5050. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5051. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5052. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5053. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5054. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);