fair.c 184 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/mempolicy.h>
  29. #include <linux/migrate.h>
  30. #include <linux/task_work.h>
  31. #include <trace/events/sched.h>
  32. #include "sched.h"
  33. /*
  34. * Targeted preemption latency for CPU-bound tasks:
  35. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  36. *
  37. * NOTE: this latency value is not the same as the concept of
  38. * 'timeslice length' - timeslices in CFS are of variable length
  39. * and have no persistent notion like in traditional, time-slice
  40. * based scheduling concepts.
  41. *
  42. * (to see the precise effective timeslice length of your workload,
  43. * run vmstat and monitor the context-switches (cs) field)
  44. */
  45. unsigned int sysctl_sched_latency = 6000000ULL;
  46. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  47. /*
  48. * The initial- and re-scaling of tunables is configurable
  49. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  50. *
  51. * Options are:
  52. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  53. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  54. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  55. */
  56. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  57. = SCHED_TUNABLESCALING_LOG;
  58. /*
  59. * Minimal preemption granularity for CPU-bound tasks:
  60. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  61. */
  62. unsigned int sysctl_sched_min_granularity = 750000ULL;
  63. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  64. /*
  65. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  66. */
  67. static unsigned int sched_nr_latency = 8;
  68. /*
  69. * After fork, child runs first. If set to 0 (default) then
  70. * parent will (try to) run first.
  71. */
  72. unsigned int sysctl_sched_child_runs_first __read_mostly;
  73. /*
  74. * SCHED_OTHER wake-up granularity.
  75. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  76. *
  77. * This option delays the preemption effects of decoupled workloads
  78. * and reduces their over-scheduling. Synchronous workloads will still
  79. * have immediate wakeup/sleep latencies.
  80. */
  81. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  82. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  83. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  84. /*
  85. * The exponential sliding window over which load is averaged for shares
  86. * distribution.
  87. * (default: 10msec)
  88. */
  89. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  90. #ifdef CONFIG_CFS_BANDWIDTH
  91. /*
  92. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  93. * each time a cfs_rq requests quota.
  94. *
  95. * Note: in the case that the slice exceeds the runtime remaining (either due
  96. * to consumption or the quota being specified to be smaller than the slice)
  97. * we will always only issue the remaining available time.
  98. *
  99. * default: 5 msec, units: microseconds
  100. */
  101. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  102. #endif
  103. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  104. {
  105. lw->weight += inc;
  106. lw->inv_weight = 0;
  107. }
  108. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  109. {
  110. lw->weight -= dec;
  111. lw->inv_weight = 0;
  112. }
  113. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  114. {
  115. lw->weight = w;
  116. lw->inv_weight = 0;
  117. }
  118. /*
  119. * Increase the granularity value when there are more CPUs,
  120. * because with more CPUs the 'effective latency' as visible
  121. * to users decreases. But the relationship is not linear,
  122. * so pick a second-best guess by going with the log2 of the
  123. * number of CPUs.
  124. *
  125. * This idea comes from the SD scheduler of Con Kolivas:
  126. */
  127. static int get_update_sysctl_factor(void)
  128. {
  129. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  130. unsigned int factor;
  131. switch (sysctl_sched_tunable_scaling) {
  132. case SCHED_TUNABLESCALING_NONE:
  133. factor = 1;
  134. break;
  135. case SCHED_TUNABLESCALING_LINEAR:
  136. factor = cpus;
  137. break;
  138. case SCHED_TUNABLESCALING_LOG:
  139. default:
  140. factor = 1 + ilog2(cpus);
  141. break;
  142. }
  143. return factor;
  144. }
  145. static void update_sysctl(void)
  146. {
  147. unsigned int factor = get_update_sysctl_factor();
  148. #define SET_SYSCTL(name) \
  149. (sysctl_##name = (factor) * normalized_sysctl_##name)
  150. SET_SYSCTL(sched_min_granularity);
  151. SET_SYSCTL(sched_latency);
  152. SET_SYSCTL(sched_wakeup_granularity);
  153. #undef SET_SYSCTL
  154. }
  155. void sched_init_granularity(void)
  156. {
  157. update_sysctl();
  158. }
  159. #if BITS_PER_LONG == 32
  160. # define WMULT_CONST (~0UL)
  161. #else
  162. # define WMULT_CONST (1UL << 32)
  163. #endif
  164. #define WMULT_SHIFT 32
  165. /*
  166. * Shift right and round:
  167. */
  168. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  169. /*
  170. * delta *= weight / lw
  171. */
  172. static unsigned long
  173. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  174. struct load_weight *lw)
  175. {
  176. u64 tmp;
  177. /*
  178. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  179. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  180. * 2^SCHED_LOAD_RESOLUTION.
  181. */
  182. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  183. tmp = (u64)delta_exec * scale_load_down(weight);
  184. else
  185. tmp = (u64)delta_exec;
  186. if (!lw->inv_weight) {
  187. unsigned long w = scale_load_down(lw->weight);
  188. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  189. lw->inv_weight = 1;
  190. else if (unlikely(!w))
  191. lw->inv_weight = WMULT_CONST;
  192. else
  193. lw->inv_weight = WMULT_CONST / w;
  194. }
  195. /*
  196. * Check whether we'd overflow the 64-bit multiplication:
  197. */
  198. if (unlikely(tmp > WMULT_CONST))
  199. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  200. WMULT_SHIFT/2);
  201. else
  202. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  203. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  204. }
  205. const struct sched_class fair_sched_class;
  206. /**************************************************************
  207. * CFS operations on generic schedulable entities:
  208. */
  209. #ifdef CONFIG_FAIR_GROUP_SCHED
  210. /* cpu runqueue to which this cfs_rq is attached */
  211. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  212. {
  213. return cfs_rq->rq;
  214. }
  215. /* An entity is a task if it doesn't "own" a runqueue */
  216. #define entity_is_task(se) (!se->my_q)
  217. static inline struct task_struct *task_of(struct sched_entity *se)
  218. {
  219. #ifdef CONFIG_SCHED_DEBUG
  220. WARN_ON_ONCE(!entity_is_task(se));
  221. #endif
  222. return container_of(se, struct task_struct, se);
  223. }
  224. /* Walk up scheduling entities hierarchy */
  225. #define for_each_sched_entity(se) \
  226. for (; se; se = se->parent)
  227. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  228. {
  229. return p->se.cfs_rq;
  230. }
  231. /* runqueue on which this entity is (to be) queued */
  232. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  233. {
  234. return se->cfs_rq;
  235. }
  236. /* runqueue "owned" by this group */
  237. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  238. {
  239. return grp->my_q;
  240. }
  241. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  242. int force_update);
  243. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  244. {
  245. if (!cfs_rq->on_list) {
  246. /*
  247. * Ensure we either appear before our parent (if already
  248. * enqueued) or force our parent to appear after us when it is
  249. * enqueued. The fact that we always enqueue bottom-up
  250. * reduces this to two cases.
  251. */
  252. if (cfs_rq->tg->parent &&
  253. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  254. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  255. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  256. } else {
  257. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  258. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  259. }
  260. cfs_rq->on_list = 1;
  261. /* We should have no load, but we need to update last_decay. */
  262. update_cfs_rq_blocked_load(cfs_rq, 0);
  263. }
  264. }
  265. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  266. {
  267. if (cfs_rq->on_list) {
  268. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  269. cfs_rq->on_list = 0;
  270. }
  271. }
  272. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  273. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  274. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  275. /* Do the two (enqueued) entities belong to the same group ? */
  276. static inline int
  277. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  278. {
  279. if (se->cfs_rq == pse->cfs_rq)
  280. return 1;
  281. return 0;
  282. }
  283. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  284. {
  285. return se->parent;
  286. }
  287. /* return depth at which a sched entity is present in the hierarchy */
  288. static inline int depth_se(struct sched_entity *se)
  289. {
  290. int depth = 0;
  291. for_each_sched_entity(se)
  292. depth++;
  293. return depth;
  294. }
  295. static void
  296. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  297. {
  298. int se_depth, pse_depth;
  299. /*
  300. * preemption test can be made between sibling entities who are in the
  301. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  302. * both tasks until we find their ancestors who are siblings of common
  303. * parent.
  304. */
  305. /* First walk up until both entities are at same depth */
  306. se_depth = depth_se(*se);
  307. pse_depth = depth_se(*pse);
  308. while (se_depth > pse_depth) {
  309. se_depth--;
  310. *se = parent_entity(*se);
  311. }
  312. while (pse_depth > se_depth) {
  313. pse_depth--;
  314. *pse = parent_entity(*pse);
  315. }
  316. while (!is_same_group(*se, *pse)) {
  317. *se = parent_entity(*se);
  318. *pse = parent_entity(*pse);
  319. }
  320. }
  321. #else /* !CONFIG_FAIR_GROUP_SCHED */
  322. static inline struct task_struct *task_of(struct sched_entity *se)
  323. {
  324. return container_of(se, struct task_struct, se);
  325. }
  326. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  327. {
  328. return container_of(cfs_rq, struct rq, cfs);
  329. }
  330. #define entity_is_task(se) 1
  331. #define for_each_sched_entity(se) \
  332. for (; se; se = NULL)
  333. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  334. {
  335. return &task_rq(p)->cfs;
  336. }
  337. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  338. {
  339. struct task_struct *p = task_of(se);
  340. struct rq *rq = task_rq(p);
  341. return &rq->cfs;
  342. }
  343. /* runqueue "owned" by this group */
  344. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  345. {
  346. return NULL;
  347. }
  348. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  349. {
  350. }
  351. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  352. {
  353. }
  354. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  355. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  356. static inline int
  357. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  358. {
  359. return 1;
  360. }
  361. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  362. {
  363. return NULL;
  364. }
  365. static inline void
  366. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  367. {
  368. }
  369. #endif /* CONFIG_FAIR_GROUP_SCHED */
  370. static __always_inline
  371. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
  372. /**************************************************************
  373. * Scheduling class tree data structure manipulation methods:
  374. */
  375. static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  376. {
  377. s64 delta = (s64)(vruntime - max_vruntime);
  378. if (delta > 0)
  379. max_vruntime = vruntime;
  380. return max_vruntime;
  381. }
  382. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  383. {
  384. s64 delta = (s64)(vruntime - min_vruntime);
  385. if (delta < 0)
  386. min_vruntime = vruntime;
  387. return min_vruntime;
  388. }
  389. static inline int entity_before(struct sched_entity *a,
  390. struct sched_entity *b)
  391. {
  392. return (s64)(a->vruntime - b->vruntime) < 0;
  393. }
  394. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  395. {
  396. u64 vruntime = cfs_rq->min_vruntime;
  397. if (cfs_rq->curr)
  398. vruntime = cfs_rq->curr->vruntime;
  399. if (cfs_rq->rb_leftmost) {
  400. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  401. struct sched_entity,
  402. run_node);
  403. if (!cfs_rq->curr)
  404. vruntime = se->vruntime;
  405. else
  406. vruntime = min_vruntime(vruntime, se->vruntime);
  407. }
  408. /* ensure we never gain time by being placed backwards. */
  409. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  410. #ifndef CONFIG_64BIT
  411. smp_wmb();
  412. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  413. #endif
  414. }
  415. /*
  416. * Enqueue an entity into the rb-tree:
  417. */
  418. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  421. struct rb_node *parent = NULL;
  422. struct sched_entity *entry;
  423. int leftmost = 1;
  424. /*
  425. * Find the right place in the rbtree:
  426. */
  427. while (*link) {
  428. parent = *link;
  429. entry = rb_entry(parent, struct sched_entity, run_node);
  430. /*
  431. * We dont care about collisions. Nodes with
  432. * the same key stay together.
  433. */
  434. if (entity_before(se, entry)) {
  435. link = &parent->rb_left;
  436. } else {
  437. link = &parent->rb_right;
  438. leftmost = 0;
  439. }
  440. }
  441. /*
  442. * Maintain a cache of leftmost tree entries (it is frequently
  443. * used):
  444. */
  445. if (leftmost)
  446. cfs_rq->rb_leftmost = &se->run_node;
  447. rb_link_node(&se->run_node, parent, link);
  448. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  449. }
  450. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  451. {
  452. if (cfs_rq->rb_leftmost == &se->run_node) {
  453. struct rb_node *next_node;
  454. next_node = rb_next(&se->run_node);
  455. cfs_rq->rb_leftmost = next_node;
  456. }
  457. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  458. }
  459. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  460. {
  461. struct rb_node *left = cfs_rq->rb_leftmost;
  462. if (!left)
  463. return NULL;
  464. return rb_entry(left, struct sched_entity, run_node);
  465. }
  466. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  467. {
  468. struct rb_node *next = rb_next(&se->run_node);
  469. if (!next)
  470. return NULL;
  471. return rb_entry(next, struct sched_entity, run_node);
  472. }
  473. #ifdef CONFIG_SCHED_DEBUG
  474. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  475. {
  476. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  477. if (!last)
  478. return NULL;
  479. return rb_entry(last, struct sched_entity, run_node);
  480. }
  481. /**************************************************************
  482. * Scheduling class statistics methods:
  483. */
  484. int sched_proc_update_handler(struct ctl_table *table, int write,
  485. void __user *buffer, size_t *lenp,
  486. loff_t *ppos)
  487. {
  488. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  489. int factor = get_update_sysctl_factor();
  490. if (ret || !write)
  491. return ret;
  492. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  493. sysctl_sched_min_granularity);
  494. #define WRT_SYSCTL(name) \
  495. (normalized_sysctl_##name = sysctl_##name / (factor))
  496. WRT_SYSCTL(sched_min_granularity);
  497. WRT_SYSCTL(sched_latency);
  498. WRT_SYSCTL(sched_wakeup_granularity);
  499. #undef WRT_SYSCTL
  500. return 0;
  501. }
  502. #endif
  503. /*
  504. * delta /= w
  505. */
  506. static inline unsigned long
  507. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  508. {
  509. if (unlikely(se->load.weight != NICE_0_LOAD))
  510. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  511. return delta;
  512. }
  513. /*
  514. * The idea is to set a period in which each task runs once.
  515. *
  516. * When there are too many tasks (sched_nr_latency) we have to stretch
  517. * this period because otherwise the slices get too small.
  518. *
  519. * p = (nr <= nl) ? l : l*nr/nl
  520. */
  521. static u64 __sched_period(unsigned long nr_running)
  522. {
  523. u64 period = sysctl_sched_latency;
  524. unsigned long nr_latency = sched_nr_latency;
  525. if (unlikely(nr_running > nr_latency)) {
  526. period = sysctl_sched_min_granularity;
  527. period *= nr_running;
  528. }
  529. return period;
  530. }
  531. /*
  532. * We calculate the wall-time slice from the period by taking a part
  533. * proportional to the weight.
  534. *
  535. * s = p*P[w/rw]
  536. */
  537. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  538. {
  539. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  540. for_each_sched_entity(se) {
  541. struct load_weight *load;
  542. struct load_weight lw;
  543. cfs_rq = cfs_rq_of(se);
  544. load = &cfs_rq->load;
  545. if (unlikely(!se->on_rq)) {
  546. lw = cfs_rq->load;
  547. update_load_add(&lw, se->load.weight);
  548. load = &lw;
  549. }
  550. slice = calc_delta_mine(slice, se->load.weight, load);
  551. }
  552. return slice;
  553. }
  554. /*
  555. * We calculate the vruntime slice of a to-be-inserted task.
  556. *
  557. * vs = s/w
  558. */
  559. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  560. {
  561. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  562. }
  563. #ifdef CONFIG_SMP
  564. static unsigned long task_h_load(struct task_struct *p);
  565. static inline void __update_task_entity_contrib(struct sched_entity *se);
  566. /* Give new task start runnable values to heavy its load in infant time */
  567. void init_task_runnable_average(struct task_struct *p)
  568. {
  569. u32 slice;
  570. p->se.avg.decay_count = 0;
  571. slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
  572. p->se.avg.runnable_avg_sum = slice;
  573. p->se.avg.runnable_avg_period = slice;
  574. __update_task_entity_contrib(&p->se);
  575. }
  576. #else
  577. void init_task_runnable_average(struct task_struct *p)
  578. {
  579. }
  580. #endif
  581. /*
  582. * Update the current task's runtime statistics. Skip current tasks that
  583. * are not in our scheduling class.
  584. */
  585. static inline void
  586. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  587. unsigned long delta_exec)
  588. {
  589. unsigned long delta_exec_weighted;
  590. schedstat_set(curr->statistics.exec_max,
  591. max((u64)delta_exec, curr->statistics.exec_max));
  592. curr->sum_exec_runtime += delta_exec;
  593. schedstat_add(cfs_rq, exec_clock, delta_exec);
  594. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  595. curr->vruntime += delta_exec_weighted;
  596. update_min_vruntime(cfs_rq);
  597. }
  598. static void update_curr(struct cfs_rq *cfs_rq)
  599. {
  600. struct sched_entity *curr = cfs_rq->curr;
  601. u64 now = rq_clock_task(rq_of(cfs_rq));
  602. unsigned long delta_exec;
  603. if (unlikely(!curr))
  604. return;
  605. /*
  606. * Get the amount of time the current task was running
  607. * since the last time we changed load (this cannot
  608. * overflow on 32 bits):
  609. */
  610. delta_exec = (unsigned long)(now - curr->exec_start);
  611. if (!delta_exec)
  612. return;
  613. __update_curr(cfs_rq, curr, delta_exec);
  614. curr->exec_start = now;
  615. if (entity_is_task(curr)) {
  616. struct task_struct *curtask = task_of(curr);
  617. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  618. cpuacct_charge(curtask, delta_exec);
  619. account_group_exec_runtime(curtask, delta_exec);
  620. }
  621. account_cfs_rq_runtime(cfs_rq, delta_exec);
  622. }
  623. static inline void
  624. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  625. {
  626. schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
  627. }
  628. /*
  629. * Task is being enqueued - update stats:
  630. */
  631. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  632. {
  633. /*
  634. * Are we enqueueing a waiting task? (for current tasks
  635. * a dequeue/enqueue event is a NOP)
  636. */
  637. if (se != cfs_rq->curr)
  638. update_stats_wait_start(cfs_rq, se);
  639. }
  640. static void
  641. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  642. {
  643. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  644. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
  645. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  646. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  647. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  648. #ifdef CONFIG_SCHEDSTATS
  649. if (entity_is_task(se)) {
  650. trace_sched_stat_wait(task_of(se),
  651. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  652. }
  653. #endif
  654. schedstat_set(se->statistics.wait_start, 0);
  655. }
  656. static inline void
  657. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. /*
  660. * Mark the end of the wait period if dequeueing a
  661. * waiting task:
  662. */
  663. if (se != cfs_rq->curr)
  664. update_stats_wait_end(cfs_rq, se);
  665. }
  666. /*
  667. * We are picking a new current task - update its stats:
  668. */
  669. static inline void
  670. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  671. {
  672. /*
  673. * We are starting a new run period:
  674. */
  675. se->exec_start = rq_clock_task(rq_of(cfs_rq));
  676. }
  677. /**************************************************
  678. * Scheduling class queueing methods:
  679. */
  680. #ifdef CONFIG_NUMA_BALANCING
  681. /*
  682. * Approximate time to scan a full NUMA task in ms. The task scan period is
  683. * calculated based on the tasks virtual memory size and
  684. * numa_balancing_scan_size.
  685. */
  686. unsigned int sysctl_numa_balancing_scan_period_min = 1000;
  687. unsigned int sysctl_numa_balancing_scan_period_max = 60000;
  688. unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
  689. /* Portion of address space to scan in MB */
  690. unsigned int sysctl_numa_balancing_scan_size = 256;
  691. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  692. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  693. static unsigned int task_nr_scan_windows(struct task_struct *p)
  694. {
  695. unsigned long rss = 0;
  696. unsigned long nr_scan_pages;
  697. /*
  698. * Calculations based on RSS as non-present and empty pages are skipped
  699. * by the PTE scanner and NUMA hinting faults should be trapped based
  700. * on resident pages
  701. */
  702. nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
  703. rss = get_mm_rss(p->mm);
  704. if (!rss)
  705. rss = nr_scan_pages;
  706. rss = round_up(rss, nr_scan_pages);
  707. return rss / nr_scan_pages;
  708. }
  709. /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
  710. #define MAX_SCAN_WINDOW 2560
  711. static unsigned int task_scan_min(struct task_struct *p)
  712. {
  713. unsigned int scan, floor;
  714. unsigned int windows = 1;
  715. if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
  716. windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
  717. floor = 1000 / windows;
  718. scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
  719. return max_t(unsigned int, floor, scan);
  720. }
  721. static unsigned int task_scan_max(struct task_struct *p)
  722. {
  723. unsigned int smin = task_scan_min(p);
  724. unsigned int smax;
  725. /* Watch for min being lower than max due to floor calculations */
  726. smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
  727. return max(smin, smax);
  728. }
  729. /*
  730. * Once a preferred node is selected the scheduler balancer will prefer moving
  731. * a task to that node for sysctl_numa_balancing_settle_count number of PTE
  732. * scans. This will give the process the chance to accumulate more faults on
  733. * the preferred node but still allow the scheduler to move the task again if
  734. * the nodes CPUs are overloaded.
  735. */
  736. unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
  737. struct numa_group {
  738. atomic_t refcount;
  739. spinlock_t lock; /* nr_tasks, tasks */
  740. int nr_tasks;
  741. pid_t gid;
  742. struct list_head task_list;
  743. struct rcu_head rcu;
  744. atomic_long_t total_faults;
  745. atomic_long_t faults[0];
  746. };
  747. pid_t task_numa_group_id(struct task_struct *p)
  748. {
  749. return p->numa_group ? p->numa_group->gid : 0;
  750. }
  751. static inline int task_faults_idx(int nid, int priv)
  752. {
  753. return 2 * nid + priv;
  754. }
  755. static inline unsigned long task_faults(struct task_struct *p, int nid)
  756. {
  757. if (!p->numa_faults)
  758. return 0;
  759. return p->numa_faults[task_faults_idx(nid, 0)] +
  760. p->numa_faults[task_faults_idx(nid, 1)];
  761. }
  762. static inline unsigned long group_faults(struct task_struct *p, int nid)
  763. {
  764. if (!p->numa_group)
  765. return 0;
  766. return atomic_long_read(&p->numa_group->faults[2*nid]) +
  767. atomic_long_read(&p->numa_group->faults[2*nid+1]);
  768. }
  769. /*
  770. * These return the fraction of accesses done by a particular task, or
  771. * task group, on a particular numa node. The group weight is given a
  772. * larger multiplier, in order to group tasks together that are almost
  773. * evenly spread out between numa nodes.
  774. */
  775. static inline unsigned long task_weight(struct task_struct *p, int nid)
  776. {
  777. unsigned long total_faults;
  778. if (!p->numa_faults)
  779. return 0;
  780. total_faults = p->total_numa_faults;
  781. if (!total_faults)
  782. return 0;
  783. return 1000 * task_faults(p, nid) / total_faults;
  784. }
  785. static inline unsigned long group_weight(struct task_struct *p, int nid)
  786. {
  787. unsigned long total_faults;
  788. if (!p->numa_group)
  789. return 0;
  790. total_faults = atomic_long_read(&p->numa_group->total_faults);
  791. if (!total_faults)
  792. return 0;
  793. return 1000 * group_faults(p, nid) / total_faults;
  794. }
  795. static unsigned long weighted_cpuload(const int cpu);
  796. static unsigned long source_load(int cpu, int type);
  797. static unsigned long target_load(int cpu, int type);
  798. static unsigned long power_of(int cpu);
  799. static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
  800. /* Cached statistics for all CPUs within a node */
  801. struct numa_stats {
  802. unsigned long nr_running;
  803. unsigned long load;
  804. /* Total compute capacity of CPUs on a node */
  805. unsigned long power;
  806. /* Approximate capacity in terms of runnable tasks on a node */
  807. unsigned long capacity;
  808. int has_capacity;
  809. };
  810. /*
  811. * XXX borrowed from update_sg_lb_stats
  812. */
  813. static void update_numa_stats(struct numa_stats *ns, int nid)
  814. {
  815. int cpu;
  816. memset(ns, 0, sizeof(*ns));
  817. for_each_cpu(cpu, cpumask_of_node(nid)) {
  818. struct rq *rq = cpu_rq(cpu);
  819. ns->nr_running += rq->nr_running;
  820. ns->load += weighted_cpuload(cpu);
  821. ns->power += power_of(cpu);
  822. }
  823. ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
  824. ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
  825. ns->has_capacity = (ns->nr_running < ns->capacity);
  826. }
  827. struct task_numa_env {
  828. struct task_struct *p;
  829. int src_cpu, src_nid;
  830. int dst_cpu, dst_nid;
  831. struct numa_stats src_stats, dst_stats;
  832. int imbalance_pct, idx;
  833. struct task_struct *best_task;
  834. long best_imp;
  835. int best_cpu;
  836. };
  837. static void task_numa_assign(struct task_numa_env *env,
  838. struct task_struct *p, long imp)
  839. {
  840. if (env->best_task)
  841. put_task_struct(env->best_task);
  842. if (p)
  843. get_task_struct(p);
  844. env->best_task = p;
  845. env->best_imp = imp;
  846. env->best_cpu = env->dst_cpu;
  847. }
  848. /*
  849. * This checks if the overall compute and NUMA accesses of the system would
  850. * be improved if the source tasks was migrated to the target dst_cpu taking
  851. * into account that it might be best if task running on the dst_cpu should
  852. * be exchanged with the source task
  853. */
  854. static void task_numa_compare(struct task_numa_env *env,
  855. long taskimp, long groupimp)
  856. {
  857. struct rq *src_rq = cpu_rq(env->src_cpu);
  858. struct rq *dst_rq = cpu_rq(env->dst_cpu);
  859. struct task_struct *cur;
  860. long dst_load, src_load;
  861. long load;
  862. long imp = (groupimp > 0) ? groupimp : taskimp;
  863. rcu_read_lock();
  864. cur = ACCESS_ONCE(dst_rq->curr);
  865. if (cur->pid == 0) /* idle */
  866. cur = NULL;
  867. /*
  868. * "imp" is the fault differential for the source task between the
  869. * source and destination node. Calculate the total differential for
  870. * the source task and potential destination task. The more negative
  871. * the value is, the more rmeote accesses that would be expected to
  872. * be incurred if the tasks were swapped.
  873. */
  874. if (cur) {
  875. /* Skip this swap candidate if cannot move to the source cpu */
  876. if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
  877. goto unlock;
  878. /*
  879. * If dst and source tasks are in the same NUMA group, or not
  880. * in any group then look only at task weights.
  881. */
  882. if (cur->numa_group == env->p->numa_group) {
  883. imp = taskimp + task_weight(cur, env->src_nid) -
  884. task_weight(cur, env->dst_nid);
  885. /*
  886. * Add some hysteresis to prevent swapping the
  887. * tasks within a group over tiny differences.
  888. */
  889. if (cur->numa_group)
  890. imp -= imp/16;
  891. } else {
  892. /*
  893. * Compare the group weights. If a task is all by
  894. * itself (not part of a group), use the task weight
  895. * instead.
  896. */
  897. if (env->p->numa_group)
  898. imp = groupimp;
  899. else
  900. imp = taskimp;
  901. if (cur->numa_group)
  902. imp += group_weight(cur, env->src_nid) -
  903. group_weight(cur, env->dst_nid);
  904. else
  905. imp += task_weight(cur, env->src_nid) -
  906. task_weight(cur, env->dst_nid);
  907. }
  908. }
  909. if (imp < env->best_imp)
  910. goto unlock;
  911. if (!cur) {
  912. /* Is there capacity at our destination? */
  913. if (env->src_stats.has_capacity &&
  914. !env->dst_stats.has_capacity)
  915. goto unlock;
  916. goto balance;
  917. }
  918. /* Balance doesn't matter much if we're running a task per cpu */
  919. if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
  920. goto assign;
  921. /*
  922. * In the overloaded case, try and keep the load balanced.
  923. */
  924. balance:
  925. dst_load = env->dst_stats.load;
  926. src_load = env->src_stats.load;
  927. /* XXX missing power terms */
  928. load = task_h_load(env->p);
  929. dst_load += load;
  930. src_load -= load;
  931. if (cur) {
  932. load = task_h_load(cur);
  933. dst_load -= load;
  934. src_load += load;
  935. }
  936. /* make src_load the smaller */
  937. if (dst_load < src_load)
  938. swap(dst_load, src_load);
  939. if (src_load * env->imbalance_pct < dst_load * 100)
  940. goto unlock;
  941. assign:
  942. task_numa_assign(env, cur, imp);
  943. unlock:
  944. rcu_read_unlock();
  945. }
  946. static void task_numa_find_cpu(struct task_numa_env *env,
  947. long taskimp, long groupimp)
  948. {
  949. int cpu;
  950. for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
  951. /* Skip this CPU if the source task cannot migrate */
  952. if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
  953. continue;
  954. env->dst_cpu = cpu;
  955. task_numa_compare(env, taskimp, groupimp);
  956. }
  957. }
  958. static int task_numa_migrate(struct task_struct *p)
  959. {
  960. struct task_numa_env env = {
  961. .p = p,
  962. .src_cpu = task_cpu(p),
  963. .src_nid = task_node(p),
  964. .imbalance_pct = 112,
  965. .best_task = NULL,
  966. .best_imp = 0,
  967. .best_cpu = -1
  968. };
  969. struct sched_domain *sd;
  970. unsigned long taskweight, groupweight;
  971. int nid, ret;
  972. long taskimp, groupimp;
  973. /*
  974. * Pick the lowest SD_NUMA domain, as that would have the smallest
  975. * imbalance and would be the first to start moving tasks about.
  976. *
  977. * And we want to avoid any moving of tasks about, as that would create
  978. * random movement of tasks -- counter the numa conditions we're trying
  979. * to satisfy here.
  980. */
  981. rcu_read_lock();
  982. sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
  983. env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
  984. rcu_read_unlock();
  985. taskweight = task_weight(p, env.src_nid);
  986. groupweight = group_weight(p, env.src_nid);
  987. update_numa_stats(&env.src_stats, env.src_nid);
  988. env.dst_nid = p->numa_preferred_nid;
  989. taskimp = task_weight(p, env.dst_nid) - taskweight;
  990. groupimp = group_weight(p, env.dst_nid) - groupweight;
  991. update_numa_stats(&env.dst_stats, env.dst_nid);
  992. /* If the preferred nid has capacity, try to use it. */
  993. if (env.dst_stats.has_capacity)
  994. task_numa_find_cpu(&env, taskimp, groupimp);
  995. /* No space available on the preferred nid. Look elsewhere. */
  996. if (env.best_cpu == -1) {
  997. for_each_online_node(nid) {
  998. if (nid == env.src_nid || nid == p->numa_preferred_nid)
  999. continue;
  1000. /* Only consider nodes where both task and groups benefit */
  1001. taskimp = task_weight(p, nid) - taskweight;
  1002. groupimp = group_weight(p, nid) - groupweight;
  1003. if (taskimp < 0 && groupimp < 0)
  1004. continue;
  1005. env.dst_nid = nid;
  1006. update_numa_stats(&env.dst_stats, env.dst_nid);
  1007. task_numa_find_cpu(&env, taskimp, groupimp);
  1008. }
  1009. }
  1010. /* No better CPU than the current one was found. */
  1011. if (env.best_cpu == -1)
  1012. return -EAGAIN;
  1013. if (env.best_task == NULL) {
  1014. int ret = migrate_task_to(p, env.best_cpu);
  1015. return ret;
  1016. }
  1017. ret = migrate_swap(p, env.best_task);
  1018. put_task_struct(env.best_task);
  1019. return ret;
  1020. }
  1021. /* Attempt to migrate a task to a CPU on the preferred node. */
  1022. static void numa_migrate_preferred(struct task_struct *p)
  1023. {
  1024. /* Success if task is already running on preferred CPU */
  1025. p->numa_migrate_retry = 0;
  1026. if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
  1027. /*
  1028. * If migration is temporarily disabled due to a task migration
  1029. * then re-enable it now as the task is running on its
  1030. * preferred node and memory should migrate locally
  1031. */
  1032. if (!p->numa_migrate_seq)
  1033. p->numa_migrate_seq++;
  1034. return;
  1035. }
  1036. /* This task has no NUMA fault statistics yet */
  1037. if (unlikely(p->numa_preferred_nid == -1))
  1038. return;
  1039. /* Otherwise, try migrate to a CPU on the preferred node */
  1040. if (task_numa_migrate(p) != 0)
  1041. p->numa_migrate_retry = jiffies + HZ*5;
  1042. }
  1043. static void task_numa_placement(struct task_struct *p)
  1044. {
  1045. int seq, nid, max_nid = -1, max_group_nid = -1;
  1046. unsigned long max_faults = 0, max_group_faults = 0;
  1047. spinlock_t *group_lock = NULL;
  1048. seq = ACCESS_ONCE(p->mm->numa_scan_seq);
  1049. if (p->numa_scan_seq == seq)
  1050. return;
  1051. p->numa_scan_seq = seq;
  1052. p->numa_migrate_seq++;
  1053. p->numa_scan_period_max = task_scan_max(p);
  1054. /* If the task is part of a group prevent parallel updates to group stats */
  1055. if (p->numa_group) {
  1056. group_lock = &p->numa_group->lock;
  1057. spin_lock(group_lock);
  1058. }
  1059. /* Find the node with the highest number of faults */
  1060. for_each_online_node(nid) {
  1061. unsigned long faults = 0, group_faults = 0;
  1062. int priv, i;
  1063. for (priv = 0; priv < 2; priv++) {
  1064. long diff;
  1065. i = task_faults_idx(nid, priv);
  1066. diff = -p->numa_faults[i];
  1067. /* Decay existing window, copy faults since last scan */
  1068. p->numa_faults[i] >>= 1;
  1069. p->numa_faults[i] += p->numa_faults_buffer[i];
  1070. p->numa_faults_buffer[i] = 0;
  1071. faults += p->numa_faults[i];
  1072. diff += p->numa_faults[i];
  1073. p->total_numa_faults += diff;
  1074. if (p->numa_group) {
  1075. /* safe because we can only change our own group */
  1076. atomic_long_add(diff, &p->numa_group->faults[i]);
  1077. atomic_long_add(diff, &p->numa_group->total_faults);
  1078. group_faults += atomic_long_read(&p->numa_group->faults[i]);
  1079. }
  1080. }
  1081. if (faults > max_faults) {
  1082. max_faults = faults;
  1083. max_nid = nid;
  1084. }
  1085. if (group_faults > max_group_faults) {
  1086. max_group_faults = group_faults;
  1087. max_group_nid = nid;
  1088. }
  1089. }
  1090. if (p->numa_group) {
  1091. /*
  1092. * If the preferred task and group nids are different,
  1093. * iterate over the nodes again to find the best place.
  1094. */
  1095. if (max_nid != max_group_nid) {
  1096. unsigned long weight, max_weight = 0;
  1097. for_each_online_node(nid) {
  1098. weight = task_weight(p, nid) + group_weight(p, nid);
  1099. if (weight > max_weight) {
  1100. max_weight = weight;
  1101. max_nid = nid;
  1102. }
  1103. }
  1104. }
  1105. spin_unlock(group_lock);
  1106. }
  1107. /* Preferred node as the node with the most faults */
  1108. if (max_faults && max_nid != p->numa_preferred_nid) {
  1109. /* Update the preferred nid and migrate task if possible */
  1110. p->numa_preferred_nid = max_nid;
  1111. p->numa_migrate_seq = 1;
  1112. numa_migrate_preferred(p);
  1113. }
  1114. }
  1115. static inline int get_numa_group(struct numa_group *grp)
  1116. {
  1117. return atomic_inc_not_zero(&grp->refcount);
  1118. }
  1119. static inline void put_numa_group(struct numa_group *grp)
  1120. {
  1121. if (atomic_dec_and_test(&grp->refcount))
  1122. kfree_rcu(grp, rcu);
  1123. }
  1124. static void double_lock(spinlock_t *l1, spinlock_t *l2)
  1125. {
  1126. if (l1 > l2)
  1127. swap(l1, l2);
  1128. spin_lock(l1);
  1129. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1130. }
  1131. static void task_numa_group(struct task_struct *p, int cpupid)
  1132. {
  1133. struct numa_group *grp, *my_grp;
  1134. struct task_struct *tsk;
  1135. bool join = false;
  1136. int cpu = cpupid_to_cpu(cpupid);
  1137. int i;
  1138. if (unlikely(!p->numa_group)) {
  1139. unsigned int size = sizeof(struct numa_group) +
  1140. 2*nr_node_ids*sizeof(atomic_long_t);
  1141. grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
  1142. if (!grp)
  1143. return;
  1144. atomic_set(&grp->refcount, 1);
  1145. spin_lock_init(&grp->lock);
  1146. INIT_LIST_HEAD(&grp->task_list);
  1147. grp->gid = p->pid;
  1148. for (i = 0; i < 2*nr_node_ids; i++)
  1149. atomic_long_set(&grp->faults[i], p->numa_faults[i]);
  1150. atomic_long_set(&grp->total_faults, p->total_numa_faults);
  1151. list_add(&p->numa_entry, &grp->task_list);
  1152. grp->nr_tasks++;
  1153. rcu_assign_pointer(p->numa_group, grp);
  1154. }
  1155. rcu_read_lock();
  1156. tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
  1157. if (!cpupid_match_pid(tsk, cpupid))
  1158. goto unlock;
  1159. grp = rcu_dereference(tsk->numa_group);
  1160. if (!grp)
  1161. goto unlock;
  1162. my_grp = p->numa_group;
  1163. if (grp == my_grp)
  1164. goto unlock;
  1165. /*
  1166. * Only join the other group if its bigger; if we're the bigger group,
  1167. * the other task will join us.
  1168. */
  1169. if (my_grp->nr_tasks > grp->nr_tasks)
  1170. goto unlock;
  1171. /*
  1172. * Tie-break on the grp address.
  1173. */
  1174. if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
  1175. goto unlock;
  1176. if (!get_numa_group(grp))
  1177. goto unlock;
  1178. join = true;
  1179. unlock:
  1180. rcu_read_unlock();
  1181. if (!join)
  1182. return;
  1183. for (i = 0; i < 2*nr_node_ids; i++) {
  1184. atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
  1185. atomic_long_add(p->numa_faults[i], &grp->faults[i]);
  1186. }
  1187. atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
  1188. atomic_long_add(p->total_numa_faults, &grp->total_faults);
  1189. double_lock(&my_grp->lock, &grp->lock);
  1190. list_move(&p->numa_entry, &grp->task_list);
  1191. my_grp->nr_tasks--;
  1192. grp->nr_tasks++;
  1193. spin_unlock(&my_grp->lock);
  1194. spin_unlock(&grp->lock);
  1195. rcu_assign_pointer(p->numa_group, grp);
  1196. put_numa_group(my_grp);
  1197. }
  1198. void task_numa_free(struct task_struct *p)
  1199. {
  1200. struct numa_group *grp = p->numa_group;
  1201. int i;
  1202. void *numa_faults = p->numa_faults;
  1203. if (grp) {
  1204. for (i = 0; i < 2*nr_node_ids; i++)
  1205. atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
  1206. atomic_long_sub(p->total_numa_faults, &grp->total_faults);
  1207. spin_lock(&grp->lock);
  1208. list_del(&p->numa_entry);
  1209. grp->nr_tasks--;
  1210. spin_unlock(&grp->lock);
  1211. rcu_assign_pointer(p->numa_group, NULL);
  1212. put_numa_group(grp);
  1213. }
  1214. p->numa_faults = NULL;
  1215. p->numa_faults_buffer = NULL;
  1216. kfree(numa_faults);
  1217. }
  1218. /*
  1219. * Got a PROT_NONE fault for a page on @node.
  1220. */
  1221. void task_numa_fault(int last_cpupid, int node, int pages, int flags)
  1222. {
  1223. struct task_struct *p = current;
  1224. bool migrated = flags & TNF_MIGRATED;
  1225. int priv;
  1226. if (!numabalancing_enabled)
  1227. return;
  1228. /* for example, ksmd faulting in a user's mm */
  1229. if (!p->mm)
  1230. return;
  1231. /* Do not worry about placement if exiting */
  1232. if (p->state == TASK_DEAD)
  1233. return;
  1234. /* Allocate buffer to track faults on a per-node basis */
  1235. if (unlikely(!p->numa_faults)) {
  1236. int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
  1237. /* numa_faults and numa_faults_buffer share the allocation */
  1238. p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
  1239. if (!p->numa_faults)
  1240. return;
  1241. BUG_ON(p->numa_faults_buffer);
  1242. p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
  1243. p->total_numa_faults = 0;
  1244. }
  1245. /*
  1246. * First accesses are treated as private, otherwise consider accesses
  1247. * to be private if the accessing pid has not changed
  1248. */
  1249. if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
  1250. priv = 1;
  1251. } else {
  1252. priv = cpupid_match_pid(p, last_cpupid);
  1253. if (!priv && !(flags & TNF_NO_GROUP))
  1254. task_numa_group(p, last_cpupid);
  1255. }
  1256. /*
  1257. * If pages are properly placed (did not migrate) then scan slower.
  1258. * This is reset periodically in case of phase changes
  1259. */
  1260. if (!migrated) {
  1261. /* Initialise if necessary */
  1262. if (!p->numa_scan_period_max)
  1263. p->numa_scan_period_max = task_scan_max(p);
  1264. p->numa_scan_period = min(p->numa_scan_period_max,
  1265. p->numa_scan_period + 10);
  1266. }
  1267. task_numa_placement(p);
  1268. /* Retry task to preferred node migration if it previously failed */
  1269. if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
  1270. numa_migrate_preferred(p);
  1271. if (migrated)
  1272. p->numa_pages_migrated += pages;
  1273. p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
  1274. }
  1275. static void reset_ptenuma_scan(struct task_struct *p)
  1276. {
  1277. ACCESS_ONCE(p->mm->numa_scan_seq)++;
  1278. p->mm->numa_scan_offset = 0;
  1279. }
  1280. /*
  1281. * The expensive part of numa migration is done from task_work context.
  1282. * Triggered from task_tick_numa().
  1283. */
  1284. void task_numa_work(struct callback_head *work)
  1285. {
  1286. unsigned long migrate, next_scan, now = jiffies;
  1287. struct task_struct *p = current;
  1288. struct mm_struct *mm = p->mm;
  1289. struct vm_area_struct *vma;
  1290. unsigned long start, end;
  1291. unsigned long nr_pte_updates = 0;
  1292. long pages;
  1293. WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
  1294. work->next = work; /* protect against double add */
  1295. /*
  1296. * Who cares about NUMA placement when they're dying.
  1297. *
  1298. * NOTE: make sure not to dereference p->mm before this check,
  1299. * exit_task_work() happens _after_ exit_mm() so we could be called
  1300. * without p->mm even though we still had it when we enqueued this
  1301. * work.
  1302. */
  1303. if (p->flags & PF_EXITING)
  1304. return;
  1305. if (!mm->numa_next_reset || !mm->numa_next_scan) {
  1306. mm->numa_next_scan = now +
  1307. msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1308. mm->numa_next_reset = now +
  1309. msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
  1310. }
  1311. /*
  1312. * Reset the scan period if enough time has gone by. Objective is that
  1313. * scanning will be reduced if pages are properly placed. As tasks
  1314. * can enter different phases this needs to be re-examined. Lacking
  1315. * proper tracking of reference behaviour, this blunt hammer is used.
  1316. */
  1317. migrate = mm->numa_next_reset;
  1318. if (time_after(now, migrate)) {
  1319. p->numa_scan_period = task_scan_min(p);
  1320. next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
  1321. xchg(&mm->numa_next_reset, next_scan);
  1322. }
  1323. /*
  1324. * Enforce maximal scan/migration frequency..
  1325. */
  1326. migrate = mm->numa_next_scan;
  1327. if (time_before(now, migrate))
  1328. return;
  1329. if (p->numa_scan_period == 0) {
  1330. p->numa_scan_period_max = task_scan_max(p);
  1331. p->numa_scan_period = task_scan_min(p);
  1332. }
  1333. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  1334. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  1335. return;
  1336. /*
  1337. * Delay this task enough that another task of this mm will likely win
  1338. * the next time around.
  1339. */
  1340. p->node_stamp += 2 * TICK_NSEC;
  1341. start = mm->numa_scan_offset;
  1342. pages = sysctl_numa_balancing_scan_size;
  1343. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  1344. if (!pages)
  1345. return;
  1346. down_read(&mm->mmap_sem);
  1347. vma = find_vma(mm, start);
  1348. if (!vma) {
  1349. reset_ptenuma_scan(p);
  1350. start = 0;
  1351. vma = mm->mmap;
  1352. }
  1353. for (; vma; vma = vma->vm_next) {
  1354. if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
  1355. continue;
  1356. /*
  1357. * Shared library pages mapped by multiple processes are not
  1358. * migrated as it is expected they are cache replicated. Avoid
  1359. * hinting faults in read-only file-backed mappings or the vdso
  1360. * as migrating the pages will be of marginal benefit.
  1361. */
  1362. if (!vma->vm_mm ||
  1363. (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
  1364. continue;
  1365. do {
  1366. start = max(start, vma->vm_start);
  1367. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  1368. end = min(end, vma->vm_end);
  1369. nr_pte_updates += change_prot_numa(vma, start, end);
  1370. /*
  1371. * Scan sysctl_numa_balancing_scan_size but ensure that
  1372. * at least one PTE is updated so that unused virtual
  1373. * address space is quickly skipped.
  1374. */
  1375. if (nr_pte_updates)
  1376. pages -= (end - start) >> PAGE_SHIFT;
  1377. start = end;
  1378. if (pages <= 0)
  1379. goto out;
  1380. } while (end != vma->vm_end);
  1381. }
  1382. out:
  1383. /*
  1384. * If the whole process was scanned without updates then no NUMA
  1385. * hinting faults are being recorded and scan rate should be lower.
  1386. */
  1387. if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
  1388. p->numa_scan_period = min(p->numa_scan_period_max,
  1389. p->numa_scan_period << 1);
  1390. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  1391. mm->numa_next_scan = next_scan;
  1392. }
  1393. /*
  1394. * It is possible to reach the end of the VMA list but the last few
  1395. * VMAs are not guaranteed to the vma_migratable. If they are not, we
  1396. * would find the !migratable VMA on the next scan but not reset the
  1397. * scanner to the start so check it now.
  1398. */
  1399. if (vma)
  1400. mm->numa_scan_offset = start;
  1401. else
  1402. reset_ptenuma_scan(p);
  1403. up_read(&mm->mmap_sem);
  1404. }
  1405. /*
  1406. * Drive the periodic memory faults..
  1407. */
  1408. void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1409. {
  1410. struct callback_head *work = &curr->numa_work;
  1411. u64 period, now;
  1412. /*
  1413. * We don't care about NUMA placement if we don't have memory.
  1414. */
  1415. if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
  1416. return;
  1417. /*
  1418. * Using runtime rather than walltime has the dual advantage that
  1419. * we (mostly) drive the selection from busy threads and that the
  1420. * task needs to have done some actual work before we bother with
  1421. * NUMA placement.
  1422. */
  1423. now = curr->se.sum_exec_runtime;
  1424. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  1425. if (now - curr->node_stamp > period) {
  1426. if (!curr->node_stamp)
  1427. curr->numa_scan_period = task_scan_min(curr);
  1428. curr->node_stamp += period;
  1429. if (!time_before(jiffies, curr->mm->numa_next_scan)) {
  1430. init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
  1431. task_work_add(curr, work, true);
  1432. }
  1433. }
  1434. }
  1435. #else
  1436. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1437. {
  1438. }
  1439. #endif /* CONFIG_NUMA_BALANCING */
  1440. static void
  1441. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1442. {
  1443. update_load_add(&cfs_rq->load, se->load.weight);
  1444. if (!parent_entity(se))
  1445. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  1446. #ifdef CONFIG_SMP
  1447. if (entity_is_task(se))
  1448. list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
  1449. #endif
  1450. cfs_rq->nr_running++;
  1451. }
  1452. static void
  1453. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1454. {
  1455. update_load_sub(&cfs_rq->load, se->load.weight);
  1456. if (!parent_entity(se))
  1457. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  1458. if (entity_is_task(se))
  1459. list_del_init(&se->group_node);
  1460. cfs_rq->nr_running--;
  1461. }
  1462. #ifdef CONFIG_FAIR_GROUP_SCHED
  1463. # ifdef CONFIG_SMP
  1464. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  1465. {
  1466. long tg_weight;
  1467. /*
  1468. * Use this CPU's actual weight instead of the last load_contribution
  1469. * to gain a more accurate current total weight. See
  1470. * update_cfs_rq_load_contribution().
  1471. */
  1472. tg_weight = atomic_long_read(&tg->load_avg);
  1473. tg_weight -= cfs_rq->tg_load_contrib;
  1474. tg_weight += cfs_rq->load.weight;
  1475. return tg_weight;
  1476. }
  1477. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  1478. {
  1479. long tg_weight, load, shares;
  1480. tg_weight = calc_tg_weight(tg, cfs_rq);
  1481. load = cfs_rq->load.weight;
  1482. shares = (tg->shares * load);
  1483. if (tg_weight)
  1484. shares /= tg_weight;
  1485. if (shares < MIN_SHARES)
  1486. shares = MIN_SHARES;
  1487. if (shares > tg->shares)
  1488. shares = tg->shares;
  1489. return shares;
  1490. }
  1491. # else /* CONFIG_SMP */
  1492. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  1493. {
  1494. return tg->shares;
  1495. }
  1496. # endif /* CONFIG_SMP */
  1497. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  1498. unsigned long weight)
  1499. {
  1500. if (se->on_rq) {
  1501. /* commit outstanding execution time */
  1502. if (cfs_rq->curr == se)
  1503. update_curr(cfs_rq);
  1504. account_entity_dequeue(cfs_rq, se);
  1505. }
  1506. update_load_set(&se->load, weight);
  1507. if (se->on_rq)
  1508. account_entity_enqueue(cfs_rq, se);
  1509. }
  1510. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  1511. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  1512. {
  1513. struct task_group *tg;
  1514. struct sched_entity *se;
  1515. long shares;
  1516. tg = cfs_rq->tg;
  1517. se = tg->se[cpu_of(rq_of(cfs_rq))];
  1518. if (!se || throttled_hierarchy(cfs_rq))
  1519. return;
  1520. #ifndef CONFIG_SMP
  1521. if (likely(se->load.weight == tg->shares))
  1522. return;
  1523. #endif
  1524. shares = calc_cfs_shares(cfs_rq, tg);
  1525. reweight_entity(cfs_rq_of(se), se, shares);
  1526. }
  1527. #else /* CONFIG_FAIR_GROUP_SCHED */
  1528. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  1529. {
  1530. }
  1531. #endif /* CONFIG_FAIR_GROUP_SCHED */
  1532. #ifdef CONFIG_SMP
  1533. /*
  1534. * We choose a half-life close to 1 scheduling period.
  1535. * Note: The tables below are dependent on this value.
  1536. */
  1537. #define LOAD_AVG_PERIOD 32
  1538. #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
  1539. #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
  1540. /* Precomputed fixed inverse multiplies for multiplication by y^n */
  1541. static const u32 runnable_avg_yN_inv[] = {
  1542. 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
  1543. 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
  1544. 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
  1545. 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
  1546. 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
  1547. 0x85aac367, 0x82cd8698,
  1548. };
  1549. /*
  1550. * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
  1551. * over-estimates when re-combining.
  1552. */
  1553. static const u32 runnable_avg_yN_sum[] = {
  1554. 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
  1555. 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
  1556. 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
  1557. };
  1558. /*
  1559. * Approximate:
  1560. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  1561. */
  1562. static __always_inline u64 decay_load(u64 val, u64 n)
  1563. {
  1564. unsigned int local_n;
  1565. if (!n)
  1566. return val;
  1567. else if (unlikely(n > LOAD_AVG_PERIOD * 63))
  1568. return 0;
  1569. /* after bounds checking we can collapse to 32-bit */
  1570. local_n = n;
  1571. /*
  1572. * As y^PERIOD = 1/2, we can combine
  1573. * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
  1574. * With a look-up table which covers k^n (n<PERIOD)
  1575. *
  1576. * To achieve constant time decay_load.
  1577. */
  1578. if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  1579. val >>= local_n / LOAD_AVG_PERIOD;
  1580. local_n %= LOAD_AVG_PERIOD;
  1581. }
  1582. val *= runnable_avg_yN_inv[local_n];
  1583. /* We don't use SRR here since we always want to round down. */
  1584. return val >> 32;
  1585. }
  1586. /*
  1587. * For updates fully spanning n periods, the contribution to runnable
  1588. * average will be: \Sum 1024*y^n
  1589. *
  1590. * We can compute this reasonably efficiently by combining:
  1591. * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
  1592. */
  1593. static u32 __compute_runnable_contrib(u64 n)
  1594. {
  1595. u32 contrib = 0;
  1596. if (likely(n <= LOAD_AVG_PERIOD))
  1597. return runnable_avg_yN_sum[n];
  1598. else if (unlikely(n >= LOAD_AVG_MAX_N))
  1599. return LOAD_AVG_MAX;
  1600. /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
  1601. do {
  1602. contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
  1603. contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
  1604. n -= LOAD_AVG_PERIOD;
  1605. } while (n > LOAD_AVG_PERIOD);
  1606. contrib = decay_load(contrib, n);
  1607. return contrib + runnable_avg_yN_sum[n];
  1608. }
  1609. /*
  1610. * We can represent the historical contribution to runnable average as the
  1611. * coefficients of a geometric series. To do this we sub-divide our runnable
  1612. * history into segments of approximately 1ms (1024us); label the segment that
  1613. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  1614. *
  1615. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  1616. * p0 p1 p2
  1617. * (now) (~1ms ago) (~2ms ago)
  1618. *
  1619. * Let u_i denote the fraction of p_i that the entity was runnable.
  1620. *
  1621. * We then designate the fractions u_i as our co-efficients, yielding the
  1622. * following representation of historical load:
  1623. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  1624. *
  1625. * We choose y based on the with of a reasonably scheduling period, fixing:
  1626. * y^32 = 0.5
  1627. *
  1628. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  1629. * approximately half as much as the contribution to load within the last ms
  1630. * (u_0).
  1631. *
  1632. * When a period "rolls over" and we have new u_0`, multiplying the previous
  1633. * sum again by y is sufficient to update:
  1634. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  1635. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  1636. */
  1637. static __always_inline int __update_entity_runnable_avg(u64 now,
  1638. struct sched_avg *sa,
  1639. int runnable)
  1640. {
  1641. u64 delta, periods;
  1642. u32 runnable_contrib;
  1643. int delta_w, decayed = 0;
  1644. delta = now - sa->last_runnable_update;
  1645. /*
  1646. * This should only happen when time goes backwards, which it
  1647. * unfortunately does during sched clock init when we swap over to TSC.
  1648. */
  1649. if ((s64)delta < 0) {
  1650. sa->last_runnable_update = now;
  1651. return 0;
  1652. }
  1653. /*
  1654. * Use 1024ns as the unit of measurement since it's a reasonable
  1655. * approximation of 1us and fast to compute.
  1656. */
  1657. delta >>= 10;
  1658. if (!delta)
  1659. return 0;
  1660. sa->last_runnable_update = now;
  1661. /* delta_w is the amount already accumulated against our next period */
  1662. delta_w = sa->runnable_avg_period % 1024;
  1663. if (delta + delta_w >= 1024) {
  1664. /* period roll-over */
  1665. decayed = 1;
  1666. /*
  1667. * Now that we know we're crossing a period boundary, figure
  1668. * out how much from delta we need to complete the current
  1669. * period and accrue it.
  1670. */
  1671. delta_w = 1024 - delta_w;
  1672. if (runnable)
  1673. sa->runnable_avg_sum += delta_w;
  1674. sa->runnable_avg_period += delta_w;
  1675. delta -= delta_w;
  1676. /* Figure out how many additional periods this update spans */
  1677. periods = delta / 1024;
  1678. delta %= 1024;
  1679. sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
  1680. periods + 1);
  1681. sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
  1682. periods + 1);
  1683. /* Efficiently calculate \sum (1..n_period) 1024*y^i */
  1684. runnable_contrib = __compute_runnable_contrib(periods);
  1685. if (runnable)
  1686. sa->runnable_avg_sum += runnable_contrib;
  1687. sa->runnable_avg_period += runnable_contrib;
  1688. }
  1689. /* Remainder of delta accrued against u_0` */
  1690. if (runnable)
  1691. sa->runnable_avg_sum += delta;
  1692. sa->runnable_avg_period += delta;
  1693. return decayed;
  1694. }
  1695. /* Synchronize an entity's decay with its parenting cfs_rq.*/
  1696. static inline u64 __synchronize_entity_decay(struct sched_entity *se)
  1697. {
  1698. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1699. u64 decays = atomic64_read(&cfs_rq->decay_counter);
  1700. decays -= se->avg.decay_count;
  1701. if (!decays)
  1702. return 0;
  1703. se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
  1704. se->avg.decay_count = 0;
  1705. return decays;
  1706. }
  1707. #ifdef CONFIG_FAIR_GROUP_SCHED
  1708. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  1709. int force_update)
  1710. {
  1711. struct task_group *tg = cfs_rq->tg;
  1712. long tg_contrib;
  1713. tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
  1714. tg_contrib -= cfs_rq->tg_load_contrib;
  1715. if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
  1716. atomic_long_add(tg_contrib, &tg->load_avg);
  1717. cfs_rq->tg_load_contrib += tg_contrib;
  1718. }
  1719. }
  1720. /*
  1721. * Aggregate cfs_rq runnable averages into an equivalent task_group
  1722. * representation for computing load contributions.
  1723. */
  1724. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  1725. struct cfs_rq *cfs_rq)
  1726. {
  1727. struct task_group *tg = cfs_rq->tg;
  1728. long contrib;
  1729. /* The fraction of a cpu used by this cfs_rq */
  1730. contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
  1731. sa->runnable_avg_period + 1);
  1732. contrib -= cfs_rq->tg_runnable_contrib;
  1733. if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
  1734. atomic_add(contrib, &tg->runnable_avg);
  1735. cfs_rq->tg_runnable_contrib += contrib;
  1736. }
  1737. }
  1738. static inline void __update_group_entity_contrib(struct sched_entity *se)
  1739. {
  1740. struct cfs_rq *cfs_rq = group_cfs_rq(se);
  1741. struct task_group *tg = cfs_rq->tg;
  1742. int runnable_avg;
  1743. u64 contrib;
  1744. contrib = cfs_rq->tg_load_contrib * tg->shares;
  1745. se->avg.load_avg_contrib = div_u64(contrib,
  1746. atomic_long_read(&tg->load_avg) + 1);
  1747. /*
  1748. * For group entities we need to compute a correction term in the case
  1749. * that they are consuming <1 cpu so that we would contribute the same
  1750. * load as a task of equal weight.
  1751. *
  1752. * Explicitly co-ordinating this measurement would be expensive, but
  1753. * fortunately the sum of each cpus contribution forms a usable
  1754. * lower-bound on the true value.
  1755. *
  1756. * Consider the aggregate of 2 contributions. Either they are disjoint
  1757. * (and the sum represents true value) or they are disjoint and we are
  1758. * understating by the aggregate of their overlap.
  1759. *
  1760. * Extending this to N cpus, for a given overlap, the maximum amount we
  1761. * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
  1762. * cpus that overlap for this interval and w_i is the interval width.
  1763. *
  1764. * On a small machine; the first term is well-bounded which bounds the
  1765. * total error since w_i is a subset of the period. Whereas on a
  1766. * larger machine, while this first term can be larger, if w_i is the
  1767. * of consequential size guaranteed to see n_i*w_i quickly converge to
  1768. * our upper bound of 1-cpu.
  1769. */
  1770. runnable_avg = atomic_read(&tg->runnable_avg);
  1771. if (runnable_avg < NICE_0_LOAD) {
  1772. se->avg.load_avg_contrib *= runnable_avg;
  1773. se->avg.load_avg_contrib >>= NICE_0_SHIFT;
  1774. }
  1775. }
  1776. #else
  1777. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  1778. int force_update) {}
  1779. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  1780. struct cfs_rq *cfs_rq) {}
  1781. static inline void __update_group_entity_contrib(struct sched_entity *se) {}
  1782. #endif
  1783. static inline void __update_task_entity_contrib(struct sched_entity *se)
  1784. {
  1785. u32 contrib;
  1786. /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
  1787. contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
  1788. contrib /= (se->avg.runnable_avg_period + 1);
  1789. se->avg.load_avg_contrib = scale_load(contrib);
  1790. }
  1791. /* Compute the current contribution to load_avg by se, return any delta */
  1792. static long __update_entity_load_avg_contrib(struct sched_entity *se)
  1793. {
  1794. long old_contrib = se->avg.load_avg_contrib;
  1795. if (entity_is_task(se)) {
  1796. __update_task_entity_contrib(se);
  1797. } else {
  1798. __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
  1799. __update_group_entity_contrib(se);
  1800. }
  1801. return se->avg.load_avg_contrib - old_contrib;
  1802. }
  1803. static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
  1804. long load_contrib)
  1805. {
  1806. if (likely(load_contrib < cfs_rq->blocked_load_avg))
  1807. cfs_rq->blocked_load_avg -= load_contrib;
  1808. else
  1809. cfs_rq->blocked_load_avg = 0;
  1810. }
  1811. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
  1812. /* Update a sched_entity's runnable average */
  1813. static inline void update_entity_load_avg(struct sched_entity *se,
  1814. int update_cfs_rq)
  1815. {
  1816. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1817. long contrib_delta;
  1818. u64 now;
  1819. /*
  1820. * For a group entity we need to use their owned cfs_rq_clock_task() in
  1821. * case they are the parent of a throttled hierarchy.
  1822. */
  1823. if (entity_is_task(se))
  1824. now = cfs_rq_clock_task(cfs_rq);
  1825. else
  1826. now = cfs_rq_clock_task(group_cfs_rq(se));
  1827. if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
  1828. return;
  1829. contrib_delta = __update_entity_load_avg_contrib(se);
  1830. if (!update_cfs_rq)
  1831. return;
  1832. if (se->on_rq)
  1833. cfs_rq->runnable_load_avg += contrib_delta;
  1834. else
  1835. subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
  1836. }
  1837. /*
  1838. * Decay the load contributed by all blocked children and account this so that
  1839. * their contribution may appropriately discounted when they wake up.
  1840. */
  1841. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
  1842. {
  1843. u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
  1844. u64 decays;
  1845. decays = now - cfs_rq->last_decay;
  1846. if (!decays && !force_update)
  1847. return;
  1848. if (atomic_long_read(&cfs_rq->removed_load)) {
  1849. unsigned long removed_load;
  1850. removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
  1851. subtract_blocked_load_contrib(cfs_rq, removed_load);
  1852. }
  1853. if (decays) {
  1854. cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
  1855. decays);
  1856. atomic64_add(decays, &cfs_rq->decay_counter);
  1857. cfs_rq->last_decay = now;
  1858. }
  1859. __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
  1860. }
  1861. static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
  1862. {
  1863. __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
  1864. __update_tg_runnable_avg(&rq->avg, &rq->cfs);
  1865. }
  1866. /* Add the load generated by se into cfs_rq's child load-average */
  1867. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  1868. struct sched_entity *se,
  1869. int wakeup)
  1870. {
  1871. /*
  1872. * We track migrations using entity decay_count <= 0, on a wake-up
  1873. * migration we use a negative decay count to track the remote decays
  1874. * accumulated while sleeping.
  1875. *
  1876. * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
  1877. * are seen by enqueue_entity_load_avg() as a migration with an already
  1878. * constructed load_avg_contrib.
  1879. */
  1880. if (unlikely(se->avg.decay_count <= 0)) {
  1881. se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
  1882. if (se->avg.decay_count) {
  1883. /*
  1884. * In a wake-up migration we have to approximate the
  1885. * time sleeping. This is because we can't synchronize
  1886. * clock_task between the two cpus, and it is not
  1887. * guaranteed to be read-safe. Instead, we can
  1888. * approximate this using our carried decays, which are
  1889. * explicitly atomically readable.
  1890. */
  1891. se->avg.last_runnable_update -= (-se->avg.decay_count)
  1892. << 20;
  1893. update_entity_load_avg(se, 0);
  1894. /* Indicate that we're now synchronized and on-rq */
  1895. se->avg.decay_count = 0;
  1896. }
  1897. wakeup = 0;
  1898. } else {
  1899. /*
  1900. * Task re-woke on same cpu (or else migrate_task_rq_fair()
  1901. * would have made count negative); we must be careful to avoid
  1902. * double-accounting blocked time after synchronizing decays.
  1903. */
  1904. se->avg.last_runnable_update += __synchronize_entity_decay(se)
  1905. << 20;
  1906. }
  1907. /* migrated tasks did not contribute to our blocked load */
  1908. if (wakeup) {
  1909. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  1910. update_entity_load_avg(se, 0);
  1911. }
  1912. cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
  1913. /* we force update consideration on load-balancer moves */
  1914. update_cfs_rq_blocked_load(cfs_rq, !wakeup);
  1915. }
  1916. /*
  1917. * Remove se's load from this cfs_rq child load-average, if the entity is
  1918. * transitioning to a blocked state we track its projected decay using
  1919. * blocked_load_avg.
  1920. */
  1921. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  1922. struct sched_entity *se,
  1923. int sleep)
  1924. {
  1925. update_entity_load_avg(se, 1);
  1926. /* we force update consideration on load-balancer moves */
  1927. update_cfs_rq_blocked_load(cfs_rq, !sleep);
  1928. cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
  1929. if (sleep) {
  1930. cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
  1931. se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  1932. } /* migrations, e.g. sleep=0 leave decay_count == 0 */
  1933. }
  1934. /*
  1935. * Update the rq's load with the elapsed running time before entering
  1936. * idle. if the last scheduled task is not a CFS task, idle_enter will
  1937. * be the only way to update the runnable statistic.
  1938. */
  1939. void idle_enter_fair(struct rq *this_rq)
  1940. {
  1941. update_rq_runnable_avg(this_rq, 1);
  1942. }
  1943. /*
  1944. * Update the rq's load with the elapsed idle time before a task is
  1945. * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
  1946. * be the only way to update the runnable statistic.
  1947. */
  1948. void idle_exit_fair(struct rq *this_rq)
  1949. {
  1950. update_rq_runnable_avg(this_rq, 0);
  1951. }
  1952. #else
  1953. static inline void update_entity_load_avg(struct sched_entity *se,
  1954. int update_cfs_rq) {}
  1955. static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
  1956. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  1957. struct sched_entity *se,
  1958. int wakeup) {}
  1959. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  1960. struct sched_entity *se,
  1961. int sleep) {}
  1962. static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  1963. int force_update) {}
  1964. #endif
  1965. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1966. {
  1967. #ifdef CONFIG_SCHEDSTATS
  1968. struct task_struct *tsk = NULL;
  1969. if (entity_is_task(se))
  1970. tsk = task_of(se);
  1971. if (se->statistics.sleep_start) {
  1972. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
  1973. if ((s64)delta < 0)
  1974. delta = 0;
  1975. if (unlikely(delta > se->statistics.sleep_max))
  1976. se->statistics.sleep_max = delta;
  1977. se->statistics.sleep_start = 0;
  1978. se->statistics.sum_sleep_runtime += delta;
  1979. if (tsk) {
  1980. account_scheduler_latency(tsk, delta >> 10, 1);
  1981. trace_sched_stat_sleep(tsk, delta);
  1982. }
  1983. }
  1984. if (se->statistics.block_start) {
  1985. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
  1986. if ((s64)delta < 0)
  1987. delta = 0;
  1988. if (unlikely(delta > se->statistics.block_max))
  1989. se->statistics.block_max = delta;
  1990. se->statistics.block_start = 0;
  1991. se->statistics.sum_sleep_runtime += delta;
  1992. if (tsk) {
  1993. if (tsk->in_iowait) {
  1994. se->statistics.iowait_sum += delta;
  1995. se->statistics.iowait_count++;
  1996. trace_sched_stat_iowait(tsk, delta);
  1997. }
  1998. trace_sched_stat_blocked(tsk, delta);
  1999. /*
  2000. * Blocking time is in units of nanosecs, so shift by
  2001. * 20 to get a milliseconds-range estimation of the
  2002. * amount of time that the task spent sleeping:
  2003. */
  2004. if (unlikely(prof_on == SLEEP_PROFILING)) {
  2005. profile_hits(SLEEP_PROFILING,
  2006. (void *)get_wchan(tsk),
  2007. delta >> 20);
  2008. }
  2009. account_scheduler_latency(tsk, delta >> 10, 0);
  2010. }
  2011. }
  2012. #endif
  2013. }
  2014. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2015. {
  2016. #ifdef CONFIG_SCHED_DEBUG
  2017. s64 d = se->vruntime - cfs_rq->min_vruntime;
  2018. if (d < 0)
  2019. d = -d;
  2020. if (d > 3*sysctl_sched_latency)
  2021. schedstat_inc(cfs_rq, nr_spread_over);
  2022. #endif
  2023. }
  2024. static void
  2025. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  2026. {
  2027. u64 vruntime = cfs_rq->min_vruntime;
  2028. /*
  2029. * The 'current' period is already promised to the current tasks,
  2030. * however the extra weight of the new task will slow them down a
  2031. * little, place the new task so that it fits in the slot that
  2032. * stays open at the end.
  2033. */
  2034. if (initial && sched_feat(START_DEBIT))
  2035. vruntime += sched_vslice(cfs_rq, se);
  2036. /* sleeps up to a single latency don't count. */
  2037. if (!initial) {
  2038. unsigned long thresh = sysctl_sched_latency;
  2039. /*
  2040. * Halve their sleep time's effect, to allow
  2041. * for a gentler effect of sleepers:
  2042. */
  2043. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  2044. thresh >>= 1;
  2045. vruntime -= thresh;
  2046. }
  2047. /* ensure we never gain time by being placed backwards. */
  2048. se->vruntime = max_vruntime(se->vruntime, vruntime);
  2049. }
  2050. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  2051. static void
  2052. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2053. {
  2054. /*
  2055. * Update the normalized vruntime before updating min_vruntime
  2056. * through calling update_curr().
  2057. */
  2058. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  2059. se->vruntime += cfs_rq->min_vruntime;
  2060. /*
  2061. * Update run-time statistics of the 'current'.
  2062. */
  2063. update_curr(cfs_rq);
  2064. enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
  2065. account_entity_enqueue(cfs_rq, se);
  2066. update_cfs_shares(cfs_rq);
  2067. if (flags & ENQUEUE_WAKEUP) {
  2068. place_entity(cfs_rq, se, 0);
  2069. enqueue_sleeper(cfs_rq, se);
  2070. }
  2071. update_stats_enqueue(cfs_rq, se);
  2072. check_spread(cfs_rq, se);
  2073. if (se != cfs_rq->curr)
  2074. __enqueue_entity(cfs_rq, se);
  2075. se->on_rq = 1;
  2076. if (cfs_rq->nr_running == 1) {
  2077. list_add_leaf_cfs_rq(cfs_rq);
  2078. check_enqueue_throttle(cfs_rq);
  2079. }
  2080. }
  2081. static void __clear_buddies_last(struct sched_entity *se)
  2082. {
  2083. for_each_sched_entity(se) {
  2084. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2085. if (cfs_rq->last == se)
  2086. cfs_rq->last = NULL;
  2087. else
  2088. break;
  2089. }
  2090. }
  2091. static void __clear_buddies_next(struct sched_entity *se)
  2092. {
  2093. for_each_sched_entity(se) {
  2094. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2095. if (cfs_rq->next == se)
  2096. cfs_rq->next = NULL;
  2097. else
  2098. break;
  2099. }
  2100. }
  2101. static void __clear_buddies_skip(struct sched_entity *se)
  2102. {
  2103. for_each_sched_entity(se) {
  2104. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2105. if (cfs_rq->skip == se)
  2106. cfs_rq->skip = NULL;
  2107. else
  2108. break;
  2109. }
  2110. }
  2111. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2112. {
  2113. if (cfs_rq->last == se)
  2114. __clear_buddies_last(se);
  2115. if (cfs_rq->next == se)
  2116. __clear_buddies_next(se);
  2117. if (cfs_rq->skip == se)
  2118. __clear_buddies_skip(se);
  2119. }
  2120. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2121. static void
  2122. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2123. {
  2124. /*
  2125. * Update run-time statistics of the 'current'.
  2126. */
  2127. update_curr(cfs_rq);
  2128. dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
  2129. update_stats_dequeue(cfs_rq, se);
  2130. if (flags & DEQUEUE_SLEEP) {
  2131. #ifdef CONFIG_SCHEDSTATS
  2132. if (entity_is_task(se)) {
  2133. struct task_struct *tsk = task_of(se);
  2134. if (tsk->state & TASK_INTERRUPTIBLE)
  2135. se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
  2136. if (tsk->state & TASK_UNINTERRUPTIBLE)
  2137. se->statistics.block_start = rq_clock(rq_of(cfs_rq));
  2138. }
  2139. #endif
  2140. }
  2141. clear_buddies(cfs_rq, se);
  2142. if (se != cfs_rq->curr)
  2143. __dequeue_entity(cfs_rq, se);
  2144. se->on_rq = 0;
  2145. account_entity_dequeue(cfs_rq, se);
  2146. /*
  2147. * Normalize the entity after updating the min_vruntime because the
  2148. * update can refer to the ->curr item and we need to reflect this
  2149. * movement in our normalized position.
  2150. */
  2151. if (!(flags & DEQUEUE_SLEEP))
  2152. se->vruntime -= cfs_rq->min_vruntime;
  2153. /* return excess runtime on last dequeue */
  2154. return_cfs_rq_runtime(cfs_rq);
  2155. update_min_vruntime(cfs_rq);
  2156. update_cfs_shares(cfs_rq);
  2157. }
  2158. /*
  2159. * Preempt the current task with a newly woken task if needed:
  2160. */
  2161. static void
  2162. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  2163. {
  2164. unsigned long ideal_runtime, delta_exec;
  2165. struct sched_entity *se;
  2166. s64 delta;
  2167. ideal_runtime = sched_slice(cfs_rq, curr);
  2168. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  2169. if (delta_exec > ideal_runtime) {
  2170. resched_task(rq_of(cfs_rq)->curr);
  2171. /*
  2172. * The current task ran long enough, ensure it doesn't get
  2173. * re-elected due to buddy favours.
  2174. */
  2175. clear_buddies(cfs_rq, curr);
  2176. return;
  2177. }
  2178. /*
  2179. * Ensure that a task that missed wakeup preemption by a
  2180. * narrow margin doesn't have to wait for a full slice.
  2181. * This also mitigates buddy induced latencies under load.
  2182. */
  2183. if (delta_exec < sysctl_sched_min_granularity)
  2184. return;
  2185. se = __pick_first_entity(cfs_rq);
  2186. delta = curr->vruntime - se->vruntime;
  2187. if (delta < 0)
  2188. return;
  2189. if (delta > ideal_runtime)
  2190. resched_task(rq_of(cfs_rq)->curr);
  2191. }
  2192. static void
  2193. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2194. {
  2195. /* 'current' is not kept within the tree. */
  2196. if (se->on_rq) {
  2197. /*
  2198. * Any task has to be enqueued before it get to execute on
  2199. * a CPU. So account for the time it spent waiting on the
  2200. * runqueue.
  2201. */
  2202. update_stats_wait_end(cfs_rq, se);
  2203. __dequeue_entity(cfs_rq, se);
  2204. }
  2205. update_stats_curr_start(cfs_rq, se);
  2206. cfs_rq->curr = se;
  2207. #ifdef CONFIG_SCHEDSTATS
  2208. /*
  2209. * Track our maximum slice length, if the CPU's load is at
  2210. * least twice that of our own weight (i.e. dont track it
  2211. * when there are only lesser-weight tasks around):
  2212. */
  2213. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  2214. se->statistics.slice_max = max(se->statistics.slice_max,
  2215. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  2216. }
  2217. #endif
  2218. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  2219. }
  2220. static int
  2221. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  2222. /*
  2223. * Pick the next process, keeping these things in mind, in this order:
  2224. * 1) keep things fair between processes/task groups
  2225. * 2) pick the "next" process, since someone really wants that to run
  2226. * 3) pick the "last" process, for cache locality
  2227. * 4) do not run the "skip" process, if something else is available
  2228. */
  2229. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  2230. {
  2231. struct sched_entity *se = __pick_first_entity(cfs_rq);
  2232. struct sched_entity *left = se;
  2233. /*
  2234. * Avoid running the skip buddy, if running something else can
  2235. * be done without getting too unfair.
  2236. */
  2237. if (cfs_rq->skip == se) {
  2238. struct sched_entity *second = __pick_next_entity(se);
  2239. if (second && wakeup_preempt_entity(second, left) < 1)
  2240. se = second;
  2241. }
  2242. /*
  2243. * Prefer last buddy, try to return the CPU to a preempted task.
  2244. */
  2245. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  2246. se = cfs_rq->last;
  2247. /*
  2248. * Someone really wants this to run. If it's not unfair, run it.
  2249. */
  2250. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  2251. se = cfs_rq->next;
  2252. clear_buddies(cfs_rq, se);
  2253. return se;
  2254. }
  2255. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2256. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  2257. {
  2258. /*
  2259. * If still on the runqueue then deactivate_task()
  2260. * was not called and update_curr() has to be done:
  2261. */
  2262. if (prev->on_rq)
  2263. update_curr(cfs_rq);
  2264. /* throttle cfs_rqs exceeding runtime */
  2265. check_cfs_rq_runtime(cfs_rq);
  2266. check_spread(cfs_rq, prev);
  2267. if (prev->on_rq) {
  2268. update_stats_wait_start(cfs_rq, prev);
  2269. /* Put 'current' back into the tree. */
  2270. __enqueue_entity(cfs_rq, prev);
  2271. /* in !on_rq case, update occurred at dequeue */
  2272. update_entity_load_avg(prev, 1);
  2273. }
  2274. cfs_rq->curr = NULL;
  2275. }
  2276. static void
  2277. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  2278. {
  2279. /*
  2280. * Update run-time statistics of the 'current'.
  2281. */
  2282. update_curr(cfs_rq);
  2283. /*
  2284. * Ensure that runnable average is periodically updated.
  2285. */
  2286. update_entity_load_avg(curr, 1);
  2287. update_cfs_rq_blocked_load(cfs_rq, 1);
  2288. update_cfs_shares(cfs_rq);
  2289. #ifdef CONFIG_SCHED_HRTICK
  2290. /*
  2291. * queued ticks are scheduled to match the slice, so don't bother
  2292. * validating it and just reschedule.
  2293. */
  2294. if (queued) {
  2295. resched_task(rq_of(cfs_rq)->curr);
  2296. return;
  2297. }
  2298. /*
  2299. * don't let the period tick interfere with the hrtick preemption
  2300. */
  2301. if (!sched_feat(DOUBLE_TICK) &&
  2302. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  2303. return;
  2304. #endif
  2305. if (cfs_rq->nr_running > 1)
  2306. check_preempt_tick(cfs_rq, curr);
  2307. }
  2308. /**************************************************
  2309. * CFS bandwidth control machinery
  2310. */
  2311. #ifdef CONFIG_CFS_BANDWIDTH
  2312. #ifdef HAVE_JUMP_LABEL
  2313. static struct static_key __cfs_bandwidth_used;
  2314. static inline bool cfs_bandwidth_used(void)
  2315. {
  2316. return static_key_false(&__cfs_bandwidth_used);
  2317. }
  2318. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  2319. {
  2320. /* only need to count groups transitioning between enabled/!enabled */
  2321. if (enabled && !was_enabled)
  2322. static_key_slow_inc(&__cfs_bandwidth_used);
  2323. else if (!enabled && was_enabled)
  2324. static_key_slow_dec(&__cfs_bandwidth_used);
  2325. }
  2326. #else /* HAVE_JUMP_LABEL */
  2327. static bool cfs_bandwidth_used(void)
  2328. {
  2329. return true;
  2330. }
  2331. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  2332. #endif /* HAVE_JUMP_LABEL */
  2333. /*
  2334. * default period for cfs group bandwidth.
  2335. * default: 0.1s, units: nanoseconds
  2336. */
  2337. static inline u64 default_cfs_period(void)
  2338. {
  2339. return 100000000ULL;
  2340. }
  2341. static inline u64 sched_cfs_bandwidth_slice(void)
  2342. {
  2343. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  2344. }
  2345. /*
  2346. * Replenish runtime according to assigned quota and update expiration time.
  2347. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  2348. * additional synchronization around rq->lock.
  2349. *
  2350. * requires cfs_b->lock
  2351. */
  2352. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  2353. {
  2354. u64 now;
  2355. if (cfs_b->quota == RUNTIME_INF)
  2356. return;
  2357. now = sched_clock_cpu(smp_processor_id());
  2358. cfs_b->runtime = cfs_b->quota;
  2359. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  2360. }
  2361. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2362. {
  2363. return &tg->cfs_bandwidth;
  2364. }
  2365. /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
  2366. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2367. {
  2368. if (unlikely(cfs_rq->throttle_count))
  2369. return cfs_rq->throttled_clock_task;
  2370. return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
  2371. }
  2372. /* returns 0 on failure to allocate runtime */
  2373. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2374. {
  2375. struct task_group *tg = cfs_rq->tg;
  2376. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  2377. u64 amount = 0, min_amount, expires;
  2378. /* note: this is a positive sum as runtime_remaining <= 0 */
  2379. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  2380. raw_spin_lock(&cfs_b->lock);
  2381. if (cfs_b->quota == RUNTIME_INF)
  2382. amount = min_amount;
  2383. else {
  2384. /*
  2385. * If the bandwidth pool has become inactive, then at least one
  2386. * period must have elapsed since the last consumption.
  2387. * Refresh the global state and ensure bandwidth timer becomes
  2388. * active.
  2389. */
  2390. if (!cfs_b->timer_active) {
  2391. __refill_cfs_bandwidth_runtime(cfs_b);
  2392. __start_cfs_bandwidth(cfs_b);
  2393. }
  2394. if (cfs_b->runtime > 0) {
  2395. amount = min(cfs_b->runtime, min_amount);
  2396. cfs_b->runtime -= amount;
  2397. cfs_b->idle = 0;
  2398. }
  2399. }
  2400. expires = cfs_b->runtime_expires;
  2401. raw_spin_unlock(&cfs_b->lock);
  2402. cfs_rq->runtime_remaining += amount;
  2403. /*
  2404. * we may have advanced our local expiration to account for allowed
  2405. * spread between our sched_clock and the one on which runtime was
  2406. * issued.
  2407. */
  2408. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  2409. cfs_rq->runtime_expires = expires;
  2410. return cfs_rq->runtime_remaining > 0;
  2411. }
  2412. /*
  2413. * Note: This depends on the synchronization provided by sched_clock and the
  2414. * fact that rq->clock snapshots this value.
  2415. */
  2416. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2417. {
  2418. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2419. /* if the deadline is ahead of our clock, nothing to do */
  2420. if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
  2421. return;
  2422. if (cfs_rq->runtime_remaining < 0)
  2423. return;
  2424. /*
  2425. * If the local deadline has passed we have to consider the
  2426. * possibility that our sched_clock is 'fast' and the global deadline
  2427. * has not truly expired.
  2428. *
  2429. * Fortunately we can check determine whether this the case by checking
  2430. * whether the global deadline has advanced.
  2431. */
  2432. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  2433. /* extend local deadline, drift is bounded above by 2 ticks */
  2434. cfs_rq->runtime_expires += TICK_NSEC;
  2435. } else {
  2436. /* global deadline is ahead, expiration has passed */
  2437. cfs_rq->runtime_remaining = 0;
  2438. }
  2439. }
  2440. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  2441. unsigned long delta_exec)
  2442. {
  2443. /* dock delta_exec before expiring quota (as it could span periods) */
  2444. cfs_rq->runtime_remaining -= delta_exec;
  2445. expire_cfs_rq_runtime(cfs_rq);
  2446. if (likely(cfs_rq->runtime_remaining > 0))
  2447. return;
  2448. /*
  2449. * if we're unable to extend our runtime we resched so that the active
  2450. * hierarchy can be throttled
  2451. */
  2452. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  2453. resched_task(rq_of(cfs_rq)->curr);
  2454. }
  2455. static __always_inline
  2456. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
  2457. {
  2458. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  2459. return;
  2460. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  2461. }
  2462. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  2463. {
  2464. return cfs_bandwidth_used() && cfs_rq->throttled;
  2465. }
  2466. /* check whether cfs_rq, or any parent, is throttled */
  2467. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  2468. {
  2469. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  2470. }
  2471. /*
  2472. * Ensure that neither of the group entities corresponding to src_cpu or
  2473. * dest_cpu are members of a throttled hierarchy when performing group
  2474. * load-balance operations.
  2475. */
  2476. static inline int throttled_lb_pair(struct task_group *tg,
  2477. int src_cpu, int dest_cpu)
  2478. {
  2479. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  2480. src_cfs_rq = tg->cfs_rq[src_cpu];
  2481. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  2482. return throttled_hierarchy(src_cfs_rq) ||
  2483. throttled_hierarchy(dest_cfs_rq);
  2484. }
  2485. /* updated child weight may affect parent so we have to do this bottom up */
  2486. static int tg_unthrottle_up(struct task_group *tg, void *data)
  2487. {
  2488. struct rq *rq = data;
  2489. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  2490. cfs_rq->throttle_count--;
  2491. #ifdef CONFIG_SMP
  2492. if (!cfs_rq->throttle_count) {
  2493. /* adjust cfs_rq_clock_task() */
  2494. cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
  2495. cfs_rq->throttled_clock_task;
  2496. }
  2497. #endif
  2498. return 0;
  2499. }
  2500. static int tg_throttle_down(struct task_group *tg, void *data)
  2501. {
  2502. struct rq *rq = data;
  2503. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  2504. /* group is entering throttled state, stop time */
  2505. if (!cfs_rq->throttle_count)
  2506. cfs_rq->throttled_clock_task = rq_clock_task(rq);
  2507. cfs_rq->throttle_count++;
  2508. return 0;
  2509. }
  2510. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  2511. {
  2512. struct rq *rq = rq_of(cfs_rq);
  2513. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2514. struct sched_entity *se;
  2515. long task_delta, dequeue = 1;
  2516. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  2517. /* freeze hierarchy runnable averages while throttled */
  2518. rcu_read_lock();
  2519. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  2520. rcu_read_unlock();
  2521. task_delta = cfs_rq->h_nr_running;
  2522. for_each_sched_entity(se) {
  2523. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  2524. /* throttled entity or throttle-on-deactivate */
  2525. if (!se->on_rq)
  2526. break;
  2527. if (dequeue)
  2528. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  2529. qcfs_rq->h_nr_running -= task_delta;
  2530. if (qcfs_rq->load.weight)
  2531. dequeue = 0;
  2532. }
  2533. if (!se)
  2534. rq->nr_running -= task_delta;
  2535. cfs_rq->throttled = 1;
  2536. cfs_rq->throttled_clock = rq_clock(rq);
  2537. raw_spin_lock(&cfs_b->lock);
  2538. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  2539. raw_spin_unlock(&cfs_b->lock);
  2540. }
  2541. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  2542. {
  2543. struct rq *rq = rq_of(cfs_rq);
  2544. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2545. struct sched_entity *se;
  2546. int enqueue = 1;
  2547. long task_delta;
  2548. se = cfs_rq->tg->se[cpu_of(rq)];
  2549. cfs_rq->throttled = 0;
  2550. update_rq_clock(rq);
  2551. raw_spin_lock(&cfs_b->lock);
  2552. cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
  2553. list_del_rcu(&cfs_rq->throttled_list);
  2554. raw_spin_unlock(&cfs_b->lock);
  2555. /* update hierarchical throttle state */
  2556. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  2557. if (!cfs_rq->load.weight)
  2558. return;
  2559. task_delta = cfs_rq->h_nr_running;
  2560. for_each_sched_entity(se) {
  2561. if (se->on_rq)
  2562. enqueue = 0;
  2563. cfs_rq = cfs_rq_of(se);
  2564. if (enqueue)
  2565. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  2566. cfs_rq->h_nr_running += task_delta;
  2567. if (cfs_rq_throttled(cfs_rq))
  2568. break;
  2569. }
  2570. if (!se)
  2571. rq->nr_running += task_delta;
  2572. /* determine whether we need to wake up potentially idle cpu */
  2573. if (rq->curr == rq->idle && rq->cfs.nr_running)
  2574. resched_task(rq->curr);
  2575. }
  2576. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  2577. u64 remaining, u64 expires)
  2578. {
  2579. struct cfs_rq *cfs_rq;
  2580. u64 runtime = remaining;
  2581. rcu_read_lock();
  2582. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  2583. throttled_list) {
  2584. struct rq *rq = rq_of(cfs_rq);
  2585. raw_spin_lock(&rq->lock);
  2586. if (!cfs_rq_throttled(cfs_rq))
  2587. goto next;
  2588. runtime = -cfs_rq->runtime_remaining + 1;
  2589. if (runtime > remaining)
  2590. runtime = remaining;
  2591. remaining -= runtime;
  2592. cfs_rq->runtime_remaining += runtime;
  2593. cfs_rq->runtime_expires = expires;
  2594. /* we check whether we're throttled above */
  2595. if (cfs_rq->runtime_remaining > 0)
  2596. unthrottle_cfs_rq(cfs_rq);
  2597. next:
  2598. raw_spin_unlock(&rq->lock);
  2599. if (!remaining)
  2600. break;
  2601. }
  2602. rcu_read_unlock();
  2603. return remaining;
  2604. }
  2605. /*
  2606. * Responsible for refilling a task_group's bandwidth and unthrottling its
  2607. * cfs_rqs as appropriate. If there has been no activity within the last
  2608. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  2609. * used to track this state.
  2610. */
  2611. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  2612. {
  2613. u64 runtime, runtime_expires;
  2614. int idle = 1, throttled;
  2615. raw_spin_lock(&cfs_b->lock);
  2616. /* no need to continue the timer with no bandwidth constraint */
  2617. if (cfs_b->quota == RUNTIME_INF)
  2618. goto out_unlock;
  2619. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  2620. /* idle depends on !throttled (for the case of a large deficit) */
  2621. idle = cfs_b->idle && !throttled;
  2622. cfs_b->nr_periods += overrun;
  2623. /* if we're going inactive then everything else can be deferred */
  2624. if (idle)
  2625. goto out_unlock;
  2626. __refill_cfs_bandwidth_runtime(cfs_b);
  2627. if (!throttled) {
  2628. /* mark as potentially idle for the upcoming period */
  2629. cfs_b->idle = 1;
  2630. goto out_unlock;
  2631. }
  2632. /* account preceding periods in which throttling occurred */
  2633. cfs_b->nr_throttled += overrun;
  2634. /*
  2635. * There are throttled entities so we must first use the new bandwidth
  2636. * to unthrottle them before making it generally available. This
  2637. * ensures that all existing debts will be paid before a new cfs_rq is
  2638. * allowed to run.
  2639. */
  2640. runtime = cfs_b->runtime;
  2641. runtime_expires = cfs_b->runtime_expires;
  2642. cfs_b->runtime = 0;
  2643. /*
  2644. * This check is repeated as we are holding onto the new bandwidth
  2645. * while we unthrottle. This can potentially race with an unthrottled
  2646. * group trying to acquire new bandwidth from the global pool.
  2647. */
  2648. while (throttled && runtime > 0) {
  2649. raw_spin_unlock(&cfs_b->lock);
  2650. /* we can't nest cfs_b->lock while distributing bandwidth */
  2651. runtime = distribute_cfs_runtime(cfs_b, runtime,
  2652. runtime_expires);
  2653. raw_spin_lock(&cfs_b->lock);
  2654. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  2655. }
  2656. /* return (any) remaining runtime */
  2657. cfs_b->runtime = runtime;
  2658. /*
  2659. * While we are ensured activity in the period following an
  2660. * unthrottle, this also covers the case in which the new bandwidth is
  2661. * insufficient to cover the existing bandwidth deficit. (Forcing the
  2662. * timer to remain active while there are any throttled entities.)
  2663. */
  2664. cfs_b->idle = 0;
  2665. out_unlock:
  2666. if (idle)
  2667. cfs_b->timer_active = 0;
  2668. raw_spin_unlock(&cfs_b->lock);
  2669. return idle;
  2670. }
  2671. /* a cfs_rq won't donate quota below this amount */
  2672. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  2673. /* minimum remaining period time to redistribute slack quota */
  2674. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  2675. /* how long we wait to gather additional slack before distributing */
  2676. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  2677. /* are we near the end of the current quota period? */
  2678. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  2679. {
  2680. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  2681. u64 remaining;
  2682. /* if the call-back is running a quota refresh is already occurring */
  2683. if (hrtimer_callback_running(refresh_timer))
  2684. return 1;
  2685. /* is a quota refresh about to occur? */
  2686. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  2687. if (remaining < min_expire)
  2688. return 1;
  2689. return 0;
  2690. }
  2691. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  2692. {
  2693. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  2694. /* if there's a quota refresh soon don't bother with slack */
  2695. if (runtime_refresh_within(cfs_b, min_left))
  2696. return;
  2697. start_bandwidth_timer(&cfs_b->slack_timer,
  2698. ns_to_ktime(cfs_bandwidth_slack_period));
  2699. }
  2700. /* we know any runtime found here is valid as update_curr() precedes return */
  2701. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2702. {
  2703. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2704. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  2705. if (slack_runtime <= 0)
  2706. return;
  2707. raw_spin_lock(&cfs_b->lock);
  2708. if (cfs_b->quota != RUNTIME_INF &&
  2709. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  2710. cfs_b->runtime += slack_runtime;
  2711. /* we are under rq->lock, defer unthrottling using a timer */
  2712. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  2713. !list_empty(&cfs_b->throttled_cfs_rq))
  2714. start_cfs_slack_bandwidth(cfs_b);
  2715. }
  2716. raw_spin_unlock(&cfs_b->lock);
  2717. /* even if it's not valid for return we don't want to try again */
  2718. cfs_rq->runtime_remaining -= slack_runtime;
  2719. }
  2720. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2721. {
  2722. if (!cfs_bandwidth_used())
  2723. return;
  2724. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  2725. return;
  2726. __return_cfs_rq_runtime(cfs_rq);
  2727. }
  2728. /*
  2729. * This is done with a timer (instead of inline with bandwidth return) since
  2730. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  2731. */
  2732. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  2733. {
  2734. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  2735. u64 expires;
  2736. /* confirm we're still not at a refresh boundary */
  2737. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  2738. return;
  2739. raw_spin_lock(&cfs_b->lock);
  2740. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  2741. runtime = cfs_b->runtime;
  2742. cfs_b->runtime = 0;
  2743. }
  2744. expires = cfs_b->runtime_expires;
  2745. raw_spin_unlock(&cfs_b->lock);
  2746. if (!runtime)
  2747. return;
  2748. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  2749. raw_spin_lock(&cfs_b->lock);
  2750. if (expires == cfs_b->runtime_expires)
  2751. cfs_b->runtime = runtime;
  2752. raw_spin_unlock(&cfs_b->lock);
  2753. }
  2754. /*
  2755. * When a group wakes up we want to make sure that its quota is not already
  2756. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  2757. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  2758. */
  2759. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  2760. {
  2761. if (!cfs_bandwidth_used())
  2762. return;
  2763. /* an active group must be handled by the update_curr()->put() path */
  2764. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  2765. return;
  2766. /* ensure the group is not already throttled */
  2767. if (cfs_rq_throttled(cfs_rq))
  2768. return;
  2769. /* update runtime allocation */
  2770. account_cfs_rq_runtime(cfs_rq, 0);
  2771. if (cfs_rq->runtime_remaining <= 0)
  2772. throttle_cfs_rq(cfs_rq);
  2773. }
  2774. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  2775. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2776. {
  2777. if (!cfs_bandwidth_used())
  2778. return;
  2779. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  2780. return;
  2781. /*
  2782. * it's possible for a throttled entity to be forced into a running
  2783. * state (e.g. set_curr_task), in this case we're finished.
  2784. */
  2785. if (cfs_rq_throttled(cfs_rq))
  2786. return;
  2787. throttle_cfs_rq(cfs_rq);
  2788. }
  2789. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  2790. {
  2791. struct cfs_bandwidth *cfs_b =
  2792. container_of(timer, struct cfs_bandwidth, slack_timer);
  2793. do_sched_cfs_slack_timer(cfs_b);
  2794. return HRTIMER_NORESTART;
  2795. }
  2796. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  2797. {
  2798. struct cfs_bandwidth *cfs_b =
  2799. container_of(timer, struct cfs_bandwidth, period_timer);
  2800. ktime_t now;
  2801. int overrun;
  2802. int idle = 0;
  2803. for (;;) {
  2804. now = hrtimer_cb_get_time(timer);
  2805. overrun = hrtimer_forward(timer, now, cfs_b->period);
  2806. if (!overrun)
  2807. break;
  2808. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  2809. }
  2810. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  2811. }
  2812. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2813. {
  2814. raw_spin_lock_init(&cfs_b->lock);
  2815. cfs_b->runtime = 0;
  2816. cfs_b->quota = RUNTIME_INF;
  2817. cfs_b->period = ns_to_ktime(default_cfs_period());
  2818. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  2819. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  2820. cfs_b->period_timer.function = sched_cfs_period_timer;
  2821. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  2822. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  2823. }
  2824. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2825. {
  2826. cfs_rq->runtime_enabled = 0;
  2827. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  2828. }
  2829. /* requires cfs_b->lock, may release to reprogram timer */
  2830. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2831. {
  2832. /*
  2833. * The timer may be active because we're trying to set a new bandwidth
  2834. * period or because we're racing with the tear-down path
  2835. * (timer_active==0 becomes visible before the hrtimer call-back
  2836. * terminates). In either case we ensure that it's re-programmed
  2837. */
  2838. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  2839. raw_spin_unlock(&cfs_b->lock);
  2840. /* ensure cfs_b->lock is available while we wait */
  2841. hrtimer_cancel(&cfs_b->period_timer);
  2842. raw_spin_lock(&cfs_b->lock);
  2843. /* if someone else restarted the timer then we're done */
  2844. if (cfs_b->timer_active)
  2845. return;
  2846. }
  2847. cfs_b->timer_active = 1;
  2848. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  2849. }
  2850. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2851. {
  2852. hrtimer_cancel(&cfs_b->period_timer);
  2853. hrtimer_cancel(&cfs_b->slack_timer);
  2854. }
  2855. static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
  2856. {
  2857. struct cfs_rq *cfs_rq;
  2858. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2859. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2860. if (!cfs_rq->runtime_enabled)
  2861. continue;
  2862. /*
  2863. * clock_task is not advancing so we just need to make sure
  2864. * there's some valid quota amount
  2865. */
  2866. cfs_rq->runtime_remaining = cfs_b->quota;
  2867. if (cfs_rq_throttled(cfs_rq))
  2868. unthrottle_cfs_rq(cfs_rq);
  2869. }
  2870. }
  2871. #else /* CONFIG_CFS_BANDWIDTH */
  2872. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2873. {
  2874. return rq_clock_task(rq_of(cfs_rq));
  2875. }
  2876. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  2877. unsigned long delta_exec) {}
  2878. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2879. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  2880. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2881. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  2882. {
  2883. return 0;
  2884. }
  2885. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  2886. {
  2887. return 0;
  2888. }
  2889. static inline int throttled_lb_pair(struct task_group *tg,
  2890. int src_cpu, int dest_cpu)
  2891. {
  2892. return 0;
  2893. }
  2894. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  2895. #ifdef CONFIG_FAIR_GROUP_SCHED
  2896. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2897. #endif
  2898. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2899. {
  2900. return NULL;
  2901. }
  2902. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  2903. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  2904. #endif /* CONFIG_CFS_BANDWIDTH */
  2905. /**************************************************
  2906. * CFS operations on tasks:
  2907. */
  2908. #ifdef CONFIG_SCHED_HRTICK
  2909. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  2910. {
  2911. struct sched_entity *se = &p->se;
  2912. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2913. WARN_ON(task_rq(p) != rq);
  2914. if (cfs_rq->nr_running > 1) {
  2915. u64 slice = sched_slice(cfs_rq, se);
  2916. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  2917. s64 delta = slice - ran;
  2918. if (delta < 0) {
  2919. if (rq->curr == p)
  2920. resched_task(p);
  2921. return;
  2922. }
  2923. /*
  2924. * Don't schedule slices shorter than 10000ns, that just
  2925. * doesn't make sense. Rely on vruntime for fairness.
  2926. */
  2927. if (rq->curr != p)
  2928. delta = max_t(s64, 10000LL, delta);
  2929. hrtick_start(rq, delta);
  2930. }
  2931. }
  2932. /*
  2933. * called from enqueue/dequeue and updates the hrtick when the
  2934. * current task is from our class and nr_running is low enough
  2935. * to matter.
  2936. */
  2937. static void hrtick_update(struct rq *rq)
  2938. {
  2939. struct task_struct *curr = rq->curr;
  2940. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  2941. return;
  2942. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  2943. hrtick_start_fair(rq, curr);
  2944. }
  2945. #else /* !CONFIG_SCHED_HRTICK */
  2946. static inline void
  2947. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  2948. {
  2949. }
  2950. static inline void hrtick_update(struct rq *rq)
  2951. {
  2952. }
  2953. #endif
  2954. /*
  2955. * The enqueue_task method is called before nr_running is
  2956. * increased. Here we update the fair scheduling stats and
  2957. * then put the task into the rbtree:
  2958. */
  2959. static void
  2960. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  2961. {
  2962. struct cfs_rq *cfs_rq;
  2963. struct sched_entity *se = &p->se;
  2964. for_each_sched_entity(se) {
  2965. if (se->on_rq)
  2966. break;
  2967. cfs_rq = cfs_rq_of(se);
  2968. enqueue_entity(cfs_rq, se, flags);
  2969. /*
  2970. * end evaluation on encountering a throttled cfs_rq
  2971. *
  2972. * note: in the case of encountering a throttled cfs_rq we will
  2973. * post the final h_nr_running increment below.
  2974. */
  2975. if (cfs_rq_throttled(cfs_rq))
  2976. break;
  2977. cfs_rq->h_nr_running++;
  2978. flags = ENQUEUE_WAKEUP;
  2979. }
  2980. for_each_sched_entity(se) {
  2981. cfs_rq = cfs_rq_of(se);
  2982. cfs_rq->h_nr_running++;
  2983. if (cfs_rq_throttled(cfs_rq))
  2984. break;
  2985. update_cfs_shares(cfs_rq);
  2986. update_entity_load_avg(se, 1);
  2987. }
  2988. if (!se) {
  2989. update_rq_runnable_avg(rq, rq->nr_running);
  2990. inc_nr_running(rq);
  2991. }
  2992. hrtick_update(rq);
  2993. }
  2994. static void set_next_buddy(struct sched_entity *se);
  2995. /*
  2996. * The dequeue_task method is called before nr_running is
  2997. * decreased. We remove the task from the rbtree and
  2998. * update the fair scheduling stats:
  2999. */
  3000. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3001. {
  3002. struct cfs_rq *cfs_rq;
  3003. struct sched_entity *se = &p->se;
  3004. int task_sleep = flags & DEQUEUE_SLEEP;
  3005. for_each_sched_entity(se) {
  3006. cfs_rq = cfs_rq_of(se);
  3007. dequeue_entity(cfs_rq, se, flags);
  3008. /*
  3009. * end evaluation on encountering a throttled cfs_rq
  3010. *
  3011. * note: in the case of encountering a throttled cfs_rq we will
  3012. * post the final h_nr_running decrement below.
  3013. */
  3014. if (cfs_rq_throttled(cfs_rq))
  3015. break;
  3016. cfs_rq->h_nr_running--;
  3017. /* Don't dequeue parent if it has other entities besides us */
  3018. if (cfs_rq->load.weight) {
  3019. /*
  3020. * Bias pick_next to pick a task from this cfs_rq, as
  3021. * p is sleeping when it is within its sched_slice.
  3022. */
  3023. if (task_sleep && parent_entity(se))
  3024. set_next_buddy(parent_entity(se));
  3025. /* avoid re-evaluating load for this entity */
  3026. se = parent_entity(se);
  3027. break;
  3028. }
  3029. flags |= DEQUEUE_SLEEP;
  3030. }
  3031. for_each_sched_entity(se) {
  3032. cfs_rq = cfs_rq_of(se);
  3033. cfs_rq->h_nr_running--;
  3034. if (cfs_rq_throttled(cfs_rq))
  3035. break;
  3036. update_cfs_shares(cfs_rq);
  3037. update_entity_load_avg(se, 1);
  3038. }
  3039. if (!se) {
  3040. dec_nr_running(rq);
  3041. update_rq_runnable_avg(rq, 1);
  3042. }
  3043. hrtick_update(rq);
  3044. }
  3045. #ifdef CONFIG_SMP
  3046. /* Used instead of source_load when we know the type == 0 */
  3047. static unsigned long weighted_cpuload(const int cpu)
  3048. {
  3049. return cpu_rq(cpu)->cfs.runnable_load_avg;
  3050. }
  3051. /*
  3052. * Return a low guess at the load of a migration-source cpu weighted
  3053. * according to the scheduling class and "nice" value.
  3054. *
  3055. * We want to under-estimate the load of migration sources, to
  3056. * balance conservatively.
  3057. */
  3058. static unsigned long source_load(int cpu, int type)
  3059. {
  3060. struct rq *rq = cpu_rq(cpu);
  3061. unsigned long total = weighted_cpuload(cpu);
  3062. if (type == 0 || !sched_feat(LB_BIAS))
  3063. return total;
  3064. return min(rq->cpu_load[type-1], total);
  3065. }
  3066. /*
  3067. * Return a high guess at the load of a migration-target cpu weighted
  3068. * according to the scheduling class and "nice" value.
  3069. */
  3070. static unsigned long target_load(int cpu, int type)
  3071. {
  3072. struct rq *rq = cpu_rq(cpu);
  3073. unsigned long total = weighted_cpuload(cpu);
  3074. if (type == 0 || !sched_feat(LB_BIAS))
  3075. return total;
  3076. return max(rq->cpu_load[type-1], total);
  3077. }
  3078. static unsigned long power_of(int cpu)
  3079. {
  3080. return cpu_rq(cpu)->cpu_power;
  3081. }
  3082. static unsigned long cpu_avg_load_per_task(int cpu)
  3083. {
  3084. struct rq *rq = cpu_rq(cpu);
  3085. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  3086. unsigned long load_avg = rq->cfs.runnable_load_avg;
  3087. if (nr_running)
  3088. return load_avg / nr_running;
  3089. return 0;
  3090. }
  3091. static void record_wakee(struct task_struct *p)
  3092. {
  3093. /*
  3094. * Rough decay (wiping) for cost saving, don't worry
  3095. * about the boundary, really active task won't care
  3096. * about the loss.
  3097. */
  3098. if (jiffies > current->wakee_flip_decay_ts + HZ) {
  3099. current->wakee_flips = 0;
  3100. current->wakee_flip_decay_ts = jiffies;
  3101. }
  3102. if (current->last_wakee != p) {
  3103. current->last_wakee = p;
  3104. current->wakee_flips++;
  3105. }
  3106. }
  3107. static void task_waking_fair(struct task_struct *p)
  3108. {
  3109. struct sched_entity *se = &p->se;
  3110. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3111. u64 min_vruntime;
  3112. #ifndef CONFIG_64BIT
  3113. u64 min_vruntime_copy;
  3114. do {
  3115. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  3116. smp_rmb();
  3117. min_vruntime = cfs_rq->min_vruntime;
  3118. } while (min_vruntime != min_vruntime_copy);
  3119. #else
  3120. min_vruntime = cfs_rq->min_vruntime;
  3121. #endif
  3122. se->vruntime -= min_vruntime;
  3123. record_wakee(p);
  3124. }
  3125. #ifdef CONFIG_FAIR_GROUP_SCHED
  3126. /*
  3127. * effective_load() calculates the load change as seen from the root_task_group
  3128. *
  3129. * Adding load to a group doesn't make a group heavier, but can cause movement
  3130. * of group shares between cpus. Assuming the shares were perfectly aligned one
  3131. * can calculate the shift in shares.
  3132. *
  3133. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  3134. * on this @cpu and results in a total addition (subtraction) of @wg to the
  3135. * total group weight.
  3136. *
  3137. * Given a runqueue weight distribution (rw_i) we can compute a shares
  3138. * distribution (s_i) using:
  3139. *
  3140. * s_i = rw_i / \Sum rw_j (1)
  3141. *
  3142. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  3143. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  3144. * shares distribution (s_i):
  3145. *
  3146. * rw_i = { 2, 4, 1, 0 }
  3147. * s_i = { 2/7, 4/7, 1/7, 0 }
  3148. *
  3149. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  3150. * task used to run on and the CPU the waker is running on), we need to
  3151. * compute the effect of waking a task on either CPU and, in case of a sync
  3152. * wakeup, compute the effect of the current task going to sleep.
  3153. *
  3154. * So for a change of @wl to the local @cpu with an overall group weight change
  3155. * of @wl we can compute the new shares distribution (s'_i) using:
  3156. *
  3157. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  3158. *
  3159. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  3160. * differences in waking a task to CPU 0. The additional task changes the
  3161. * weight and shares distributions like:
  3162. *
  3163. * rw'_i = { 3, 4, 1, 0 }
  3164. * s'_i = { 3/8, 4/8, 1/8, 0 }
  3165. *
  3166. * We can then compute the difference in effective weight by using:
  3167. *
  3168. * dw_i = S * (s'_i - s_i) (3)
  3169. *
  3170. * Where 'S' is the group weight as seen by its parent.
  3171. *
  3172. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  3173. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  3174. * 4/7) times the weight of the group.
  3175. */
  3176. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3177. {
  3178. struct sched_entity *se = tg->se[cpu];
  3179. if (!tg->parent || !wl) /* the trivial, non-cgroup case */
  3180. return wl;
  3181. for_each_sched_entity(se) {
  3182. long w, W;
  3183. tg = se->my_q->tg;
  3184. /*
  3185. * W = @wg + \Sum rw_j
  3186. */
  3187. W = wg + calc_tg_weight(tg, se->my_q);
  3188. /*
  3189. * w = rw_i + @wl
  3190. */
  3191. w = se->my_q->load.weight + wl;
  3192. /*
  3193. * wl = S * s'_i; see (2)
  3194. */
  3195. if (W > 0 && w < W)
  3196. wl = (w * tg->shares) / W;
  3197. else
  3198. wl = tg->shares;
  3199. /*
  3200. * Per the above, wl is the new se->load.weight value; since
  3201. * those are clipped to [MIN_SHARES, ...) do so now. See
  3202. * calc_cfs_shares().
  3203. */
  3204. if (wl < MIN_SHARES)
  3205. wl = MIN_SHARES;
  3206. /*
  3207. * wl = dw_i = S * (s'_i - s_i); see (3)
  3208. */
  3209. wl -= se->load.weight;
  3210. /*
  3211. * Recursively apply this logic to all parent groups to compute
  3212. * the final effective load change on the root group. Since
  3213. * only the @tg group gets extra weight, all parent groups can
  3214. * only redistribute existing shares. @wl is the shift in shares
  3215. * resulting from this level per the above.
  3216. */
  3217. wg = 0;
  3218. }
  3219. return wl;
  3220. }
  3221. #else
  3222. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3223. {
  3224. return wl;
  3225. }
  3226. #endif
  3227. static int wake_wide(struct task_struct *p)
  3228. {
  3229. int factor = this_cpu_read(sd_llc_size);
  3230. /*
  3231. * Yeah, it's the switching-frequency, could means many wakee or
  3232. * rapidly switch, use factor here will just help to automatically
  3233. * adjust the loose-degree, so bigger node will lead to more pull.
  3234. */
  3235. if (p->wakee_flips > factor) {
  3236. /*
  3237. * wakee is somewhat hot, it needs certain amount of cpu
  3238. * resource, so if waker is far more hot, prefer to leave
  3239. * it alone.
  3240. */
  3241. if (current->wakee_flips > (factor * p->wakee_flips))
  3242. return 1;
  3243. }
  3244. return 0;
  3245. }
  3246. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  3247. {
  3248. s64 this_load, load;
  3249. int idx, this_cpu, prev_cpu;
  3250. unsigned long tl_per_task;
  3251. struct task_group *tg;
  3252. unsigned long weight;
  3253. int balanced;
  3254. /*
  3255. * If we wake multiple tasks be careful to not bounce
  3256. * ourselves around too much.
  3257. */
  3258. if (wake_wide(p))
  3259. return 0;
  3260. idx = sd->wake_idx;
  3261. this_cpu = smp_processor_id();
  3262. prev_cpu = task_cpu(p);
  3263. load = source_load(prev_cpu, idx);
  3264. this_load = target_load(this_cpu, idx);
  3265. /*
  3266. * If sync wakeup then subtract the (maximum possible)
  3267. * effect of the currently running task from the load
  3268. * of the current CPU:
  3269. */
  3270. if (sync) {
  3271. tg = task_group(current);
  3272. weight = current->se.load.weight;
  3273. this_load += effective_load(tg, this_cpu, -weight, -weight);
  3274. load += effective_load(tg, prev_cpu, 0, -weight);
  3275. }
  3276. tg = task_group(p);
  3277. weight = p->se.load.weight;
  3278. /*
  3279. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  3280. * due to the sync cause above having dropped this_load to 0, we'll
  3281. * always have an imbalance, but there's really nothing you can do
  3282. * about that, so that's good too.
  3283. *
  3284. * Otherwise check if either cpus are near enough in load to allow this
  3285. * task to be woken on this_cpu.
  3286. */
  3287. if (this_load > 0) {
  3288. s64 this_eff_load, prev_eff_load;
  3289. this_eff_load = 100;
  3290. this_eff_load *= power_of(prev_cpu);
  3291. this_eff_load *= this_load +
  3292. effective_load(tg, this_cpu, weight, weight);
  3293. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  3294. prev_eff_load *= power_of(this_cpu);
  3295. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  3296. balanced = this_eff_load <= prev_eff_load;
  3297. } else
  3298. balanced = true;
  3299. /*
  3300. * If the currently running task will sleep within
  3301. * a reasonable amount of time then attract this newly
  3302. * woken task:
  3303. */
  3304. if (sync && balanced)
  3305. return 1;
  3306. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  3307. tl_per_task = cpu_avg_load_per_task(this_cpu);
  3308. if (balanced ||
  3309. (this_load <= load &&
  3310. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  3311. /*
  3312. * This domain has SD_WAKE_AFFINE and
  3313. * p is cache cold in this domain, and
  3314. * there is no bad imbalance.
  3315. */
  3316. schedstat_inc(sd, ttwu_move_affine);
  3317. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  3318. return 1;
  3319. }
  3320. return 0;
  3321. }
  3322. /*
  3323. * find_idlest_group finds and returns the least busy CPU group within the
  3324. * domain.
  3325. */
  3326. static struct sched_group *
  3327. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  3328. int this_cpu, int load_idx)
  3329. {
  3330. struct sched_group *idlest = NULL, *group = sd->groups;
  3331. unsigned long min_load = ULONG_MAX, this_load = 0;
  3332. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  3333. do {
  3334. unsigned long load, avg_load;
  3335. int local_group;
  3336. int i;
  3337. /* Skip over this group if it has no CPUs allowed */
  3338. if (!cpumask_intersects(sched_group_cpus(group),
  3339. tsk_cpus_allowed(p)))
  3340. continue;
  3341. local_group = cpumask_test_cpu(this_cpu,
  3342. sched_group_cpus(group));
  3343. /* Tally up the load of all CPUs in the group */
  3344. avg_load = 0;
  3345. for_each_cpu(i, sched_group_cpus(group)) {
  3346. /* Bias balancing toward cpus of our domain */
  3347. if (local_group)
  3348. load = source_load(i, load_idx);
  3349. else
  3350. load = target_load(i, load_idx);
  3351. avg_load += load;
  3352. }
  3353. /* Adjust by relative CPU power of the group */
  3354. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  3355. if (local_group) {
  3356. this_load = avg_load;
  3357. } else if (avg_load < min_load) {
  3358. min_load = avg_load;
  3359. idlest = group;
  3360. }
  3361. } while (group = group->next, group != sd->groups);
  3362. if (!idlest || 100*this_load < imbalance*min_load)
  3363. return NULL;
  3364. return idlest;
  3365. }
  3366. /*
  3367. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  3368. */
  3369. static int
  3370. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  3371. {
  3372. unsigned long load, min_load = ULONG_MAX;
  3373. int idlest = -1;
  3374. int i;
  3375. /* Traverse only the allowed CPUs */
  3376. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  3377. load = weighted_cpuload(i);
  3378. if (load < min_load || (load == min_load && i == this_cpu)) {
  3379. min_load = load;
  3380. idlest = i;
  3381. }
  3382. }
  3383. return idlest;
  3384. }
  3385. /*
  3386. * Try and locate an idle CPU in the sched_domain.
  3387. */
  3388. static int select_idle_sibling(struct task_struct *p, int target)
  3389. {
  3390. struct sched_domain *sd;
  3391. struct sched_group *sg;
  3392. int i = task_cpu(p);
  3393. if (idle_cpu(target))
  3394. return target;
  3395. /*
  3396. * If the prevous cpu is cache affine and idle, don't be stupid.
  3397. */
  3398. if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
  3399. return i;
  3400. /*
  3401. * Otherwise, iterate the domains and find an elegible idle cpu.
  3402. */
  3403. sd = rcu_dereference(per_cpu(sd_llc, target));
  3404. for_each_lower_domain(sd) {
  3405. sg = sd->groups;
  3406. do {
  3407. if (!cpumask_intersects(sched_group_cpus(sg),
  3408. tsk_cpus_allowed(p)))
  3409. goto next;
  3410. for_each_cpu(i, sched_group_cpus(sg)) {
  3411. if (i == target || !idle_cpu(i))
  3412. goto next;
  3413. }
  3414. target = cpumask_first_and(sched_group_cpus(sg),
  3415. tsk_cpus_allowed(p));
  3416. goto done;
  3417. next:
  3418. sg = sg->next;
  3419. } while (sg != sd->groups);
  3420. }
  3421. done:
  3422. return target;
  3423. }
  3424. /*
  3425. * sched_balance_self: balance the current task (running on cpu) in domains
  3426. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  3427. * SD_BALANCE_EXEC.
  3428. *
  3429. * Balance, ie. select the least loaded group.
  3430. *
  3431. * Returns the target CPU number, or the same CPU if no balancing is needed.
  3432. *
  3433. * preempt must be disabled.
  3434. */
  3435. static int
  3436. select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
  3437. {
  3438. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  3439. int cpu = smp_processor_id();
  3440. int new_cpu = cpu;
  3441. int want_affine = 0;
  3442. int sync = wake_flags & WF_SYNC;
  3443. if (p->nr_cpus_allowed == 1)
  3444. return prev_cpu;
  3445. if (sd_flag & SD_BALANCE_WAKE) {
  3446. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  3447. want_affine = 1;
  3448. new_cpu = prev_cpu;
  3449. }
  3450. rcu_read_lock();
  3451. for_each_domain(cpu, tmp) {
  3452. if (!(tmp->flags & SD_LOAD_BALANCE))
  3453. continue;
  3454. /*
  3455. * If both cpu and prev_cpu are part of this domain,
  3456. * cpu is a valid SD_WAKE_AFFINE target.
  3457. */
  3458. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  3459. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  3460. affine_sd = tmp;
  3461. break;
  3462. }
  3463. if (tmp->flags & sd_flag)
  3464. sd = tmp;
  3465. }
  3466. if (affine_sd) {
  3467. if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
  3468. prev_cpu = cpu;
  3469. new_cpu = select_idle_sibling(p, prev_cpu);
  3470. goto unlock;
  3471. }
  3472. while (sd) {
  3473. int load_idx = sd->forkexec_idx;
  3474. struct sched_group *group;
  3475. int weight;
  3476. if (!(sd->flags & sd_flag)) {
  3477. sd = sd->child;
  3478. continue;
  3479. }
  3480. if (sd_flag & SD_BALANCE_WAKE)
  3481. load_idx = sd->wake_idx;
  3482. group = find_idlest_group(sd, p, cpu, load_idx);
  3483. if (!group) {
  3484. sd = sd->child;
  3485. continue;
  3486. }
  3487. new_cpu = find_idlest_cpu(group, p, cpu);
  3488. if (new_cpu == -1 || new_cpu == cpu) {
  3489. /* Now try balancing at a lower domain level of cpu */
  3490. sd = sd->child;
  3491. continue;
  3492. }
  3493. /* Now try balancing at a lower domain level of new_cpu */
  3494. cpu = new_cpu;
  3495. weight = sd->span_weight;
  3496. sd = NULL;
  3497. for_each_domain(cpu, tmp) {
  3498. if (weight <= tmp->span_weight)
  3499. break;
  3500. if (tmp->flags & sd_flag)
  3501. sd = tmp;
  3502. }
  3503. /* while loop will break here if sd == NULL */
  3504. }
  3505. unlock:
  3506. rcu_read_unlock();
  3507. return new_cpu;
  3508. }
  3509. /*
  3510. * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
  3511. * cfs_rq_of(p) references at time of call are still valid and identify the
  3512. * previous cpu. However, the caller only guarantees p->pi_lock is held; no
  3513. * other assumptions, including the state of rq->lock, should be made.
  3514. */
  3515. static void
  3516. migrate_task_rq_fair(struct task_struct *p, int next_cpu)
  3517. {
  3518. struct sched_entity *se = &p->se;
  3519. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3520. /*
  3521. * Load tracking: accumulate removed load so that it can be processed
  3522. * when we next update owning cfs_rq under rq->lock. Tasks contribute
  3523. * to blocked load iff they have a positive decay-count. It can never
  3524. * be negative here since on-rq tasks have decay-count == 0.
  3525. */
  3526. if (se->avg.decay_count) {
  3527. se->avg.decay_count = -__synchronize_entity_decay(se);
  3528. atomic_long_add(se->avg.load_avg_contrib,
  3529. &cfs_rq->removed_load);
  3530. }
  3531. }
  3532. #endif /* CONFIG_SMP */
  3533. static unsigned long
  3534. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  3535. {
  3536. unsigned long gran = sysctl_sched_wakeup_granularity;
  3537. /*
  3538. * Since its curr running now, convert the gran from real-time
  3539. * to virtual-time in his units.
  3540. *
  3541. * By using 'se' instead of 'curr' we penalize light tasks, so
  3542. * they get preempted easier. That is, if 'se' < 'curr' then
  3543. * the resulting gran will be larger, therefore penalizing the
  3544. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  3545. * be smaller, again penalizing the lighter task.
  3546. *
  3547. * This is especially important for buddies when the leftmost
  3548. * task is higher priority than the buddy.
  3549. */
  3550. return calc_delta_fair(gran, se);
  3551. }
  3552. /*
  3553. * Should 'se' preempt 'curr'.
  3554. *
  3555. * |s1
  3556. * |s2
  3557. * |s3
  3558. * g
  3559. * |<--->|c
  3560. *
  3561. * w(c, s1) = -1
  3562. * w(c, s2) = 0
  3563. * w(c, s3) = 1
  3564. *
  3565. */
  3566. static int
  3567. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  3568. {
  3569. s64 gran, vdiff = curr->vruntime - se->vruntime;
  3570. if (vdiff <= 0)
  3571. return -1;
  3572. gran = wakeup_gran(curr, se);
  3573. if (vdiff > gran)
  3574. return 1;
  3575. return 0;
  3576. }
  3577. static void set_last_buddy(struct sched_entity *se)
  3578. {
  3579. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  3580. return;
  3581. for_each_sched_entity(se)
  3582. cfs_rq_of(se)->last = se;
  3583. }
  3584. static void set_next_buddy(struct sched_entity *se)
  3585. {
  3586. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  3587. return;
  3588. for_each_sched_entity(se)
  3589. cfs_rq_of(se)->next = se;
  3590. }
  3591. static void set_skip_buddy(struct sched_entity *se)
  3592. {
  3593. for_each_sched_entity(se)
  3594. cfs_rq_of(se)->skip = se;
  3595. }
  3596. /*
  3597. * Preempt the current task with a newly woken task if needed:
  3598. */
  3599. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  3600. {
  3601. struct task_struct *curr = rq->curr;
  3602. struct sched_entity *se = &curr->se, *pse = &p->se;
  3603. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  3604. int scale = cfs_rq->nr_running >= sched_nr_latency;
  3605. int next_buddy_marked = 0;
  3606. if (unlikely(se == pse))
  3607. return;
  3608. /*
  3609. * This is possible from callers such as move_task(), in which we
  3610. * unconditionally check_prempt_curr() after an enqueue (which may have
  3611. * lead to a throttle). This both saves work and prevents false
  3612. * next-buddy nomination below.
  3613. */
  3614. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  3615. return;
  3616. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  3617. set_next_buddy(pse);
  3618. next_buddy_marked = 1;
  3619. }
  3620. /*
  3621. * We can come here with TIF_NEED_RESCHED already set from new task
  3622. * wake up path.
  3623. *
  3624. * Note: this also catches the edge-case of curr being in a throttled
  3625. * group (e.g. via set_curr_task), since update_curr() (in the
  3626. * enqueue of curr) will have resulted in resched being set. This
  3627. * prevents us from potentially nominating it as a false LAST_BUDDY
  3628. * below.
  3629. */
  3630. if (test_tsk_need_resched(curr))
  3631. return;
  3632. /* Idle tasks are by definition preempted by non-idle tasks. */
  3633. if (unlikely(curr->policy == SCHED_IDLE) &&
  3634. likely(p->policy != SCHED_IDLE))
  3635. goto preempt;
  3636. /*
  3637. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  3638. * is driven by the tick):
  3639. */
  3640. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  3641. return;
  3642. find_matching_se(&se, &pse);
  3643. update_curr(cfs_rq_of(se));
  3644. BUG_ON(!pse);
  3645. if (wakeup_preempt_entity(se, pse) == 1) {
  3646. /*
  3647. * Bias pick_next to pick the sched entity that is
  3648. * triggering this preemption.
  3649. */
  3650. if (!next_buddy_marked)
  3651. set_next_buddy(pse);
  3652. goto preempt;
  3653. }
  3654. return;
  3655. preempt:
  3656. resched_task(curr);
  3657. /*
  3658. * Only set the backward buddy when the current task is still
  3659. * on the rq. This can happen when a wakeup gets interleaved
  3660. * with schedule on the ->pre_schedule() or idle_balance()
  3661. * point, either of which can * drop the rq lock.
  3662. *
  3663. * Also, during early boot the idle thread is in the fair class,
  3664. * for obvious reasons its a bad idea to schedule back to it.
  3665. */
  3666. if (unlikely(!se->on_rq || curr == rq->idle))
  3667. return;
  3668. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  3669. set_last_buddy(se);
  3670. }
  3671. static struct task_struct *pick_next_task_fair(struct rq *rq)
  3672. {
  3673. struct task_struct *p;
  3674. struct cfs_rq *cfs_rq = &rq->cfs;
  3675. struct sched_entity *se;
  3676. if (!cfs_rq->nr_running)
  3677. return NULL;
  3678. do {
  3679. se = pick_next_entity(cfs_rq);
  3680. set_next_entity(cfs_rq, se);
  3681. cfs_rq = group_cfs_rq(se);
  3682. } while (cfs_rq);
  3683. p = task_of(se);
  3684. if (hrtick_enabled(rq))
  3685. hrtick_start_fair(rq, p);
  3686. return p;
  3687. }
  3688. /*
  3689. * Account for a descheduled task:
  3690. */
  3691. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  3692. {
  3693. struct sched_entity *se = &prev->se;
  3694. struct cfs_rq *cfs_rq;
  3695. for_each_sched_entity(se) {
  3696. cfs_rq = cfs_rq_of(se);
  3697. put_prev_entity(cfs_rq, se);
  3698. }
  3699. }
  3700. /*
  3701. * sched_yield() is very simple
  3702. *
  3703. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  3704. */
  3705. static void yield_task_fair(struct rq *rq)
  3706. {
  3707. struct task_struct *curr = rq->curr;
  3708. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  3709. struct sched_entity *se = &curr->se;
  3710. /*
  3711. * Are we the only task in the tree?
  3712. */
  3713. if (unlikely(rq->nr_running == 1))
  3714. return;
  3715. clear_buddies(cfs_rq, se);
  3716. if (curr->policy != SCHED_BATCH) {
  3717. update_rq_clock(rq);
  3718. /*
  3719. * Update run-time statistics of the 'current'.
  3720. */
  3721. update_curr(cfs_rq);
  3722. /*
  3723. * Tell update_rq_clock() that we've just updated,
  3724. * so we don't do microscopic update in schedule()
  3725. * and double the fastpath cost.
  3726. */
  3727. rq->skip_clock_update = 1;
  3728. }
  3729. set_skip_buddy(se);
  3730. }
  3731. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  3732. {
  3733. struct sched_entity *se = &p->se;
  3734. /* throttled hierarchies are not runnable */
  3735. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  3736. return false;
  3737. /* Tell the scheduler that we'd really like pse to run next. */
  3738. set_next_buddy(se);
  3739. yield_task_fair(rq);
  3740. return true;
  3741. }
  3742. #ifdef CONFIG_SMP
  3743. /**************************************************
  3744. * Fair scheduling class load-balancing methods.
  3745. *
  3746. * BASICS
  3747. *
  3748. * The purpose of load-balancing is to achieve the same basic fairness the
  3749. * per-cpu scheduler provides, namely provide a proportional amount of compute
  3750. * time to each task. This is expressed in the following equation:
  3751. *
  3752. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  3753. *
  3754. * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
  3755. * W_i,0 is defined as:
  3756. *
  3757. * W_i,0 = \Sum_j w_i,j (2)
  3758. *
  3759. * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
  3760. * is derived from the nice value as per prio_to_weight[].
  3761. *
  3762. * The weight average is an exponential decay average of the instantaneous
  3763. * weight:
  3764. *
  3765. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  3766. *
  3767. * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
  3768. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  3769. * can also include other factors [XXX].
  3770. *
  3771. * To achieve this balance we define a measure of imbalance which follows
  3772. * directly from (1):
  3773. *
  3774. * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
  3775. *
  3776. * We them move tasks around to minimize the imbalance. In the continuous
  3777. * function space it is obvious this converges, in the discrete case we get
  3778. * a few fun cases generally called infeasible weight scenarios.
  3779. *
  3780. * [XXX expand on:
  3781. * - infeasible weights;
  3782. * - local vs global optima in the discrete case. ]
  3783. *
  3784. *
  3785. * SCHED DOMAINS
  3786. *
  3787. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  3788. * for all i,j solution, we create a tree of cpus that follows the hardware
  3789. * topology where each level pairs two lower groups (or better). This results
  3790. * in O(log n) layers. Furthermore we reduce the number of cpus going up the
  3791. * tree to only the first of the previous level and we decrease the frequency
  3792. * of load-balance at each level inv. proportional to the number of cpus in
  3793. * the groups.
  3794. *
  3795. * This yields:
  3796. *
  3797. * log_2 n 1 n
  3798. * \Sum { --- * --- * 2^i } = O(n) (5)
  3799. * i = 0 2^i 2^i
  3800. * `- size of each group
  3801. * | | `- number of cpus doing load-balance
  3802. * | `- freq
  3803. * `- sum over all levels
  3804. *
  3805. * Coupled with a limit on how many tasks we can migrate every balance pass,
  3806. * this makes (5) the runtime complexity of the balancer.
  3807. *
  3808. * An important property here is that each CPU is still (indirectly) connected
  3809. * to every other cpu in at most O(log n) steps:
  3810. *
  3811. * The adjacency matrix of the resulting graph is given by:
  3812. *
  3813. * log_2 n
  3814. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  3815. * k = 0
  3816. *
  3817. * And you'll find that:
  3818. *
  3819. * A^(log_2 n)_i,j != 0 for all i,j (7)
  3820. *
  3821. * Showing there's indeed a path between every cpu in at most O(log n) steps.
  3822. * The task movement gives a factor of O(m), giving a convergence complexity
  3823. * of:
  3824. *
  3825. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  3826. *
  3827. *
  3828. * WORK CONSERVING
  3829. *
  3830. * In order to avoid CPUs going idle while there's still work to do, new idle
  3831. * balancing is more aggressive and has the newly idle cpu iterate up the domain
  3832. * tree itself instead of relying on other CPUs to bring it work.
  3833. *
  3834. * This adds some complexity to both (5) and (8) but it reduces the total idle
  3835. * time.
  3836. *
  3837. * [XXX more?]
  3838. *
  3839. *
  3840. * CGROUPS
  3841. *
  3842. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  3843. *
  3844. * s_k,i
  3845. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  3846. * S_k
  3847. *
  3848. * Where
  3849. *
  3850. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  3851. *
  3852. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
  3853. *
  3854. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  3855. * property.
  3856. *
  3857. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  3858. * rewrite all of this once again.]
  3859. */
  3860. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3861. #define LBF_ALL_PINNED 0x01
  3862. #define LBF_NEED_BREAK 0x02
  3863. #define LBF_DST_PINNED 0x04
  3864. #define LBF_SOME_PINNED 0x08
  3865. struct lb_env {
  3866. struct sched_domain *sd;
  3867. struct rq *src_rq;
  3868. int src_cpu;
  3869. int dst_cpu;
  3870. struct rq *dst_rq;
  3871. struct cpumask *dst_grpmask;
  3872. int new_dst_cpu;
  3873. enum cpu_idle_type idle;
  3874. long imbalance;
  3875. /* The set of CPUs under consideration for load-balancing */
  3876. struct cpumask *cpus;
  3877. unsigned int flags;
  3878. unsigned int loop;
  3879. unsigned int loop_break;
  3880. unsigned int loop_max;
  3881. };
  3882. /*
  3883. * move_task - move a task from one runqueue to another runqueue.
  3884. * Both runqueues must be locked.
  3885. */
  3886. static void move_task(struct task_struct *p, struct lb_env *env)
  3887. {
  3888. deactivate_task(env->src_rq, p, 0);
  3889. set_task_cpu(p, env->dst_cpu);
  3890. activate_task(env->dst_rq, p, 0);
  3891. check_preempt_curr(env->dst_rq, p, 0);
  3892. #ifdef CONFIG_NUMA_BALANCING
  3893. if (p->numa_preferred_nid != -1) {
  3894. int src_nid = cpu_to_node(env->src_cpu);
  3895. int dst_nid = cpu_to_node(env->dst_cpu);
  3896. /*
  3897. * If the load balancer has moved the task then limit
  3898. * migrations from taking place in the short term in
  3899. * case this is a short-lived migration.
  3900. */
  3901. if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
  3902. p->numa_migrate_seq = 0;
  3903. }
  3904. #endif
  3905. }
  3906. /*
  3907. * Is this task likely cache-hot:
  3908. */
  3909. static int
  3910. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  3911. {
  3912. s64 delta;
  3913. if (p->sched_class != &fair_sched_class)
  3914. return 0;
  3915. if (unlikely(p->policy == SCHED_IDLE))
  3916. return 0;
  3917. /*
  3918. * Buddy candidates are cache hot:
  3919. */
  3920. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  3921. (&p->se == cfs_rq_of(&p->se)->next ||
  3922. &p->se == cfs_rq_of(&p->se)->last))
  3923. return 1;
  3924. if (sysctl_sched_migration_cost == -1)
  3925. return 1;
  3926. if (sysctl_sched_migration_cost == 0)
  3927. return 0;
  3928. delta = now - p->se.exec_start;
  3929. return delta < (s64)sysctl_sched_migration_cost;
  3930. }
  3931. #ifdef CONFIG_NUMA_BALANCING
  3932. /* Returns true if the destination node has incurred more faults */
  3933. static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
  3934. {
  3935. int src_nid, dst_nid;
  3936. if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
  3937. !(env->sd->flags & SD_NUMA)) {
  3938. return false;
  3939. }
  3940. src_nid = cpu_to_node(env->src_cpu);
  3941. dst_nid = cpu_to_node(env->dst_cpu);
  3942. if (src_nid == dst_nid)
  3943. return false;
  3944. /* Always encourage migration to the preferred node. */
  3945. if (dst_nid == p->numa_preferred_nid)
  3946. return true;
  3947. /* If both task and group weight improve, this move is a winner. */
  3948. if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
  3949. group_weight(p, dst_nid) > group_weight(p, src_nid))
  3950. return true;
  3951. return false;
  3952. }
  3953. static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
  3954. {
  3955. int src_nid, dst_nid;
  3956. if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
  3957. return false;
  3958. if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
  3959. return false;
  3960. src_nid = cpu_to_node(env->src_cpu);
  3961. dst_nid = cpu_to_node(env->dst_cpu);
  3962. if (src_nid == dst_nid)
  3963. return false;
  3964. /* Migrating away from the preferred node is always bad. */
  3965. if (src_nid == p->numa_preferred_nid)
  3966. return true;
  3967. /* If either task or group weight get worse, don't do it. */
  3968. if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
  3969. group_weight(p, dst_nid) < group_weight(p, src_nid))
  3970. return true;
  3971. return false;
  3972. }
  3973. #else
  3974. static inline bool migrate_improves_locality(struct task_struct *p,
  3975. struct lb_env *env)
  3976. {
  3977. return false;
  3978. }
  3979. static inline bool migrate_degrades_locality(struct task_struct *p,
  3980. struct lb_env *env)
  3981. {
  3982. return false;
  3983. }
  3984. #endif
  3985. /*
  3986. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  3987. */
  3988. static
  3989. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  3990. {
  3991. int tsk_cache_hot = 0;
  3992. /*
  3993. * We do not migrate tasks that are:
  3994. * 1) throttled_lb_pair, or
  3995. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  3996. * 3) running (obviously), or
  3997. * 4) are cache-hot on their current CPU.
  3998. */
  3999. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  4000. return 0;
  4001. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  4002. int cpu;
  4003. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  4004. env->flags |= LBF_SOME_PINNED;
  4005. /*
  4006. * Remember if this task can be migrated to any other cpu in
  4007. * our sched_group. We may want to revisit it if we couldn't
  4008. * meet load balance goals by pulling other tasks on src_cpu.
  4009. *
  4010. * Also avoid computing new_dst_cpu if we have already computed
  4011. * one in current iteration.
  4012. */
  4013. if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
  4014. return 0;
  4015. /* Prevent to re-select dst_cpu via env's cpus */
  4016. for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
  4017. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
  4018. env->flags |= LBF_DST_PINNED;
  4019. env->new_dst_cpu = cpu;
  4020. break;
  4021. }
  4022. }
  4023. return 0;
  4024. }
  4025. /* Record that we found atleast one task that could run on dst_cpu */
  4026. env->flags &= ~LBF_ALL_PINNED;
  4027. if (task_running(env->src_rq, p)) {
  4028. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  4029. return 0;
  4030. }
  4031. /*
  4032. * Aggressive migration if:
  4033. * 1) destination numa is preferred
  4034. * 2) task is cache cold, or
  4035. * 3) too many balance attempts have failed.
  4036. */
  4037. tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
  4038. if (!tsk_cache_hot)
  4039. tsk_cache_hot = migrate_degrades_locality(p, env);
  4040. if (migrate_improves_locality(p, env)) {
  4041. #ifdef CONFIG_SCHEDSTATS
  4042. if (tsk_cache_hot) {
  4043. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  4044. schedstat_inc(p, se.statistics.nr_forced_migrations);
  4045. }
  4046. #endif
  4047. return 1;
  4048. }
  4049. if (!tsk_cache_hot ||
  4050. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  4051. if (tsk_cache_hot) {
  4052. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  4053. schedstat_inc(p, se.statistics.nr_forced_migrations);
  4054. }
  4055. return 1;
  4056. }
  4057. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  4058. return 0;
  4059. }
  4060. /*
  4061. * move_one_task tries to move exactly one task from busiest to this_rq, as
  4062. * part of active balancing operations within "domain".
  4063. * Returns 1 if successful and 0 otherwise.
  4064. *
  4065. * Called with both runqueues locked.
  4066. */
  4067. static int move_one_task(struct lb_env *env)
  4068. {
  4069. struct task_struct *p, *n;
  4070. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  4071. if (!can_migrate_task(p, env))
  4072. continue;
  4073. move_task(p, env);
  4074. /*
  4075. * Right now, this is only the second place move_task()
  4076. * is called, so we can safely collect move_task()
  4077. * stats here rather than inside move_task().
  4078. */
  4079. schedstat_inc(env->sd, lb_gained[env->idle]);
  4080. return 1;
  4081. }
  4082. return 0;
  4083. }
  4084. static const unsigned int sched_nr_migrate_break = 32;
  4085. /*
  4086. * move_tasks tries to move up to imbalance weighted load from busiest to
  4087. * this_rq, as part of a balancing operation within domain "sd".
  4088. * Returns 1 if successful and 0 otherwise.
  4089. *
  4090. * Called with both runqueues locked.
  4091. */
  4092. static int move_tasks(struct lb_env *env)
  4093. {
  4094. struct list_head *tasks = &env->src_rq->cfs_tasks;
  4095. struct task_struct *p;
  4096. unsigned long load;
  4097. int pulled = 0;
  4098. if (env->imbalance <= 0)
  4099. return 0;
  4100. while (!list_empty(tasks)) {
  4101. p = list_first_entry(tasks, struct task_struct, se.group_node);
  4102. env->loop++;
  4103. /* We've more or less seen every task there is, call it quits */
  4104. if (env->loop > env->loop_max)
  4105. break;
  4106. /* take a breather every nr_migrate tasks */
  4107. if (env->loop > env->loop_break) {
  4108. env->loop_break += sched_nr_migrate_break;
  4109. env->flags |= LBF_NEED_BREAK;
  4110. break;
  4111. }
  4112. if (!can_migrate_task(p, env))
  4113. goto next;
  4114. load = task_h_load(p);
  4115. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  4116. goto next;
  4117. if ((load / 2) > env->imbalance)
  4118. goto next;
  4119. move_task(p, env);
  4120. pulled++;
  4121. env->imbalance -= load;
  4122. #ifdef CONFIG_PREEMPT
  4123. /*
  4124. * NEWIDLE balancing is a source of latency, so preemptible
  4125. * kernels will stop after the first task is pulled to minimize
  4126. * the critical section.
  4127. */
  4128. if (env->idle == CPU_NEWLY_IDLE)
  4129. break;
  4130. #endif
  4131. /*
  4132. * We only want to steal up to the prescribed amount of
  4133. * weighted load.
  4134. */
  4135. if (env->imbalance <= 0)
  4136. break;
  4137. continue;
  4138. next:
  4139. list_move_tail(&p->se.group_node, tasks);
  4140. }
  4141. /*
  4142. * Right now, this is one of only two places move_task() is called,
  4143. * so we can safely collect move_task() stats here rather than
  4144. * inside move_task().
  4145. */
  4146. schedstat_add(env->sd, lb_gained[env->idle], pulled);
  4147. return pulled;
  4148. }
  4149. #ifdef CONFIG_FAIR_GROUP_SCHED
  4150. /*
  4151. * update tg->load_weight by folding this cpu's load_avg
  4152. */
  4153. static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
  4154. {
  4155. struct sched_entity *se = tg->se[cpu];
  4156. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
  4157. /* throttled entities do not contribute to load */
  4158. if (throttled_hierarchy(cfs_rq))
  4159. return;
  4160. update_cfs_rq_blocked_load(cfs_rq, 1);
  4161. if (se) {
  4162. update_entity_load_avg(se, 1);
  4163. /*
  4164. * We pivot on our runnable average having decayed to zero for
  4165. * list removal. This generally implies that all our children
  4166. * have also been removed (modulo rounding error or bandwidth
  4167. * control); however, such cases are rare and we can fix these
  4168. * at enqueue.
  4169. *
  4170. * TODO: fix up out-of-order children on enqueue.
  4171. */
  4172. if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
  4173. list_del_leaf_cfs_rq(cfs_rq);
  4174. } else {
  4175. struct rq *rq = rq_of(cfs_rq);
  4176. update_rq_runnable_avg(rq, rq->nr_running);
  4177. }
  4178. }
  4179. static void update_blocked_averages(int cpu)
  4180. {
  4181. struct rq *rq = cpu_rq(cpu);
  4182. struct cfs_rq *cfs_rq;
  4183. unsigned long flags;
  4184. raw_spin_lock_irqsave(&rq->lock, flags);
  4185. update_rq_clock(rq);
  4186. /*
  4187. * Iterates the task_group tree in a bottom up fashion, see
  4188. * list_add_leaf_cfs_rq() for details.
  4189. */
  4190. for_each_leaf_cfs_rq(rq, cfs_rq) {
  4191. /*
  4192. * Note: We may want to consider periodically releasing
  4193. * rq->lock about these updates so that creating many task
  4194. * groups does not result in continually extending hold time.
  4195. */
  4196. __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
  4197. }
  4198. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4199. }
  4200. /*
  4201. * Compute the hierarchical load factor for cfs_rq and all its ascendants.
  4202. * This needs to be done in a top-down fashion because the load of a child
  4203. * group is a fraction of its parents load.
  4204. */
  4205. static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
  4206. {
  4207. struct rq *rq = rq_of(cfs_rq);
  4208. struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
  4209. unsigned long now = jiffies;
  4210. unsigned long load;
  4211. if (cfs_rq->last_h_load_update == now)
  4212. return;
  4213. cfs_rq->h_load_next = NULL;
  4214. for_each_sched_entity(se) {
  4215. cfs_rq = cfs_rq_of(se);
  4216. cfs_rq->h_load_next = se;
  4217. if (cfs_rq->last_h_load_update == now)
  4218. break;
  4219. }
  4220. if (!se) {
  4221. cfs_rq->h_load = cfs_rq->runnable_load_avg;
  4222. cfs_rq->last_h_load_update = now;
  4223. }
  4224. while ((se = cfs_rq->h_load_next) != NULL) {
  4225. load = cfs_rq->h_load;
  4226. load = div64_ul(load * se->avg.load_avg_contrib,
  4227. cfs_rq->runnable_load_avg + 1);
  4228. cfs_rq = group_cfs_rq(se);
  4229. cfs_rq->h_load = load;
  4230. cfs_rq->last_h_load_update = now;
  4231. }
  4232. }
  4233. static unsigned long task_h_load(struct task_struct *p)
  4234. {
  4235. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  4236. update_cfs_rq_h_load(cfs_rq);
  4237. return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
  4238. cfs_rq->runnable_load_avg + 1);
  4239. }
  4240. #else
  4241. static inline void update_blocked_averages(int cpu)
  4242. {
  4243. }
  4244. static unsigned long task_h_load(struct task_struct *p)
  4245. {
  4246. return p->se.avg.load_avg_contrib;
  4247. }
  4248. #endif
  4249. /********** Helpers for find_busiest_group ************************/
  4250. /*
  4251. * sg_lb_stats - stats of a sched_group required for load_balancing
  4252. */
  4253. struct sg_lb_stats {
  4254. unsigned long avg_load; /*Avg load across the CPUs of the group */
  4255. unsigned long group_load; /* Total load over the CPUs of the group */
  4256. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  4257. unsigned long load_per_task;
  4258. unsigned long group_power;
  4259. unsigned int sum_nr_running; /* Nr tasks running in the group */
  4260. unsigned int group_capacity;
  4261. unsigned int idle_cpus;
  4262. unsigned int group_weight;
  4263. int group_imb; /* Is there an imbalance in the group ? */
  4264. int group_has_capacity; /* Is there extra capacity in the group? */
  4265. };
  4266. /*
  4267. * sd_lb_stats - Structure to store the statistics of a sched_domain
  4268. * during load balancing.
  4269. */
  4270. struct sd_lb_stats {
  4271. struct sched_group *busiest; /* Busiest group in this sd */
  4272. struct sched_group *local; /* Local group in this sd */
  4273. unsigned long total_load; /* Total load of all groups in sd */
  4274. unsigned long total_pwr; /* Total power of all groups in sd */
  4275. unsigned long avg_load; /* Average load across all groups in sd */
  4276. struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
  4277. struct sg_lb_stats local_stat; /* Statistics of the local group */
  4278. };
  4279. static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
  4280. {
  4281. /*
  4282. * Skimp on the clearing to avoid duplicate work. We can avoid clearing
  4283. * local_stat because update_sg_lb_stats() does a full clear/assignment.
  4284. * We must however clear busiest_stat::avg_load because
  4285. * update_sd_pick_busiest() reads this before assignment.
  4286. */
  4287. *sds = (struct sd_lb_stats){
  4288. .busiest = NULL,
  4289. .local = NULL,
  4290. .total_load = 0UL,
  4291. .total_pwr = 0UL,
  4292. .busiest_stat = {
  4293. .avg_load = 0UL,
  4294. },
  4295. };
  4296. }
  4297. /**
  4298. * get_sd_load_idx - Obtain the load index for a given sched domain.
  4299. * @sd: The sched_domain whose load_idx is to be obtained.
  4300. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  4301. *
  4302. * Return: The load index.
  4303. */
  4304. static inline int get_sd_load_idx(struct sched_domain *sd,
  4305. enum cpu_idle_type idle)
  4306. {
  4307. int load_idx;
  4308. switch (idle) {
  4309. case CPU_NOT_IDLE:
  4310. load_idx = sd->busy_idx;
  4311. break;
  4312. case CPU_NEWLY_IDLE:
  4313. load_idx = sd->newidle_idx;
  4314. break;
  4315. default:
  4316. load_idx = sd->idle_idx;
  4317. break;
  4318. }
  4319. return load_idx;
  4320. }
  4321. static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  4322. {
  4323. return SCHED_POWER_SCALE;
  4324. }
  4325. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  4326. {
  4327. return default_scale_freq_power(sd, cpu);
  4328. }
  4329. static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  4330. {
  4331. unsigned long weight = sd->span_weight;
  4332. unsigned long smt_gain = sd->smt_gain;
  4333. smt_gain /= weight;
  4334. return smt_gain;
  4335. }
  4336. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  4337. {
  4338. return default_scale_smt_power(sd, cpu);
  4339. }
  4340. static unsigned long scale_rt_power(int cpu)
  4341. {
  4342. struct rq *rq = cpu_rq(cpu);
  4343. u64 total, available, age_stamp, avg;
  4344. /*
  4345. * Since we're reading these variables without serialization make sure
  4346. * we read them once before doing sanity checks on them.
  4347. */
  4348. age_stamp = ACCESS_ONCE(rq->age_stamp);
  4349. avg = ACCESS_ONCE(rq->rt_avg);
  4350. total = sched_avg_period() + (rq_clock(rq) - age_stamp);
  4351. if (unlikely(total < avg)) {
  4352. /* Ensures that power won't end up being negative */
  4353. available = 0;
  4354. } else {
  4355. available = total - avg;
  4356. }
  4357. if (unlikely((s64)total < SCHED_POWER_SCALE))
  4358. total = SCHED_POWER_SCALE;
  4359. total >>= SCHED_POWER_SHIFT;
  4360. return div_u64(available, total);
  4361. }
  4362. static void update_cpu_power(struct sched_domain *sd, int cpu)
  4363. {
  4364. unsigned long weight = sd->span_weight;
  4365. unsigned long power = SCHED_POWER_SCALE;
  4366. struct sched_group *sdg = sd->groups;
  4367. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  4368. if (sched_feat(ARCH_POWER))
  4369. power *= arch_scale_smt_power(sd, cpu);
  4370. else
  4371. power *= default_scale_smt_power(sd, cpu);
  4372. power >>= SCHED_POWER_SHIFT;
  4373. }
  4374. sdg->sgp->power_orig = power;
  4375. if (sched_feat(ARCH_POWER))
  4376. power *= arch_scale_freq_power(sd, cpu);
  4377. else
  4378. power *= default_scale_freq_power(sd, cpu);
  4379. power >>= SCHED_POWER_SHIFT;
  4380. power *= scale_rt_power(cpu);
  4381. power >>= SCHED_POWER_SHIFT;
  4382. if (!power)
  4383. power = 1;
  4384. cpu_rq(cpu)->cpu_power = power;
  4385. sdg->sgp->power = power;
  4386. }
  4387. void update_group_power(struct sched_domain *sd, int cpu)
  4388. {
  4389. struct sched_domain *child = sd->child;
  4390. struct sched_group *group, *sdg = sd->groups;
  4391. unsigned long power, power_orig;
  4392. unsigned long interval;
  4393. interval = msecs_to_jiffies(sd->balance_interval);
  4394. interval = clamp(interval, 1UL, max_load_balance_interval);
  4395. sdg->sgp->next_update = jiffies + interval;
  4396. if (!child) {
  4397. update_cpu_power(sd, cpu);
  4398. return;
  4399. }
  4400. power_orig = power = 0;
  4401. if (child->flags & SD_OVERLAP) {
  4402. /*
  4403. * SD_OVERLAP domains cannot assume that child groups
  4404. * span the current group.
  4405. */
  4406. for_each_cpu(cpu, sched_group_cpus(sdg)) {
  4407. struct sched_group *sg = cpu_rq(cpu)->sd->groups;
  4408. power_orig += sg->sgp->power_orig;
  4409. power += sg->sgp->power;
  4410. }
  4411. } else {
  4412. /*
  4413. * !SD_OVERLAP domains can assume that child groups
  4414. * span the current group.
  4415. */
  4416. group = child->groups;
  4417. do {
  4418. power_orig += group->sgp->power_orig;
  4419. power += group->sgp->power;
  4420. group = group->next;
  4421. } while (group != child->groups);
  4422. }
  4423. sdg->sgp->power_orig = power_orig;
  4424. sdg->sgp->power = power;
  4425. }
  4426. /*
  4427. * Try and fix up capacity for tiny siblings, this is needed when
  4428. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  4429. * which on its own isn't powerful enough.
  4430. *
  4431. * See update_sd_pick_busiest() and check_asym_packing().
  4432. */
  4433. static inline int
  4434. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  4435. {
  4436. /*
  4437. * Only siblings can have significantly less than SCHED_POWER_SCALE
  4438. */
  4439. if (!(sd->flags & SD_SHARE_CPUPOWER))
  4440. return 0;
  4441. /*
  4442. * If ~90% of the cpu_power is still there, we're good.
  4443. */
  4444. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  4445. return 1;
  4446. return 0;
  4447. }
  4448. /*
  4449. * Group imbalance indicates (and tries to solve) the problem where balancing
  4450. * groups is inadequate due to tsk_cpus_allowed() constraints.
  4451. *
  4452. * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
  4453. * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
  4454. * Something like:
  4455. *
  4456. * { 0 1 2 3 } { 4 5 6 7 }
  4457. * * * * *
  4458. *
  4459. * If we were to balance group-wise we'd place two tasks in the first group and
  4460. * two tasks in the second group. Clearly this is undesired as it will overload
  4461. * cpu 3 and leave one of the cpus in the second group unused.
  4462. *
  4463. * The current solution to this issue is detecting the skew in the first group
  4464. * by noticing the lower domain failed to reach balance and had difficulty
  4465. * moving tasks due to affinity constraints.
  4466. *
  4467. * When this is so detected; this group becomes a candidate for busiest; see
  4468. * update_sd_pick_busiest(). And calculcate_imbalance() and
  4469. * find_busiest_group() avoid some of the usual balance conditions to allow it
  4470. * to create an effective group imbalance.
  4471. *
  4472. * This is a somewhat tricky proposition since the next run might not find the
  4473. * group imbalance and decide the groups need to be balanced again. A most
  4474. * subtle and fragile situation.
  4475. */
  4476. static inline int sg_imbalanced(struct sched_group *group)
  4477. {
  4478. return group->sgp->imbalance;
  4479. }
  4480. /*
  4481. * Compute the group capacity.
  4482. *
  4483. * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
  4484. * first dividing out the smt factor and computing the actual number of cores
  4485. * and limit power unit capacity with that.
  4486. */
  4487. static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
  4488. {
  4489. unsigned int capacity, smt, cpus;
  4490. unsigned int power, power_orig;
  4491. power = group->sgp->power;
  4492. power_orig = group->sgp->power_orig;
  4493. cpus = group->group_weight;
  4494. /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
  4495. smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
  4496. capacity = cpus / smt; /* cores */
  4497. capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
  4498. if (!capacity)
  4499. capacity = fix_small_capacity(env->sd, group);
  4500. return capacity;
  4501. }
  4502. /**
  4503. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  4504. * @env: The load balancing environment.
  4505. * @group: sched_group whose statistics are to be updated.
  4506. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  4507. * @local_group: Does group contain this_cpu.
  4508. * @sgs: variable to hold the statistics for this group.
  4509. */
  4510. static inline void update_sg_lb_stats(struct lb_env *env,
  4511. struct sched_group *group, int load_idx,
  4512. int local_group, struct sg_lb_stats *sgs)
  4513. {
  4514. unsigned long nr_running;
  4515. unsigned long load;
  4516. int i;
  4517. memset(sgs, 0, sizeof(*sgs));
  4518. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  4519. struct rq *rq = cpu_rq(i);
  4520. nr_running = rq->nr_running;
  4521. /* Bias balancing toward cpus of our domain */
  4522. if (local_group)
  4523. load = target_load(i, load_idx);
  4524. else
  4525. load = source_load(i, load_idx);
  4526. sgs->group_load += load;
  4527. sgs->sum_nr_running += nr_running;
  4528. sgs->sum_weighted_load += weighted_cpuload(i);
  4529. if (idle_cpu(i))
  4530. sgs->idle_cpus++;
  4531. }
  4532. /* Adjust by relative CPU power of the group */
  4533. sgs->group_power = group->sgp->power;
  4534. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
  4535. if (sgs->sum_nr_running)
  4536. sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  4537. sgs->group_weight = group->group_weight;
  4538. sgs->group_imb = sg_imbalanced(group);
  4539. sgs->group_capacity = sg_capacity(env, group);
  4540. if (sgs->group_capacity > sgs->sum_nr_running)
  4541. sgs->group_has_capacity = 1;
  4542. }
  4543. /**
  4544. * update_sd_pick_busiest - return 1 on busiest group
  4545. * @env: The load balancing environment.
  4546. * @sds: sched_domain statistics
  4547. * @sg: sched_group candidate to be checked for being the busiest
  4548. * @sgs: sched_group statistics
  4549. *
  4550. * Determine if @sg is a busier group than the previously selected
  4551. * busiest group.
  4552. *
  4553. * Return: %true if @sg is a busier group than the previously selected
  4554. * busiest group. %false otherwise.
  4555. */
  4556. static bool update_sd_pick_busiest(struct lb_env *env,
  4557. struct sd_lb_stats *sds,
  4558. struct sched_group *sg,
  4559. struct sg_lb_stats *sgs)
  4560. {
  4561. if (sgs->avg_load <= sds->busiest_stat.avg_load)
  4562. return false;
  4563. if (sgs->sum_nr_running > sgs->group_capacity)
  4564. return true;
  4565. if (sgs->group_imb)
  4566. return true;
  4567. /*
  4568. * ASYM_PACKING needs to move all the work to the lowest
  4569. * numbered CPUs in the group, therefore mark all groups
  4570. * higher than ourself as busy.
  4571. */
  4572. if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  4573. env->dst_cpu < group_first_cpu(sg)) {
  4574. if (!sds->busiest)
  4575. return true;
  4576. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  4577. return true;
  4578. }
  4579. return false;
  4580. }
  4581. /**
  4582. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  4583. * @env: The load balancing environment.
  4584. * @balance: Should we balance.
  4585. * @sds: variable to hold the statistics for this sched_domain.
  4586. */
  4587. static inline void update_sd_lb_stats(struct lb_env *env,
  4588. struct sd_lb_stats *sds)
  4589. {
  4590. struct sched_domain *child = env->sd->child;
  4591. struct sched_group *sg = env->sd->groups;
  4592. struct sg_lb_stats tmp_sgs;
  4593. int load_idx, prefer_sibling = 0;
  4594. if (child && child->flags & SD_PREFER_SIBLING)
  4595. prefer_sibling = 1;
  4596. load_idx = get_sd_load_idx(env->sd, env->idle);
  4597. do {
  4598. struct sg_lb_stats *sgs = &tmp_sgs;
  4599. int local_group;
  4600. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  4601. if (local_group) {
  4602. sds->local = sg;
  4603. sgs = &sds->local_stat;
  4604. if (env->idle != CPU_NEWLY_IDLE ||
  4605. time_after_eq(jiffies, sg->sgp->next_update))
  4606. update_group_power(env->sd, env->dst_cpu);
  4607. }
  4608. update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
  4609. if (local_group)
  4610. goto next_group;
  4611. /*
  4612. * In case the child domain prefers tasks go to siblings
  4613. * first, lower the sg capacity to one so that we'll try
  4614. * and move all the excess tasks away. We lower the capacity
  4615. * of a group only if the local group has the capacity to fit
  4616. * these excess tasks, i.e. nr_running < group_capacity. The
  4617. * extra check prevents the case where you always pull from the
  4618. * heaviest group when it is already under-utilized (possible
  4619. * with a large weight task outweighs the tasks on the system).
  4620. */
  4621. if (prefer_sibling && sds->local &&
  4622. sds->local_stat.group_has_capacity)
  4623. sgs->group_capacity = min(sgs->group_capacity, 1U);
  4624. if (update_sd_pick_busiest(env, sds, sg, sgs)) {
  4625. sds->busiest = sg;
  4626. sds->busiest_stat = *sgs;
  4627. }
  4628. next_group:
  4629. /* Now, start updating sd_lb_stats */
  4630. sds->total_load += sgs->group_load;
  4631. sds->total_pwr += sgs->group_power;
  4632. sg = sg->next;
  4633. } while (sg != env->sd->groups);
  4634. }
  4635. /**
  4636. * check_asym_packing - Check to see if the group is packed into the
  4637. * sched doman.
  4638. *
  4639. * This is primarily intended to used at the sibling level. Some
  4640. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  4641. * case of POWER7, it can move to lower SMT modes only when higher
  4642. * threads are idle. When in lower SMT modes, the threads will
  4643. * perform better since they share less core resources. Hence when we
  4644. * have idle threads, we want them to be the higher ones.
  4645. *
  4646. * This packing function is run on idle threads. It checks to see if
  4647. * the busiest CPU in this domain (core in the P7 case) has a higher
  4648. * CPU number than the packing function is being run on. Here we are
  4649. * assuming lower CPU number will be equivalent to lower a SMT thread
  4650. * number.
  4651. *
  4652. * Return: 1 when packing is required and a task should be moved to
  4653. * this CPU. The amount of the imbalance is returned in *imbalance.
  4654. *
  4655. * @env: The load balancing environment.
  4656. * @sds: Statistics of the sched_domain which is to be packed
  4657. */
  4658. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  4659. {
  4660. int busiest_cpu;
  4661. if (!(env->sd->flags & SD_ASYM_PACKING))
  4662. return 0;
  4663. if (!sds->busiest)
  4664. return 0;
  4665. busiest_cpu = group_first_cpu(sds->busiest);
  4666. if (env->dst_cpu > busiest_cpu)
  4667. return 0;
  4668. env->imbalance = DIV_ROUND_CLOSEST(
  4669. sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
  4670. SCHED_POWER_SCALE);
  4671. return 1;
  4672. }
  4673. /**
  4674. * fix_small_imbalance - Calculate the minor imbalance that exists
  4675. * amongst the groups of a sched_domain, during
  4676. * load balancing.
  4677. * @env: The load balancing environment.
  4678. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  4679. */
  4680. static inline
  4681. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  4682. {
  4683. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  4684. unsigned int imbn = 2;
  4685. unsigned long scaled_busy_load_per_task;
  4686. struct sg_lb_stats *local, *busiest;
  4687. local = &sds->local_stat;
  4688. busiest = &sds->busiest_stat;
  4689. if (!local->sum_nr_running)
  4690. local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
  4691. else if (busiest->load_per_task > local->load_per_task)
  4692. imbn = 1;
  4693. scaled_busy_load_per_task =
  4694. (busiest->load_per_task * SCHED_POWER_SCALE) /
  4695. busiest->group_power;
  4696. if (busiest->avg_load + scaled_busy_load_per_task >=
  4697. local->avg_load + (scaled_busy_load_per_task * imbn)) {
  4698. env->imbalance = busiest->load_per_task;
  4699. return;
  4700. }
  4701. /*
  4702. * OK, we don't have enough imbalance to justify moving tasks,
  4703. * however we may be able to increase total CPU power used by
  4704. * moving them.
  4705. */
  4706. pwr_now += busiest->group_power *
  4707. min(busiest->load_per_task, busiest->avg_load);
  4708. pwr_now += local->group_power *
  4709. min(local->load_per_task, local->avg_load);
  4710. pwr_now /= SCHED_POWER_SCALE;
  4711. /* Amount of load we'd subtract */
  4712. tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
  4713. busiest->group_power;
  4714. if (busiest->avg_load > tmp) {
  4715. pwr_move += busiest->group_power *
  4716. min(busiest->load_per_task,
  4717. busiest->avg_load - tmp);
  4718. }
  4719. /* Amount of load we'd add */
  4720. if (busiest->avg_load * busiest->group_power <
  4721. busiest->load_per_task * SCHED_POWER_SCALE) {
  4722. tmp = (busiest->avg_load * busiest->group_power) /
  4723. local->group_power;
  4724. } else {
  4725. tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
  4726. local->group_power;
  4727. }
  4728. pwr_move += local->group_power *
  4729. min(local->load_per_task, local->avg_load + tmp);
  4730. pwr_move /= SCHED_POWER_SCALE;
  4731. /* Move if we gain throughput */
  4732. if (pwr_move > pwr_now)
  4733. env->imbalance = busiest->load_per_task;
  4734. }
  4735. /**
  4736. * calculate_imbalance - Calculate the amount of imbalance present within the
  4737. * groups of a given sched_domain during load balance.
  4738. * @env: load balance environment
  4739. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  4740. */
  4741. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  4742. {
  4743. unsigned long max_pull, load_above_capacity = ~0UL;
  4744. struct sg_lb_stats *local, *busiest;
  4745. local = &sds->local_stat;
  4746. busiest = &sds->busiest_stat;
  4747. if (busiest->group_imb) {
  4748. /*
  4749. * In the group_imb case we cannot rely on group-wide averages
  4750. * to ensure cpu-load equilibrium, look at wider averages. XXX
  4751. */
  4752. busiest->load_per_task =
  4753. min(busiest->load_per_task, sds->avg_load);
  4754. }
  4755. /*
  4756. * In the presence of smp nice balancing, certain scenarios can have
  4757. * max load less than avg load(as we skip the groups at or below
  4758. * its cpu_power, while calculating max_load..)
  4759. */
  4760. if (busiest->avg_load <= sds->avg_load ||
  4761. local->avg_load >= sds->avg_load) {
  4762. env->imbalance = 0;
  4763. return fix_small_imbalance(env, sds);
  4764. }
  4765. if (!busiest->group_imb) {
  4766. /*
  4767. * Don't want to pull so many tasks that a group would go idle.
  4768. * Except of course for the group_imb case, since then we might
  4769. * have to drop below capacity to reach cpu-load equilibrium.
  4770. */
  4771. load_above_capacity =
  4772. (busiest->sum_nr_running - busiest->group_capacity);
  4773. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  4774. load_above_capacity /= busiest->group_power;
  4775. }
  4776. /*
  4777. * We're trying to get all the cpus to the average_load, so we don't
  4778. * want to push ourselves above the average load, nor do we wish to
  4779. * reduce the max loaded cpu below the average load. At the same time,
  4780. * we also don't want to reduce the group load below the group capacity
  4781. * (so that we can implement power-savings policies etc). Thus we look
  4782. * for the minimum possible imbalance.
  4783. */
  4784. max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
  4785. /* How much load to actually move to equalise the imbalance */
  4786. env->imbalance = min(
  4787. max_pull * busiest->group_power,
  4788. (sds->avg_load - local->avg_load) * local->group_power
  4789. ) / SCHED_POWER_SCALE;
  4790. /*
  4791. * if *imbalance is less than the average load per runnable task
  4792. * there is no guarantee that any tasks will be moved so we'll have
  4793. * a think about bumping its value to force at least one task to be
  4794. * moved
  4795. */
  4796. if (env->imbalance < busiest->load_per_task)
  4797. return fix_small_imbalance(env, sds);
  4798. }
  4799. /******* find_busiest_group() helpers end here *********************/
  4800. /**
  4801. * find_busiest_group - Returns the busiest group within the sched_domain
  4802. * if there is an imbalance. If there isn't an imbalance, and
  4803. * the user has opted for power-savings, it returns a group whose
  4804. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  4805. * such a group exists.
  4806. *
  4807. * Also calculates the amount of weighted load which should be moved
  4808. * to restore balance.
  4809. *
  4810. * @env: The load balancing environment.
  4811. *
  4812. * Return: - The busiest group if imbalance exists.
  4813. * - If no imbalance and user has opted for power-savings balance,
  4814. * return the least loaded group whose CPUs can be
  4815. * put to idle by rebalancing its tasks onto our group.
  4816. */
  4817. static struct sched_group *find_busiest_group(struct lb_env *env)
  4818. {
  4819. struct sg_lb_stats *local, *busiest;
  4820. struct sd_lb_stats sds;
  4821. init_sd_lb_stats(&sds);
  4822. /*
  4823. * Compute the various statistics relavent for load balancing at
  4824. * this level.
  4825. */
  4826. update_sd_lb_stats(env, &sds);
  4827. local = &sds.local_stat;
  4828. busiest = &sds.busiest_stat;
  4829. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  4830. check_asym_packing(env, &sds))
  4831. return sds.busiest;
  4832. /* There is no busy sibling group to pull tasks from */
  4833. if (!sds.busiest || busiest->sum_nr_running == 0)
  4834. goto out_balanced;
  4835. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  4836. /*
  4837. * If the busiest group is imbalanced the below checks don't
  4838. * work because they assume all things are equal, which typically
  4839. * isn't true due to cpus_allowed constraints and the like.
  4840. */
  4841. if (busiest->group_imb)
  4842. goto force_balance;
  4843. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  4844. if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
  4845. !busiest->group_has_capacity)
  4846. goto force_balance;
  4847. /*
  4848. * If the local group is more busy than the selected busiest group
  4849. * don't try and pull any tasks.
  4850. */
  4851. if (local->avg_load >= busiest->avg_load)
  4852. goto out_balanced;
  4853. /*
  4854. * Don't pull any tasks if this group is already above the domain
  4855. * average load.
  4856. */
  4857. if (local->avg_load >= sds.avg_load)
  4858. goto out_balanced;
  4859. if (env->idle == CPU_IDLE) {
  4860. /*
  4861. * This cpu is idle. If the busiest group load doesn't
  4862. * have more tasks than the number of available cpu's and
  4863. * there is no imbalance between this and busiest group
  4864. * wrt to idle cpu's, it is balanced.
  4865. */
  4866. if ((local->idle_cpus < busiest->idle_cpus) &&
  4867. busiest->sum_nr_running <= busiest->group_weight)
  4868. goto out_balanced;
  4869. } else {
  4870. /*
  4871. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  4872. * imbalance_pct to be conservative.
  4873. */
  4874. if (100 * busiest->avg_load <=
  4875. env->sd->imbalance_pct * local->avg_load)
  4876. goto out_balanced;
  4877. }
  4878. force_balance:
  4879. /* Looks like there is an imbalance. Compute it */
  4880. calculate_imbalance(env, &sds);
  4881. return sds.busiest;
  4882. out_balanced:
  4883. env->imbalance = 0;
  4884. return NULL;
  4885. }
  4886. /*
  4887. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  4888. */
  4889. static struct rq *find_busiest_queue(struct lb_env *env,
  4890. struct sched_group *group)
  4891. {
  4892. struct rq *busiest = NULL, *rq;
  4893. unsigned long busiest_load = 0, busiest_power = 1;
  4894. int i;
  4895. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  4896. unsigned long power = power_of(i);
  4897. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  4898. SCHED_POWER_SCALE);
  4899. unsigned long wl;
  4900. if (!capacity)
  4901. capacity = fix_small_capacity(env->sd, group);
  4902. rq = cpu_rq(i);
  4903. wl = weighted_cpuload(i);
  4904. /*
  4905. * When comparing with imbalance, use weighted_cpuload()
  4906. * which is not scaled with the cpu power.
  4907. */
  4908. if (capacity && rq->nr_running == 1 && wl > env->imbalance)
  4909. continue;
  4910. /*
  4911. * For the load comparisons with the other cpu's, consider
  4912. * the weighted_cpuload() scaled with the cpu power, so that
  4913. * the load can be moved away from the cpu that is potentially
  4914. * running at a lower capacity.
  4915. *
  4916. * Thus we're looking for max(wl_i / power_i), crosswise
  4917. * multiplication to rid ourselves of the division works out
  4918. * to: wl_i * power_j > wl_j * power_i; where j is our
  4919. * previous maximum.
  4920. */
  4921. if (wl * busiest_power > busiest_load * power) {
  4922. busiest_load = wl;
  4923. busiest_power = power;
  4924. busiest = rq;
  4925. }
  4926. }
  4927. return busiest;
  4928. }
  4929. /*
  4930. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  4931. * so long as it is large enough.
  4932. */
  4933. #define MAX_PINNED_INTERVAL 512
  4934. /* Working cpumask for load_balance and load_balance_newidle. */
  4935. DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
  4936. static int need_active_balance(struct lb_env *env)
  4937. {
  4938. struct sched_domain *sd = env->sd;
  4939. if (env->idle == CPU_NEWLY_IDLE) {
  4940. /*
  4941. * ASYM_PACKING needs to force migrate tasks from busy but
  4942. * higher numbered CPUs in order to pack all tasks in the
  4943. * lowest numbered CPUs.
  4944. */
  4945. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  4946. return 1;
  4947. }
  4948. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  4949. }
  4950. static int active_load_balance_cpu_stop(void *data);
  4951. static int should_we_balance(struct lb_env *env)
  4952. {
  4953. struct sched_group *sg = env->sd->groups;
  4954. struct cpumask *sg_cpus, *sg_mask;
  4955. int cpu, balance_cpu = -1;
  4956. /*
  4957. * In the newly idle case, we will allow all the cpu's
  4958. * to do the newly idle load balance.
  4959. */
  4960. if (env->idle == CPU_NEWLY_IDLE)
  4961. return 1;
  4962. sg_cpus = sched_group_cpus(sg);
  4963. sg_mask = sched_group_mask(sg);
  4964. /* Try to find first idle cpu */
  4965. for_each_cpu_and(cpu, sg_cpus, env->cpus) {
  4966. if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
  4967. continue;
  4968. balance_cpu = cpu;
  4969. break;
  4970. }
  4971. if (balance_cpu == -1)
  4972. balance_cpu = group_balance_cpu(sg);
  4973. /*
  4974. * First idle cpu or the first cpu(busiest) in this sched group
  4975. * is eligible for doing load balancing at this and above domains.
  4976. */
  4977. return balance_cpu == env->dst_cpu;
  4978. }
  4979. /*
  4980. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  4981. * tasks if there is an imbalance.
  4982. */
  4983. static int load_balance(int this_cpu, struct rq *this_rq,
  4984. struct sched_domain *sd, enum cpu_idle_type idle,
  4985. int *continue_balancing)
  4986. {
  4987. int ld_moved, cur_ld_moved, active_balance = 0;
  4988. struct sched_domain *sd_parent = sd->parent;
  4989. struct sched_group *group;
  4990. struct rq *busiest;
  4991. unsigned long flags;
  4992. struct cpumask *cpus = __get_cpu_var(load_balance_mask);
  4993. struct lb_env env = {
  4994. .sd = sd,
  4995. .dst_cpu = this_cpu,
  4996. .dst_rq = this_rq,
  4997. .dst_grpmask = sched_group_cpus(sd->groups),
  4998. .idle = idle,
  4999. .loop_break = sched_nr_migrate_break,
  5000. .cpus = cpus,
  5001. };
  5002. /*
  5003. * For NEWLY_IDLE load_balancing, we don't need to consider
  5004. * other cpus in our group
  5005. */
  5006. if (idle == CPU_NEWLY_IDLE)
  5007. env.dst_grpmask = NULL;
  5008. cpumask_copy(cpus, cpu_active_mask);
  5009. schedstat_inc(sd, lb_count[idle]);
  5010. redo:
  5011. if (!should_we_balance(&env)) {
  5012. *continue_balancing = 0;
  5013. goto out_balanced;
  5014. }
  5015. group = find_busiest_group(&env);
  5016. if (!group) {
  5017. schedstat_inc(sd, lb_nobusyg[idle]);
  5018. goto out_balanced;
  5019. }
  5020. busiest = find_busiest_queue(&env, group);
  5021. if (!busiest) {
  5022. schedstat_inc(sd, lb_nobusyq[idle]);
  5023. goto out_balanced;
  5024. }
  5025. BUG_ON(busiest == env.dst_rq);
  5026. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  5027. ld_moved = 0;
  5028. if (busiest->nr_running > 1) {
  5029. /*
  5030. * Attempt to move tasks. If find_busiest_group has found
  5031. * an imbalance but busiest->nr_running <= 1, the group is
  5032. * still unbalanced. ld_moved simply stays zero, so it is
  5033. * correctly treated as an imbalance.
  5034. */
  5035. env.flags |= LBF_ALL_PINNED;
  5036. env.src_cpu = busiest->cpu;
  5037. env.src_rq = busiest;
  5038. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  5039. more_balance:
  5040. local_irq_save(flags);
  5041. double_rq_lock(env.dst_rq, busiest);
  5042. /*
  5043. * cur_ld_moved - load moved in current iteration
  5044. * ld_moved - cumulative load moved across iterations
  5045. */
  5046. cur_ld_moved = move_tasks(&env);
  5047. ld_moved += cur_ld_moved;
  5048. double_rq_unlock(env.dst_rq, busiest);
  5049. local_irq_restore(flags);
  5050. /*
  5051. * some other cpu did the load balance for us.
  5052. */
  5053. if (cur_ld_moved && env.dst_cpu != smp_processor_id())
  5054. resched_cpu(env.dst_cpu);
  5055. if (env.flags & LBF_NEED_BREAK) {
  5056. env.flags &= ~LBF_NEED_BREAK;
  5057. goto more_balance;
  5058. }
  5059. /*
  5060. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  5061. * us and move them to an alternate dst_cpu in our sched_group
  5062. * where they can run. The upper limit on how many times we
  5063. * iterate on same src_cpu is dependent on number of cpus in our
  5064. * sched_group.
  5065. *
  5066. * This changes load balance semantics a bit on who can move
  5067. * load to a given_cpu. In addition to the given_cpu itself
  5068. * (or a ilb_cpu acting on its behalf where given_cpu is
  5069. * nohz-idle), we now have balance_cpu in a position to move
  5070. * load to given_cpu. In rare situations, this may cause
  5071. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  5072. * _independently_ and at _same_ time to move some load to
  5073. * given_cpu) causing exceess load to be moved to given_cpu.
  5074. * This however should not happen so much in practice and
  5075. * moreover subsequent load balance cycles should correct the
  5076. * excess load moved.
  5077. */
  5078. if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
  5079. /* Prevent to re-select dst_cpu via env's cpus */
  5080. cpumask_clear_cpu(env.dst_cpu, env.cpus);
  5081. env.dst_rq = cpu_rq(env.new_dst_cpu);
  5082. env.dst_cpu = env.new_dst_cpu;
  5083. env.flags &= ~LBF_DST_PINNED;
  5084. env.loop = 0;
  5085. env.loop_break = sched_nr_migrate_break;
  5086. /*
  5087. * Go back to "more_balance" rather than "redo" since we
  5088. * need to continue with same src_cpu.
  5089. */
  5090. goto more_balance;
  5091. }
  5092. /*
  5093. * We failed to reach balance because of affinity.
  5094. */
  5095. if (sd_parent) {
  5096. int *group_imbalance = &sd_parent->groups->sgp->imbalance;
  5097. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
  5098. *group_imbalance = 1;
  5099. } else if (*group_imbalance)
  5100. *group_imbalance = 0;
  5101. }
  5102. /* All tasks on this runqueue were pinned by CPU affinity */
  5103. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  5104. cpumask_clear_cpu(cpu_of(busiest), cpus);
  5105. if (!cpumask_empty(cpus)) {
  5106. env.loop = 0;
  5107. env.loop_break = sched_nr_migrate_break;
  5108. goto redo;
  5109. }
  5110. goto out_balanced;
  5111. }
  5112. }
  5113. if (!ld_moved) {
  5114. schedstat_inc(sd, lb_failed[idle]);
  5115. /*
  5116. * Increment the failure counter only on periodic balance.
  5117. * We do not want newidle balance, which can be very
  5118. * frequent, pollute the failure counter causing
  5119. * excessive cache_hot migrations and active balances.
  5120. */
  5121. if (idle != CPU_NEWLY_IDLE)
  5122. sd->nr_balance_failed++;
  5123. if (need_active_balance(&env)) {
  5124. raw_spin_lock_irqsave(&busiest->lock, flags);
  5125. /* don't kick the active_load_balance_cpu_stop,
  5126. * if the curr task on busiest cpu can't be
  5127. * moved to this_cpu
  5128. */
  5129. if (!cpumask_test_cpu(this_cpu,
  5130. tsk_cpus_allowed(busiest->curr))) {
  5131. raw_spin_unlock_irqrestore(&busiest->lock,
  5132. flags);
  5133. env.flags |= LBF_ALL_PINNED;
  5134. goto out_one_pinned;
  5135. }
  5136. /*
  5137. * ->active_balance synchronizes accesses to
  5138. * ->active_balance_work. Once set, it's cleared
  5139. * only after active load balance is finished.
  5140. */
  5141. if (!busiest->active_balance) {
  5142. busiest->active_balance = 1;
  5143. busiest->push_cpu = this_cpu;
  5144. active_balance = 1;
  5145. }
  5146. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  5147. if (active_balance) {
  5148. stop_one_cpu_nowait(cpu_of(busiest),
  5149. active_load_balance_cpu_stop, busiest,
  5150. &busiest->active_balance_work);
  5151. }
  5152. /*
  5153. * We've kicked active balancing, reset the failure
  5154. * counter.
  5155. */
  5156. sd->nr_balance_failed = sd->cache_nice_tries+1;
  5157. }
  5158. } else
  5159. sd->nr_balance_failed = 0;
  5160. if (likely(!active_balance)) {
  5161. /* We were unbalanced, so reset the balancing interval */
  5162. sd->balance_interval = sd->min_interval;
  5163. } else {
  5164. /*
  5165. * If we've begun active balancing, start to back off. This
  5166. * case may not be covered by the all_pinned logic if there
  5167. * is only 1 task on the busy runqueue (because we don't call
  5168. * move_tasks).
  5169. */
  5170. if (sd->balance_interval < sd->max_interval)
  5171. sd->balance_interval *= 2;
  5172. }
  5173. goto out;
  5174. out_balanced:
  5175. schedstat_inc(sd, lb_balanced[idle]);
  5176. sd->nr_balance_failed = 0;
  5177. out_one_pinned:
  5178. /* tune up the balancing interval */
  5179. if (((env.flags & LBF_ALL_PINNED) &&
  5180. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  5181. (sd->balance_interval < sd->max_interval))
  5182. sd->balance_interval *= 2;
  5183. ld_moved = 0;
  5184. out:
  5185. return ld_moved;
  5186. }
  5187. /*
  5188. * idle_balance is called by schedule() if this_cpu is about to become
  5189. * idle. Attempts to pull tasks from other CPUs.
  5190. */
  5191. void idle_balance(int this_cpu, struct rq *this_rq)
  5192. {
  5193. struct sched_domain *sd;
  5194. int pulled_task = 0;
  5195. unsigned long next_balance = jiffies + HZ;
  5196. u64 curr_cost = 0;
  5197. this_rq->idle_stamp = rq_clock(this_rq);
  5198. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  5199. return;
  5200. /*
  5201. * Drop the rq->lock, but keep IRQ/preempt disabled.
  5202. */
  5203. raw_spin_unlock(&this_rq->lock);
  5204. update_blocked_averages(this_cpu);
  5205. rcu_read_lock();
  5206. for_each_domain(this_cpu, sd) {
  5207. unsigned long interval;
  5208. int continue_balancing = 1;
  5209. u64 t0, domain_cost;
  5210. if (!(sd->flags & SD_LOAD_BALANCE))
  5211. continue;
  5212. if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
  5213. break;
  5214. if (sd->flags & SD_BALANCE_NEWIDLE) {
  5215. t0 = sched_clock_cpu(this_cpu);
  5216. /* If we've pulled tasks over stop searching: */
  5217. pulled_task = load_balance(this_cpu, this_rq,
  5218. sd, CPU_NEWLY_IDLE,
  5219. &continue_balancing);
  5220. domain_cost = sched_clock_cpu(this_cpu) - t0;
  5221. if (domain_cost > sd->max_newidle_lb_cost)
  5222. sd->max_newidle_lb_cost = domain_cost;
  5223. curr_cost += domain_cost;
  5224. }
  5225. interval = msecs_to_jiffies(sd->balance_interval);
  5226. if (time_after(next_balance, sd->last_balance + interval))
  5227. next_balance = sd->last_balance + interval;
  5228. if (pulled_task) {
  5229. this_rq->idle_stamp = 0;
  5230. break;
  5231. }
  5232. }
  5233. rcu_read_unlock();
  5234. raw_spin_lock(&this_rq->lock);
  5235. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  5236. /*
  5237. * We are going idle. next_balance may be set based on
  5238. * a busy processor. So reset next_balance.
  5239. */
  5240. this_rq->next_balance = next_balance;
  5241. }
  5242. if (curr_cost > this_rq->max_idle_balance_cost)
  5243. this_rq->max_idle_balance_cost = curr_cost;
  5244. }
  5245. /*
  5246. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  5247. * running tasks off the busiest CPU onto idle CPUs. It requires at
  5248. * least 1 task to be running on each physical CPU where possible, and
  5249. * avoids physical / logical imbalances.
  5250. */
  5251. static int active_load_balance_cpu_stop(void *data)
  5252. {
  5253. struct rq *busiest_rq = data;
  5254. int busiest_cpu = cpu_of(busiest_rq);
  5255. int target_cpu = busiest_rq->push_cpu;
  5256. struct rq *target_rq = cpu_rq(target_cpu);
  5257. struct sched_domain *sd;
  5258. raw_spin_lock_irq(&busiest_rq->lock);
  5259. /* make sure the requested cpu hasn't gone down in the meantime */
  5260. if (unlikely(busiest_cpu != smp_processor_id() ||
  5261. !busiest_rq->active_balance))
  5262. goto out_unlock;
  5263. /* Is there any task to move? */
  5264. if (busiest_rq->nr_running <= 1)
  5265. goto out_unlock;
  5266. /*
  5267. * This condition is "impossible", if it occurs
  5268. * we need to fix it. Originally reported by
  5269. * Bjorn Helgaas on a 128-cpu setup.
  5270. */
  5271. BUG_ON(busiest_rq == target_rq);
  5272. /* move a task from busiest_rq to target_rq */
  5273. double_lock_balance(busiest_rq, target_rq);
  5274. /* Search for an sd spanning us and the target CPU. */
  5275. rcu_read_lock();
  5276. for_each_domain(target_cpu, sd) {
  5277. if ((sd->flags & SD_LOAD_BALANCE) &&
  5278. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  5279. break;
  5280. }
  5281. if (likely(sd)) {
  5282. struct lb_env env = {
  5283. .sd = sd,
  5284. .dst_cpu = target_cpu,
  5285. .dst_rq = target_rq,
  5286. .src_cpu = busiest_rq->cpu,
  5287. .src_rq = busiest_rq,
  5288. .idle = CPU_IDLE,
  5289. };
  5290. schedstat_inc(sd, alb_count);
  5291. if (move_one_task(&env))
  5292. schedstat_inc(sd, alb_pushed);
  5293. else
  5294. schedstat_inc(sd, alb_failed);
  5295. }
  5296. rcu_read_unlock();
  5297. double_unlock_balance(busiest_rq, target_rq);
  5298. out_unlock:
  5299. busiest_rq->active_balance = 0;
  5300. raw_spin_unlock_irq(&busiest_rq->lock);
  5301. return 0;
  5302. }
  5303. #ifdef CONFIG_NO_HZ_COMMON
  5304. /*
  5305. * idle load balancing details
  5306. * - When one of the busy CPUs notice that there may be an idle rebalancing
  5307. * needed, they will kick the idle load balancer, which then does idle
  5308. * load balancing for all the idle CPUs.
  5309. */
  5310. static struct {
  5311. cpumask_var_t idle_cpus_mask;
  5312. atomic_t nr_cpus;
  5313. unsigned long next_balance; /* in jiffy units */
  5314. } nohz ____cacheline_aligned;
  5315. static inline int find_new_ilb(int call_cpu)
  5316. {
  5317. int ilb = cpumask_first(nohz.idle_cpus_mask);
  5318. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  5319. return ilb;
  5320. return nr_cpu_ids;
  5321. }
  5322. /*
  5323. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  5324. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  5325. * CPU (if there is one).
  5326. */
  5327. static void nohz_balancer_kick(int cpu)
  5328. {
  5329. int ilb_cpu;
  5330. nohz.next_balance++;
  5331. ilb_cpu = find_new_ilb(cpu);
  5332. if (ilb_cpu >= nr_cpu_ids)
  5333. return;
  5334. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  5335. return;
  5336. /*
  5337. * Use smp_send_reschedule() instead of resched_cpu().
  5338. * This way we generate a sched IPI on the target cpu which
  5339. * is idle. And the softirq performing nohz idle load balance
  5340. * will be run before returning from the IPI.
  5341. */
  5342. smp_send_reschedule(ilb_cpu);
  5343. return;
  5344. }
  5345. static inline void nohz_balance_exit_idle(int cpu)
  5346. {
  5347. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  5348. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  5349. atomic_dec(&nohz.nr_cpus);
  5350. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  5351. }
  5352. }
  5353. static inline void set_cpu_sd_state_busy(void)
  5354. {
  5355. struct sched_domain *sd;
  5356. rcu_read_lock();
  5357. sd = rcu_dereference_check_sched_domain(this_rq()->sd);
  5358. if (!sd || !sd->nohz_idle)
  5359. goto unlock;
  5360. sd->nohz_idle = 0;
  5361. for (; sd; sd = sd->parent)
  5362. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  5363. unlock:
  5364. rcu_read_unlock();
  5365. }
  5366. void set_cpu_sd_state_idle(void)
  5367. {
  5368. struct sched_domain *sd;
  5369. rcu_read_lock();
  5370. sd = rcu_dereference_check_sched_domain(this_rq()->sd);
  5371. if (!sd || sd->nohz_idle)
  5372. goto unlock;
  5373. sd->nohz_idle = 1;
  5374. for (; sd; sd = sd->parent)
  5375. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  5376. unlock:
  5377. rcu_read_unlock();
  5378. }
  5379. /*
  5380. * This routine will record that the cpu is going idle with tick stopped.
  5381. * This info will be used in performing idle load balancing in the future.
  5382. */
  5383. void nohz_balance_enter_idle(int cpu)
  5384. {
  5385. /*
  5386. * If this cpu is going down, then nothing needs to be done.
  5387. */
  5388. if (!cpu_active(cpu))
  5389. return;
  5390. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  5391. return;
  5392. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  5393. atomic_inc(&nohz.nr_cpus);
  5394. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  5395. }
  5396. static int sched_ilb_notifier(struct notifier_block *nfb,
  5397. unsigned long action, void *hcpu)
  5398. {
  5399. switch (action & ~CPU_TASKS_FROZEN) {
  5400. case CPU_DYING:
  5401. nohz_balance_exit_idle(smp_processor_id());
  5402. return NOTIFY_OK;
  5403. default:
  5404. return NOTIFY_DONE;
  5405. }
  5406. }
  5407. #endif
  5408. static DEFINE_SPINLOCK(balancing);
  5409. /*
  5410. * Scale the max load_balance interval with the number of CPUs in the system.
  5411. * This trades load-balance latency on larger machines for less cross talk.
  5412. */
  5413. void update_max_interval(void)
  5414. {
  5415. max_load_balance_interval = HZ*num_online_cpus()/10;
  5416. }
  5417. /*
  5418. * It checks each scheduling domain to see if it is due to be balanced,
  5419. * and initiates a balancing operation if so.
  5420. *
  5421. * Balancing parameters are set up in init_sched_domains.
  5422. */
  5423. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  5424. {
  5425. int continue_balancing = 1;
  5426. struct rq *rq = cpu_rq(cpu);
  5427. unsigned long interval;
  5428. struct sched_domain *sd;
  5429. /* Earliest time when we have to do rebalance again */
  5430. unsigned long next_balance = jiffies + 60*HZ;
  5431. int update_next_balance = 0;
  5432. int need_serialize, need_decay = 0;
  5433. u64 max_cost = 0;
  5434. update_blocked_averages(cpu);
  5435. rcu_read_lock();
  5436. for_each_domain(cpu, sd) {
  5437. /*
  5438. * Decay the newidle max times here because this is a regular
  5439. * visit to all the domains. Decay ~1% per second.
  5440. */
  5441. if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
  5442. sd->max_newidle_lb_cost =
  5443. (sd->max_newidle_lb_cost * 253) / 256;
  5444. sd->next_decay_max_lb_cost = jiffies + HZ;
  5445. need_decay = 1;
  5446. }
  5447. max_cost += sd->max_newidle_lb_cost;
  5448. if (!(sd->flags & SD_LOAD_BALANCE))
  5449. continue;
  5450. /*
  5451. * Stop the load balance at this level. There is another
  5452. * CPU in our sched group which is doing load balancing more
  5453. * actively.
  5454. */
  5455. if (!continue_balancing) {
  5456. if (need_decay)
  5457. continue;
  5458. break;
  5459. }
  5460. interval = sd->balance_interval;
  5461. if (idle != CPU_IDLE)
  5462. interval *= sd->busy_factor;
  5463. /* scale ms to jiffies */
  5464. interval = msecs_to_jiffies(interval);
  5465. interval = clamp(interval, 1UL, max_load_balance_interval);
  5466. need_serialize = sd->flags & SD_SERIALIZE;
  5467. if (need_serialize) {
  5468. if (!spin_trylock(&balancing))
  5469. goto out;
  5470. }
  5471. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  5472. if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
  5473. /*
  5474. * The LBF_DST_PINNED logic could have changed
  5475. * env->dst_cpu, so we can't know our idle
  5476. * state even if we migrated tasks. Update it.
  5477. */
  5478. idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
  5479. }
  5480. sd->last_balance = jiffies;
  5481. }
  5482. if (need_serialize)
  5483. spin_unlock(&balancing);
  5484. out:
  5485. if (time_after(next_balance, sd->last_balance + interval)) {
  5486. next_balance = sd->last_balance + interval;
  5487. update_next_balance = 1;
  5488. }
  5489. }
  5490. if (need_decay) {
  5491. /*
  5492. * Ensure the rq-wide value also decays but keep it at a
  5493. * reasonable floor to avoid funnies with rq->avg_idle.
  5494. */
  5495. rq->max_idle_balance_cost =
  5496. max((u64)sysctl_sched_migration_cost, max_cost);
  5497. }
  5498. rcu_read_unlock();
  5499. /*
  5500. * next_balance will be updated only when there is a need.
  5501. * When the cpu is attached to null domain for ex, it will not be
  5502. * updated.
  5503. */
  5504. if (likely(update_next_balance))
  5505. rq->next_balance = next_balance;
  5506. }
  5507. #ifdef CONFIG_NO_HZ_COMMON
  5508. /*
  5509. * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
  5510. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  5511. */
  5512. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  5513. {
  5514. struct rq *this_rq = cpu_rq(this_cpu);
  5515. struct rq *rq;
  5516. int balance_cpu;
  5517. if (idle != CPU_IDLE ||
  5518. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  5519. goto end;
  5520. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  5521. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  5522. continue;
  5523. /*
  5524. * If this cpu gets work to do, stop the load balancing
  5525. * work being done for other cpus. Next load
  5526. * balancing owner will pick it up.
  5527. */
  5528. if (need_resched())
  5529. break;
  5530. rq = cpu_rq(balance_cpu);
  5531. raw_spin_lock_irq(&rq->lock);
  5532. update_rq_clock(rq);
  5533. update_idle_cpu_load(rq);
  5534. raw_spin_unlock_irq(&rq->lock);
  5535. rebalance_domains(balance_cpu, CPU_IDLE);
  5536. if (time_after(this_rq->next_balance, rq->next_balance))
  5537. this_rq->next_balance = rq->next_balance;
  5538. }
  5539. nohz.next_balance = this_rq->next_balance;
  5540. end:
  5541. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  5542. }
  5543. /*
  5544. * Current heuristic for kicking the idle load balancer in the presence
  5545. * of an idle cpu is the system.
  5546. * - This rq has more than one task.
  5547. * - At any scheduler domain level, this cpu's scheduler group has multiple
  5548. * busy cpu's exceeding the group's power.
  5549. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  5550. * domain span are idle.
  5551. */
  5552. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  5553. {
  5554. unsigned long now = jiffies;
  5555. struct sched_domain *sd;
  5556. if (unlikely(idle_cpu(cpu)))
  5557. return 0;
  5558. /*
  5559. * We may be recently in ticked or tickless idle mode. At the first
  5560. * busy tick after returning from idle, we will update the busy stats.
  5561. */
  5562. set_cpu_sd_state_busy();
  5563. nohz_balance_exit_idle(cpu);
  5564. /*
  5565. * None are in tickless mode and hence no need for NOHZ idle load
  5566. * balancing.
  5567. */
  5568. if (likely(!atomic_read(&nohz.nr_cpus)))
  5569. return 0;
  5570. if (time_before(now, nohz.next_balance))
  5571. return 0;
  5572. if (rq->nr_running >= 2)
  5573. goto need_kick;
  5574. rcu_read_lock();
  5575. for_each_domain(cpu, sd) {
  5576. struct sched_group *sg = sd->groups;
  5577. struct sched_group_power *sgp = sg->sgp;
  5578. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  5579. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  5580. goto need_kick_unlock;
  5581. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  5582. && (cpumask_first_and(nohz.idle_cpus_mask,
  5583. sched_domain_span(sd)) < cpu))
  5584. goto need_kick_unlock;
  5585. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  5586. break;
  5587. }
  5588. rcu_read_unlock();
  5589. return 0;
  5590. need_kick_unlock:
  5591. rcu_read_unlock();
  5592. need_kick:
  5593. return 1;
  5594. }
  5595. #else
  5596. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  5597. #endif
  5598. /*
  5599. * run_rebalance_domains is triggered when needed from the scheduler tick.
  5600. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  5601. */
  5602. static void run_rebalance_domains(struct softirq_action *h)
  5603. {
  5604. int this_cpu = smp_processor_id();
  5605. struct rq *this_rq = cpu_rq(this_cpu);
  5606. enum cpu_idle_type idle = this_rq->idle_balance ?
  5607. CPU_IDLE : CPU_NOT_IDLE;
  5608. rebalance_domains(this_cpu, idle);
  5609. /*
  5610. * If this cpu has a pending nohz_balance_kick, then do the
  5611. * balancing on behalf of the other idle cpus whose ticks are
  5612. * stopped.
  5613. */
  5614. nohz_idle_balance(this_cpu, idle);
  5615. }
  5616. static inline int on_null_domain(int cpu)
  5617. {
  5618. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  5619. }
  5620. /*
  5621. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  5622. */
  5623. void trigger_load_balance(struct rq *rq, int cpu)
  5624. {
  5625. /* Don't need to rebalance while attached to NULL domain */
  5626. if (time_after_eq(jiffies, rq->next_balance) &&
  5627. likely(!on_null_domain(cpu)))
  5628. raise_softirq(SCHED_SOFTIRQ);
  5629. #ifdef CONFIG_NO_HZ_COMMON
  5630. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  5631. nohz_balancer_kick(cpu);
  5632. #endif
  5633. }
  5634. static void rq_online_fair(struct rq *rq)
  5635. {
  5636. update_sysctl();
  5637. }
  5638. static void rq_offline_fair(struct rq *rq)
  5639. {
  5640. update_sysctl();
  5641. /* Ensure any throttled groups are reachable by pick_next_task */
  5642. unthrottle_offline_cfs_rqs(rq);
  5643. }
  5644. #endif /* CONFIG_SMP */
  5645. /*
  5646. * scheduler tick hitting a task of our scheduling class:
  5647. */
  5648. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  5649. {
  5650. struct cfs_rq *cfs_rq;
  5651. struct sched_entity *se = &curr->se;
  5652. for_each_sched_entity(se) {
  5653. cfs_rq = cfs_rq_of(se);
  5654. entity_tick(cfs_rq, se, queued);
  5655. }
  5656. if (numabalancing_enabled)
  5657. task_tick_numa(rq, curr);
  5658. update_rq_runnable_avg(rq, 1);
  5659. }
  5660. /*
  5661. * called on fork with the child task as argument from the parent's context
  5662. * - child not yet on the tasklist
  5663. * - preemption disabled
  5664. */
  5665. static void task_fork_fair(struct task_struct *p)
  5666. {
  5667. struct cfs_rq *cfs_rq;
  5668. struct sched_entity *se = &p->se, *curr;
  5669. int this_cpu = smp_processor_id();
  5670. struct rq *rq = this_rq();
  5671. unsigned long flags;
  5672. raw_spin_lock_irqsave(&rq->lock, flags);
  5673. update_rq_clock(rq);
  5674. cfs_rq = task_cfs_rq(current);
  5675. curr = cfs_rq->curr;
  5676. /*
  5677. * Not only the cpu but also the task_group of the parent might have
  5678. * been changed after parent->se.parent,cfs_rq were copied to
  5679. * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
  5680. * of child point to valid ones.
  5681. */
  5682. rcu_read_lock();
  5683. __set_task_cpu(p, this_cpu);
  5684. rcu_read_unlock();
  5685. update_curr(cfs_rq);
  5686. if (curr)
  5687. se->vruntime = curr->vruntime;
  5688. place_entity(cfs_rq, se, 1);
  5689. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  5690. /*
  5691. * Upon rescheduling, sched_class::put_prev_task() will place
  5692. * 'current' within the tree based on its new key value.
  5693. */
  5694. swap(curr->vruntime, se->vruntime);
  5695. resched_task(rq->curr);
  5696. }
  5697. se->vruntime -= cfs_rq->min_vruntime;
  5698. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5699. }
  5700. /*
  5701. * Priority of the task has changed. Check to see if we preempt
  5702. * the current task.
  5703. */
  5704. static void
  5705. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  5706. {
  5707. if (!p->se.on_rq)
  5708. return;
  5709. /*
  5710. * Reschedule if we are currently running on this runqueue and
  5711. * our priority decreased, or if we are not currently running on
  5712. * this runqueue and our priority is higher than the current's
  5713. */
  5714. if (rq->curr == p) {
  5715. if (p->prio > oldprio)
  5716. resched_task(rq->curr);
  5717. } else
  5718. check_preempt_curr(rq, p, 0);
  5719. }
  5720. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  5721. {
  5722. struct sched_entity *se = &p->se;
  5723. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  5724. /*
  5725. * Ensure the task's vruntime is normalized, so that when its
  5726. * switched back to the fair class the enqueue_entity(.flags=0) will
  5727. * do the right thing.
  5728. *
  5729. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  5730. * have normalized the vruntime, if it was !on_rq, then only when
  5731. * the task is sleeping will it still have non-normalized vruntime.
  5732. */
  5733. if (!se->on_rq && p->state != TASK_RUNNING) {
  5734. /*
  5735. * Fix up our vruntime so that the current sleep doesn't
  5736. * cause 'unlimited' sleep bonus.
  5737. */
  5738. place_entity(cfs_rq, se, 0);
  5739. se->vruntime -= cfs_rq->min_vruntime;
  5740. }
  5741. #ifdef CONFIG_SMP
  5742. /*
  5743. * Remove our load from contribution when we leave sched_fair
  5744. * and ensure we don't carry in an old decay_count if we
  5745. * switch back.
  5746. */
  5747. if (se->avg.decay_count) {
  5748. __synchronize_entity_decay(se);
  5749. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  5750. }
  5751. #endif
  5752. }
  5753. /*
  5754. * We switched to the sched_fair class.
  5755. */
  5756. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  5757. {
  5758. if (!p->se.on_rq)
  5759. return;
  5760. /*
  5761. * We were most likely switched from sched_rt, so
  5762. * kick off the schedule if running, otherwise just see
  5763. * if we can still preempt the current task.
  5764. */
  5765. if (rq->curr == p)
  5766. resched_task(rq->curr);
  5767. else
  5768. check_preempt_curr(rq, p, 0);
  5769. }
  5770. /* Account for a task changing its policy or group.
  5771. *
  5772. * This routine is mostly called to set cfs_rq->curr field when a task
  5773. * migrates between groups/classes.
  5774. */
  5775. static void set_curr_task_fair(struct rq *rq)
  5776. {
  5777. struct sched_entity *se = &rq->curr->se;
  5778. for_each_sched_entity(se) {
  5779. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  5780. set_next_entity(cfs_rq, se);
  5781. /* ensure bandwidth has been allocated on our new cfs_rq */
  5782. account_cfs_rq_runtime(cfs_rq, 0);
  5783. }
  5784. }
  5785. void init_cfs_rq(struct cfs_rq *cfs_rq)
  5786. {
  5787. cfs_rq->tasks_timeline = RB_ROOT;
  5788. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5789. #ifndef CONFIG_64BIT
  5790. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  5791. #endif
  5792. #ifdef CONFIG_SMP
  5793. atomic64_set(&cfs_rq->decay_counter, 1);
  5794. atomic_long_set(&cfs_rq->removed_load, 0);
  5795. #endif
  5796. }
  5797. #ifdef CONFIG_FAIR_GROUP_SCHED
  5798. static void task_move_group_fair(struct task_struct *p, int on_rq)
  5799. {
  5800. struct cfs_rq *cfs_rq;
  5801. /*
  5802. * If the task was not on the rq at the time of this cgroup movement
  5803. * it must have been asleep, sleeping tasks keep their ->vruntime
  5804. * absolute on their old rq until wakeup (needed for the fair sleeper
  5805. * bonus in place_entity()).
  5806. *
  5807. * If it was on the rq, we've just 'preempted' it, which does convert
  5808. * ->vruntime to a relative base.
  5809. *
  5810. * Make sure both cases convert their relative position when migrating
  5811. * to another cgroup's rq. This does somewhat interfere with the
  5812. * fair sleeper stuff for the first placement, but who cares.
  5813. */
  5814. /*
  5815. * When !on_rq, vruntime of the task has usually NOT been normalized.
  5816. * But there are some cases where it has already been normalized:
  5817. *
  5818. * - Moving a forked child which is waiting for being woken up by
  5819. * wake_up_new_task().
  5820. * - Moving a task which has been woken up by try_to_wake_up() and
  5821. * waiting for actually being woken up by sched_ttwu_pending().
  5822. *
  5823. * To prevent boost or penalty in the new cfs_rq caused by delta
  5824. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  5825. */
  5826. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  5827. on_rq = 1;
  5828. if (!on_rq)
  5829. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  5830. set_task_rq(p, task_cpu(p));
  5831. if (!on_rq) {
  5832. cfs_rq = cfs_rq_of(&p->se);
  5833. p->se.vruntime += cfs_rq->min_vruntime;
  5834. #ifdef CONFIG_SMP
  5835. /*
  5836. * migrate_task_rq_fair() will have removed our previous
  5837. * contribution, but we must synchronize for ongoing future
  5838. * decay.
  5839. */
  5840. p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  5841. cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
  5842. #endif
  5843. }
  5844. }
  5845. void free_fair_sched_group(struct task_group *tg)
  5846. {
  5847. int i;
  5848. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  5849. for_each_possible_cpu(i) {
  5850. if (tg->cfs_rq)
  5851. kfree(tg->cfs_rq[i]);
  5852. if (tg->se)
  5853. kfree(tg->se[i]);
  5854. }
  5855. kfree(tg->cfs_rq);
  5856. kfree(tg->se);
  5857. }
  5858. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  5859. {
  5860. struct cfs_rq *cfs_rq;
  5861. struct sched_entity *se;
  5862. int i;
  5863. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  5864. if (!tg->cfs_rq)
  5865. goto err;
  5866. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  5867. if (!tg->se)
  5868. goto err;
  5869. tg->shares = NICE_0_LOAD;
  5870. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  5871. for_each_possible_cpu(i) {
  5872. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  5873. GFP_KERNEL, cpu_to_node(i));
  5874. if (!cfs_rq)
  5875. goto err;
  5876. se = kzalloc_node(sizeof(struct sched_entity),
  5877. GFP_KERNEL, cpu_to_node(i));
  5878. if (!se)
  5879. goto err_free_rq;
  5880. init_cfs_rq(cfs_rq);
  5881. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  5882. }
  5883. return 1;
  5884. err_free_rq:
  5885. kfree(cfs_rq);
  5886. err:
  5887. return 0;
  5888. }
  5889. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  5890. {
  5891. struct rq *rq = cpu_rq(cpu);
  5892. unsigned long flags;
  5893. /*
  5894. * Only empty task groups can be destroyed; so we can speculatively
  5895. * check on_list without danger of it being re-added.
  5896. */
  5897. if (!tg->cfs_rq[cpu]->on_list)
  5898. return;
  5899. raw_spin_lock_irqsave(&rq->lock, flags);
  5900. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  5901. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5902. }
  5903. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  5904. struct sched_entity *se, int cpu,
  5905. struct sched_entity *parent)
  5906. {
  5907. struct rq *rq = cpu_rq(cpu);
  5908. cfs_rq->tg = tg;
  5909. cfs_rq->rq = rq;
  5910. init_cfs_rq_runtime(cfs_rq);
  5911. tg->cfs_rq[cpu] = cfs_rq;
  5912. tg->se[cpu] = se;
  5913. /* se could be NULL for root_task_group */
  5914. if (!se)
  5915. return;
  5916. if (!parent)
  5917. se->cfs_rq = &rq->cfs;
  5918. else
  5919. se->cfs_rq = parent->my_q;
  5920. se->my_q = cfs_rq;
  5921. update_load_set(&se->load, 0);
  5922. se->parent = parent;
  5923. }
  5924. static DEFINE_MUTEX(shares_mutex);
  5925. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  5926. {
  5927. int i;
  5928. unsigned long flags;
  5929. /*
  5930. * We can't change the weight of the root cgroup.
  5931. */
  5932. if (!tg->se[0])
  5933. return -EINVAL;
  5934. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  5935. mutex_lock(&shares_mutex);
  5936. if (tg->shares == shares)
  5937. goto done;
  5938. tg->shares = shares;
  5939. for_each_possible_cpu(i) {
  5940. struct rq *rq = cpu_rq(i);
  5941. struct sched_entity *se;
  5942. se = tg->se[i];
  5943. /* Propagate contribution to hierarchy */
  5944. raw_spin_lock_irqsave(&rq->lock, flags);
  5945. /* Possible calls to update_curr() need rq clock */
  5946. update_rq_clock(rq);
  5947. for_each_sched_entity(se)
  5948. update_cfs_shares(group_cfs_rq(se));
  5949. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5950. }
  5951. done:
  5952. mutex_unlock(&shares_mutex);
  5953. return 0;
  5954. }
  5955. #else /* CONFIG_FAIR_GROUP_SCHED */
  5956. void free_fair_sched_group(struct task_group *tg) { }
  5957. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  5958. {
  5959. return 1;
  5960. }
  5961. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  5962. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5963. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  5964. {
  5965. struct sched_entity *se = &task->se;
  5966. unsigned int rr_interval = 0;
  5967. /*
  5968. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  5969. * idle runqueue:
  5970. */
  5971. if (rq->cfs.load.weight)
  5972. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  5973. return rr_interval;
  5974. }
  5975. /*
  5976. * All the scheduling class methods:
  5977. */
  5978. const struct sched_class fair_sched_class = {
  5979. .next = &idle_sched_class,
  5980. .enqueue_task = enqueue_task_fair,
  5981. .dequeue_task = dequeue_task_fair,
  5982. .yield_task = yield_task_fair,
  5983. .yield_to_task = yield_to_task_fair,
  5984. .check_preempt_curr = check_preempt_wakeup,
  5985. .pick_next_task = pick_next_task_fair,
  5986. .put_prev_task = put_prev_task_fair,
  5987. #ifdef CONFIG_SMP
  5988. .select_task_rq = select_task_rq_fair,
  5989. .migrate_task_rq = migrate_task_rq_fair,
  5990. .rq_online = rq_online_fair,
  5991. .rq_offline = rq_offline_fair,
  5992. .task_waking = task_waking_fair,
  5993. #endif
  5994. .set_curr_task = set_curr_task_fair,
  5995. .task_tick = task_tick_fair,
  5996. .task_fork = task_fork_fair,
  5997. .prio_changed = prio_changed_fair,
  5998. .switched_from = switched_from_fair,
  5999. .switched_to = switched_to_fair,
  6000. .get_rr_interval = get_rr_interval_fair,
  6001. #ifdef CONFIG_FAIR_GROUP_SCHED
  6002. .task_move_group = task_move_group_fair,
  6003. #endif
  6004. };
  6005. #ifdef CONFIG_SCHED_DEBUG
  6006. void print_cfs_stats(struct seq_file *m, int cpu)
  6007. {
  6008. struct cfs_rq *cfs_rq;
  6009. rcu_read_lock();
  6010. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  6011. print_cfs_rq(m, cpu, cfs_rq);
  6012. rcu_read_unlock();
  6013. }
  6014. #endif
  6015. __init void init_sched_fair_class(void)
  6016. {
  6017. #ifdef CONFIG_SMP
  6018. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6019. #ifdef CONFIG_NO_HZ_COMMON
  6020. nohz.next_balance = jiffies;
  6021. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6022. cpu_notifier(sched_ilb_notifier, 0);
  6023. #endif
  6024. #endif /* SMP */
  6025. }