dispc.c 91 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735
  1. /*
  2. * linux/drivers/video/omap2/dss/dispc.c
  3. *
  4. * Copyright (C) 2009 Nokia Corporation
  5. * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
  6. *
  7. * Some code and ideas taken from drivers/video/omap/ driver
  8. * by Imre Deak.
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published by
  12. * the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program. If not, see <http://www.gnu.org/licenses/>.
  21. */
  22. #define DSS_SUBSYS_NAME "DISPC"
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/export.h>
  27. #include <linux/clk.h>
  28. #include <linux/io.h>
  29. #include <linux/jiffies.h>
  30. #include <linux/seq_file.h>
  31. #include <linux/delay.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/hardirq.h>
  34. #include <linux/platform_device.h>
  35. #include <linux/pm_runtime.h>
  36. #include <linux/sizes.h>
  37. #include <video/omapdss.h>
  38. #include "dss.h"
  39. #include "dss_features.h"
  40. #include "dispc.h"
  41. /* DISPC */
  42. #define DISPC_SZ_REGS SZ_4K
  43. enum omap_burst_size {
  44. BURST_SIZE_X2 = 0,
  45. BURST_SIZE_X4 = 1,
  46. BURST_SIZE_X8 = 2,
  47. };
  48. #define REG_GET(idx, start, end) \
  49. FLD_GET(dispc_read_reg(idx), start, end)
  50. #define REG_FLD_MOD(idx, val, start, end) \
  51. dispc_write_reg(idx, FLD_MOD(dispc_read_reg(idx), val, start, end))
  52. struct dispc_features {
  53. u8 sw_start;
  54. u8 fp_start;
  55. u8 bp_start;
  56. u16 sw_max;
  57. u16 vp_max;
  58. u16 hp_max;
  59. u8 mgr_width_start;
  60. u8 mgr_height_start;
  61. u16 mgr_width_max;
  62. u16 mgr_height_max;
  63. unsigned long max_lcd_pclk;
  64. unsigned long max_tv_pclk;
  65. int (*calc_scaling) (unsigned long pclk, unsigned long lclk,
  66. const struct omap_video_timings *mgr_timings,
  67. u16 width, u16 height, u16 out_width, u16 out_height,
  68. enum omap_color_mode color_mode, bool *five_taps,
  69. int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
  70. u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
  71. unsigned long (*calc_core_clk) (unsigned long pclk,
  72. u16 width, u16 height, u16 out_width, u16 out_height,
  73. bool mem_to_mem);
  74. u8 num_fifos;
  75. /* swap GFX & WB fifos */
  76. bool gfx_fifo_workaround:1;
  77. /* no DISPC_IRQ_FRAMEDONETV on this SoC */
  78. bool no_framedone_tv:1;
  79. };
  80. #define DISPC_MAX_NR_FIFOS 5
  81. static struct {
  82. struct platform_device *pdev;
  83. void __iomem *base;
  84. int ctx_loss_cnt;
  85. int irq;
  86. u32 fifo_size[DISPC_MAX_NR_FIFOS];
  87. /* maps which plane is using a fifo. fifo-id -> plane-id */
  88. int fifo_assignment[DISPC_MAX_NR_FIFOS];
  89. bool ctx_valid;
  90. u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
  91. const struct dispc_features *feat;
  92. } dispc;
  93. enum omap_color_component {
  94. /* used for all color formats for OMAP3 and earlier
  95. * and for RGB and Y color component on OMAP4
  96. */
  97. DISPC_COLOR_COMPONENT_RGB_Y = 1 << 0,
  98. /* used for UV component for
  99. * OMAP_DSS_COLOR_YUV2, OMAP_DSS_COLOR_UYVY, OMAP_DSS_COLOR_NV12
  100. * color formats on OMAP4
  101. */
  102. DISPC_COLOR_COMPONENT_UV = 1 << 1,
  103. };
  104. enum mgr_reg_fields {
  105. DISPC_MGR_FLD_ENABLE,
  106. DISPC_MGR_FLD_STNTFT,
  107. DISPC_MGR_FLD_GO,
  108. DISPC_MGR_FLD_TFTDATALINES,
  109. DISPC_MGR_FLD_STALLMODE,
  110. DISPC_MGR_FLD_TCKENABLE,
  111. DISPC_MGR_FLD_TCKSELECTION,
  112. DISPC_MGR_FLD_CPR,
  113. DISPC_MGR_FLD_FIFOHANDCHECK,
  114. /* used to maintain a count of the above fields */
  115. DISPC_MGR_FLD_NUM,
  116. };
  117. static const struct {
  118. const char *name;
  119. u32 vsync_irq;
  120. u32 framedone_irq;
  121. u32 sync_lost_irq;
  122. struct reg_field reg_desc[DISPC_MGR_FLD_NUM];
  123. } mgr_desc[] = {
  124. [OMAP_DSS_CHANNEL_LCD] = {
  125. .name = "LCD",
  126. .vsync_irq = DISPC_IRQ_VSYNC,
  127. .framedone_irq = DISPC_IRQ_FRAMEDONE,
  128. .sync_lost_irq = DISPC_IRQ_SYNC_LOST,
  129. .reg_desc = {
  130. [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 0, 0 },
  131. [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL, 3, 3 },
  132. [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 5, 5 },
  133. [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL, 9, 8 },
  134. [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL, 11, 11 },
  135. [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 10, 10 },
  136. [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 11, 11 },
  137. [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG, 15, 15 },
  138. [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
  139. },
  140. },
  141. [OMAP_DSS_CHANNEL_DIGIT] = {
  142. .name = "DIGIT",
  143. .vsync_irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
  144. .framedone_irq = DISPC_IRQ_FRAMEDONETV,
  145. .sync_lost_irq = DISPC_IRQ_SYNC_LOST_DIGIT,
  146. .reg_desc = {
  147. [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 1, 1 },
  148. [DISPC_MGR_FLD_STNTFT] = { },
  149. [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 6, 6 },
  150. [DISPC_MGR_FLD_TFTDATALINES] = { },
  151. [DISPC_MGR_FLD_STALLMODE] = { },
  152. [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 12, 12 },
  153. [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 13, 13 },
  154. [DISPC_MGR_FLD_CPR] = { },
  155. [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
  156. },
  157. },
  158. [OMAP_DSS_CHANNEL_LCD2] = {
  159. .name = "LCD2",
  160. .vsync_irq = DISPC_IRQ_VSYNC2,
  161. .framedone_irq = DISPC_IRQ_FRAMEDONE2,
  162. .sync_lost_irq = DISPC_IRQ_SYNC_LOST2,
  163. .reg_desc = {
  164. [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL2, 0, 0 },
  165. [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL2, 3, 3 },
  166. [DISPC_MGR_FLD_GO] = { DISPC_CONTROL2, 5, 5 },
  167. [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL2, 9, 8 },
  168. [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL2, 11, 11 },
  169. [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG2, 10, 10 },
  170. [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG2, 11, 11 },
  171. [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG2, 15, 15 },
  172. [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG2, 16, 16 },
  173. },
  174. },
  175. [OMAP_DSS_CHANNEL_LCD3] = {
  176. .name = "LCD3",
  177. .vsync_irq = DISPC_IRQ_VSYNC3,
  178. .framedone_irq = DISPC_IRQ_FRAMEDONE3,
  179. .sync_lost_irq = DISPC_IRQ_SYNC_LOST3,
  180. .reg_desc = {
  181. [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL3, 0, 0 },
  182. [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL3, 3, 3 },
  183. [DISPC_MGR_FLD_GO] = { DISPC_CONTROL3, 5, 5 },
  184. [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL3, 9, 8 },
  185. [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL3, 11, 11 },
  186. [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG3, 10, 10 },
  187. [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG3, 11, 11 },
  188. [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG3, 15, 15 },
  189. [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG3, 16, 16 },
  190. },
  191. },
  192. };
  193. struct color_conv_coef {
  194. int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
  195. int full_range;
  196. };
  197. static unsigned long dispc_plane_pclk_rate(enum omap_plane plane);
  198. static unsigned long dispc_plane_lclk_rate(enum omap_plane plane);
  199. static inline void dispc_write_reg(const u16 idx, u32 val)
  200. {
  201. __raw_writel(val, dispc.base + idx);
  202. }
  203. static inline u32 dispc_read_reg(const u16 idx)
  204. {
  205. return __raw_readl(dispc.base + idx);
  206. }
  207. static u32 mgr_fld_read(enum omap_channel channel, enum mgr_reg_fields regfld)
  208. {
  209. const struct reg_field rfld = mgr_desc[channel].reg_desc[regfld];
  210. return REG_GET(rfld.reg, rfld.high, rfld.low);
  211. }
  212. static void mgr_fld_write(enum omap_channel channel,
  213. enum mgr_reg_fields regfld, int val) {
  214. const struct reg_field rfld = mgr_desc[channel].reg_desc[regfld];
  215. REG_FLD_MOD(rfld.reg, val, rfld.high, rfld.low);
  216. }
  217. #define SR(reg) \
  218. dispc.ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(DISPC_##reg)
  219. #define RR(reg) \
  220. dispc_write_reg(DISPC_##reg, dispc.ctx[DISPC_##reg / sizeof(u32)])
  221. static void dispc_save_context(void)
  222. {
  223. int i, j;
  224. DSSDBG("dispc_save_context\n");
  225. SR(IRQENABLE);
  226. SR(CONTROL);
  227. SR(CONFIG);
  228. SR(LINE_NUMBER);
  229. if (dss_has_feature(FEAT_ALPHA_FIXED_ZORDER) ||
  230. dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
  231. SR(GLOBAL_ALPHA);
  232. if (dss_has_feature(FEAT_MGR_LCD2)) {
  233. SR(CONTROL2);
  234. SR(CONFIG2);
  235. }
  236. if (dss_has_feature(FEAT_MGR_LCD3)) {
  237. SR(CONTROL3);
  238. SR(CONFIG3);
  239. }
  240. for (i = 0; i < dss_feat_get_num_mgrs(); i++) {
  241. SR(DEFAULT_COLOR(i));
  242. SR(TRANS_COLOR(i));
  243. SR(SIZE_MGR(i));
  244. if (i == OMAP_DSS_CHANNEL_DIGIT)
  245. continue;
  246. SR(TIMING_H(i));
  247. SR(TIMING_V(i));
  248. SR(POL_FREQ(i));
  249. SR(DIVISORo(i));
  250. SR(DATA_CYCLE1(i));
  251. SR(DATA_CYCLE2(i));
  252. SR(DATA_CYCLE3(i));
  253. if (dss_has_feature(FEAT_CPR)) {
  254. SR(CPR_COEF_R(i));
  255. SR(CPR_COEF_G(i));
  256. SR(CPR_COEF_B(i));
  257. }
  258. }
  259. for (i = 0; i < dss_feat_get_num_ovls(); i++) {
  260. SR(OVL_BA0(i));
  261. SR(OVL_BA1(i));
  262. SR(OVL_POSITION(i));
  263. SR(OVL_SIZE(i));
  264. SR(OVL_ATTRIBUTES(i));
  265. SR(OVL_FIFO_THRESHOLD(i));
  266. SR(OVL_ROW_INC(i));
  267. SR(OVL_PIXEL_INC(i));
  268. if (dss_has_feature(FEAT_PRELOAD))
  269. SR(OVL_PRELOAD(i));
  270. if (i == OMAP_DSS_GFX) {
  271. SR(OVL_WINDOW_SKIP(i));
  272. SR(OVL_TABLE_BA(i));
  273. continue;
  274. }
  275. SR(OVL_FIR(i));
  276. SR(OVL_PICTURE_SIZE(i));
  277. SR(OVL_ACCU0(i));
  278. SR(OVL_ACCU1(i));
  279. for (j = 0; j < 8; j++)
  280. SR(OVL_FIR_COEF_H(i, j));
  281. for (j = 0; j < 8; j++)
  282. SR(OVL_FIR_COEF_HV(i, j));
  283. for (j = 0; j < 5; j++)
  284. SR(OVL_CONV_COEF(i, j));
  285. if (dss_has_feature(FEAT_FIR_COEF_V)) {
  286. for (j = 0; j < 8; j++)
  287. SR(OVL_FIR_COEF_V(i, j));
  288. }
  289. if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
  290. SR(OVL_BA0_UV(i));
  291. SR(OVL_BA1_UV(i));
  292. SR(OVL_FIR2(i));
  293. SR(OVL_ACCU2_0(i));
  294. SR(OVL_ACCU2_1(i));
  295. for (j = 0; j < 8; j++)
  296. SR(OVL_FIR_COEF_H2(i, j));
  297. for (j = 0; j < 8; j++)
  298. SR(OVL_FIR_COEF_HV2(i, j));
  299. for (j = 0; j < 8; j++)
  300. SR(OVL_FIR_COEF_V2(i, j));
  301. }
  302. if (dss_has_feature(FEAT_ATTR2))
  303. SR(OVL_ATTRIBUTES2(i));
  304. }
  305. if (dss_has_feature(FEAT_CORE_CLK_DIV))
  306. SR(DIVISOR);
  307. dispc.ctx_loss_cnt = dss_get_ctx_loss_count();
  308. dispc.ctx_valid = true;
  309. DSSDBG("context saved, ctx_loss_count %d\n", dispc.ctx_loss_cnt);
  310. }
  311. static void dispc_restore_context(void)
  312. {
  313. int i, j, ctx;
  314. DSSDBG("dispc_restore_context\n");
  315. if (!dispc.ctx_valid)
  316. return;
  317. ctx = dss_get_ctx_loss_count();
  318. if (ctx >= 0 && ctx == dispc.ctx_loss_cnt)
  319. return;
  320. DSSDBG("ctx_loss_count: saved %d, current %d\n",
  321. dispc.ctx_loss_cnt, ctx);
  322. /*RR(IRQENABLE);*/
  323. /*RR(CONTROL);*/
  324. RR(CONFIG);
  325. RR(LINE_NUMBER);
  326. if (dss_has_feature(FEAT_ALPHA_FIXED_ZORDER) ||
  327. dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
  328. RR(GLOBAL_ALPHA);
  329. if (dss_has_feature(FEAT_MGR_LCD2))
  330. RR(CONFIG2);
  331. if (dss_has_feature(FEAT_MGR_LCD3))
  332. RR(CONFIG3);
  333. for (i = 0; i < dss_feat_get_num_mgrs(); i++) {
  334. RR(DEFAULT_COLOR(i));
  335. RR(TRANS_COLOR(i));
  336. RR(SIZE_MGR(i));
  337. if (i == OMAP_DSS_CHANNEL_DIGIT)
  338. continue;
  339. RR(TIMING_H(i));
  340. RR(TIMING_V(i));
  341. RR(POL_FREQ(i));
  342. RR(DIVISORo(i));
  343. RR(DATA_CYCLE1(i));
  344. RR(DATA_CYCLE2(i));
  345. RR(DATA_CYCLE3(i));
  346. if (dss_has_feature(FEAT_CPR)) {
  347. RR(CPR_COEF_R(i));
  348. RR(CPR_COEF_G(i));
  349. RR(CPR_COEF_B(i));
  350. }
  351. }
  352. for (i = 0; i < dss_feat_get_num_ovls(); i++) {
  353. RR(OVL_BA0(i));
  354. RR(OVL_BA1(i));
  355. RR(OVL_POSITION(i));
  356. RR(OVL_SIZE(i));
  357. RR(OVL_ATTRIBUTES(i));
  358. RR(OVL_FIFO_THRESHOLD(i));
  359. RR(OVL_ROW_INC(i));
  360. RR(OVL_PIXEL_INC(i));
  361. if (dss_has_feature(FEAT_PRELOAD))
  362. RR(OVL_PRELOAD(i));
  363. if (i == OMAP_DSS_GFX) {
  364. RR(OVL_WINDOW_SKIP(i));
  365. RR(OVL_TABLE_BA(i));
  366. continue;
  367. }
  368. RR(OVL_FIR(i));
  369. RR(OVL_PICTURE_SIZE(i));
  370. RR(OVL_ACCU0(i));
  371. RR(OVL_ACCU1(i));
  372. for (j = 0; j < 8; j++)
  373. RR(OVL_FIR_COEF_H(i, j));
  374. for (j = 0; j < 8; j++)
  375. RR(OVL_FIR_COEF_HV(i, j));
  376. for (j = 0; j < 5; j++)
  377. RR(OVL_CONV_COEF(i, j));
  378. if (dss_has_feature(FEAT_FIR_COEF_V)) {
  379. for (j = 0; j < 8; j++)
  380. RR(OVL_FIR_COEF_V(i, j));
  381. }
  382. if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
  383. RR(OVL_BA0_UV(i));
  384. RR(OVL_BA1_UV(i));
  385. RR(OVL_FIR2(i));
  386. RR(OVL_ACCU2_0(i));
  387. RR(OVL_ACCU2_1(i));
  388. for (j = 0; j < 8; j++)
  389. RR(OVL_FIR_COEF_H2(i, j));
  390. for (j = 0; j < 8; j++)
  391. RR(OVL_FIR_COEF_HV2(i, j));
  392. for (j = 0; j < 8; j++)
  393. RR(OVL_FIR_COEF_V2(i, j));
  394. }
  395. if (dss_has_feature(FEAT_ATTR2))
  396. RR(OVL_ATTRIBUTES2(i));
  397. }
  398. if (dss_has_feature(FEAT_CORE_CLK_DIV))
  399. RR(DIVISOR);
  400. /* enable last, because LCD & DIGIT enable are here */
  401. RR(CONTROL);
  402. if (dss_has_feature(FEAT_MGR_LCD2))
  403. RR(CONTROL2);
  404. if (dss_has_feature(FEAT_MGR_LCD3))
  405. RR(CONTROL3);
  406. /* clear spurious SYNC_LOST_DIGIT interrupts */
  407. dispc_clear_irqstatus(DISPC_IRQ_SYNC_LOST_DIGIT);
  408. /*
  409. * enable last so IRQs won't trigger before
  410. * the context is fully restored
  411. */
  412. RR(IRQENABLE);
  413. DSSDBG("context restored\n");
  414. }
  415. #undef SR
  416. #undef RR
  417. int dispc_runtime_get(void)
  418. {
  419. int r;
  420. DSSDBG("dispc_runtime_get\n");
  421. r = pm_runtime_get_sync(&dispc.pdev->dev);
  422. WARN_ON(r < 0);
  423. return r < 0 ? r : 0;
  424. }
  425. EXPORT_SYMBOL(dispc_runtime_get);
  426. void dispc_runtime_put(void)
  427. {
  428. int r;
  429. DSSDBG("dispc_runtime_put\n");
  430. r = pm_runtime_put_sync(&dispc.pdev->dev);
  431. WARN_ON(r < 0 && r != -ENOSYS);
  432. }
  433. EXPORT_SYMBOL(dispc_runtime_put);
  434. u32 dispc_mgr_get_vsync_irq(enum omap_channel channel)
  435. {
  436. return mgr_desc[channel].vsync_irq;
  437. }
  438. EXPORT_SYMBOL(dispc_mgr_get_vsync_irq);
  439. u32 dispc_mgr_get_framedone_irq(enum omap_channel channel)
  440. {
  441. if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc.feat->no_framedone_tv)
  442. return 0;
  443. return mgr_desc[channel].framedone_irq;
  444. }
  445. EXPORT_SYMBOL(dispc_mgr_get_framedone_irq);
  446. u32 dispc_mgr_get_sync_lost_irq(enum omap_channel channel)
  447. {
  448. return mgr_desc[channel].sync_lost_irq;
  449. }
  450. EXPORT_SYMBOL(dispc_mgr_get_sync_lost_irq);
  451. u32 dispc_wb_get_framedone_irq(void)
  452. {
  453. return DISPC_IRQ_FRAMEDONEWB;
  454. }
  455. bool dispc_mgr_go_busy(enum omap_channel channel)
  456. {
  457. return mgr_fld_read(channel, DISPC_MGR_FLD_GO) == 1;
  458. }
  459. EXPORT_SYMBOL(dispc_mgr_go_busy);
  460. void dispc_mgr_go(enum omap_channel channel)
  461. {
  462. WARN_ON(dispc_mgr_is_enabled(channel) == false);
  463. WARN_ON(dispc_mgr_go_busy(channel));
  464. DSSDBG("GO %s\n", mgr_desc[channel].name);
  465. mgr_fld_write(channel, DISPC_MGR_FLD_GO, 1);
  466. }
  467. EXPORT_SYMBOL(dispc_mgr_go);
  468. bool dispc_wb_go_busy(void)
  469. {
  470. return REG_GET(DISPC_CONTROL2, 6, 6) == 1;
  471. }
  472. void dispc_wb_go(void)
  473. {
  474. enum omap_plane plane = OMAP_DSS_WB;
  475. bool enable, go;
  476. enable = REG_GET(DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
  477. if (!enable)
  478. return;
  479. go = REG_GET(DISPC_CONTROL2, 6, 6) == 1;
  480. if (go) {
  481. DSSERR("GO bit not down for WB\n");
  482. return;
  483. }
  484. REG_FLD_MOD(DISPC_CONTROL2, 1, 6, 6);
  485. }
  486. static void dispc_ovl_write_firh_reg(enum omap_plane plane, int reg, u32 value)
  487. {
  488. dispc_write_reg(DISPC_OVL_FIR_COEF_H(plane, reg), value);
  489. }
  490. static void dispc_ovl_write_firhv_reg(enum omap_plane plane, int reg, u32 value)
  491. {
  492. dispc_write_reg(DISPC_OVL_FIR_COEF_HV(plane, reg), value);
  493. }
  494. static void dispc_ovl_write_firv_reg(enum omap_plane plane, int reg, u32 value)
  495. {
  496. dispc_write_reg(DISPC_OVL_FIR_COEF_V(plane, reg), value);
  497. }
  498. static void dispc_ovl_write_firh2_reg(enum omap_plane plane, int reg, u32 value)
  499. {
  500. BUG_ON(plane == OMAP_DSS_GFX);
  501. dispc_write_reg(DISPC_OVL_FIR_COEF_H2(plane, reg), value);
  502. }
  503. static void dispc_ovl_write_firhv2_reg(enum omap_plane plane, int reg,
  504. u32 value)
  505. {
  506. BUG_ON(plane == OMAP_DSS_GFX);
  507. dispc_write_reg(DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
  508. }
  509. static void dispc_ovl_write_firv2_reg(enum omap_plane plane, int reg, u32 value)
  510. {
  511. BUG_ON(plane == OMAP_DSS_GFX);
  512. dispc_write_reg(DISPC_OVL_FIR_COEF_V2(plane, reg), value);
  513. }
  514. static void dispc_ovl_set_scale_coef(enum omap_plane plane, int fir_hinc,
  515. int fir_vinc, int five_taps,
  516. enum omap_color_component color_comp)
  517. {
  518. const struct dispc_coef *h_coef, *v_coef;
  519. int i;
  520. h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
  521. v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
  522. for (i = 0; i < 8; i++) {
  523. u32 h, hv;
  524. h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
  525. | FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
  526. | FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
  527. | FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
  528. hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
  529. | FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
  530. | FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
  531. | FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
  532. if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
  533. dispc_ovl_write_firh_reg(plane, i, h);
  534. dispc_ovl_write_firhv_reg(plane, i, hv);
  535. } else {
  536. dispc_ovl_write_firh2_reg(plane, i, h);
  537. dispc_ovl_write_firhv2_reg(plane, i, hv);
  538. }
  539. }
  540. if (five_taps) {
  541. for (i = 0; i < 8; i++) {
  542. u32 v;
  543. v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
  544. | FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
  545. if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
  546. dispc_ovl_write_firv_reg(plane, i, v);
  547. else
  548. dispc_ovl_write_firv2_reg(plane, i, v);
  549. }
  550. }
  551. }
  552. static void dispc_ovl_write_color_conv_coef(enum omap_plane plane,
  553. const struct color_conv_coef *ct)
  554. {
  555. #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
  556. dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
  557. dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy, ct->rcb));
  558. dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
  559. dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
  560. dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
  561. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
  562. #undef CVAL
  563. }
  564. static void dispc_setup_color_conv_coef(void)
  565. {
  566. int i;
  567. int num_ovl = dss_feat_get_num_ovls();
  568. int num_wb = dss_feat_get_num_wbs();
  569. const struct color_conv_coef ctbl_bt601_5_ovl = {
  570. 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
  571. };
  572. const struct color_conv_coef ctbl_bt601_5_wb = {
  573. 66, 112, -38, 129, -94, -74, 25, -18, 112, 0,
  574. };
  575. for (i = 1; i < num_ovl; i++)
  576. dispc_ovl_write_color_conv_coef(i, &ctbl_bt601_5_ovl);
  577. for (; i < num_wb; i++)
  578. dispc_ovl_write_color_conv_coef(i, &ctbl_bt601_5_wb);
  579. }
  580. static void dispc_ovl_set_ba0(enum omap_plane plane, u32 paddr)
  581. {
  582. dispc_write_reg(DISPC_OVL_BA0(plane), paddr);
  583. }
  584. static void dispc_ovl_set_ba1(enum omap_plane plane, u32 paddr)
  585. {
  586. dispc_write_reg(DISPC_OVL_BA1(plane), paddr);
  587. }
  588. static void dispc_ovl_set_ba0_uv(enum omap_plane plane, u32 paddr)
  589. {
  590. dispc_write_reg(DISPC_OVL_BA0_UV(plane), paddr);
  591. }
  592. static void dispc_ovl_set_ba1_uv(enum omap_plane plane, u32 paddr)
  593. {
  594. dispc_write_reg(DISPC_OVL_BA1_UV(plane), paddr);
  595. }
  596. static void dispc_ovl_set_pos(enum omap_plane plane,
  597. enum omap_overlay_caps caps, int x, int y)
  598. {
  599. u32 val;
  600. if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
  601. return;
  602. val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
  603. dispc_write_reg(DISPC_OVL_POSITION(plane), val);
  604. }
  605. static void dispc_ovl_set_input_size(enum omap_plane plane, int width,
  606. int height)
  607. {
  608. u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  609. if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
  610. dispc_write_reg(DISPC_OVL_SIZE(plane), val);
  611. else
  612. dispc_write_reg(DISPC_OVL_PICTURE_SIZE(plane), val);
  613. }
  614. static void dispc_ovl_set_output_size(enum omap_plane plane, int width,
  615. int height)
  616. {
  617. u32 val;
  618. BUG_ON(plane == OMAP_DSS_GFX);
  619. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  620. if (plane == OMAP_DSS_WB)
  621. dispc_write_reg(DISPC_OVL_PICTURE_SIZE(plane), val);
  622. else
  623. dispc_write_reg(DISPC_OVL_SIZE(plane), val);
  624. }
  625. static void dispc_ovl_set_zorder(enum omap_plane plane,
  626. enum omap_overlay_caps caps, u8 zorder)
  627. {
  628. if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
  629. return;
  630. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
  631. }
  632. static void dispc_ovl_enable_zorder_planes(void)
  633. {
  634. int i;
  635. if (!dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
  636. return;
  637. for (i = 0; i < dss_feat_get_num_ovls(); i++)
  638. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
  639. }
  640. static void dispc_ovl_set_pre_mult_alpha(enum omap_plane plane,
  641. enum omap_overlay_caps caps, bool enable)
  642. {
  643. if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
  644. return;
  645. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
  646. }
  647. static void dispc_ovl_setup_global_alpha(enum omap_plane plane,
  648. enum omap_overlay_caps caps, u8 global_alpha)
  649. {
  650. static const unsigned shifts[] = { 0, 8, 16, 24, };
  651. int shift;
  652. if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
  653. return;
  654. shift = shifts[plane];
  655. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
  656. }
  657. static void dispc_ovl_set_pix_inc(enum omap_plane plane, s32 inc)
  658. {
  659. dispc_write_reg(DISPC_OVL_PIXEL_INC(plane), inc);
  660. }
  661. static void dispc_ovl_set_row_inc(enum omap_plane plane, s32 inc)
  662. {
  663. dispc_write_reg(DISPC_OVL_ROW_INC(plane), inc);
  664. }
  665. static void dispc_ovl_set_color_mode(enum omap_plane plane,
  666. enum omap_color_mode color_mode)
  667. {
  668. u32 m = 0;
  669. if (plane != OMAP_DSS_GFX) {
  670. switch (color_mode) {
  671. case OMAP_DSS_COLOR_NV12:
  672. m = 0x0; break;
  673. case OMAP_DSS_COLOR_RGBX16:
  674. m = 0x1; break;
  675. case OMAP_DSS_COLOR_RGBA16:
  676. m = 0x2; break;
  677. case OMAP_DSS_COLOR_RGB12U:
  678. m = 0x4; break;
  679. case OMAP_DSS_COLOR_ARGB16:
  680. m = 0x5; break;
  681. case OMAP_DSS_COLOR_RGB16:
  682. m = 0x6; break;
  683. case OMAP_DSS_COLOR_ARGB16_1555:
  684. m = 0x7; break;
  685. case OMAP_DSS_COLOR_RGB24U:
  686. m = 0x8; break;
  687. case OMAP_DSS_COLOR_RGB24P:
  688. m = 0x9; break;
  689. case OMAP_DSS_COLOR_YUV2:
  690. m = 0xa; break;
  691. case OMAP_DSS_COLOR_UYVY:
  692. m = 0xb; break;
  693. case OMAP_DSS_COLOR_ARGB32:
  694. m = 0xc; break;
  695. case OMAP_DSS_COLOR_RGBA32:
  696. m = 0xd; break;
  697. case OMAP_DSS_COLOR_RGBX32:
  698. m = 0xe; break;
  699. case OMAP_DSS_COLOR_XRGB16_1555:
  700. m = 0xf; break;
  701. default:
  702. BUG(); return;
  703. }
  704. } else {
  705. switch (color_mode) {
  706. case OMAP_DSS_COLOR_CLUT1:
  707. m = 0x0; break;
  708. case OMAP_DSS_COLOR_CLUT2:
  709. m = 0x1; break;
  710. case OMAP_DSS_COLOR_CLUT4:
  711. m = 0x2; break;
  712. case OMAP_DSS_COLOR_CLUT8:
  713. m = 0x3; break;
  714. case OMAP_DSS_COLOR_RGB12U:
  715. m = 0x4; break;
  716. case OMAP_DSS_COLOR_ARGB16:
  717. m = 0x5; break;
  718. case OMAP_DSS_COLOR_RGB16:
  719. m = 0x6; break;
  720. case OMAP_DSS_COLOR_ARGB16_1555:
  721. m = 0x7; break;
  722. case OMAP_DSS_COLOR_RGB24U:
  723. m = 0x8; break;
  724. case OMAP_DSS_COLOR_RGB24P:
  725. m = 0x9; break;
  726. case OMAP_DSS_COLOR_RGBX16:
  727. m = 0xa; break;
  728. case OMAP_DSS_COLOR_RGBA16:
  729. m = 0xb; break;
  730. case OMAP_DSS_COLOR_ARGB32:
  731. m = 0xc; break;
  732. case OMAP_DSS_COLOR_RGBA32:
  733. m = 0xd; break;
  734. case OMAP_DSS_COLOR_RGBX32:
  735. m = 0xe; break;
  736. case OMAP_DSS_COLOR_XRGB16_1555:
  737. m = 0xf; break;
  738. default:
  739. BUG(); return;
  740. }
  741. }
  742. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
  743. }
  744. static void dispc_ovl_configure_burst_type(enum omap_plane plane,
  745. enum omap_dss_rotation_type rotation_type)
  746. {
  747. if (dss_has_feature(FEAT_BURST_2D) == 0)
  748. return;
  749. if (rotation_type == OMAP_DSS_ROT_TILER)
  750. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
  751. else
  752. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
  753. }
  754. void dispc_ovl_set_channel_out(enum omap_plane plane, enum omap_channel channel)
  755. {
  756. int shift;
  757. u32 val;
  758. int chan = 0, chan2 = 0;
  759. switch (plane) {
  760. case OMAP_DSS_GFX:
  761. shift = 8;
  762. break;
  763. case OMAP_DSS_VIDEO1:
  764. case OMAP_DSS_VIDEO2:
  765. case OMAP_DSS_VIDEO3:
  766. shift = 16;
  767. break;
  768. default:
  769. BUG();
  770. return;
  771. }
  772. val = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
  773. if (dss_has_feature(FEAT_MGR_LCD2)) {
  774. switch (channel) {
  775. case OMAP_DSS_CHANNEL_LCD:
  776. chan = 0;
  777. chan2 = 0;
  778. break;
  779. case OMAP_DSS_CHANNEL_DIGIT:
  780. chan = 1;
  781. chan2 = 0;
  782. break;
  783. case OMAP_DSS_CHANNEL_LCD2:
  784. chan = 0;
  785. chan2 = 1;
  786. break;
  787. case OMAP_DSS_CHANNEL_LCD3:
  788. if (dss_has_feature(FEAT_MGR_LCD3)) {
  789. chan = 0;
  790. chan2 = 2;
  791. } else {
  792. BUG();
  793. return;
  794. }
  795. break;
  796. default:
  797. BUG();
  798. return;
  799. }
  800. val = FLD_MOD(val, chan, shift, shift);
  801. val = FLD_MOD(val, chan2, 31, 30);
  802. } else {
  803. val = FLD_MOD(val, channel, shift, shift);
  804. }
  805. dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), val);
  806. }
  807. EXPORT_SYMBOL(dispc_ovl_set_channel_out);
  808. static enum omap_channel dispc_ovl_get_channel_out(enum omap_plane plane)
  809. {
  810. int shift;
  811. u32 val;
  812. enum omap_channel channel;
  813. switch (plane) {
  814. case OMAP_DSS_GFX:
  815. shift = 8;
  816. break;
  817. case OMAP_DSS_VIDEO1:
  818. case OMAP_DSS_VIDEO2:
  819. case OMAP_DSS_VIDEO3:
  820. shift = 16;
  821. break;
  822. default:
  823. BUG();
  824. return 0;
  825. }
  826. val = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
  827. if (dss_has_feature(FEAT_MGR_LCD3)) {
  828. if (FLD_GET(val, 31, 30) == 0)
  829. channel = FLD_GET(val, shift, shift);
  830. else if (FLD_GET(val, 31, 30) == 1)
  831. channel = OMAP_DSS_CHANNEL_LCD2;
  832. else
  833. channel = OMAP_DSS_CHANNEL_LCD3;
  834. } else if (dss_has_feature(FEAT_MGR_LCD2)) {
  835. if (FLD_GET(val, 31, 30) == 0)
  836. channel = FLD_GET(val, shift, shift);
  837. else
  838. channel = OMAP_DSS_CHANNEL_LCD2;
  839. } else {
  840. channel = FLD_GET(val, shift, shift);
  841. }
  842. return channel;
  843. }
  844. void dispc_wb_set_channel_in(enum dss_writeback_channel channel)
  845. {
  846. enum omap_plane plane = OMAP_DSS_WB;
  847. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), channel, 18, 16);
  848. }
  849. static void dispc_ovl_set_burst_size(enum omap_plane plane,
  850. enum omap_burst_size burst_size)
  851. {
  852. static const unsigned shifts[] = { 6, 14, 14, 14, 14, };
  853. int shift;
  854. shift = shifts[plane];
  855. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), burst_size, shift + 1, shift);
  856. }
  857. static void dispc_configure_burst_sizes(void)
  858. {
  859. int i;
  860. const int burst_size = BURST_SIZE_X8;
  861. /* Configure burst size always to maximum size */
  862. for (i = 0; i < dss_feat_get_num_ovls(); ++i)
  863. dispc_ovl_set_burst_size(i, burst_size);
  864. }
  865. static u32 dispc_ovl_get_burst_size(enum omap_plane plane)
  866. {
  867. unsigned unit = dss_feat_get_burst_size_unit();
  868. /* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
  869. return unit * 8;
  870. }
  871. void dispc_enable_gamma_table(bool enable)
  872. {
  873. /*
  874. * This is partially implemented to support only disabling of
  875. * the gamma table.
  876. */
  877. if (enable) {
  878. DSSWARN("Gamma table enabling for TV not yet supported");
  879. return;
  880. }
  881. REG_FLD_MOD(DISPC_CONFIG, enable, 9, 9);
  882. }
  883. static void dispc_mgr_enable_cpr(enum omap_channel channel, bool enable)
  884. {
  885. if (channel == OMAP_DSS_CHANNEL_DIGIT)
  886. return;
  887. mgr_fld_write(channel, DISPC_MGR_FLD_CPR, enable);
  888. }
  889. static void dispc_mgr_set_cpr_coef(enum omap_channel channel,
  890. const struct omap_dss_cpr_coefs *coefs)
  891. {
  892. u32 coef_r, coef_g, coef_b;
  893. if (!dss_mgr_is_lcd(channel))
  894. return;
  895. coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
  896. FLD_VAL(coefs->rb, 9, 0);
  897. coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
  898. FLD_VAL(coefs->gb, 9, 0);
  899. coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
  900. FLD_VAL(coefs->bb, 9, 0);
  901. dispc_write_reg(DISPC_CPR_COEF_R(channel), coef_r);
  902. dispc_write_reg(DISPC_CPR_COEF_G(channel), coef_g);
  903. dispc_write_reg(DISPC_CPR_COEF_B(channel), coef_b);
  904. }
  905. static void dispc_ovl_set_vid_color_conv(enum omap_plane plane, bool enable)
  906. {
  907. u32 val;
  908. BUG_ON(plane == OMAP_DSS_GFX);
  909. val = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
  910. val = FLD_MOD(val, enable, 9, 9);
  911. dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), val);
  912. }
  913. static void dispc_ovl_enable_replication(enum omap_plane plane,
  914. enum omap_overlay_caps caps, bool enable)
  915. {
  916. static const unsigned shifts[] = { 5, 10, 10, 10 };
  917. int shift;
  918. if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
  919. return;
  920. shift = shifts[plane];
  921. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
  922. }
  923. static void dispc_mgr_set_size(enum omap_channel channel, u16 width,
  924. u16 height)
  925. {
  926. u32 val;
  927. val = FLD_VAL(height - 1, dispc.feat->mgr_height_start, 16) |
  928. FLD_VAL(width - 1, dispc.feat->mgr_width_start, 0);
  929. dispc_write_reg(DISPC_SIZE_MGR(channel), val);
  930. }
  931. static void dispc_init_fifos(void)
  932. {
  933. u32 size;
  934. int fifo;
  935. u8 start, end;
  936. u32 unit;
  937. unit = dss_feat_get_buffer_size_unit();
  938. dss_feat_get_reg_field(FEAT_REG_FIFOSIZE, &start, &end);
  939. for (fifo = 0; fifo < dispc.feat->num_fifos; ++fifo) {
  940. size = REG_GET(DISPC_OVL_FIFO_SIZE_STATUS(fifo), start, end);
  941. size *= unit;
  942. dispc.fifo_size[fifo] = size;
  943. /*
  944. * By default fifos are mapped directly to overlays, fifo 0 to
  945. * ovl 0, fifo 1 to ovl 1, etc.
  946. */
  947. dispc.fifo_assignment[fifo] = fifo;
  948. }
  949. /*
  950. * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
  951. * causes problems with certain use cases, like using the tiler in 2D
  952. * mode. The below hack swaps the fifos of GFX and WB planes, thus
  953. * giving GFX plane a larger fifo. WB but should work fine with a
  954. * smaller fifo.
  955. */
  956. if (dispc.feat->gfx_fifo_workaround) {
  957. u32 v;
  958. v = dispc_read_reg(DISPC_GLOBAL_BUFFER);
  959. v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
  960. v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
  961. v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
  962. v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
  963. dispc_write_reg(DISPC_GLOBAL_BUFFER, v);
  964. dispc.fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
  965. dispc.fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
  966. }
  967. }
  968. static u32 dispc_ovl_get_fifo_size(enum omap_plane plane)
  969. {
  970. int fifo;
  971. u32 size = 0;
  972. for (fifo = 0; fifo < dispc.feat->num_fifos; ++fifo) {
  973. if (dispc.fifo_assignment[fifo] == plane)
  974. size += dispc.fifo_size[fifo];
  975. }
  976. return size;
  977. }
  978. void dispc_ovl_set_fifo_threshold(enum omap_plane plane, u32 low, u32 high)
  979. {
  980. u8 hi_start, hi_end, lo_start, lo_end;
  981. u32 unit;
  982. unit = dss_feat_get_buffer_size_unit();
  983. WARN_ON(low % unit != 0);
  984. WARN_ON(high % unit != 0);
  985. low /= unit;
  986. high /= unit;
  987. dss_feat_get_reg_field(FEAT_REG_FIFOHIGHTHRESHOLD, &hi_start, &hi_end);
  988. dss_feat_get_reg_field(FEAT_REG_FIFOLOWTHRESHOLD, &lo_start, &lo_end);
  989. DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
  990. plane,
  991. REG_GET(DISPC_OVL_FIFO_THRESHOLD(plane),
  992. lo_start, lo_end) * unit,
  993. REG_GET(DISPC_OVL_FIFO_THRESHOLD(plane),
  994. hi_start, hi_end) * unit,
  995. low * unit, high * unit);
  996. dispc_write_reg(DISPC_OVL_FIFO_THRESHOLD(plane),
  997. FLD_VAL(high, hi_start, hi_end) |
  998. FLD_VAL(low, lo_start, lo_end));
  999. }
  1000. void dispc_enable_fifomerge(bool enable)
  1001. {
  1002. if (!dss_has_feature(FEAT_FIFO_MERGE)) {
  1003. WARN_ON(enable);
  1004. return;
  1005. }
  1006. DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
  1007. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 14, 14);
  1008. }
  1009. void dispc_ovl_compute_fifo_thresholds(enum omap_plane plane,
  1010. u32 *fifo_low, u32 *fifo_high, bool use_fifomerge,
  1011. bool manual_update)
  1012. {
  1013. /*
  1014. * All sizes are in bytes. Both the buffer and burst are made of
  1015. * buffer_units, and the fifo thresholds must be buffer_unit aligned.
  1016. */
  1017. unsigned buf_unit = dss_feat_get_buffer_size_unit();
  1018. unsigned ovl_fifo_size, total_fifo_size, burst_size;
  1019. int i;
  1020. burst_size = dispc_ovl_get_burst_size(plane);
  1021. ovl_fifo_size = dispc_ovl_get_fifo_size(plane);
  1022. if (use_fifomerge) {
  1023. total_fifo_size = 0;
  1024. for (i = 0; i < dss_feat_get_num_ovls(); ++i)
  1025. total_fifo_size += dispc_ovl_get_fifo_size(i);
  1026. } else {
  1027. total_fifo_size = ovl_fifo_size;
  1028. }
  1029. /*
  1030. * We use the same low threshold for both fifomerge and non-fifomerge
  1031. * cases, but for fifomerge we calculate the high threshold using the
  1032. * combined fifo size
  1033. */
  1034. if (manual_update && dss_has_feature(FEAT_OMAP3_DSI_FIFO_BUG)) {
  1035. *fifo_low = ovl_fifo_size - burst_size * 2;
  1036. *fifo_high = total_fifo_size - burst_size;
  1037. } else if (plane == OMAP_DSS_WB) {
  1038. /*
  1039. * Most optimal configuration for writeback is to push out data
  1040. * to the interconnect the moment writeback pushes enough pixels
  1041. * in the FIFO to form a burst
  1042. */
  1043. *fifo_low = 0;
  1044. *fifo_high = burst_size;
  1045. } else {
  1046. *fifo_low = ovl_fifo_size - burst_size;
  1047. *fifo_high = total_fifo_size - buf_unit;
  1048. }
  1049. }
  1050. static void dispc_ovl_set_fir(enum omap_plane plane,
  1051. int hinc, int vinc,
  1052. enum omap_color_component color_comp)
  1053. {
  1054. u32 val;
  1055. if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
  1056. u8 hinc_start, hinc_end, vinc_start, vinc_end;
  1057. dss_feat_get_reg_field(FEAT_REG_FIRHINC,
  1058. &hinc_start, &hinc_end);
  1059. dss_feat_get_reg_field(FEAT_REG_FIRVINC,
  1060. &vinc_start, &vinc_end);
  1061. val = FLD_VAL(vinc, vinc_start, vinc_end) |
  1062. FLD_VAL(hinc, hinc_start, hinc_end);
  1063. dispc_write_reg(DISPC_OVL_FIR(plane), val);
  1064. } else {
  1065. val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
  1066. dispc_write_reg(DISPC_OVL_FIR2(plane), val);
  1067. }
  1068. }
  1069. static void dispc_ovl_set_vid_accu0(enum omap_plane plane, int haccu, int vaccu)
  1070. {
  1071. u32 val;
  1072. u8 hor_start, hor_end, vert_start, vert_end;
  1073. dss_feat_get_reg_field(FEAT_REG_HORIZONTALACCU, &hor_start, &hor_end);
  1074. dss_feat_get_reg_field(FEAT_REG_VERTICALACCU, &vert_start, &vert_end);
  1075. val = FLD_VAL(vaccu, vert_start, vert_end) |
  1076. FLD_VAL(haccu, hor_start, hor_end);
  1077. dispc_write_reg(DISPC_OVL_ACCU0(plane), val);
  1078. }
  1079. static void dispc_ovl_set_vid_accu1(enum omap_plane plane, int haccu, int vaccu)
  1080. {
  1081. u32 val;
  1082. u8 hor_start, hor_end, vert_start, vert_end;
  1083. dss_feat_get_reg_field(FEAT_REG_HORIZONTALACCU, &hor_start, &hor_end);
  1084. dss_feat_get_reg_field(FEAT_REG_VERTICALACCU, &vert_start, &vert_end);
  1085. val = FLD_VAL(vaccu, vert_start, vert_end) |
  1086. FLD_VAL(haccu, hor_start, hor_end);
  1087. dispc_write_reg(DISPC_OVL_ACCU1(plane), val);
  1088. }
  1089. static void dispc_ovl_set_vid_accu2_0(enum omap_plane plane, int haccu,
  1090. int vaccu)
  1091. {
  1092. u32 val;
  1093. val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
  1094. dispc_write_reg(DISPC_OVL_ACCU2_0(plane), val);
  1095. }
  1096. static void dispc_ovl_set_vid_accu2_1(enum omap_plane plane, int haccu,
  1097. int vaccu)
  1098. {
  1099. u32 val;
  1100. val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
  1101. dispc_write_reg(DISPC_OVL_ACCU2_1(plane), val);
  1102. }
  1103. static void dispc_ovl_set_scale_param(enum omap_plane plane,
  1104. u16 orig_width, u16 orig_height,
  1105. u16 out_width, u16 out_height,
  1106. bool five_taps, u8 rotation,
  1107. enum omap_color_component color_comp)
  1108. {
  1109. int fir_hinc, fir_vinc;
  1110. fir_hinc = 1024 * orig_width / out_width;
  1111. fir_vinc = 1024 * orig_height / out_height;
  1112. dispc_ovl_set_scale_coef(plane, fir_hinc, fir_vinc, five_taps,
  1113. color_comp);
  1114. dispc_ovl_set_fir(plane, fir_hinc, fir_vinc, color_comp);
  1115. }
  1116. static void dispc_ovl_set_accu_uv(enum omap_plane plane,
  1117. u16 orig_width, u16 orig_height, u16 out_width, u16 out_height,
  1118. bool ilace, enum omap_color_mode color_mode, u8 rotation)
  1119. {
  1120. int h_accu2_0, h_accu2_1;
  1121. int v_accu2_0, v_accu2_1;
  1122. int chroma_hinc, chroma_vinc;
  1123. int idx;
  1124. struct accu {
  1125. s8 h0_m, h0_n;
  1126. s8 h1_m, h1_n;
  1127. s8 v0_m, v0_n;
  1128. s8 v1_m, v1_n;
  1129. };
  1130. const struct accu *accu_table;
  1131. const struct accu *accu_val;
  1132. static const struct accu accu_nv12[4] = {
  1133. { 0, 1, 0, 1 , -1, 2, 0, 1 },
  1134. { 1, 2, -3, 4 , 0, 1, 0, 1 },
  1135. { -1, 1, 0, 1 , -1, 2, 0, 1 },
  1136. { -1, 2, -1, 2 , -1, 1, 0, 1 },
  1137. };
  1138. static const struct accu accu_nv12_ilace[4] = {
  1139. { 0, 1, 0, 1 , -3, 4, -1, 4 },
  1140. { -1, 4, -3, 4 , 0, 1, 0, 1 },
  1141. { -1, 1, 0, 1 , -1, 4, -3, 4 },
  1142. { -3, 4, -3, 4 , -1, 1, 0, 1 },
  1143. };
  1144. static const struct accu accu_yuv[4] = {
  1145. { 0, 1, 0, 1, 0, 1, 0, 1 },
  1146. { 0, 1, 0, 1, 0, 1, 0, 1 },
  1147. { -1, 1, 0, 1, 0, 1, 0, 1 },
  1148. { 0, 1, 0, 1, -1, 1, 0, 1 },
  1149. };
  1150. switch (rotation) {
  1151. case OMAP_DSS_ROT_0:
  1152. idx = 0;
  1153. break;
  1154. case OMAP_DSS_ROT_90:
  1155. idx = 1;
  1156. break;
  1157. case OMAP_DSS_ROT_180:
  1158. idx = 2;
  1159. break;
  1160. case OMAP_DSS_ROT_270:
  1161. idx = 3;
  1162. break;
  1163. default:
  1164. BUG();
  1165. return;
  1166. }
  1167. switch (color_mode) {
  1168. case OMAP_DSS_COLOR_NV12:
  1169. if (ilace)
  1170. accu_table = accu_nv12_ilace;
  1171. else
  1172. accu_table = accu_nv12;
  1173. break;
  1174. case OMAP_DSS_COLOR_YUV2:
  1175. case OMAP_DSS_COLOR_UYVY:
  1176. accu_table = accu_yuv;
  1177. break;
  1178. default:
  1179. BUG();
  1180. return;
  1181. }
  1182. accu_val = &accu_table[idx];
  1183. chroma_hinc = 1024 * orig_width / out_width;
  1184. chroma_vinc = 1024 * orig_height / out_height;
  1185. h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
  1186. h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
  1187. v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
  1188. v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
  1189. dispc_ovl_set_vid_accu2_0(plane, h_accu2_0, v_accu2_0);
  1190. dispc_ovl_set_vid_accu2_1(plane, h_accu2_1, v_accu2_1);
  1191. }
  1192. static void dispc_ovl_set_scaling_common(enum omap_plane plane,
  1193. u16 orig_width, u16 orig_height,
  1194. u16 out_width, u16 out_height,
  1195. bool ilace, bool five_taps,
  1196. bool fieldmode, enum omap_color_mode color_mode,
  1197. u8 rotation)
  1198. {
  1199. int accu0 = 0;
  1200. int accu1 = 0;
  1201. u32 l;
  1202. dispc_ovl_set_scale_param(plane, orig_width, orig_height,
  1203. out_width, out_height, five_taps,
  1204. rotation, DISPC_COLOR_COMPONENT_RGB_Y);
  1205. l = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
  1206. /* RESIZEENABLE and VERTICALTAPS */
  1207. l &= ~((0x3 << 5) | (0x1 << 21));
  1208. l |= (orig_width != out_width) ? (1 << 5) : 0;
  1209. l |= (orig_height != out_height) ? (1 << 6) : 0;
  1210. l |= five_taps ? (1 << 21) : 0;
  1211. /* VRESIZECONF and HRESIZECONF */
  1212. if (dss_has_feature(FEAT_RESIZECONF)) {
  1213. l &= ~(0x3 << 7);
  1214. l |= (orig_width <= out_width) ? 0 : (1 << 7);
  1215. l |= (orig_height <= out_height) ? 0 : (1 << 8);
  1216. }
  1217. /* LINEBUFFERSPLIT */
  1218. if (dss_has_feature(FEAT_LINEBUFFERSPLIT)) {
  1219. l &= ~(0x1 << 22);
  1220. l |= five_taps ? (1 << 22) : 0;
  1221. }
  1222. dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), l);
  1223. /*
  1224. * field 0 = even field = bottom field
  1225. * field 1 = odd field = top field
  1226. */
  1227. if (ilace && !fieldmode) {
  1228. accu1 = 0;
  1229. accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
  1230. if (accu0 >= 1024/2) {
  1231. accu1 = 1024/2;
  1232. accu0 -= accu1;
  1233. }
  1234. }
  1235. dispc_ovl_set_vid_accu0(plane, 0, accu0);
  1236. dispc_ovl_set_vid_accu1(plane, 0, accu1);
  1237. }
  1238. static void dispc_ovl_set_scaling_uv(enum omap_plane plane,
  1239. u16 orig_width, u16 orig_height,
  1240. u16 out_width, u16 out_height,
  1241. bool ilace, bool five_taps,
  1242. bool fieldmode, enum omap_color_mode color_mode,
  1243. u8 rotation)
  1244. {
  1245. int scale_x = out_width != orig_width;
  1246. int scale_y = out_height != orig_height;
  1247. bool chroma_upscale = plane != OMAP_DSS_WB ? true : false;
  1248. if (!dss_has_feature(FEAT_HANDLE_UV_SEPARATE))
  1249. return;
  1250. if ((color_mode != OMAP_DSS_COLOR_YUV2 &&
  1251. color_mode != OMAP_DSS_COLOR_UYVY &&
  1252. color_mode != OMAP_DSS_COLOR_NV12)) {
  1253. /* reset chroma resampling for RGB formats */
  1254. if (plane != OMAP_DSS_WB)
  1255. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES2(plane), 0, 8, 8);
  1256. return;
  1257. }
  1258. dispc_ovl_set_accu_uv(plane, orig_width, orig_height, out_width,
  1259. out_height, ilace, color_mode, rotation);
  1260. switch (color_mode) {
  1261. case OMAP_DSS_COLOR_NV12:
  1262. if (chroma_upscale) {
  1263. /* UV is subsampled by 2 horizontally and vertically */
  1264. orig_height >>= 1;
  1265. orig_width >>= 1;
  1266. } else {
  1267. /* UV is downsampled by 2 horizontally and vertically */
  1268. orig_height <<= 1;
  1269. orig_width <<= 1;
  1270. }
  1271. break;
  1272. case OMAP_DSS_COLOR_YUV2:
  1273. case OMAP_DSS_COLOR_UYVY:
  1274. /* For YUV422 with 90/270 rotation, we don't upsample chroma */
  1275. if (rotation == OMAP_DSS_ROT_0 ||
  1276. rotation == OMAP_DSS_ROT_180) {
  1277. if (chroma_upscale)
  1278. /* UV is subsampled by 2 horizontally */
  1279. orig_width >>= 1;
  1280. else
  1281. /* UV is downsampled by 2 horizontally */
  1282. orig_width <<= 1;
  1283. }
  1284. /* must use FIR for YUV422 if rotated */
  1285. if (rotation != OMAP_DSS_ROT_0)
  1286. scale_x = scale_y = true;
  1287. break;
  1288. default:
  1289. BUG();
  1290. return;
  1291. }
  1292. if (out_width != orig_width)
  1293. scale_x = true;
  1294. if (out_height != orig_height)
  1295. scale_y = true;
  1296. dispc_ovl_set_scale_param(plane, orig_width, orig_height,
  1297. out_width, out_height, five_taps,
  1298. rotation, DISPC_COLOR_COMPONENT_UV);
  1299. if (plane != OMAP_DSS_WB)
  1300. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES2(plane),
  1301. (scale_x || scale_y) ? 1 : 0, 8, 8);
  1302. /* set H scaling */
  1303. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
  1304. /* set V scaling */
  1305. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
  1306. }
  1307. static void dispc_ovl_set_scaling(enum omap_plane plane,
  1308. u16 orig_width, u16 orig_height,
  1309. u16 out_width, u16 out_height,
  1310. bool ilace, bool five_taps,
  1311. bool fieldmode, enum omap_color_mode color_mode,
  1312. u8 rotation)
  1313. {
  1314. BUG_ON(plane == OMAP_DSS_GFX);
  1315. dispc_ovl_set_scaling_common(plane,
  1316. orig_width, orig_height,
  1317. out_width, out_height,
  1318. ilace, five_taps,
  1319. fieldmode, color_mode,
  1320. rotation);
  1321. dispc_ovl_set_scaling_uv(plane,
  1322. orig_width, orig_height,
  1323. out_width, out_height,
  1324. ilace, five_taps,
  1325. fieldmode, color_mode,
  1326. rotation);
  1327. }
  1328. static void dispc_ovl_set_rotation_attrs(enum omap_plane plane, u8 rotation,
  1329. bool mirroring, enum omap_color_mode color_mode)
  1330. {
  1331. bool row_repeat = false;
  1332. int vidrot = 0;
  1333. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1334. color_mode == OMAP_DSS_COLOR_UYVY) {
  1335. if (mirroring) {
  1336. switch (rotation) {
  1337. case OMAP_DSS_ROT_0:
  1338. vidrot = 2;
  1339. break;
  1340. case OMAP_DSS_ROT_90:
  1341. vidrot = 1;
  1342. break;
  1343. case OMAP_DSS_ROT_180:
  1344. vidrot = 0;
  1345. break;
  1346. case OMAP_DSS_ROT_270:
  1347. vidrot = 3;
  1348. break;
  1349. }
  1350. } else {
  1351. switch (rotation) {
  1352. case OMAP_DSS_ROT_0:
  1353. vidrot = 0;
  1354. break;
  1355. case OMAP_DSS_ROT_90:
  1356. vidrot = 1;
  1357. break;
  1358. case OMAP_DSS_ROT_180:
  1359. vidrot = 2;
  1360. break;
  1361. case OMAP_DSS_ROT_270:
  1362. vidrot = 3;
  1363. break;
  1364. }
  1365. }
  1366. if (rotation == OMAP_DSS_ROT_90 || rotation == OMAP_DSS_ROT_270)
  1367. row_repeat = true;
  1368. else
  1369. row_repeat = false;
  1370. }
  1371. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
  1372. if (dss_has_feature(FEAT_ROWREPEATENABLE))
  1373. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane),
  1374. row_repeat ? 1 : 0, 18, 18);
  1375. }
  1376. static int color_mode_to_bpp(enum omap_color_mode color_mode)
  1377. {
  1378. switch (color_mode) {
  1379. case OMAP_DSS_COLOR_CLUT1:
  1380. return 1;
  1381. case OMAP_DSS_COLOR_CLUT2:
  1382. return 2;
  1383. case OMAP_DSS_COLOR_CLUT4:
  1384. return 4;
  1385. case OMAP_DSS_COLOR_CLUT8:
  1386. case OMAP_DSS_COLOR_NV12:
  1387. return 8;
  1388. case OMAP_DSS_COLOR_RGB12U:
  1389. case OMAP_DSS_COLOR_RGB16:
  1390. case OMAP_DSS_COLOR_ARGB16:
  1391. case OMAP_DSS_COLOR_YUV2:
  1392. case OMAP_DSS_COLOR_UYVY:
  1393. case OMAP_DSS_COLOR_RGBA16:
  1394. case OMAP_DSS_COLOR_RGBX16:
  1395. case OMAP_DSS_COLOR_ARGB16_1555:
  1396. case OMAP_DSS_COLOR_XRGB16_1555:
  1397. return 16;
  1398. case OMAP_DSS_COLOR_RGB24P:
  1399. return 24;
  1400. case OMAP_DSS_COLOR_RGB24U:
  1401. case OMAP_DSS_COLOR_ARGB32:
  1402. case OMAP_DSS_COLOR_RGBA32:
  1403. case OMAP_DSS_COLOR_RGBX32:
  1404. return 32;
  1405. default:
  1406. BUG();
  1407. return 0;
  1408. }
  1409. }
  1410. static s32 pixinc(int pixels, u8 ps)
  1411. {
  1412. if (pixels == 1)
  1413. return 1;
  1414. else if (pixels > 1)
  1415. return 1 + (pixels - 1) * ps;
  1416. else if (pixels < 0)
  1417. return 1 - (-pixels + 1) * ps;
  1418. else
  1419. BUG();
  1420. return 0;
  1421. }
  1422. static void calc_vrfb_rotation_offset(u8 rotation, bool mirror,
  1423. u16 screen_width,
  1424. u16 width, u16 height,
  1425. enum omap_color_mode color_mode, bool fieldmode,
  1426. unsigned int field_offset,
  1427. unsigned *offset0, unsigned *offset1,
  1428. s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim)
  1429. {
  1430. u8 ps;
  1431. /* FIXME CLUT formats */
  1432. switch (color_mode) {
  1433. case OMAP_DSS_COLOR_CLUT1:
  1434. case OMAP_DSS_COLOR_CLUT2:
  1435. case OMAP_DSS_COLOR_CLUT4:
  1436. case OMAP_DSS_COLOR_CLUT8:
  1437. BUG();
  1438. return;
  1439. case OMAP_DSS_COLOR_YUV2:
  1440. case OMAP_DSS_COLOR_UYVY:
  1441. ps = 4;
  1442. break;
  1443. default:
  1444. ps = color_mode_to_bpp(color_mode) / 8;
  1445. break;
  1446. }
  1447. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1448. width, height);
  1449. /*
  1450. * field 0 = even field = bottom field
  1451. * field 1 = odd field = top field
  1452. */
  1453. switch (rotation + mirror * 4) {
  1454. case OMAP_DSS_ROT_0:
  1455. case OMAP_DSS_ROT_180:
  1456. /*
  1457. * If the pixel format is YUV or UYVY divide the width
  1458. * of the image by 2 for 0 and 180 degree rotation.
  1459. */
  1460. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1461. color_mode == OMAP_DSS_COLOR_UYVY)
  1462. width = width >> 1;
  1463. case OMAP_DSS_ROT_90:
  1464. case OMAP_DSS_ROT_270:
  1465. *offset1 = 0;
  1466. if (field_offset)
  1467. *offset0 = field_offset * screen_width * ps;
  1468. else
  1469. *offset0 = 0;
  1470. *row_inc = pixinc(1 +
  1471. (y_predecim * screen_width - x_predecim * width) +
  1472. (fieldmode ? screen_width : 0), ps);
  1473. *pix_inc = pixinc(x_predecim, ps);
  1474. break;
  1475. case OMAP_DSS_ROT_0 + 4:
  1476. case OMAP_DSS_ROT_180 + 4:
  1477. /* If the pixel format is YUV or UYVY divide the width
  1478. * of the image by 2 for 0 degree and 180 degree
  1479. */
  1480. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1481. color_mode == OMAP_DSS_COLOR_UYVY)
  1482. width = width >> 1;
  1483. case OMAP_DSS_ROT_90 + 4:
  1484. case OMAP_DSS_ROT_270 + 4:
  1485. *offset1 = 0;
  1486. if (field_offset)
  1487. *offset0 = field_offset * screen_width * ps;
  1488. else
  1489. *offset0 = 0;
  1490. *row_inc = pixinc(1 -
  1491. (y_predecim * screen_width + x_predecim * width) -
  1492. (fieldmode ? screen_width : 0), ps);
  1493. *pix_inc = pixinc(x_predecim, ps);
  1494. break;
  1495. default:
  1496. BUG();
  1497. return;
  1498. }
  1499. }
  1500. static void calc_dma_rotation_offset(u8 rotation, bool mirror,
  1501. u16 screen_width,
  1502. u16 width, u16 height,
  1503. enum omap_color_mode color_mode, bool fieldmode,
  1504. unsigned int field_offset,
  1505. unsigned *offset0, unsigned *offset1,
  1506. s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim)
  1507. {
  1508. u8 ps;
  1509. u16 fbw, fbh;
  1510. /* FIXME CLUT formats */
  1511. switch (color_mode) {
  1512. case OMAP_DSS_COLOR_CLUT1:
  1513. case OMAP_DSS_COLOR_CLUT2:
  1514. case OMAP_DSS_COLOR_CLUT4:
  1515. case OMAP_DSS_COLOR_CLUT8:
  1516. BUG();
  1517. return;
  1518. default:
  1519. ps = color_mode_to_bpp(color_mode) / 8;
  1520. break;
  1521. }
  1522. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1523. width, height);
  1524. /* width & height are overlay sizes, convert to fb sizes */
  1525. if (rotation == OMAP_DSS_ROT_0 || rotation == OMAP_DSS_ROT_180) {
  1526. fbw = width;
  1527. fbh = height;
  1528. } else {
  1529. fbw = height;
  1530. fbh = width;
  1531. }
  1532. /*
  1533. * field 0 = even field = bottom field
  1534. * field 1 = odd field = top field
  1535. */
  1536. switch (rotation + mirror * 4) {
  1537. case OMAP_DSS_ROT_0:
  1538. *offset1 = 0;
  1539. if (field_offset)
  1540. *offset0 = *offset1 + field_offset * screen_width * ps;
  1541. else
  1542. *offset0 = *offset1;
  1543. *row_inc = pixinc(1 +
  1544. (y_predecim * screen_width - fbw * x_predecim) +
  1545. (fieldmode ? screen_width : 0), ps);
  1546. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1547. color_mode == OMAP_DSS_COLOR_UYVY)
  1548. *pix_inc = pixinc(x_predecim, 2 * ps);
  1549. else
  1550. *pix_inc = pixinc(x_predecim, ps);
  1551. break;
  1552. case OMAP_DSS_ROT_90:
  1553. *offset1 = screen_width * (fbh - 1) * ps;
  1554. if (field_offset)
  1555. *offset0 = *offset1 + field_offset * ps;
  1556. else
  1557. *offset0 = *offset1;
  1558. *row_inc = pixinc(screen_width * (fbh * x_predecim - 1) +
  1559. y_predecim + (fieldmode ? 1 : 0), ps);
  1560. *pix_inc = pixinc(-x_predecim * screen_width, ps);
  1561. break;
  1562. case OMAP_DSS_ROT_180:
  1563. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1564. if (field_offset)
  1565. *offset0 = *offset1 - field_offset * screen_width * ps;
  1566. else
  1567. *offset0 = *offset1;
  1568. *row_inc = pixinc(-1 -
  1569. (y_predecim * screen_width - fbw * x_predecim) -
  1570. (fieldmode ? screen_width : 0), ps);
  1571. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1572. color_mode == OMAP_DSS_COLOR_UYVY)
  1573. *pix_inc = pixinc(-x_predecim, 2 * ps);
  1574. else
  1575. *pix_inc = pixinc(-x_predecim, ps);
  1576. break;
  1577. case OMAP_DSS_ROT_270:
  1578. *offset1 = (fbw - 1) * ps;
  1579. if (field_offset)
  1580. *offset0 = *offset1 - field_offset * ps;
  1581. else
  1582. *offset0 = *offset1;
  1583. *row_inc = pixinc(-screen_width * (fbh * x_predecim - 1) -
  1584. y_predecim - (fieldmode ? 1 : 0), ps);
  1585. *pix_inc = pixinc(x_predecim * screen_width, ps);
  1586. break;
  1587. /* mirroring */
  1588. case OMAP_DSS_ROT_0 + 4:
  1589. *offset1 = (fbw - 1) * ps;
  1590. if (field_offset)
  1591. *offset0 = *offset1 + field_offset * screen_width * ps;
  1592. else
  1593. *offset0 = *offset1;
  1594. *row_inc = pixinc(y_predecim * screen_width * 2 - 1 +
  1595. (fieldmode ? screen_width : 0),
  1596. ps);
  1597. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1598. color_mode == OMAP_DSS_COLOR_UYVY)
  1599. *pix_inc = pixinc(-x_predecim, 2 * ps);
  1600. else
  1601. *pix_inc = pixinc(-x_predecim, ps);
  1602. break;
  1603. case OMAP_DSS_ROT_90 + 4:
  1604. *offset1 = 0;
  1605. if (field_offset)
  1606. *offset0 = *offset1 + field_offset * ps;
  1607. else
  1608. *offset0 = *offset1;
  1609. *row_inc = pixinc(-screen_width * (fbh * x_predecim - 1) +
  1610. y_predecim + (fieldmode ? 1 : 0),
  1611. ps);
  1612. *pix_inc = pixinc(x_predecim * screen_width, ps);
  1613. break;
  1614. case OMAP_DSS_ROT_180 + 4:
  1615. *offset1 = screen_width * (fbh - 1) * ps;
  1616. if (field_offset)
  1617. *offset0 = *offset1 - field_offset * screen_width * ps;
  1618. else
  1619. *offset0 = *offset1;
  1620. *row_inc = pixinc(1 - y_predecim * screen_width * 2 -
  1621. (fieldmode ? screen_width : 0),
  1622. ps);
  1623. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1624. color_mode == OMAP_DSS_COLOR_UYVY)
  1625. *pix_inc = pixinc(x_predecim, 2 * ps);
  1626. else
  1627. *pix_inc = pixinc(x_predecim, ps);
  1628. break;
  1629. case OMAP_DSS_ROT_270 + 4:
  1630. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1631. if (field_offset)
  1632. *offset0 = *offset1 - field_offset * ps;
  1633. else
  1634. *offset0 = *offset1;
  1635. *row_inc = pixinc(screen_width * (fbh * x_predecim - 1) -
  1636. y_predecim - (fieldmode ? 1 : 0),
  1637. ps);
  1638. *pix_inc = pixinc(-x_predecim * screen_width, ps);
  1639. break;
  1640. default:
  1641. BUG();
  1642. return;
  1643. }
  1644. }
  1645. static void calc_tiler_rotation_offset(u16 screen_width, u16 width,
  1646. enum omap_color_mode color_mode, bool fieldmode,
  1647. unsigned int field_offset, unsigned *offset0, unsigned *offset1,
  1648. s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim)
  1649. {
  1650. u8 ps;
  1651. switch (color_mode) {
  1652. case OMAP_DSS_COLOR_CLUT1:
  1653. case OMAP_DSS_COLOR_CLUT2:
  1654. case OMAP_DSS_COLOR_CLUT4:
  1655. case OMAP_DSS_COLOR_CLUT8:
  1656. BUG();
  1657. return;
  1658. default:
  1659. ps = color_mode_to_bpp(color_mode) / 8;
  1660. break;
  1661. }
  1662. DSSDBG("scrw %d, width %d\n", screen_width, width);
  1663. /*
  1664. * field 0 = even field = bottom field
  1665. * field 1 = odd field = top field
  1666. */
  1667. *offset1 = 0;
  1668. if (field_offset)
  1669. *offset0 = *offset1 + field_offset * screen_width * ps;
  1670. else
  1671. *offset0 = *offset1;
  1672. *row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
  1673. (fieldmode ? screen_width : 0), ps);
  1674. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1675. color_mode == OMAP_DSS_COLOR_UYVY)
  1676. *pix_inc = pixinc(x_predecim, 2 * ps);
  1677. else
  1678. *pix_inc = pixinc(x_predecim, ps);
  1679. }
  1680. /*
  1681. * This function is used to avoid synclosts in OMAP3, because of some
  1682. * undocumented horizontal position and timing related limitations.
  1683. */
  1684. static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
  1685. const struct omap_video_timings *t, u16 pos_x,
  1686. u16 width, u16 height, u16 out_width, u16 out_height)
  1687. {
  1688. const int ds = DIV_ROUND_UP(height, out_height);
  1689. unsigned long nonactive;
  1690. static const u8 limits[3] = { 8, 10, 20 };
  1691. u64 val, blank;
  1692. int i;
  1693. nonactive = t->x_res + t->hfp + t->hsw + t->hbp - out_width;
  1694. i = 0;
  1695. if (out_height < height)
  1696. i++;
  1697. if (out_width < width)
  1698. i++;
  1699. blank = div_u64((u64)(t->hbp + t->hsw + t->hfp) * lclk, pclk);
  1700. DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
  1701. if (blank <= limits[i])
  1702. return -EINVAL;
  1703. /*
  1704. * Pixel data should be prepared before visible display point starts.
  1705. * So, atleast DS-2 lines must have already been fetched by DISPC
  1706. * during nonactive - pos_x period.
  1707. */
  1708. val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
  1709. DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
  1710. val, max(0, ds - 2) * width);
  1711. if (val < max(0, ds - 2) * width)
  1712. return -EINVAL;
  1713. /*
  1714. * All lines need to be refilled during the nonactive period of which
  1715. * only one line can be loaded during the active period. So, atleast
  1716. * DS - 1 lines should be loaded during nonactive period.
  1717. */
  1718. val = div_u64((u64)nonactive * lclk, pclk);
  1719. DSSDBG("nonactive * pcd = %llu, max(0, DS - 1) * width = %d\n",
  1720. val, max(0, ds - 1) * width);
  1721. if (val < max(0, ds - 1) * width)
  1722. return -EINVAL;
  1723. return 0;
  1724. }
  1725. static unsigned long calc_core_clk_five_taps(unsigned long pclk,
  1726. const struct omap_video_timings *mgr_timings, u16 width,
  1727. u16 height, u16 out_width, u16 out_height,
  1728. enum omap_color_mode color_mode)
  1729. {
  1730. u32 core_clk = 0;
  1731. u64 tmp;
  1732. if (height <= out_height && width <= out_width)
  1733. return (unsigned long) pclk;
  1734. if (height > out_height) {
  1735. unsigned int ppl = mgr_timings->x_res;
  1736. tmp = pclk * height * out_width;
  1737. do_div(tmp, 2 * out_height * ppl);
  1738. core_clk = tmp;
  1739. if (height > 2 * out_height) {
  1740. if (ppl == out_width)
  1741. return 0;
  1742. tmp = pclk * (height - 2 * out_height) * out_width;
  1743. do_div(tmp, 2 * out_height * (ppl - out_width));
  1744. core_clk = max_t(u32, core_clk, tmp);
  1745. }
  1746. }
  1747. if (width > out_width) {
  1748. tmp = pclk * width;
  1749. do_div(tmp, out_width);
  1750. core_clk = max_t(u32, core_clk, tmp);
  1751. if (color_mode == OMAP_DSS_COLOR_RGB24U)
  1752. core_clk <<= 1;
  1753. }
  1754. return core_clk;
  1755. }
  1756. static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
  1757. u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
  1758. {
  1759. if (height > out_height && width > out_width)
  1760. return pclk * 4;
  1761. else
  1762. return pclk * 2;
  1763. }
  1764. static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
  1765. u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
  1766. {
  1767. unsigned int hf, vf;
  1768. /*
  1769. * FIXME how to determine the 'A' factor
  1770. * for the no downscaling case ?
  1771. */
  1772. if (width > 3 * out_width)
  1773. hf = 4;
  1774. else if (width > 2 * out_width)
  1775. hf = 3;
  1776. else if (width > out_width)
  1777. hf = 2;
  1778. else
  1779. hf = 1;
  1780. if (height > out_height)
  1781. vf = 2;
  1782. else
  1783. vf = 1;
  1784. return pclk * vf * hf;
  1785. }
  1786. static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
  1787. u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
  1788. {
  1789. /*
  1790. * If the overlay/writeback is in mem to mem mode, there are no
  1791. * downscaling limitations with respect to pixel clock, return 1 as
  1792. * required core clock to represent that we have sufficient enough
  1793. * core clock to do maximum downscaling
  1794. */
  1795. if (mem_to_mem)
  1796. return 1;
  1797. if (width > out_width)
  1798. return DIV_ROUND_UP(pclk, out_width) * width;
  1799. else
  1800. return pclk;
  1801. }
  1802. static int dispc_ovl_calc_scaling_24xx(unsigned long pclk, unsigned long lclk,
  1803. const struct omap_video_timings *mgr_timings,
  1804. u16 width, u16 height, u16 out_width, u16 out_height,
  1805. enum omap_color_mode color_mode, bool *five_taps,
  1806. int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
  1807. u16 pos_x, unsigned long *core_clk, bool mem_to_mem)
  1808. {
  1809. int error;
  1810. u16 in_width, in_height;
  1811. int min_factor = min(*decim_x, *decim_y);
  1812. const int maxsinglelinewidth =
  1813. dss_feat_get_param_max(FEAT_PARAM_LINEWIDTH);
  1814. *five_taps = false;
  1815. do {
  1816. in_height = DIV_ROUND_UP(height, *decim_y);
  1817. in_width = DIV_ROUND_UP(width, *decim_x);
  1818. *core_clk = dispc.feat->calc_core_clk(pclk, in_width,
  1819. in_height, out_width, out_height, mem_to_mem);
  1820. error = (in_width > maxsinglelinewidth || !*core_clk ||
  1821. *core_clk > dispc_core_clk_rate());
  1822. if (error) {
  1823. if (*decim_x == *decim_y) {
  1824. *decim_x = min_factor;
  1825. ++*decim_y;
  1826. } else {
  1827. swap(*decim_x, *decim_y);
  1828. if (*decim_x < *decim_y)
  1829. ++*decim_x;
  1830. }
  1831. }
  1832. } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
  1833. if (in_width > maxsinglelinewidth) {
  1834. DSSERR("Cannot scale max input width exceeded");
  1835. return -EINVAL;
  1836. }
  1837. return 0;
  1838. }
  1839. static int dispc_ovl_calc_scaling_34xx(unsigned long pclk, unsigned long lclk,
  1840. const struct omap_video_timings *mgr_timings,
  1841. u16 width, u16 height, u16 out_width, u16 out_height,
  1842. enum omap_color_mode color_mode, bool *five_taps,
  1843. int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
  1844. u16 pos_x, unsigned long *core_clk, bool mem_to_mem)
  1845. {
  1846. int error;
  1847. u16 in_width, in_height;
  1848. int min_factor = min(*decim_x, *decim_y);
  1849. const int maxsinglelinewidth =
  1850. dss_feat_get_param_max(FEAT_PARAM_LINEWIDTH);
  1851. do {
  1852. in_height = DIV_ROUND_UP(height, *decim_y);
  1853. in_width = DIV_ROUND_UP(width, *decim_x);
  1854. *core_clk = calc_core_clk_five_taps(pclk, mgr_timings,
  1855. in_width, in_height, out_width, out_height, color_mode);
  1856. error = check_horiz_timing_omap3(pclk, lclk, mgr_timings,
  1857. pos_x, in_width, in_height, out_width,
  1858. out_height);
  1859. if (in_width > maxsinglelinewidth)
  1860. if (in_height > out_height &&
  1861. in_height < out_height * 2)
  1862. *five_taps = false;
  1863. if (!*five_taps)
  1864. *core_clk = dispc.feat->calc_core_clk(pclk, in_width,
  1865. in_height, out_width, out_height,
  1866. mem_to_mem);
  1867. error = (error || in_width > maxsinglelinewidth * 2 ||
  1868. (in_width > maxsinglelinewidth && *five_taps) ||
  1869. !*core_clk || *core_clk > dispc_core_clk_rate());
  1870. if (error) {
  1871. if (*decim_x == *decim_y) {
  1872. *decim_x = min_factor;
  1873. ++*decim_y;
  1874. } else {
  1875. swap(*decim_x, *decim_y);
  1876. if (*decim_x < *decim_y)
  1877. ++*decim_x;
  1878. }
  1879. }
  1880. } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
  1881. if (check_horiz_timing_omap3(pclk, lclk, mgr_timings, pos_x, width,
  1882. height, out_width, out_height)){
  1883. DSSERR("horizontal timing too tight\n");
  1884. return -EINVAL;
  1885. }
  1886. if (in_width > (maxsinglelinewidth * 2)) {
  1887. DSSERR("Cannot setup scaling");
  1888. DSSERR("width exceeds maximum width possible");
  1889. return -EINVAL;
  1890. }
  1891. if (in_width > maxsinglelinewidth && *five_taps) {
  1892. DSSERR("cannot setup scaling with five taps");
  1893. return -EINVAL;
  1894. }
  1895. return 0;
  1896. }
  1897. static int dispc_ovl_calc_scaling_44xx(unsigned long pclk, unsigned long lclk,
  1898. const struct omap_video_timings *mgr_timings,
  1899. u16 width, u16 height, u16 out_width, u16 out_height,
  1900. enum omap_color_mode color_mode, bool *five_taps,
  1901. int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
  1902. u16 pos_x, unsigned long *core_clk, bool mem_to_mem)
  1903. {
  1904. u16 in_width, in_width_max;
  1905. int decim_x_min = *decim_x;
  1906. u16 in_height = DIV_ROUND_UP(height, *decim_y);
  1907. const int maxsinglelinewidth =
  1908. dss_feat_get_param_max(FEAT_PARAM_LINEWIDTH);
  1909. const int maxdownscale = dss_feat_get_param_max(FEAT_PARAM_DOWNSCALE);
  1910. if (mem_to_mem) {
  1911. in_width_max = out_width * maxdownscale;
  1912. } else {
  1913. in_width_max = dispc_core_clk_rate() /
  1914. DIV_ROUND_UP(pclk, out_width);
  1915. }
  1916. *decim_x = DIV_ROUND_UP(width, in_width_max);
  1917. *decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min;
  1918. if (*decim_x > *x_predecim)
  1919. return -EINVAL;
  1920. do {
  1921. in_width = DIV_ROUND_UP(width, *decim_x);
  1922. } while (*decim_x <= *x_predecim &&
  1923. in_width > maxsinglelinewidth && ++*decim_x);
  1924. if (in_width > maxsinglelinewidth) {
  1925. DSSERR("Cannot scale width exceeds max line width");
  1926. return -EINVAL;
  1927. }
  1928. *core_clk = dispc.feat->calc_core_clk(pclk, in_width, in_height,
  1929. out_width, out_height, mem_to_mem);
  1930. return 0;
  1931. }
  1932. static int dispc_ovl_calc_scaling(unsigned long pclk, unsigned long lclk,
  1933. enum omap_overlay_caps caps,
  1934. const struct omap_video_timings *mgr_timings,
  1935. u16 width, u16 height, u16 out_width, u16 out_height,
  1936. enum omap_color_mode color_mode, bool *five_taps,
  1937. int *x_predecim, int *y_predecim, u16 pos_x,
  1938. enum omap_dss_rotation_type rotation_type, bool mem_to_mem)
  1939. {
  1940. const int maxdownscale = dss_feat_get_param_max(FEAT_PARAM_DOWNSCALE);
  1941. const int max_decim_limit = 16;
  1942. unsigned long core_clk = 0;
  1943. int decim_x, decim_y, ret;
  1944. if (width == out_width && height == out_height)
  1945. return 0;
  1946. if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
  1947. return -EINVAL;
  1948. if (mem_to_mem) {
  1949. *x_predecim = *y_predecim = 1;
  1950. } else {
  1951. *x_predecim = max_decim_limit;
  1952. *y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
  1953. dss_has_feature(FEAT_BURST_2D)) ?
  1954. 2 : max_decim_limit;
  1955. }
  1956. if (color_mode == OMAP_DSS_COLOR_CLUT1 ||
  1957. color_mode == OMAP_DSS_COLOR_CLUT2 ||
  1958. color_mode == OMAP_DSS_COLOR_CLUT4 ||
  1959. color_mode == OMAP_DSS_COLOR_CLUT8) {
  1960. *x_predecim = 1;
  1961. *y_predecim = 1;
  1962. *five_taps = false;
  1963. return 0;
  1964. }
  1965. decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxdownscale);
  1966. decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxdownscale);
  1967. if (decim_x > *x_predecim || out_width > width * 8)
  1968. return -EINVAL;
  1969. if (decim_y > *y_predecim || out_height > height * 8)
  1970. return -EINVAL;
  1971. ret = dispc.feat->calc_scaling(pclk, lclk, mgr_timings, width, height,
  1972. out_width, out_height, color_mode, five_taps,
  1973. x_predecim, y_predecim, &decim_x, &decim_y, pos_x, &core_clk,
  1974. mem_to_mem);
  1975. if (ret)
  1976. return ret;
  1977. DSSDBG("required core clk rate = %lu Hz\n", core_clk);
  1978. DSSDBG("current core clk rate = %lu Hz\n", dispc_core_clk_rate());
  1979. if (!core_clk || core_clk > dispc_core_clk_rate()) {
  1980. DSSERR("failed to set up scaling, "
  1981. "required core clk rate = %lu Hz, "
  1982. "current core clk rate = %lu Hz\n",
  1983. core_clk, dispc_core_clk_rate());
  1984. return -EINVAL;
  1985. }
  1986. *x_predecim = decim_x;
  1987. *y_predecim = decim_y;
  1988. return 0;
  1989. }
  1990. int dispc_ovl_check(enum omap_plane plane, enum omap_channel channel,
  1991. const struct omap_overlay_info *oi,
  1992. const struct omap_video_timings *timings,
  1993. int *x_predecim, int *y_predecim)
  1994. {
  1995. enum omap_overlay_caps caps = dss_feat_get_overlay_caps(plane);
  1996. bool five_taps = true;
  1997. bool fieldmode = 0;
  1998. u16 in_height = oi->height;
  1999. u16 in_width = oi->width;
  2000. bool ilace = timings->interlace;
  2001. u16 out_width, out_height;
  2002. int pos_x = oi->pos_x;
  2003. unsigned long pclk = dispc_mgr_pclk_rate(channel);
  2004. unsigned long lclk = dispc_mgr_lclk_rate(channel);
  2005. out_width = oi->out_width == 0 ? oi->width : oi->out_width;
  2006. out_height = oi->out_height == 0 ? oi->height : oi->out_height;
  2007. if (ilace && oi->height == out_height)
  2008. fieldmode = 1;
  2009. if (ilace) {
  2010. if (fieldmode)
  2011. in_height /= 2;
  2012. out_height /= 2;
  2013. DSSDBG("adjusting for ilace: height %d, out_height %d\n",
  2014. in_height, out_height);
  2015. }
  2016. if (!dss_feat_color_mode_supported(plane, oi->color_mode))
  2017. return -EINVAL;
  2018. return dispc_ovl_calc_scaling(pclk, lclk, caps, timings, in_width,
  2019. in_height, out_width, out_height, oi->color_mode,
  2020. &five_taps, x_predecim, y_predecim, pos_x,
  2021. oi->rotation_type, false);
  2022. }
  2023. EXPORT_SYMBOL(dispc_ovl_check);
  2024. static int dispc_ovl_setup_common(enum omap_plane plane,
  2025. enum omap_overlay_caps caps, u32 paddr, u32 p_uv_addr,
  2026. u16 screen_width, int pos_x, int pos_y, u16 width, u16 height,
  2027. u16 out_width, u16 out_height, enum omap_color_mode color_mode,
  2028. u8 rotation, bool mirror, u8 zorder, u8 pre_mult_alpha,
  2029. u8 global_alpha, enum omap_dss_rotation_type rotation_type,
  2030. bool replication, const struct omap_video_timings *mgr_timings,
  2031. bool mem_to_mem)
  2032. {
  2033. bool five_taps = true;
  2034. bool fieldmode = 0;
  2035. int r, cconv = 0;
  2036. unsigned offset0, offset1;
  2037. s32 row_inc;
  2038. s32 pix_inc;
  2039. u16 frame_width, frame_height;
  2040. unsigned int field_offset = 0;
  2041. u16 in_height = height;
  2042. u16 in_width = width;
  2043. int x_predecim = 1, y_predecim = 1;
  2044. bool ilace = mgr_timings->interlace;
  2045. unsigned long pclk = dispc_plane_pclk_rate(plane);
  2046. unsigned long lclk = dispc_plane_lclk_rate(plane);
  2047. if (paddr == 0)
  2048. return -EINVAL;
  2049. out_width = out_width == 0 ? width : out_width;
  2050. out_height = out_height == 0 ? height : out_height;
  2051. if (ilace && height == out_height)
  2052. fieldmode = 1;
  2053. if (ilace) {
  2054. if (fieldmode)
  2055. in_height /= 2;
  2056. pos_y /= 2;
  2057. out_height /= 2;
  2058. DSSDBG("adjusting for ilace: height %d, pos_y %d, "
  2059. "out_height %d\n", in_height, pos_y,
  2060. out_height);
  2061. }
  2062. if (!dss_feat_color_mode_supported(plane, color_mode))
  2063. return -EINVAL;
  2064. r = dispc_ovl_calc_scaling(pclk, lclk, caps, mgr_timings, in_width,
  2065. in_height, out_width, out_height, color_mode,
  2066. &five_taps, &x_predecim, &y_predecim, pos_x,
  2067. rotation_type, mem_to_mem);
  2068. if (r)
  2069. return r;
  2070. in_width = DIV_ROUND_UP(in_width, x_predecim);
  2071. in_height = DIV_ROUND_UP(in_height, y_predecim);
  2072. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  2073. color_mode == OMAP_DSS_COLOR_UYVY ||
  2074. color_mode == OMAP_DSS_COLOR_NV12)
  2075. cconv = 1;
  2076. if (ilace && !fieldmode) {
  2077. /*
  2078. * when downscaling the bottom field may have to start several
  2079. * source lines below the top field. Unfortunately ACCUI
  2080. * registers will only hold the fractional part of the offset
  2081. * so the integer part must be added to the base address of the
  2082. * bottom field.
  2083. */
  2084. if (!in_height || in_height == out_height)
  2085. field_offset = 0;
  2086. else
  2087. field_offset = in_height / out_height / 2;
  2088. }
  2089. /* Fields are independent but interleaved in memory. */
  2090. if (fieldmode)
  2091. field_offset = 1;
  2092. offset0 = 0;
  2093. offset1 = 0;
  2094. row_inc = 0;
  2095. pix_inc = 0;
  2096. if (plane == OMAP_DSS_WB) {
  2097. frame_width = out_width;
  2098. frame_height = out_height;
  2099. } else {
  2100. frame_width = in_width;
  2101. frame_height = height;
  2102. }
  2103. if (rotation_type == OMAP_DSS_ROT_TILER)
  2104. calc_tiler_rotation_offset(screen_width, frame_width,
  2105. color_mode, fieldmode, field_offset,
  2106. &offset0, &offset1, &row_inc, &pix_inc,
  2107. x_predecim, y_predecim);
  2108. else if (rotation_type == OMAP_DSS_ROT_DMA)
  2109. calc_dma_rotation_offset(rotation, mirror, screen_width,
  2110. frame_width, frame_height,
  2111. color_mode, fieldmode, field_offset,
  2112. &offset0, &offset1, &row_inc, &pix_inc,
  2113. x_predecim, y_predecim);
  2114. else
  2115. calc_vrfb_rotation_offset(rotation, mirror,
  2116. screen_width, frame_width, frame_height,
  2117. color_mode, fieldmode, field_offset,
  2118. &offset0, &offset1, &row_inc, &pix_inc,
  2119. x_predecim, y_predecim);
  2120. DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
  2121. offset0, offset1, row_inc, pix_inc);
  2122. dispc_ovl_set_color_mode(plane, color_mode);
  2123. dispc_ovl_configure_burst_type(plane, rotation_type);
  2124. dispc_ovl_set_ba0(plane, paddr + offset0);
  2125. dispc_ovl_set_ba1(plane, paddr + offset1);
  2126. if (OMAP_DSS_COLOR_NV12 == color_mode) {
  2127. dispc_ovl_set_ba0_uv(plane, p_uv_addr + offset0);
  2128. dispc_ovl_set_ba1_uv(plane, p_uv_addr + offset1);
  2129. }
  2130. dispc_ovl_set_row_inc(plane, row_inc);
  2131. dispc_ovl_set_pix_inc(plane, pix_inc);
  2132. DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
  2133. in_height, out_width, out_height);
  2134. dispc_ovl_set_pos(plane, caps, pos_x, pos_y);
  2135. dispc_ovl_set_input_size(plane, in_width, in_height);
  2136. if (caps & OMAP_DSS_OVL_CAP_SCALE) {
  2137. dispc_ovl_set_scaling(plane, in_width, in_height, out_width,
  2138. out_height, ilace, five_taps, fieldmode,
  2139. color_mode, rotation);
  2140. dispc_ovl_set_output_size(plane, out_width, out_height);
  2141. dispc_ovl_set_vid_color_conv(plane, cconv);
  2142. }
  2143. dispc_ovl_set_rotation_attrs(plane, rotation, mirror, color_mode);
  2144. dispc_ovl_set_zorder(plane, caps, zorder);
  2145. dispc_ovl_set_pre_mult_alpha(plane, caps, pre_mult_alpha);
  2146. dispc_ovl_setup_global_alpha(plane, caps, global_alpha);
  2147. dispc_ovl_enable_replication(plane, caps, replication);
  2148. return 0;
  2149. }
  2150. int dispc_ovl_setup(enum omap_plane plane, const struct omap_overlay_info *oi,
  2151. bool replication, const struct omap_video_timings *mgr_timings,
  2152. bool mem_to_mem)
  2153. {
  2154. int r;
  2155. enum omap_overlay_caps caps = dss_feat_get_overlay_caps(plane);
  2156. enum omap_channel channel;
  2157. channel = dispc_ovl_get_channel_out(plane);
  2158. DSSDBG("dispc_ovl_setup %d, pa %x, pa_uv %x, sw %d, %d,%d, %dx%d -> "
  2159. "%dx%d, cmode %x, rot %d, mir %d, chan %d repl %d\n",
  2160. plane, oi->paddr, oi->p_uv_addr, oi->screen_width, oi->pos_x,
  2161. oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
  2162. oi->color_mode, oi->rotation, oi->mirror, channel, replication);
  2163. r = dispc_ovl_setup_common(plane, caps, oi->paddr, oi->p_uv_addr,
  2164. oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
  2165. oi->out_width, oi->out_height, oi->color_mode, oi->rotation,
  2166. oi->mirror, oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
  2167. oi->rotation_type, replication, mgr_timings, mem_to_mem);
  2168. return r;
  2169. }
  2170. EXPORT_SYMBOL(dispc_ovl_setup);
  2171. int dispc_wb_setup(const struct omap_dss_writeback_info *wi,
  2172. bool mem_to_mem, const struct omap_video_timings *mgr_timings)
  2173. {
  2174. int r;
  2175. u32 l;
  2176. enum omap_plane plane = OMAP_DSS_WB;
  2177. const int pos_x = 0, pos_y = 0;
  2178. const u8 zorder = 0, global_alpha = 0;
  2179. const bool replication = false;
  2180. bool truncation;
  2181. int in_width = mgr_timings->x_res;
  2182. int in_height = mgr_timings->y_res;
  2183. enum omap_overlay_caps caps =
  2184. OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
  2185. DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
  2186. "rot %d, mir %d\n", wi->paddr, wi->p_uv_addr, in_width,
  2187. in_height, wi->width, wi->height, wi->color_mode, wi->rotation,
  2188. wi->mirror);
  2189. r = dispc_ovl_setup_common(plane, caps, wi->paddr, wi->p_uv_addr,
  2190. wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
  2191. wi->height, wi->color_mode, wi->rotation, wi->mirror, zorder,
  2192. wi->pre_mult_alpha, global_alpha, wi->rotation_type,
  2193. replication, mgr_timings, mem_to_mem);
  2194. switch (wi->color_mode) {
  2195. case OMAP_DSS_COLOR_RGB16:
  2196. case OMAP_DSS_COLOR_RGB24P:
  2197. case OMAP_DSS_COLOR_ARGB16:
  2198. case OMAP_DSS_COLOR_RGBA16:
  2199. case OMAP_DSS_COLOR_RGB12U:
  2200. case OMAP_DSS_COLOR_ARGB16_1555:
  2201. case OMAP_DSS_COLOR_XRGB16_1555:
  2202. case OMAP_DSS_COLOR_RGBX16:
  2203. truncation = true;
  2204. break;
  2205. default:
  2206. truncation = false;
  2207. break;
  2208. }
  2209. /* setup extra DISPC_WB_ATTRIBUTES */
  2210. l = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
  2211. l = FLD_MOD(l, truncation, 10, 10); /* TRUNCATIONENABLE */
  2212. l = FLD_MOD(l, mem_to_mem, 19, 19); /* WRITEBACKMODE */
  2213. dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), l);
  2214. return r;
  2215. }
  2216. int dispc_ovl_enable(enum omap_plane plane, bool enable)
  2217. {
  2218. DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
  2219. REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
  2220. return 0;
  2221. }
  2222. EXPORT_SYMBOL(dispc_ovl_enable);
  2223. bool dispc_ovl_enabled(enum omap_plane plane)
  2224. {
  2225. return REG_GET(DISPC_OVL_ATTRIBUTES(plane), 0, 0);
  2226. }
  2227. EXPORT_SYMBOL(dispc_ovl_enabled);
  2228. void dispc_mgr_enable(enum omap_channel channel, bool enable)
  2229. {
  2230. mgr_fld_write(channel, DISPC_MGR_FLD_ENABLE, enable);
  2231. /* flush posted write */
  2232. mgr_fld_read(channel, DISPC_MGR_FLD_ENABLE);
  2233. }
  2234. EXPORT_SYMBOL(dispc_mgr_enable);
  2235. bool dispc_mgr_is_enabled(enum omap_channel channel)
  2236. {
  2237. return !!mgr_fld_read(channel, DISPC_MGR_FLD_ENABLE);
  2238. }
  2239. EXPORT_SYMBOL(dispc_mgr_is_enabled);
  2240. void dispc_wb_enable(bool enable)
  2241. {
  2242. dispc_ovl_enable(OMAP_DSS_WB, enable);
  2243. }
  2244. bool dispc_wb_is_enabled(void)
  2245. {
  2246. return dispc_ovl_enabled(OMAP_DSS_WB);
  2247. }
  2248. static void dispc_lcd_enable_signal_polarity(bool act_high)
  2249. {
  2250. if (!dss_has_feature(FEAT_LCDENABLEPOL))
  2251. return;
  2252. REG_FLD_MOD(DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
  2253. }
  2254. void dispc_lcd_enable_signal(bool enable)
  2255. {
  2256. if (!dss_has_feature(FEAT_LCDENABLESIGNAL))
  2257. return;
  2258. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 28, 28);
  2259. }
  2260. void dispc_pck_free_enable(bool enable)
  2261. {
  2262. if (!dss_has_feature(FEAT_PCKFREEENABLE))
  2263. return;
  2264. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 27, 27);
  2265. }
  2266. static void dispc_mgr_enable_fifohandcheck(enum omap_channel channel, bool enable)
  2267. {
  2268. mgr_fld_write(channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
  2269. }
  2270. static void dispc_mgr_set_lcd_type_tft(enum omap_channel channel)
  2271. {
  2272. mgr_fld_write(channel, DISPC_MGR_FLD_STNTFT, 1);
  2273. }
  2274. void dispc_set_loadmode(enum omap_dss_load_mode mode)
  2275. {
  2276. REG_FLD_MOD(DISPC_CONFIG, mode, 2, 1);
  2277. }
  2278. static void dispc_mgr_set_default_color(enum omap_channel channel, u32 color)
  2279. {
  2280. dispc_write_reg(DISPC_DEFAULT_COLOR(channel), color);
  2281. }
  2282. static void dispc_mgr_set_trans_key(enum omap_channel ch,
  2283. enum omap_dss_trans_key_type type,
  2284. u32 trans_key)
  2285. {
  2286. mgr_fld_write(ch, DISPC_MGR_FLD_TCKSELECTION, type);
  2287. dispc_write_reg(DISPC_TRANS_COLOR(ch), trans_key);
  2288. }
  2289. static void dispc_mgr_enable_trans_key(enum omap_channel ch, bool enable)
  2290. {
  2291. mgr_fld_write(ch, DISPC_MGR_FLD_TCKENABLE, enable);
  2292. }
  2293. static void dispc_mgr_enable_alpha_fixed_zorder(enum omap_channel ch,
  2294. bool enable)
  2295. {
  2296. if (!dss_has_feature(FEAT_ALPHA_FIXED_ZORDER))
  2297. return;
  2298. if (ch == OMAP_DSS_CHANNEL_LCD)
  2299. REG_FLD_MOD(DISPC_CONFIG, enable, 18, 18);
  2300. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  2301. REG_FLD_MOD(DISPC_CONFIG, enable, 19, 19);
  2302. }
  2303. void dispc_mgr_setup(enum omap_channel channel,
  2304. const struct omap_overlay_manager_info *info)
  2305. {
  2306. dispc_mgr_set_default_color(channel, info->default_color);
  2307. dispc_mgr_set_trans_key(channel, info->trans_key_type, info->trans_key);
  2308. dispc_mgr_enable_trans_key(channel, info->trans_enabled);
  2309. dispc_mgr_enable_alpha_fixed_zorder(channel,
  2310. info->partial_alpha_enabled);
  2311. if (dss_has_feature(FEAT_CPR)) {
  2312. dispc_mgr_enable_cpr(channel, info->cpr_enable);
  2313. dispc_mgr_set_cpr_coef(channel, &info->cpr_coefs);
  2314. }
  2315. }
  2316. EXPORT_SYMBOL(dispc_mgr_setup);
  2317. static void dispc_mgr_set_tft_data_lines(enum omap_channel channel, u8 data_lines)
  2318. {
  2319. int code;
  2320. switch (data_lines) {
  2321. case 12:
  2322. code = 0;
  2323. break;
  2324. case 16:
  2325. code = 1;
  2326. break;
  2327. case 18:
  2328. code = 2;
  2329. break;
  2330. case 24:
  2331. code = 3;
  2332. break;
  2333. default:
  2334. BUG();
  2335. return;
  2336. }
  2337. mgr_fld_write(channel, DISPC_MGR_FLD_TFTDATALINES, code);
  2338. }
  2339. static void dispc_mgr_set_io_pad_mode(enum dss_io_pad_mode mode)
  2340. {
  2341. u32 l;
  2342. int gpout0, gpout1;
  2343. switch (mode) {
  2344. case DSS_IO_PAD_MODE_RESET:
  2345. gpout0 = 0;
  2346. gpout1 = 0;
  2347. break;
  2348. case DSS_IO_PAD_MODE_RFBI:
  2349. gpout0 = 1;
  2350. gpout1 = 0;
  2351. break;
  2352. case DSS_IO_PAD_MODE_BYPASS:
  2353. gpout0 = 1;
  2354. gpout1 = 1;
  2355. break;
  2356. default:
  2357. BUG();
  2358. return;
  2359. }
  2360. l = dispc_read_reg(DISPC_CONTROL);
  2361. l = FLD_MOD(l, gpout0, 15, 15);
  2362. l = FLD_MOD(l, gpout1, 16, 16);
  2363. dispc_write_reg(DISPC_CONTROL, l);
  2364. }
  2365. static void dispc_mgr_enable_stallmode(enum omap_channel channel, bool enable)
  2366. {
  2367. mgr_fld_write(channel, DISPC_MGR_FLD_STALLMODE, enable);
  2368. }
  2369. void dispc_mgr_set_lcd_config(enum omap_channel channel,
  2370. const struct dss_lcd_mgr_config *config)
  2371. {
  2372. dispc_mgr_set_io_pad_mode(config->io_pad_mode);
  2373. dispc_mgr_enable_stallmode(channel, config->stallmode);
  2374. dispc_mgr_enable_fifohandcheck(channel, config->fifohandcheck);
  2375. dispc_mgr_set_clock_div(channel, &config->clock_info);
  2376. dispc_mgr_set_tft_data_lines(channel, config->video_port_width);
  2377. dispc_lcd_enable_signal_polarity(config->lcden_sig_polarity);
  2378. dispc_mgr_set_lcd_type_tft(channel);
  2379. }
  2380. EXPORT_SYMBOL(dispc_mgr_set_lcd_config);
  2381. static bool _dispc_mgr_size_ok(u16 width, u16 height)
  2382. {
  2383. return width <= dispc.feat->mgr_width_max &&
  2384. height <= dispc.feat->mgr_height_max;
  2385. }
  2386. static bool _dispc_lcd_timings_ok(int hsw, int hfp, int hbp,
  2387. int vsw, int vfp, int vbp)
  2388. {
  2389. if (hsw < 1 || hsw > dispc.feat->sw_max ||
  2390. hfp < 1 || hfp > dispc.feat->hp_max ||
  2391. hbp < 1 || hbp > dispc.feat->hp_max ||
  2392. vsw < 1 || vsw > dispc.feat->sw_max ||
  2393. vfp < 0 || vfp > dispc.feat->vp_max ||
  2394. vbp < 0 || vbp > dispc.feat->vp_max)
  2395. return false;
  2396. return true;
  2397. }
  2398. static bool _dispc_mgr_pclk_ok(enum omap_channel channel,
  2399. unsigned long pclk)
  2400. {
  2401. if (dss_mgr_is_lcd(channel))
  2402. return pclk <= dispc.feat->max_lcd_pclk ? true : false;
  2403. else
  2404. return pclk <= dispc.feat->max_tv_pclk ? true : false;
  2405. }
  2406. bool dispc_mgr_timings_ok(enum omap_channel channel,
  2407. const struct omap_video_timings *timings)
  2408. {
  2409. bool timings_ok;
  2410. timings_ok = _dispc_mgr_size_ok(timings->x_res, timings->y_res);
  2411. timings_ok &= _dispc_mgr_pclk_ok(channel, timings->pixel_clock * 1000);
  2412. if (dss_mgr_is_lcd(channel)) {
  2413. timings_ok &= _dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  2414. timings->hbp, timings->vsw, timings->vfp,
  2415. timings->vbp);
  2416. }
  2417. return timings_ok;
  2418. }
  2419. static void _dispc_mgr_set_lcd_timings(enum omap_channel channel, int hsw,
  2420. int hfp, int hbp, int vsw, int vfp, int vbp,
  2421. enum omap_dss_signal_level vsync_level,
  2422. enum omap_dss_signal_level hsync_level,
  2423. enum omap_dss_signal_edge data_pclk_edge,
  2424. enum omap_dss_signal_level de_level,
  2425. enum omap_dss_signal_edge sync_pclk_edge)
  2426. {
  2427. u32 timing_h, timing_v, l;
  2428. bool onoff, rf, ipc;
  2429. timing_h = FLD_VAL(hsw-1, dispc.feat->sw_start, 0) |
  2430. FLD_VAL(hfp-1, dispc.feat->fp_start, 8) |
  2431. FLD_VAL(hbp-1, dispc.feat->bp_start, 20);
  2432. timing_v = FLD_VAL(vsw-1, dispc.feat->sw_start, 0) |
  2433. FLD_VAL(vfp, dispc.feat->fp_start, 8) |
  2434. FLD_VAL(vbp, dispc.feat->bp_start, 20);
  2435. dispc_write_reg(DISPC_TIMING_H(channel), timing_h);
  2436. dispc_write_reg(DISPC_TIMING_V(channel), timing_v);
  2437. switch (data_pclk_edge) {
  2438. case OMAPDSS_DRIVE_SIG_RISING_EDGE:
  2439. ipc = false;
  2440. break;
  2441. case OMAPDSS_DRIVE_SIG_FALLING_EDGE:
  2442. ipc = true;
  2443. break;
  2444. case OMAPDSS_DRIVE_SIG_OPPOSITE_EDGES:
  2445. default:
  2446. BUG();
  2447. }
  2448. switch (sync_pclk_edge) {
  2449. case OMAPDSS_DRIVE_SIG_OPPOSITE_EDGES:
  2450. onoff = false;
  2451. rf = false;
  2452. break;
  2453. case OMAPDSS_DRIVE_SIG_FALLING_EDGE:
  2454. onoff = true;
  2455. rf = false;
  2456. break;
  2457. case OMAPDSS_DRIVE_SIG_RISING_EDGE:
  2458. onoff = true;
  2459. rf = true;
  2460. break;
  2461. default:
  2462. BUG();
  2463. };
  2464. l = dispc_read_reg(DISPC_POL_FREQ(channel));
  2465. l |= FLD_VAL(onoff, 17, 17);
  2466. l |= FLD_VAL(rf, 16, 16);
  2467. l |= FLD_VAL(de_level, 15, 15);
  2468. l |= FLD_VAL(ipc, 14, 14);
  2469. l |= FLD_VAL(hsync_level, 13, 13);
  2470. l |= FLD_VAL(vsync_level, 12, 12);
  2471. dispc_write_reg(DISPC_POL_FREQ(channel), l);
  2472. }
  2473. /* change name to mode? */
  2474. void dispc_mgr_set_timings(enum omap_channel channel,
  2475. const struct omap_video_timings *timings)
  2476. {
  2477. unsigned xtot, ytot;
  2478. unsigned long ht, vt;
  2479. struct omap_video_timings t = *timings;
  2480. DSSDBG("channel %d xres %u yres %u\n", channel, t.x_res, t.y_res);
  2481. if (!dispc_mgr_timings_ok(channel, &t)) {
  2482. BUG();
  2483. return;
  2484. }
  2485. if (dss_mgr_is_lcd(channel)) {
  2486. _dispc_mgr_set_lcd_timings(channel, t.hsw, t.hfp, t.hbp, t.vsw,
  2487. t.vfp, t.vbp, t.vsync_level, t.hsync_level,
  2488. t.data_pclk_edge, t.de_level, t.sync_pclk_edge);
  2489. xtot = t.x_res + t.hfp + t.hsw + t.hbp;
  2490. ytot = t.y_res + t.vfp + t.vsw + t.vbp;
  2491. ht = (timings->pixel_clock * 1000) / xtot;
  2492. vt = (timings->pixel_clock * 1000) / xtot / ytot;
  2493. DSSDBG("pck %u\n", timings->pixel_clock);
  2494. DSSDBG("hsw %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
  2495. t.hsw, t.hfp, t.hbp, t.vsw, t.vfp, t.vbp);
  2496. DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
  2497. t.vsync_level, t.hsync_level, t.data_pclk_edge,
  2498. t.de_level, t.sync_pclk_edge);
  2499. DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
  2500. } else {
  2501. if (t.interlace == true)
  2502. t.y_res /= 2;
  2503. }
  2504. dispc_mgr_set_size(channel, t.x_res, t.y_res);
  2505. }
  2506. EXPORT_SYMBOL(dispc_mgr_set_timings);
  2507. static void dispc_mgr_set_lcd_divisor(enum omap_channel channel, u16 lck_div,
  2508. u16 pck_div)
  2509. {
  2510. BUG_ON(lck_div < 1);
  2511. BUG_ON(pck_div < 1);
  2512. dispc_write_reg(DISPC_DIVISORo(channel),
  2513. FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
  2514. }
  2515. static void dispc_mgr_get_lcd_divisor(enum omap_channel channel, int *lck_div,
  2516. int *pck_div)
  2517. {
  2518. u32 l;
  2519. l = dispc_read_reg(DISPC_DIVISORo(channel));
  2520. *lck_div = FLD_GET(l, 23, 16);
  2521. *pck_div = FLD_GET(l, 7, 0);
  2522. }
  2523. unsigned long dispc_fclk_rate(void)
  2524. {
  2525. struct platform_device *dsidev;
  2526. unsigned long r = 0;
  2527. switch (dss_get_dispc_clk_source()) {
  2528. case OMAP_DSS_CLK_SRC_FCK:
  2529. r = dss_get_dispc_clk_rate();
  2530. break;
  2531. case OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC:
  2532. dsidev = dsi_get_dsidev_from_id(0);
  2533. r = dsi_get_pll_hsdiv_dispc_rate(dsidev);
  2534. break;
  2535. case OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC:
  2536. dsidev = dsi_get_dsidev_from_id(1);
  2537. r = dsi_get_pll_hsdiv_dispc_rate(dsidev);
  2538. break;
  2539. default:
  2540. BUG();
  2541. return 0;
  2542. }
  2543. return r;
  2544. }
  2545. unsigned long dispc_mgr_lclk_rate(enum omap_channel channel)
  2546. {
  2547. struct platform_device *dsidev;
  2548. int lcd;
  2549. unsigned long r;
  2550. u32 l;
  2551. if (dss_mgr_is_lcd(channel)) {
  2552. l = dispc_read_reg(DISPC_DIVISORo(channel));
  2553. lcd = FLD_GET(l, 23, 16);
  2554. switch (dss_get_lcd_clk_source(channel)) {
  2555. case OMAP_DSS_CLK_SRC_FCK:
  2556. r = dss_get_dispc_clk_rate();
  2557. break;
  2558. case OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC:
  2559. dsidev = dsi_get_dsidev_from_id(0);
  2560. r = dsi_get_pll_hsdiv_dispc_rate(dsidev);
  2561. break;
  2562. case OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC:
  2563. dsidev = dsi_get_dsidev_from_id(1);
  2564. r = dsi_get_pll_hsdiv_dispc_rate(dsidev);
  2565. break;
  2566. default:
  2567. BUG();
  2568. return 0;
  2569. }
  2570. return r / lcd;
  2571. } else {
  2572. return dispc_fclk_rate();
  2573. }
  2574. }
  2575. unsigned long dispc_mgr_pclk_rate(enum omap_channel channel)
  2576. {
  2577. unsigned long r;
  2578. if (dss_mgr_is_lcd(channel)) {
  2579. int pcd;
  2580. u32 l;
  2581. l = dispc_read_reg(DISPC_DIVISORo(channel));
  2582. pcd = FLD_GET(l, 7, 0);
  2583. r = dispc_mgr_lclk_rate(channel);
  2584. return r / pcd;
  2585. } else {
  2586. enum dss_hdmi_venc_clk_source_select source;
  2587. source = dss_get_hdmi_venc_clk_source();
  2588. switch (source) {
  2589. case DSS_VENC_TV_CLK:
  2590. return venc_get_pixel_clock();
  2591. case DSS_HDMI_M_PCLK:
  2592. return hdmi_get_pixel_clock();
  2593. default:
  2594. BUG();
  2595. return 0;
  2596. }
  2597. }
  2598. }
  2599. unsigned long dispc_core_clk_rate(void)
  2600. {
  2601. int lcd;
  2602. unsigned long fclk = dispc_fclk_rate();
  2603. if (dss_has_feature(FEAT_CORE_CLK_DIV))
  2604. lcd = REG_GET(DISPC_DIVISOR, 23, 16);
  2605. else
  2606. lcd = REG_GET(DISPC_DIVISORo(OMAP_DSS_CHANNEL_LCD), 23, 16);
  2607. return fclk / lcd;
  2608. }
  2609. static unsigned long dispc_plane_pclk_rate(enum omap_plane plane)
  2610. {
  2611. enum omap_channel channel;
  2612. if (plane == OMAP_DSS_WB)
  2613. return 0;
  2614. channel = dispc_ovl_get_channel_out(plane);
  2615. return dispc_mgr_pclk_rate(channel);
  2616. }
  2617. static unsigned long dispc_plane_lclk_rate(enum omap_plane plane)
  2618. {
  2619. enum omap_channel channel;
  2620. if (plane == OMAP_DSS_WB)
  2621. return 0;
  2622. channel = dispc_ovl_get_channel_out(plane);
  2623. return dispc_mgr_lclk_rate(channel);
  2624. }
  2625. static void dispc_dump_clocks_channel(struct seq_file *s, enum omap_channel channel)
  2626. {
  2627. int lcd, pcd;
  2628. enum omap_dss_clk_source lcd_clk_src;
  2629. seq_printf(s, "- %s -\n", mgr_desc[channel].name);
  2630. lcd_clk_src = dss_get_lcd_clk_source(channel);
  2631. seq_printf(s, "%s clk source = %s (%s)\n", mgr_desc[channel].name,
  2632. dss_get_generic_clk_source_name(lcd_clk_src),
  2633. dss_feat_get_clk_source_name(lcd_clk_src));
  2634. dispc_mgr_get_lcd_divisor(channel, &lcd, &pcd);
  2635. seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
  2636. dispc_mgr_lclk_rate(channel), lcd);
  2637. seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
  2638. dispc_mgr_pclk_rate(channel), pcd);
  2639. }
  2640. void dispc_dump_clocks(struct seq_file *s)
  2641. {
  2642. int lcd;
  2643. u32 l;
  2644. enum omap_dss_clk_source dispc_clk_src = dss_get_dispc_clk_source();
  2645. if (dispc_runtime_get())
  2646. return;
  2647. seq_printf(s, "- DISPC -\n");
  2648. seq_printf(s, "dispc fclk source = %s (%s)\n",
  2649. dss_get_generic_clk_source_name(dispc_clk_src),
  2650. dss_feat_get_clk_source_name(dispc_clk_src));
  2651. seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate());
  2652. if (dss_has_feature(FEAT_CORE_CLK_DIV)) {
  2653. seq_printf(s, "- DISPC-CORE-CLK -\n");
  2654. l = dispc_read_reg(DISPC_DIVISOR);
  2655. lcd = FLD_GET(l, 23, 16);
  2656. seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
  2657. (dispc_fclk_rate()/lcd), lcd);
  2658. }
  2659. dispc_dump_clocks_channel(s, OMAP_DSS_CHANNEL_LCD);
  2660. if (dss_has_feature(FEAT_MGR_LCD2))
  2661. dispc_dump_clocks_channel(s, OMAP_DSS_CHANNEL_LCD2);
  2662. if (dss_has_feature(FEAT_MGR_LCD3))
  2663. dispc_dump_clocks_channel(s, OMAP_DSS_CHANNEL_LCD3);
  2664. dispc_runtime_put();
  2665. }
  2666. static void dispc_dump_regs(struct seq_file *s)
  2667. {
  2668. int i, j;
  2669. const char *mgr_names[] = {
  2670. [OMAP_DSS_CHANNEL_LCD] = "LCD",
  2671. [OMAP_DSS_CHANNEL_DIGIT] = "TV",
  2672. [OMAP_DSS_CHANNEL_LCD2] = "LCD2",
  2673. [OMAP_DSS_CHANNEL_LCD3] = "LCD3",
  2674. };
  2675. const char *ovl_names[] = {
  2676. [OMAP_DSS_GFX] = "GFX",
  2677. [OMAP_DSS_VIDEO1] = "VID1",
  2678. [OMAP_DSS_VIDEO2] = "VID2",
  2679. [OMAP_DSS_VIDEO3] = "VID3",
  2680. };
  2681. const char **p_names;
  2682. #define DUMPREG(r) seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(r))
  2683. if (dispc_runtime_get())
  2684. return;
  2685. /* DISPC common registers */
  2686. DUMPREG(DISPC_REVISION);
  2687. DUMPREG(DISPC_SYSCONFIG);
  2688. DUMPREG(DISPC_SYSSTATUS);
  2689. DUMPREG(DISPC_IRQSTATUS);
  2690. DUMPREG(DISPC_IRQENABLE);
  2691. DUMPREG(DISPC_CONTROL);
  2692. DUMPREG(DISPC_CONFIG);
  2693. DUMPREG(DISPC_CAPABLE);
  2694. DUMPREG(DISPC_LINE_STATUS);
  2695. DUMPREG(DISPC_LINE_NUMBER);
  2696. if (dss_has_feature(FEAT_ALPHA_FIXED_ZORDER) ||
  2697. dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
  2698. DUMPREG(DISPC_GLOBAL_ALPHA);
  2699. if (dss_has_feature(FEAT_MGR_LCD2)) {
  2700. DUMPREG(DISPC_CONTROL2);
  2701. DUMPREG(DISPC_CONFIG2);
  2702. }
  2703. if (dss_has_feature(FEAT_MGR_LCD3)) {
  2704. DUMPREG(DISPC_CONTROL3);
  2705. DUMPREG(DISPC_CONFIG3);
  2706. }
  2707. #undef DUMPREG
  2708. #define DISPC_REG(i, name) name(i)
  2709. #define DUMPREG(i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
  2710. (int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
  2711. dispc_read_reg(DISPC_REG(i, r)))
  2712. p_names = mgr_names;
  2713. /* DISPC channel specific registers */
  2714. for (i = 0; i < dss_feat_get_num_mgrs(); i++) {
  2715. DUMPREG(i, DISPC_DEFAULT_COLOR);
  2716. DUMPREG(i, DISPC_TRANS_COLOR);
  2717. DUMPREG(i, DISPC_SIZE_MGR);
  2718. if (i == OMAP_DSS_CHANNEL_DIGIT)
  2719. continue;
  2720. DUMPREG(i, DISPC_DEFAULT_COLOR);
  2721. DUMPREG(i, DISPC_TRANS_COLOR);
  2722. DUMPREG(i, DISPC_TIMING_H);
  2723. DUMPREG(i, DISPC_TIMING_V);
  2724. DUMPREG(i, DISPC_POL_FREQ);
  2725. DUMPREG(i, DISPC_DIVISORo);
  2726. DUMPREG(i, DISPC_SIZE_MGR);
  2727. DUMPREG(i, DISPC_DATA_CYCLE1);
  2728. DUMPREG(i, DISPC_DATA_CYCLE2);
  2729. DUMPREG(i, DISPC_DATA_CYCLE3);
  2730. if (dss_has_feature(FEAT_CPR)) {
  2731. DUMPREG(i, DISPC_CPR_COEF_R);
  2732. DUMPREG(i, DISPC_CPR_COEF_G);
  2733. DUMPREG(i, DISPC_CPR_COEF_B);
  2734. }
  2735. }
  2736. p_names = ovl_names;
  2737. for (i = 0; i < dss_feat_get_num_ovls(); i++) {
  2738. DUMPREG(i, DISPC_OVL_BA0);
  2739. DUMPREG(i, DISPC_OVL_BA1);
  2740. DUMPREG(i, DISPC_OVL_POSITION);
  2741. DUMPREG(i, DISPC_OVL_SIZE);
  2742. DUMPREG(i, DISPC_OVL_ATTRIBUTES);
  2743. DUMPREG(i, DISPC_OVL_FIFO_THRESHOLD);
  2744. DUMPREG(i, DISPC_OVL_FIFO_SIZE_STATUS);
  2745. DUMPREG(i, DISPC_OVL_ROW_INC);
  2746. DUMPREG(i, DISPC_OVL_PIXEL_INC);
  2747. if (dss_has_feature(FEAT_PRELOAD))
  2748. DUMPREG(i, DISPC_OVL_PRELOAD);
  2749. if (i == OMAP_DSS_GFX) {
  2750. DUMPREG(i, DISPC_OVL_WINDOW_SKIP);
  2751. DUMPREG(i, DISPC_OVL_TABLE_BA);
  2752. continue;
  2753. }
  2754. DUMPREG(i, DISPC_OVL_FIR);
  2755. DUMPREG(i, DISPC_OVL_PICTURE_SIZE);
  2756. DUMPREG(i, DISPC_OVL_ACCU0);
  2757. DUMPREG(i, DISPC_OVL_ACCU1);
  2758. if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
  2759. DUMPREG(i, DISPC_OVL_BA0_UV);
  2760. DUMPREG(i, DISPC_OVL_BA1_UV);
  2761. DUMPREG(i, DISPC_OVL_FIR2);
  2762. DUMPREG(i, DISPC_OVL_ACCU2_0);
  2763. DUMPREG(i, DISPC_OVL_ACCU2_1);
  2764. }
  2765. if (dss_has_feature(FEAT_ATTR2))
  2766. DUMPREG(i, DISPC_OVL_ATTRIBUTES2);
  2767. if (dss_has_feature(FEAT_PRELOAD))
  2768. DUMPREG(i, DISPC_OVL_PRELOAD);
  2769. }
  2770. #undef DISPC_REG
  2771. #undef DUMPREG
  2772. #define DISPC_REG(plane, name, i) name(plane, i)
  2773. #define DUMPREG(plane, name, i) \
  2774. seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
  2775. (int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
  2776. dispc_read_reg(DISPC_REG(plane, name, i)))
  2777. /* Video pipeline coefficient registers */
  2778. /* start from OMAP_DSS_VIDEO1 */
  2779. for (i = 1; i < dss_feat_get_num_ovls(); i++) {
  2780. for (j = 0; j < 8; j++)
  2781. DUMPREG(i, DISPC_OVL_FIR_COEF_H, j);
  2782. for (j = 0; j < 8; j++)
  2783. DUMPREG(i, DISPC_OVL_FIR_COEF_HV, j);
  2784. for (j = 0; j < 5; j++)
  2785. DUMPREG(i, DISPC_OVL_CONV_COEF, j);
  2786. if (dss_has_feature(FEAT_FIR_COEF_V)) {
  2787. for (j = 0; j < 8; j++)
  2788. DUMPREG(i, DISPC_OVL_FIR_COEF_V, j);
  2789. }
  2790. if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
  2791. for (j = 0; j < 8; j++)
  2792. DUMPREG(i, DISPC_OVL_FIR_COEF_H2, j);
  2793. for (j = 0; j < 8; j++)
  2794. DUMPREG(i, DISPC_OVL_FIR_COEF_HV2, j);
  2795. for (j = 0; j < 8; j++)
  2796. DUMPREG(i, DISPC_OVL_FIR_COEF_V2, j);
  2797. }
  2798. }
  2799. dispc_runtime_put();
  2800. #undef DISPC_REG
  2801. #undef DUMPREG
  2802. }
  2803. /* with fck as input clock rate, find dispc dividers that produce req_pck */
  2804. void dispc_find_clk_divs(unsigned long req_pck, unsigned long fck,
  2805. struct dispc_clock_info *cinfo)
  2806. {
  2807. u16 pcd_min, pcd_max;
  2808. unsigned long best_pck;
  2809. u16 best_ld, cur_ld;
  2810. u16 best_pd, cur_pd;
  2811. pcd_min = dss_feat_get_param_min(FEAT_PARAM_DSS_PCD);
  2812. pcd_max = dss_feat_get_param_max(FEAT_PARAM_DSS_PCD);
  2813. best_pck = 0;
  2814. best_ld = 0;
  2815. best_pd = 0;
  2816. for (cur_ld = 1; cur_ld <= 255; ++cur_ld) {
  2817. unsigned long lck = fck / cur_ld;
  2818. for (cur_pd = pcd_min; cur_pd <= pcd_max; ++cur_pd) {
  2819. unsigned long pck = lck / cur_pd;
  2820. long old_delta = abs(best_pck - req_pck);
  2821. long new_delta = abs(pck - req_pck);
  2822. if (best_pck == 0 || new_delta < old_delta) {
  2823. best_pck = pck;
  2824. best_ld = cur_ld;
  2825. best_pd = cur_pd;
  2826. if (pck == req_pck)
  2827. goto found;
  2828. }
  2829. if (pck < req_pck)
  2830. break;
  2831. }
  2832. if (lck / pcd_min < req_pck)
  2833. break;
  2834. }
  2835. found:
  2836. cinfo->lck_div = best_ld;
  2837. cinfo->pck_div = best_pd;
  2838. cinfo->lck = fck / cinfo->lck_div;
  2839. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2840. }
  2841. /* calculate clock rates using dividers in cinfo */
  2842. int dispc_calc_clock_rates(unsigned long dispc_fclk_rate,
  2843. struct dispc_clock_info *cinfo)
  2844. {
  2845. if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
  2846. return -EINVAL;
  2847. if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
  2848. return -EINVAL;
  2849. cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
  2850. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2851. return 0;
  2852. }
  2853. void dispc_mgr_set_clock_div(enum omap_channel channel,
  2854. const struct dispc_clock_info *cinfo)
  2855. {
  2856. DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
  2857. DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
  2858. dispc_mgr_set_lcd_divisor(channel, cinfo->lck_div, cinfo->pck_div);
  2859. }
  2860. int dispc_mgr_get_clock_div(enum omap_channel channel,
  2861. struct dispc_clock_info *cinfo)
  2862. {
  2863. unsigned long fck;
  2864. fck = dispc_fclk_rate();
  2865. cinfo->lck_div = REG_GET(DISPC_DIVISORo(channel), 23, 16);
  2866. cinfo->pck_div = REG_GET(DISPC_DIVISORo(channel), 7, 0);
  2867. cinfo->lck = fck / cinfo->lck_div;
  2868. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2869. return 0;
  2870. }
  2871. u32 dispc_read_irqstatus(void)
  2872. {
  2873. return dispc_read_reg(DISPC_IRQSTATUS);
  2874. }
  2875. EXPORT_SYMBOL(dispc_read_irqstatus);
  2876. void dispc_clear_irqstatus(u32 mask)
  2877. {
  2878. dispc_write_reg(DISPC_IRQSTATUS, mask);
  2879. }
  2880. EXPORT_SYMBOL(dispc_clear_irqstatus);
  2881. u32 dispc_read_irqenable(void)
  2882. {
  2883. return dispc_read_reg(DISPC_IRQENABLE);
  2884. }
  2885. EXPORT_SYMBOL(dispc_read_irqenable);
  2886. void dispc_write_irqenable(u32 mask)
  2887. {
  2888. u32 old_mask = dispc_read_reg(DISPC_IRQENABLE);
  2889. /* clear the irqstatus for newly enabled irqs */
  2890. dispc_clear_irqstatus((mask ^ old_mask) & mask);
  2891. dispc_write_reg(DISPC_IRQENABLE, mask);
  2892. }
  2893. EXPORT_SYMBOL(dispc_write_irqenable);
  2894. void dispc_enable_sidle(void)
  2895. {
  2896. REG_FLD_MOD(DISPC_SYSCONFIG, 2, 4, 3); /* SIDLEMODE: smart idle */
  2897. }
  2898. void dispc_disable_sidle(void)
  2899. {
  2900. REG_FLD_MOD(DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
  2901. }
  2902. static void _omap_dispc_initial_config(void)
  2903. {
  2904. u32 l;
  2905. /* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
  2906. if (dss_has_feature(FEAT_CORE_CLK_DIV)) {
  2907. l = dispc_read_reg(DISPC_DIVISOR);
  2908. /* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
  2909. l = FLD_MOD(l, 1, 0, 0);
  2910. l = FLD_MOD(l, 1, 23, 16);
  2911. dispc_write_reg(DISPC_DIVISOR, l);
  2912. }
  2913. /* FUNCGATED */
  2914. if (dss_has_feature(FEAT_FUNCGATED))
  2915. REG_FLD_MOD(DISPC_CONFIG, 1, 9, 9);
  2916. dispc_setup_color_conv_coef();
  2917. dispc_set_loadmode(OMAP_DSS_LOAD_FRAME_ONLY);
  2918. dispc_init_fifos();
  2919. dispc_configure_burst_sizes();
  2920. dispc_ovl_enable_zorder_planes();
  2921. }
  2922. static const struct dispc_features omap24xx_dispc_feats __initconst = {
  2923. .sw_start = 5,
  2924. .fp_start = 15,
  2925. .bp_start = 27,
  2926. .sw_max = 64,
  2927. .vp_max = 255,
  2928. .hp_max = 256,
  2929. .mgr_width_start = 10,
  2930. .mgr_height_start = 26,
  2931. .mgr_width_max = 2048,
  2932. .mgr_height_max = 2048,
  2933. .max_lcd_pclk = 66500000,
  2934. .calc_scaling = dispc_ovl_calc_scaling_24xx,
  2935. .calc_core_clk = calc_core_clk_24xx,
  2936. .num_fifos = 3,
  2937. .no_framedone_tv = true,
  2938. };
  2939. static const struct dispc_features omap34xx_rev1_0_dispc_feats __initconst = {
  2940. .sw_start = 5,
  2941. .fp_start = 15,
  2942. .bp_start = 27,
  2943. .sw_max = 64,
  2944. .vp_max = 255,
  2945. .hp_max = 256,
  2946. .mgr_width_start = 10,
  2947. .mgr_height_start = 26,
  2948. .mgr_width_max = 2048,
  2949. .mgr_height_max = 2048,
  2950. .max_lcd_pclk = 173000000,
  2951. .max_tv_pclk = 59000000,
  2952. .calc_scaling = dispc_ovl_calc_scaling_34xx,
  2953. .calc_core_clk = calc_core_clk_34xx,
  2954. .num_fifos = 3,
  2955. .no_framedone_tv = true,
  2956. };
  2957. static const struct dispc_features omap34xx_rev3_0_dispc_feats __initconst = {
  2958. .sw_start = 7,
  2959. .fp_start = 19,
  2960. .bp_start = 31,
  2961. .sw_max = 256,
  2962. .vp_max = 4095,
  2963. .hp_max = 4096,
  2964. .mgr_width_start = 10,
  2965. .mgr_height_start = 26,
  2966. .mgr_width_max = 2048,
  2967. .mgr_height_max = 2048,
  2968. .max_lcd_pclk = 173000000,
  2969. .max_tv_pclk = 59000000,
  2970. .calc_scaling = dispc_ovl_calc_scaling_34xx,
  2971. .calc_core_clk = calc_core_clk_34xx,
  2972. .num_fifos = 3,
  2973. .no_framedone_tv = true,
  2974. };
  2975. static const struct dispc_features omap44xx_dispc_feats __initconst = {
  2976. .sw_start = 7,
  2977. .fp_start = 19,
  2978. .bp_start = 31,
  2979. .sw_max = 256,
  2980. .vp_max = 4095,
  2981. .hp_max = 4096,
  2982. .mgr_width_start = 10,
  2983. .mgr_height_start = 26,
  2984. .mgr_width_max = 2048,
  2985. .mgr_height_max = 2048,
  2986. .max_lcd_pclk = 170000000,
  2987. .max_tv_pclk = 185625000,
  2988. .calc_scaling = dispc_ovl_calc_scaling_44xx,
  2989. .calc_core_clk = calc_core_clk_44xx,
  2990. .num_fifos = 5,
  2991. .gfx_fifo_workaround = true,
  2992. };
  2993. static const struct dispc_features omap54xx_dispc_feats __initconst = {
  2994. .sw_start = 7,
  2995. .fp_start = 19,
  2996. .bp_start = 31,
  2997. .sw_max = 256,
  2998. .vp_max = 4095,
  2999. .hp_max = 4096,
  3000. .mgr_width_start = 11,
  3001. .mgr_height_start = 27,
  3002. .mgr_width_max = 4096,
  3003. .mgr_height_max = 4096,
  3004. .max_lcd_pclk = 170000000,
  3005. .max_tv_pclk = 186000000,
  3006. .calc_scaling = dispc_ovl_calc_scaling_44xx,
  3007. .calc_core_clk = calc_core_clk_44xx,
  3008. .num_fifos = 5,
  3009. .gfx_fifo_workaround = true,
  3010. };
  3011. static int __init dispc_init_features(struct platform_device *pdev)
  3012. {
  3013. const struct dispc_features *src;
  3014. struct dispc_features *dst;
  3015. dst = devm_kzalloc(&pdev->dev, sizeof(*dst), GFP_KERNEL);
  3016. if (!dst) {
  3017. dev_err(&pdev->dev, "Failed to allocate DISPC Features\n");
  3018. return -ENOMEM;
  3019. }
  3020. switch (omapdss_get_version()) {
  3021. case OMAPDSS_VER_OMAP24xx:
  3022. src = &omap24xx_dispc_feats;
  3023. break;
  3024. case OMAPDSS_VER_OMAP34xx_ES1:
  3025. src = &omap34xx_rev1_0_dispc_feats;
  3026. break;
  3027. case OMAPDSS_VER_OMAP34xx_ES3:
  3028. case OMAPDSS_VER_OMAP3630:
  3029. case OMAPDSS_VER_AM35xx:
  3030. src = &omap34xx_rev3_0_dispc_feats;
  3031. break;
  3032. case OMAPDSS_VER_OMAP4430_ES1:
  3033. case OMAPDSS_VER_OMAP4430_ES2:
  3034. case OMAPDSS_VER_OMAP4:
  3035. src = &omap44xx_dispc_feats;
  3036. break;
  3037. case OMAPDSS_VER_OMAP5:
  3038. src = &omap54xx_dispc_feats;
  3039. break;
  3040. default:
  3041. return -ENODEV;
  3042. }
  3043. memcpy(dst, src, sizeof(*dst));
  3044. dispc.feat = dst;
  3045. return 0;
  3046. }
  3047. int dispc_request_irq(irq_handler_t handler, void *dev_id)
  3048. {
  3049. return devm_request_irq(&dispc.pdev->dev, dispc.irq, handler,
  3050. IRQF_SHARED, "OMAP DISPC", dev_id);
  3051. }
  3052. EXPORT_SYMBOL(dispc_request_irq);
  3053. void dispc_free_irq(void *dev_id)
  3054. {
  3055. devm_free_irq(&dispc.pdev->dev, dispc.irq, dev_id);
  3056. }
  3057. EXPORT_SYMBOL(dispc_free_irq);
  3058. /* DISPC HW IP initialisation */
  3059. static int __init omap_dispchw_probe(struct platform_device *pdev)
  3060. {
  3061. u32 rev;
  3062. int r = 0;
  3063. struct resource *dispc_mem;
  3064. dispc.pdev = pdev;
  3065. r = dispc_init_features(dispc.pdev);
  3066. if (r)
  3067. return r;
  3068. dispc_mem = platform_get_resource(dispc.pdev, IORESOURCE_MEM, 0);
  3069. if (!dispc_mem) {
  3070. DSSERR("can't get IORESOURCE_MEM DISPC\n");
  3071. return -EINVAL;
  3072. }
  3073. dispc.base = devm_ioremap(&pdev->dev, dispc_mem->start,
  3074. resource_size(dispc_mem));
  3075. if (!dispc.base) {
  3076. DSSERR("can't ioremap DISPC\n");
  3077. return -ENOMEM;
  3078. }
  3079. dispc.irq = platform_get_irq(dispc.pdev, 0);
  3080. if (dispc.irq < 0) {
  3081. DSSERR("platform_get_irq failed\n");
  3082. return -ENODEV;
  3083. }
  3084. pm_runtime_enable(&pdev->dev);
  3085. r = dispc_runtime_get();
  3086. if (r)
  3087. goto err_runtime_get;
  3088. _omap_dispc_initial_config();
  3089. rev = dispc_read_reg(DISPC_REVISION);
  3090. dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
  3091. FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
  3092. dispc_runtime_put();
  3093. dss_debugfs_create_file("dispc", dispc_dump_regs);
  3094. return 0;
  3095. err_runtime_get:
  3096. pm_runtime_disable(&pdev->dev);
  3097. return r;
  3098. }
  3099. static int __exit omap_dispchw_remove(struct platform_device *pdev)
  3100. {
  3101. pm_runtime_disable(&pdev->dev);
  3102. return 0;
  3103. }
  3104. static int dispc_runtime_suspend(struct device *dev)
  3105. {
  3106. dispc_save_context();
  3107. return 0;
  3108. }
  3109. static int dispc_runtime_resume(struct device *dev)
  3110. {
  3111. dispc_restore_context();
  3112. return 0;
  3113. }
  3114. static const struct dev_pm_ops dispc_pm_ops = {
  3115. .runtime_suspend = dispc_runtime_suspend,
  3116. .runtime_resume = dispc_runtime_resume,
  3117. };
  3118. static struct platform_driver omap_dispchw_driver = {
  3119. .remove = __exit_p(omap_dispchw_remove),
  3120. .driver = {
  3121. .name = "omapdss_dispc",
  3122. .owner = THIS_MODULE,
  3123. .pm = &dispc_pm_ops,
  3124. },
  3125. };
  3126. int __init dispc_init_platform_driver(void)
  3127. {
  3128. return platform_driver_probe(&omap_dispchw_driver, omap_dispchw_probe);
  3129. }
  3130. void __exit dispc_uninit_platform_driver(void)
  3131. {
  3132. platform_driver_unregister(&omap_dispchw_driver);
  3133. }