jz4740_nand.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. * Copyright (C) 2009-2010, Lars-Peter Clausen <lars@metafoo.de>
  3. * JZ4740 SoC NAND controller driver
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the
  7. * Free Software Foundation; either version 2 of the License, or (at your
  8. * option) any later version.
  9. *
  10. * You should have received a copy of the GNU General Public License along
  11. * with this program; if not, write to the Free Software Foundation, Inc.,
  12. * 675 Mass Ave, Cambridge, MA 02139, USA.
  13. *
  14. */
  15. #include <linux/ioport.h>
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/slab.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/nand.h>
  22. #include <linux/mtd/partitions.h>
  23. #include <linux/gpio.h>
  24. #include <asm/mach-jz4740/jz4740_nand.h>
  25. #define JZ_REG_NAND_CTRL 0x50
  26. #define JZ_REG_NAND_ECC_CTRL 0x100
  27. #define JZ_REG_NAND_DATA 0x104
  28. #define JZ_REG_NAND_PAR0 0x108
  29. #define JZ_REG_NAND_PAR1 0x10C
  30. #define JZ_REG_NAND_PAR2 0x110
  31. #define JZ_REG_NAND_IRQ_STAT 0x114
  32. #define JZ_REG_NAND_IRQ_CTRL 0x118
  33. #define JZ_REG_NAND_ERR(x) (0x11C + ((x) << 2))
  34. #define JZ_NAND_ECC_CTRL_PAR_READY BIT(4)
  35. #define JZ_NAND_ECC_CTRL_ENCODING BIT(3)
  36. #define JZ_NAND_ECC_CTRL_RS BIT(2)
  37. #define JZ_NAND_ECC_CTRL_RESET BIT(1)
  38. #define JZ_NAND_ECC_CTRL_ENABLE BIT(0)
  39. #define JZ_NAND_STATUS_ERR_COUNT (BIT(31) | BIT(30) | BIT(29))
  40. #define JZ_NAND_STATUS_PAD_FINISH BIT(4)
  41. #define JZ_NAND_STATUS_DEC_FINISH BIT(3)
  42. #define JZ_NAND_STATUS_ENC_FINISH BIT(2)
  43. #define JZ_NAND_STATUS_UNCOR_ERROR BIT(1)
  44. #define JZ_NAND_STATUS_ERROR BIT(0)
  45. #define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1)
  46. #define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1)
  47. #define JZ_NAND_CTRL_ASSERT_CHIP_MASK 0xaa
  48. #define JZ_NAND_MEM_CMD_OFFSET 0x08000
  49. #define JZ_NAND_MEM_ADDR_OFFSET 0x10000
  50. struct jz_nand {
  51. struct mtd_info mtd;
  52. struct nand_chip chip;
  53. void __iomem *base;
  54. struct resource *mem;
  55. unsigned char banks[JZ_NAND_NUM_BANKS];
  56. void __iomem *bank_base[JZ_NAND_NUM_BANKS];
  57. struct resource *bank_mem[JZ_NAND_NUM_BANKS];
  58. int selected_bank;
  59. struct jz_nand_platform_data *pdata;
  60. bool is_reading;
  61. };
  62. static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd)
  63. {
  64. return container_of(mtd, struct jz_nand, mtd);
  65. }
  66. static void jz_nand_select_chip(struct mtd_info *mtd, int chipnr)
  67. {
  68. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  69. struct nand_chip *chip = mtd->priv;
  70. uint32_t ctrl;
  71. int banknr;
  72. ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
  73. ctrl &= ~JZ_NAND_CTRL_ASSERT_CHIP_MASK;
  74. if (chipnr == -1) {
  75. banknr = -1;
  76. } else {
  77. banknr = nand->banks[chipnr] - 1;
  78. chip->IO_ADDR_R = nand->bank_base[banknr];
  79. chip->IO_ADDR_W = nand->bank_base[banknr];
  80. }
  81. writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
  82. nand->selected_bank = banknr;
  83. }
  84. static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
  85. {
  86. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  87. struct nand_chip *chip = mtd->priv;
  88. uint32_t reg;
  89. void __iomem *bank_base = nand->bank_base[nand->selected_bank];
  90. BUG_ON(nand->selected_bank < 0);
  91. if (ctrl & NAND_CTRL_CHANGE) {
  92. BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE));
  93. if (ctrl & NAND_ALE)
  94. bank_base += JZ_NAND_MEM_ADDR_OFFSET;
  95. else if (ctrl & NAND_CLE)
  96. bank_base += JZ_NAND_MEM_CMD_OFFSET;
  97. chip->IO_ADDR_W = bank_base;
  98. reg = readl(nand->base + JZ_REG_NAND_CTRL);
  99. if (ctrl & NAND_NCE)
  100. reg |= JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
  101. else
  102. reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
  103. writel(reg, nand->base + JZ_REG_NAND_CTRL);
  104. }
  105. if (dat != NAND_CMD_NONE)
  106. writeb(dat, chip->IO_ADDR_W);
  107. }
  108. static int jz_nand_dev_ready(struct mtd_info *mtd)
  109. {
  110. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  111. return gpio_get_value_cansleep(nand->pdata->busy_gpio);
  112. }
  113. static void jz_nand_hwctl(struct mtd_info *mtd, int mode)
  114. {
  115. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  116. uint32_t reg;
  117. writel(0, nand->base + JZ_REG_NAND_IRQ_STAT);
  118. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  119. reg |= JZ_NAND_ECC_CTRL_RESET;
  120. reg |= JZ_NAND_ECC_CTRL_ENABLE;
  121. reg |= JZ_NAND_ECC_CTRL_RS;
  122. switch (mode) {
  123. case NAND_ECC_READ:
  124. reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
  125. nand->is_reading = true;
  126. break;
  127. case NAND_ECC_WRITE:
  128. reg |= JZ_NAND_ECC_CTRL_ENCODING;
  129. nand->is_reading = false;
  130. break;
  131. default:
  132. break;
  133. }
  134. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  135. }
  136. static int jz_nand_calculate_ecc_rs(struct mtd_info *mtd, const uint8_t *dat,
  137. uint8_t *ecc_code)
  138. {
  139. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  140. uint32_t reg, status;
  141. int i;
  142. unsigned int timeout = 1000;
  143. static uint8_t empty_block_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4,
  144. 0x8b, 0xff, 0xb7, 0x6f};
  145. if (nand->is_reading)
  146. return 0;
  147. do {
  148. status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
  149. } while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout);
  150. if (timeout == 0)
  151. return -1;
  152. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  153. reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
  154. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  155. for (i = 0; i < 9; ++i)
  156. ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i);
  157. /* If the written data is completly 0xff, we also want to write 0xff as
  158. * ecc, otherwise we will get in trouble when doing subpage writes. */
  159. if (memcmp(ecc_code, empty_block_ecc, 9) == 0)
  160. memset(ecc_code, 0xff, 9);
  161. return 0;
  162. }
  163. static void jz_nand_correct_data(uint8_t *dat, int index, int mask)
  164. {
  165. int offset = index & 0x7;
  166. uint16_t data;
  167. index += (index >> 3);
  168. data = dat[index];
  169. data |= dat[index+1] << 8;
  170. mask ^= (data >> offset) & 0x1ff;
  171. data &= ~(0x1ff << offset);
  172. data |= (mask << offset);
  173. dat[index] = data & 0xff;
  174. dat[index+1] = (data >> 8) & 0xff;
  175. }
  176. static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat,
  177. uint8_t *read_ecc, uint8_t *calc_ecc)
  178. {
  179. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  180. int i, error_count, index;
  181. uint32_t reg, status, error;
  182. uint32_t t;
  183. unsigned int timeout = 1000;
  184. t = read_ecc[0];
  185. if (t == 0xff) {
  186. for (i = 1; i < 9; ++i)
  187. t &= read_ecc[i];
  188. t &= dat[0];
  189. t &= dat[nand->chip.ecc.size / 2];
  190. t &= dat[nand->chip.ecc.size - 1];
  191. if (t == 0xff) {
  192. for (i = 1; i < nand->chip.ecc.size - 1; ++i)
  193. t &= dat[i];
  194. if (t == 0xff)
  195. return 0;
  196. }
  197. }
  198. for (i = 0; i < 9; ++i)
  199. writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i);
  200. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  201. reg |= JZ_NAND_ECC_CTRL_PAR_READY;
  202. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  203. do {
  204. status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
  205. } while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout);
  206. if (timeout == 0)
  207. return -1;
  208. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  209. reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
  210. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  211. if (status & JZ_NAND_STATUS_ERROR) {
  212. if (status & JZ_NAND_STATUS_UNCOR_ERROR)
  213. return -1;
  214. error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29;
  215. for (i = 0; i < error_count; ++i) {
  216. error = readl(nand->base + JZ_REG_NAND_ERR(i));
  217. index = ((error >> 16) & 0x1ff) - 1;
  218. if (index >= 0 && index < 512)
  219. jz_nand_correct_data(dat, index, error & 0x1ff);
  220. }
  221. return error_count;
  222. }
  223. return 0;
  224. }
  225. static int jz_nand_ioremap_resource(struct platform_device *pdev,
  226. const char *name, struct resource **res, void *__iomem *base)
  227. {
  228. int ret;
  229. *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
  230. if (!*res) {
  231. dev_err(&pdev->dev, "Failed to get platform %s memory\n", name);
  232. ret = -ENXIO;
  233. goto err;
  234. }
  235. *res = request_mem_region((*res)->start, resource_size(*res),
  236. pdev->name);
  237. if (!*res) {
  238. dev_err(&pdev->dev, "Failed to request %s memory region\n", name);
  239. ret = -EBUSY;
  240. goto err;
  241. }
  242. *base = ioremap((*res)->start, resource_size(*res));
  243. if (!*base) {
  244. dev_err(&pdev->dev, "Failed to ioremap %s memory region\n", name);
  245. ret = -EBUSY;
  246. goto err_release_mem;
  247. }
  248. return 0;
  249. err_release_mem:
  250. release_mem_region((*res)->start, resource_size(*res));
  251. err:
  252. *res = NULL;
  253. *base = NULL;
  254. return ret;
  255. }
  256. static inline void jz_nand_iounmap_resource(struct resource *res,
  257. void __iomem *base)
  258. {
  259. iounmap(base);
  260. release_mem_region(res->start, resource_size(res));
  261. }
  262. static int jz_nand_detect_bank(struct platform_device *pdev,
  263. struct jz_nand *nand, unsigned char bank,
  264. size_t chipnr, uint8_t *nand_maf_id,
  265. uint8_t *nand_dev_id) {
  266. int ret;
  267. int gpio;
  268. char gpio_name[9];
  269. char res_name[6];
  270. uint32_t ctrl;
  271. struct mtd_info *mtd = &nand->mtd;
  272. struct nand_chip *chip = &nand->chip;
  273. /* Request GPIO port. */
  274. gpio = JZ_GPIO_MEM_CS0 + bank - 1;
  275. sprintf(gpio_name, "NAND CS%d", bank);
  276. ret = gpio_request(gpio, gpio_name);
  277. if (ret) {
  278. dev_warn(&pdev->dev,
  279. "Failed to request %s gpio %d: %d\n",
  280. gpio_name, gpio, ret);
  281. goto notfound_gpio;
  282. }
  283. /* Request I/O resource. */
  284. sprintf(res_name, "bank%d", bank);
  285. ret = jz_nand_ioremap_resource(pdev, res_name,
  286. &nand->bank_mem[bank - 1],
  287. &nand->bank_base[bank - 1]);
  288. if (ret)
  289. goto notfound_resource;
  290. /* Enable chip in bank. */
  291. jz_gpio_set_function(gpio, JZ_GPIO_FUNC_MEM_CS0);
  292. ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
  293. ctrl |= JZ_NAND_CTRL_ENABLE_CHIP(bank - 1);
  294. writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
  295. if (chipnr == 0) {
  296. /* Detect first chip. */
  297. ret = nand_scan_ident(mtd, 1, NULL);
  298. if (ret)
  299. goto notfound_id;
  300. /* Retrieve the IDs from the first chip. */
  301. chip->select_chip(mtd, 0);
  302. chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
  303. chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
  304. *nand_maf_id = chip->read_byte(mtd);
  305. *nand_dev_id = chip->read_byte(mtd);
  306. } else {
  307. /* Detect additional chip. */
  308. chip->select_chip(mtd, chipnr);
  309. chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
  310. chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
  311. if (*nand_maf_id != chip->read_byte(mtd)
  312. || *nand_dev_id != chip->read_byte(mtd)) {
  313. ret = -ENODEV;
  314. goto notfound_id;
  315. }
  316. /* Update size of the MTD. */
  317. chip->numchips++;
  318. mtd->size += chip->chipsize;
  319. }
  320. dev_info(&pdev->dev, "Found chip %i on bank %i\n", chipnr, bank);
  321. return 0;
  322. notfound_id:
  323. dev_info(&pdev->dev, "No chip found on bank %i\n", bank);
  324. ctrl &= ~(JZ_NAND_CTRL_ENABLE_CHIP(bank - 1));
  325. writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
  326. jz_gpio_set_function(gpio, JZ_GPIO_FUNC_NONE);
  327. jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
  328. nand->bank_base[bank - 1]);
  329. notfound_resource:
  330. gpio_free(gpio);
  331. notfound_gpio:
  332. return ret;
  333. }
  334. static int jz_nand_probe(struct platform_device *pdev)
  335. {
  336. int ret;
  337. struct jz_nand *nand;
  338. struct nand_chip *chip;
  339. struct mtd_info *mtd;
  340. struct jz_nand_platform_data *pdata = pdev->dev.platform_data;
  341. size_t chipnr, bank_idx;
  342. uint8_t nand_maf_id = 0, nand_dev_id = 0;
  343. nand = kzalloc(sizeof(*nand), GFP_KERNEL);
  344. if (!nand) {
  345. dev_err(&pdev->dev, "Failed to allocate device structure.\n");
  346. return -ENOMEM;
  347. }
  348. ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base);
  349. if (ret)
  350. goto err_free;
  351. if (pdata && gpio_is_valid(pdata->busy_gpio)) {
  352. ret = gpio_request(pdata->busy_gpio, "NAND busy pin");
  353. if (ret) {
  354. dev_err(&pdev->dev,
  355. "Failed to request busy gpio %d: %d\n",
  356. pdata->busy_gpio, ret);
  357. goto err_iounmap_mmio;
  358. }
  359. }
  360. mtd = &nand->mtd;
  361. chip = &nand->chip;
  362. mtd->priv = chip;
  363. mtd->owner = THIS_MODULE;
  364. mtd->name = "jz4740-nand";
  365. chip->ecc.hwctl = jz_nand_hwctl;
  366. chip->ecc.calculate = jz_nand_calculate_ecc_rs;
  367. chip->ecc.correct = jz_nand_correct_ecc_rs;
  368. chip->ecc.mode = NAND_ECC_HW_OOB_FIRST;
  369. chip->ecc.size = 512;
  370. chip->ecc.bytes = 9;
  371. chip->ecc.strength = 4;
  372. if (pdata)
  373. chip->ecc.layout = pdata->ecc_layout;
  374. chip->chip_delay = 50;
  375. chip->cmd_ctrl = jz_nand_cmd_ctrl;
  376. chip->select_chip = jz_nand_select_chip;
  377. if (pdata && gpio_is_valid(pdata->busy_gpio))
  378. chip->dev_ready = jz_nand_dev_ready;
  379. nand->pdata = pdata;
  380. platform_set_drvdata(pdev, nand);
  381. /* We are going to autodetect NAND chips in the banks specified in the
  382. * platform data. Although nand_scan_ident() can detect multiple chips,
  383. * it requires those chips to be numbered consecuitively, which is not
  384. * always the case for external memory banks. And a fixed chip-to-bank
  385. * mapping is not practical either, since for example Dingoo units
  386. * produced at different times have NAND chips in different banks.
  387. */
  388. chipnr = 0;
  389. for (bank_idx = 0; bank_idx < JZ_NAND_NUM_BANKS; bank_idx++) {
  390. unsigned char bank;
  391. /* If there is no platform data, look for NAND in bank 1,
  392. * which is the most likely bank since it is the only one
  393. * that can be booted from.
  394. */
  395. bank = pdata ? pdata->banks[bank_idx] : bank_idx ^ 1;
  396. if (bank == 0)
  397. break;
  398. if (bank > JZ_NAND_NUM_BANKS) {
  399. dev_warn(&pdev->dev,
  400. "Skipping non-existing bank: %d\n", bank);
  401. continue;
  402. }
  403. /* The detection routine will directly or indirectly call
  404. * jz_nand_select_chip(), so nand->banks has to contain the
  405. * bank we're checking.
  406. */
  407. nand->banks[chipnr] = bank;
  408. if (jz_nand_detect_bank(pdev, nand, bank, chipnr,
  409. &nand_maf_id, &nand_dev_id) == 0)
  410. chipnr++;
  411. else
  412. nand->banks[chipnr] = 0;
  413. }
  414. if (chipnr == 0) {
  415. dev_err(&pdev->dev, "No NAND chips found\n");
  416. goto err_gpio_busy;
  417. }
  418. if (pdata && pdata->ident_callback) {
  419. pdata->ident_callback(pdev, chip, &pdata->partitions,
  420. &pdata->num_partitions);
  421. }
  422. ret = nand_scan_tail(mtd);
  423. if (ret) {
  424. dev_err(&pdev->dev, "Failed to scan NAND\n");
  425. goto err_unclaim_banks;
  426. }
  427. ret = mtd_device_parse_register(mtd, NULL, NULL,
  428. pdata ? pdata->partitions : NULL,
  429. pdata ? pdata->num_partitions : 0);
  430. if (ret) {
  431. dev_err(&pdev->dev, "Failed to add mtd device\n");
  432. goto err_nand_release;
  433. }
  434. dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n");
  435. return 0;
  436. err_nand_release:
  437. nand_release(mtd);
  438. err_unclaim_banks:
  439. while (chipnr--) {
  440. unsigned char bank = nand->banks[chipnr];
  441. gpio_free(JZ_GPIO_MEM_CS0 + bank - 1);
  442. jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
  443. nand->bank_base[bank - 1]);
  444. }
  445. writel(0, nand->base + JZ_REG_NAND_CTRL);
  446. err_gpio_busy:
  447. if (pdata && gpio_is_valid(pdata->busy_gpio))
  448. gpio_free(pdata->busy_gpio);
  449. platform_set_drvdata(pdev, NULL);
  450. err_iounmap_mmio:
  451. jz_nand_iounmap_resource(nand->mem, nand->base);
  452. err_free:
  453. kfree(nand);
  454. return ret;
  455. }
  456. static int jz_nand_remove(struct platform_device *pdev)
  457. {
  458. struct jz_nand *nand = platform_get_drvdata(pdev);
  459. struct jz_nand_platform_data *pdata = pdev->dev.platform_data;
  460. size_t i;
  461. nand_release(&nand->mtd);
  462. /* Deassert and disable all chips */
  463. writel(0, nand->base + JZ_REG_NAND_CTRL);
  464. for (i = 0; i < JZ_NAND_NUM_BANKS; ++i) {
  465. unsigned char bank = nand->banks[i];
  466. if (bank != 0) {
  467. jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
  468. nand->bank_base[bank - 1]);
  469. gpio_free(JZ_GPIO_MEM_CS0 + bank - 1);
  470. }
  471. }
  472. if (pdata && gpio_is_valid(pdata->busy_gpio))
  473. gpio_free(pdata->busy_gpio);
  474. jz_nand_iounmap_resource(nand->mem, nand->base);
  475. platform_set_drvdata(pdev, NULL);
  476. kfree(nand);
  477. return 0;
  478. }
  479. static struct platform_driver jz_nand_driver = {
  480. .probe = jz_nand_probe,
  481. .remove = jz_nand_remove,
  482. .driver = {
  483. .name = "jz4740-nand",
  484. .owner = THIS_MODULE,
  485. },
  486. };
  487. module_platform_driver(jz_nand_driver);
  488. MODULE_LICENSE("GPL");
  489. MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
  490. MODULE_DESCRIPTION("NAND controller driver for JZ4740 SoC");
  491. MODULE_ALIAS("platform:jz4740-nand");