perf_event.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/highmem.h>
  24. #include <linux/cpu.h>
  25. #include <linux/bitops.h>
  26. #include <asm/apic.h>
  27. #include <asm/stacktrace.h>
  28. #include <asm/nmi.h>
  29. static u64 perf_event_mask __read_mostly;
  30. struct event_constraint {
  31. union {
  32. unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  33. u64 idxmsk64;
  34. };
  35. u64 code;
  36. u64 cmask;
  37. int weight;
  38. };
  39. struct amd_nb {
  40. int nb_id; /* NorthBridge id */
  41. int refcnt; /* reference count */
  42. struct perf_event *owners[X86_PMC_IDX_MAX];
  43. struct event_constraint event_constraints[X86_PMC_IDX_MAX];
  44. };
  45. struct cpu_hw_events {
  46. /*
  47. * Generic x86 PMC bits
  48. */
  49. struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
  50. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  51. unsigned long interrupts;
  52. int enabled;
  53. int n_events;
  54. int n_added;
  55. int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
  56. u64 tags[X86_PMC_IDX_MAX];
  57. struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
  58. /*
  59. * Intel DebugStore bits
  60. */
  61. struct debug_store *ds;
  62. u64 pebs_enabled;
  63. /*
  64. * AMD specific bits
  65. */
  66. struct amd_nb *amd_nb;
  67. };
  68. #define __EVENT_CONSTRAINT(c, n, m, w) {\
  69. { .idxmsk64 = (n) }, \
  70. .code = (c), \
  71. .cmask = (m), \
  72. .weight = (w), \
  73. }
  74. #define EVENT_CONSTRAINT(c, n, m) \
  75. __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
  76. /*
  77. * Constraint on the Event code.
  78. */
  79. #define INTEL_EVENT_CONSTRAINT(c, n) \
  80. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
  81. /*
  82. * Constraint on the Event code + UMask + fixed-mask
  83. */
  84. #define FIXED_EVENT_CONSTRAINT(c, n) \
  85. EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
  86. /*
  87. * Constraint on the Event code + UMask
  88. */
  89. #define PEBS_EVENT_CONSTRAINT(c, n) \
  90. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
  91. #define EVENT_CONSTRAINT_END \
  92. EVENT_CONSTRAINT(0, 0, 0)
  93. #define for_each_event_constraint(e, c) \
  94. for ((e) = (c); (e)->cmask; (e)++)
  95. /*
  96. * struct x86_pmu - generic x86 pmu
  97. */
  98. struct x86_pmu {
  99. /*
  100. * Generic x86 PMC bits
  101. */
  102. const char *name;
  103. int version;
  104. int (*handle_irq)(struct pt_regs *);
  105. void (*disable_all)(void);
  106. void (*enable_all)(void);
  107. void (*enable)(struct perf_event *);
  108. void (*disable)(struct perf_event *);
  109. unsigned eventsel;
  110. unsigned perfctr;
  111. u64 (*event_map)(int);
  112. u64 (*raw_event)(u64);
  113. int max_events;
  114. int num_events;
  115. int num_events_fixed;
  116. int event_bits;
  117. u64 event_mask;
  118. int apic;
  119. u64 max_period;
  120. struct event_constraint *
  121. (*get_event_constraints)(struct cpu_hw_events *cpuc,
  122. struct perf_event *event);
  123. void (*put_event_constraints)(struct cpu_hw_events *cpuc,
  124. struct perf_event *event);
  125. struct event_constraint *event_constraints;
  126. void (*cpu_prepare)(int cpu);
  127. void (*cpu_starting)(int cpu);
  128. void (*cpu_dying)(int cpu);
  129. void (*cpu_dead)(int cpu);
  130. /*
  131. * Intel Arch Perfmon v2+
  132. */
  133. u64 intel_ctrl;
  134. /*
  135. * Intel DebugStore bits
  136. */
  137. int bts, pebs;
  138. int pebs_record_size;
  139. void (*drain_pebs)(struct pt_regs *regs);
  140. struct event_constraint *pebs_constraints;
  141. };
  142. static struct x86_pmu x86_pmu __read_mostly;
  143. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  144. .enabled = 1,
  145. };
  146. static int x86_perf_event_set_period(struct perf_event *event);
  147. /*
  148. * Generalized hw caching related hw_event table, filled
  149. * in on a per model basis. A value of 0 means
  150. * 'not supported', -1 means 'hw_event makes no sense on
  151. * this CPU', any other value means the raw hw_event
  152. * ID.
  153. */
  154. #define C(x) PERF_COUNT_HW_CACHE_##x
  155. static u64 __read_mostly hw_cache_event_ids
  156. [PERF_COUNT_HW_CACHE_MAX]
  157. [PERF_COUNT_HW_CACHE_OP_MAX]
  158. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  159. /*
  160. * Propagate event elapsed time into the generic event.
  161. * Can only be executed on the CPU where the event is active.
  162. * Returns the delta events processed.
  163. */
  164. static u64
  165. x86_perf_event_update(struct perf_event *event)
  166. {
  167. struct hw_perf_event *hwc = &event->hw;
  168. int shift = 64 - x86_pmu.event_bits;
  169. u64 prev_raw_count, new_raw_count;
  170. int idx = hwc->idx;
  171. s64 delta;
  172. if (idx == X86_PMC_IDX_FIXED_BTS)
  173. return 0;
  174. /*
  175. * Careful: an NMI might modify the previous event value.
  176. *
  177. * Our tactic to handle this is to first atomically read and
  178. * exchange a new raw count - then add that new-prev delta
  179. * count to the generic event atomically:
  180. */
  181. again:
  182. prev_raw_count = atomic64_read(&hwc->prev_count);
  183. rdmsrl(hwc->event_base + idx, new_raw_count);
  184. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  185. new_raw_count) != prev_raw_count)
  186. goto again;
  187. /*
  188. * Now we have the new raw value and have updated the prev
  189. * timestamp already. We can now calculate the elapsed delta
  190. * (event-)time and add that to the generic event.
  191. *
  192. * Careful, not all hw sign-extends above the physical width
  193. * of the count.
  194. */
  195. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  196. delta >>= shift;
  197. atomic64_add(delta, &event->count);
  198. atomic64_sub(delta, &hwc->period_left);
  199. return new_raw_count;
  200. }
  201. static atomic_t active_events;
  202. static DEFINE_MUTEX(pmc_reserve_mutex);
  203. static bool reserve_pmc_hardware(void)
  204. {
  205. #ifdef CONFIG_X86_LOCAL_APIC
  206. int i;
  207. if (nmi_watchdog == NMI_LOCAL_APIC)
  208. disable_lapic_nmi_watchdog();
  209. for (i = 0; i < x86_pmu.num_events; i++) {
  210. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  211. goto perfctr_fail;
  212. }
  213. for (i = 0; i < x86_pmu.num_events; i++) {
  214. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  215. goto eventsel_fail;
  216. }
  217. #endif
  218. return true;
  219. #ifdef CONFIG_X86_LOCAL_APIC
  220. eventsel_fail:
  221. for (i--; i >= 0; i--)
  222. release_evntsel_nmi(x86_pmu.eventsel + i);
  223. i = x86_pmu.num_events;
  224. perfctr_fail:
  225. for (i--; i >= 0; i--)
  226. release_perfctr_nmi(x86_pmu.perfctr + i);
  227. if (nmi_watchdog == NMI_LOCAL_APIC)
  228. enable_lapic_nmi_watchdog();
  229. return false;
  230. #endif
  231. }
  232. static void release_pmc_hardware(void)
  233. {
  234. #ifdef CONFIG_X86_LOCAL_APIC
  235. int i;
  236. for (i = 0; i < x86_pmu.num_events; i++) {
  237. release_perfctr_nmi(x86_pmu.perfctr + i);
  238. release_evntsel_nmi(x86_pmu.eventsel + i);
  239. }
  240. if (nmi_watchdog == NMI_LOCAL_APIC)
  241. enable_lapic_nmi_watchdog();
  242. #endif
  243. }
  244. static int reserve_ds_buffers(void);
  245. static void release_ds_buffers(void);
  246. static void hw_perf_event_destroy(struct perf_event *event)
  247. {
  248. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  249. release_pmc_hardware();
  250. release_ds_buffers();
  251. mutex_unlock(&pmc_reserve_mutex);
  252. }
  253. }
  254. static inline int x86_pmu_initialized(void)
  255. {
  256. return x86_pmu.handle_irq != NULL;
  257. }
  258. static inline int
  259. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
  260. {
  261. unsigned int cache_type, cache_op, cache_result;
  262. u64 config, val;
  263. config = attr->config;
  264. cache_type = (config >> 0) & 0xff;
  265. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  266. return -EINVAL;
  267. cache_op = (config >> 8) & 0xff;
  268. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  269. return -EINVAL;
  270. cache_result = (config >> 16) & 0xff;
  271. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  272. return -EINVAL;
  273. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  274. if (val == 0)
  275. return -ENOENT;
  276. if (val == -1)
  277. return -EINVAL;
  278. hwc->config |= val;
  279. return 0;
  280. }
  281. /*
  282. * Setup the hardware configuration for a given attr_type
  283. */
  284. static int __hw_perf_event_init(struct perf_event *event)
  285. {
  286. struct perf_event_attr *attr = &event->attr;
  287. struct hw_perf_event *hwc = &event->hw;
  288. u64 config;
  289. int err;
  290. if (!x86_pmu_initialized())
  291. return -ENODEV;
  292. err = 0;
  293. if (!atomic_inc_not_zero(&active_events)) {
  294. mutex_lock(&pmc_reserve_mutex);
  295. if (atomic_read(&active_events) == 0) {
  296. if (!reserve_pmc_hardware())
  297. err = -EBUSY;
  298. else
  299. err = reserve_ds_buffers();
  300. }
  301. if (!err)
  302. atomic_inc(&active_events);
  303. mutex_unlock(&pmc_reserve_mutex);
  304. }
  305. if (err)
  306. return err;
  307. event->destroy = hw_perf_event_destroy;
  308. /*
  309. * Generate PMC IRQs:
  310. * (keep 'enabled' bit clear for now)
  311. */
  312. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  313. hwc->idx = -1;
  314. hwc->last_cpu = -1;
  315. hwc->last_tag = ~0ULL;
  316. /*
  317. * Count user and OS events unless requested not to.
  318. */
  319. if (!attr->exclude_user)
  320. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  321. if (!attr->exclude_kernel)
  322. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  323. if (!hwc->sample_period) {
  324. hwc->sample_period = x86_pmu.max_period;
  325. hwc->last_period = hwc->sample_period;
  326. atomic64_set(&hwc->period_left, hwc->sample_period);
  327. } else {
  328. /*
  329. * If we have a PMU initialized but no APIC
  330. * interrupts, we cannot sample hardware
  331. * events (user-space has to fall back and
  332. * sample via a hrtimer based software event):
  333. */
  334. if (!x86_pmu.apic)
  335. return -EOPNOTSUPP;
  336. }
  337. /*
  338. * Raw hw_event type provide the config in the hw_event structure
  339. */
  340. if (attr->type == PERF_TYPE_RAW) {
  341. hwc->config |= x86_pmu.raw_event(attr->config);
  342. if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
  343. perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  344. return -EACCES;
  345. return 0;
  346. }
  347. if (attr->type == PERF_TYPE_HW_CACHE)
  348. return set_ext_hw_attr(hwc, attr);
  349. if (attr->config >= x86_pmu.max_events)
  350. return -EINVAL;
  351. /*
  352. * The generic map:
  353. */
  354. config = x86_pmu.event_map(attr->config);
  355. if (config == 0)
  356. return -ENOENT;
  357. if (config == -1LL)
  358. return -EINVAL;
  359. /*
  360. * Branch tracing:
  361. */
  362. if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
  363. (hwc->sample_period == 1)) {
  364. /* BTS is not supported by this architecture. */
  365. if (!x86_pmu.bts)
  366. return -EOPNOTSUPP;
  367. /* BTS is currently only allowed for user-mode. */
  368. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  369. return -EOPNOTSUPP;
  370. }
  371. hwc->config |= config;
  372. return 0;
  373. }
  374. static void x86_pmu_disable_all(void)
  375. {
  376. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  377. int idx;
  378. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  379. u64 val;
  380. if (!test_bit(idx, cpuc->active_mask))
  381. continue;
  382. rdmsrl(x86_pmu.eventsel + idx, val);
  383. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  384. continue;
  385. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  386. wrmsrl(x86_pmu.eventsel + idx, val);
  387. }
  388. }
  389. void hw_perf_disable(void)
  390. {
  391. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  392. if (!x86_pmu_initialized())
  393. return;
  394. if (!cpuc->enabled)
  395. return;
  396. cpuc->n_added = 0;
  397. cpuc->enabled = 0;
  398. barrier();
  399. x86_pmu.disable_all();
  400. }
  401. static void x86_pmu_enable_all(void)
  402. {
  403. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  404. int idx;
  405. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  406. struct perf_event *event = cpuc->events[idx];
  407. u64 val;
  408. if (!test_bit(idx, cpuc->active_mask))
  409. continue;
  410. val = event->hw.config;
  411. val |= ARCH_PERFMON_EVENTSEL_ENABLE;
  412. wrmsrl(x86_pmu.eventsel + idx, val);
  413. }
  414. }
  415. static const struct pmu pmu;
  416. static inline int is_x86_event(struct perf_event *event)
  417. {
  418. return event->pmu == &pmu;
  419. }
  420. static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  421. {
  422. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  423. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  424. int i, j, w, wmax, num = 0;
  425. struct hw_perf_event *hwc;
  426. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  427. for (i = 0; i < n; i++) {
  428. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  429. constraints[i] = c;
  430. }
  431. /*
  432. * fastpath, try to reuse previous register
  433. */
  434. for (i = 0; i < n; i++) {
  435. hwc = &cpuc->event_list[i]->hw;
  436. c = constraints[i];
  437. /* never assigned */
  438. if (hwc->idx == -1)
  439. break;
  440. /* constraint still honored */
  441. if (!test_bit(hwc->idx, c->idxmsk))
  442. break;
  443. /* not already used */
  444. if (test_bit(hwc->idx, used_mask))
  445. break;
  446. __set_bit(hwc->idx, used_mask);
  447. if (assign)
  448. assign[i] = hwc->idx;
  449. }
  450. if (i == n)
  451. goto done;
  452. /*
  453. * begin slow path
  454. */
  455. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  456. /*
  457. * weight = number of possible counters
  458. *
  459. * 1 = most constrained, only works on one counter
  460. * wmax = least constrained, works on any counter
  461. *
  462. * assign events to counters starting with most
  463. * constrained events.
  464. */
  465. wmax = x86_pmu.num_events;
  466. /*
  467. * when fixed event counters are present,
  468. * wmax is incremented by 1 to account
  469. * for one more choice
  470. */
  471. if (x86_pmu.num_events_fixed)
  472. wmax++;
  473. for (w = 1, num = n; num && w <= wmax; w++) {
  474. /* for each event */
  475. for (i = 0; num && i < n; i++) {
  476. c = constraints[i];
  477. hwc = &cpuc->event_list[i]->hw;
  478. if (c->weight != w)
  479. continue;
  480. for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
  481. if (!test_bit(j, used_mask))
  482. break;
  483. }
  484. if (j == X86_PMC_IDX_MAX)
  485. break;
  486. __set_bit(j, used_mask);
  487. if (assign)
  488. assign[i] = j;
  489. num--;
  490. }
  491. }
  492. done:
  493. /*
  494. * scheduling failed or is just a simulation,
  495. * free resources if necessary
  496. */
  497. if (!assign || num) {
  498. for (i = 0; i < n; i++) {
  499. if (x86_pmu.put_event_constraints)
  500. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  501. }
  502. }
  503. return num ? -ENOSPC : 0;
  504. }
  505. /*
  506. * dogrp: true if must collect siblings events (group)
  507. * returns total number of events and error code
  508. */
  509. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  510. {
  511. struct perf_event *event;
  512. int n, max_count;
  513. max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
  514. /* current number of events already accepted */
  515. n = cpuc->n_events;
  516. if (is_x86_event(leader)) {
  517. if (n >= max_count)
  518. return -ENOSPC;
  519. cpuc->event_list[n] = leader;
  520. n++;
  521. }
  522. if (!dogrp)
  523. return n;
  524. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  525. if (!is_x86_event(event) ||
  526. event->state <= PERF_EVENT_STATE_OFF)
  527. continue;
  528. if (n >= max_count)
  529. return -ENOSPC;
  530. cpuc->event_list[n] = event;
  531. n++;
  532. }
  533. return n;
  534. }
  535. static inline void x86_assign_hw_event(struct perf_event *event,
  536. struct cpu_hw_events *cpuc, int i)
  537. {
  538. struct hw_perf_event *hwc = &event->hw;
  539. hwc->idx = cpuc->assign[i];
  540. hwc->last_cpu = smp_processor_id();
  541. hwc->last_tag = ++cpuc->tags[i];
  542. if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
  543. hwc->config_base = 0;
  544. hwc->event_base = 0;
  545. } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
  546. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  547. /*
  548. * We set it so that event_base + idx in wrmsr/rdmsr maps to
  549. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  550. */
  551. hwc->event_base =
  552. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  553. } else {
  554. hwc->config_base = x86_pmu.eventsel;
  555. hwc->event_base = x86_pmu.perfctr;
  556. }
  557. }
  558. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  559. struct cpu_hw_events *cpuc,
  560. int i)
  561. {
  562. return hwc->idx == cpuc->assign[i] &&
  563. hwc->last_cpu == smp_processor_id() &&
  564. hwc->last_tag == cpuc->tags[i];
  565. }
  566. static int x86_pmu_start(struct perf_event *event);
  567. static void x86_pmu_stop(struct perf_event *event);
  568. void hw_perf_enable(void)
  569. {
  570. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  571. struct perf_event *event;
  572. struct hw_perf_event *hwc;
  573. int i;
  574. if (!x86_pmu_initialized())
  575. return;
  576. if (cpuc->enabled)
  577. return;
  578. if (cpuc->n_added) {
  579. int n_running = cpuc->n_events - cpuc->n_added;
  580. /*
  581. * apply assignment obtained either from
  582. * hw_perf_group_sched_in() or x86_pmu_enable()
  583. *
  584. * step1: save events moving to new counters
  585. * step2: reprogram moved events into new counters
  586. */
  587. for (i = 0; i < n_running; i++) {
  588. event = cpuc->event_list[i];
  589. hwc = &event->hw;
  590. /*
  591. * we can avoid reprogramming counter if:
  592. * - assigned same counter as last time
  593. * - running on same CPU as last time
  594. * - no other event has used the counter since
  595. */
  596. if (hwc->idx == -1 ||
  597. match_prev_assignment(hwc, cpuc, i))
  598. continue;
  599. x86_pmu_stop(event);
  600. hwc->idx = -1;
  601. }
  602. for (i = 0; i < cpuc->n_events; i++) {
  603. event = cpuc->event_list[i];
  604. hwc = &event->hw;
  605. if (i < n_running &&
  606. match_prev_assignment(hwc, cpuc, i))
  607. continue;
  608. if (hwc->idx == -1)
  609. x86_assign_hw_event(event, cpuc, i);
  610. x86_pmu_start(event);
  611. }
  612. cpuc->n_added = 0;
  613. perf_events_lapic_init();
  614. }
  615. cpuc->enabled = 1;
  616. barrier();
  617. x86_pmu.enable_all();
  618. }
  619. static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
  620. {
  621. (void)checking_wrmsrl(hwc->config_base + hwc->idx,
  622. hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
  623. }
  624. static inline void x86_pmu_disable_event(struct perf_event *event)
  625. {
  626. struct hw_perf_event *hwc = &event->hw;
  627. (void)checking_wrmsrl(hwc->config_base + hwc->idx, hwc->config);
  628. }
  629. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  630. /*
  631. * Set the next IRQ period, based on the hwc->period_left value.
  632. * To be called with the event disabled in hw:
  633. */
  634. static int
  635. x86_perf_event_set_period(struct perf_event *event)
  636. {
  637. struct hw_perf_event *hwc = &event->hw;
  638. s64 left = atomic64_read(&hwc->period_left);
  639. s64 period = hwc->sample_period;
  640. int err, ret = 0, idx = hwc->idx;
  641. if (idx == X86_PMC_IDX_FIXED_BTS)
  642. return 0;
  643. /*
  644. * If we are way outside a reasonable range then just skip forward:
  645. */
  646. if (unlikely(left <= -period)) {
  647. left = period;
  648. atomic64_set(&hwc->period_left, left);
  649. hwc->last_period = period;
  650. ret = 1;
  651. }
  652. if (unlikely(left <= 0)) {
  653. left += period;
  654. atomic64_set(&hwc->period_left, left);
  655. hwc->last_period = period;
  656. ret = 1;
  657. }
  658. /*
  659. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  660. */
  661. if (unlikely(left < 2))
  662. left = 2;
  663. if (left > x86_pmu.max_period)
  664. left = x86_pmu.max_period;
  665. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  666. /*
  667. * The hw event starts counting from this event offset,
  668. * mark it to be able to extra future deltas:
  669. */
  670. atomic64_set(&hwc->prev_count, (u64)-left);
  671. err = checking_wrmsrl(hwc->event_base + idx,
  672. (u64)(-left) & x86_pmu.event_mask);
  673. perf_event_update_userpage(event);
  674. return ret;
  675. }
  676. static void x86_pmu_enable_event(struct perf_event *event)
  677. {
  678. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  679. if (cpuc->enabled)
  680. __x86_pmu_enable_event(&event->hw);
  681. }
  682. /*
  683. * activate a single event
  684. *
  685. * The event is added to the group of enabled events
  686. * but only if it can be scehduled with existing events.
  687. *
  688. * Called with PMU disabled. If successful and return value 1,
  689. * then guaranteed to call perf_enable() and hw_perf_enable()
  690. */
  691. static int x86_pmu_enable(struct perf_event *event)
  692. {
  693. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  694. struct hw_perf_event *hwc;
  695. int assign[X86_PMC_IDX_MAX];
  696. int n, n0, ret;
  697. hwc = &event->hw;
  698. n0 = cpuc->n_events;
  699. n = collect_events(cpuc, event, false);
  700. if (n < 0)
  701. return n;
  702. ret = x86_schedule_events(cpuc, n, assign);
  703. if (ret)
  704. return ret;
  705. /*
  706. * copy new assignment, now we know it is possible
  707. * will be used by hw_perf_enable()
  708. */
  709. memcpy(cpuc->assign, assign, n*sizeof(int));
  710. cpuc->n_events = n;
  711. cpuc->n_added += n - n0;
  712. return 0;
  713. }
  714. static int x86_pmu_start(struct perf_event *event)
  715. {
  716. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  717. int idx = event->hw.idx;
  718. if (idx == -1)
  719. return -EAGAIN;
  720. x86_perf_event_set_period(event);
  721. cpuc->events[idx] = event;
  722. __set_bit(idx, cpuc->active_mask);
  723. x86_pmu.enable(event);
  724. perf_event_update_userpage(event);
  725. return 0;
  726. }
  727. static void x86_pmu_unthrottle(struct perf_event *event)
  728. {
  729. int ret = x86_pmu_start(event);
  730. WARN_ON_ONCE(ret);
  731. }
  732. void perf_event_print_debug(void)
  733. {
  734. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  735. u64 pebs;
  736. struct cpu_hw_events *cpuc;
  737. unsigned long flags;
  738. int cpu, idx;
  739. if (!x86_pmu.num_events)
  740. return;
  741. local_irq_save(flags);
  742. cpu = smp_processor_id();
  743. cpuc = &per_cpu(cpu_hw_events, cpu);
  744. if (x86_pmu.version >= 2) {
  745. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  746. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  747. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  748. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  749. rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
  750. pr_info("\n");
  751. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  752. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  753. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  754. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  755. pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
  756. }
  757. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  758. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  759. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  760. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  761. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  762. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  763. cpu, idx, pmc_ctrl);
  764. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  765. cpu, idx, pmc_count);
  766. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  767. cpu, idx, prev_left);
  768. }
  769. for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
  770. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  771. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  772. cpu, idx, pmc_count);
  773. }
  774. local_irq_restore(flags);
  775. }
  776. static void x86_pmu_stop(struct perf_event *event)
  777. {
  778. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  779. struct hw_perf_event *hwc = &event->hw;
  780. int idx = hwc->idx;
  781. if (!__test_and_clear_bit(idx, cpuc->active_mask))
  782. return;
  783. x86_pmu.disable(event);
  784. /*
  785. * Drain the remaining delta count out of a event
  786. * that we are disabling:
  787. */
  788. x86_perf_event_update(event);
  789. cpuc->events[idx] = NULL;
  790. }
  791. static void x86_pmu_disable(struct perf_event *event)
  792. {
  793. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  794. int i;
  795. x86_pmu_stop(event);
  796. for (i = 0; i < cpuc->n_events; i++) {
  797. if (event == cpuc->event_list[i]) {
  798. if (x86_pmu.put_event_constraints)
  799. x86_pmu.put_event_constraints(cpuc, event);
  800. while (++i < cpuc->n_events)
  801. cpuc->event_list[i-1] = cpuc->event_list[i];
  802. --cpuc->n_events;
  803. break;
  804. }
  805. }
  806. perf_event_update_userpage(event);
  807. }
  808. static int x86_pmu_handle_irq(struct pt_regs *regs)
  809. {
  810. struct perf_sample_data data;
  811. struct cpu_hw_events *cpuc;
  812. struct perf_event *event;
  813. struct hw_perf_event *hwc;
  814. int idx, handled = 0;
  815. u64 val;
  816. perf_sample_data_init(&data, 0);
  817. cpuc = &__get_cpu_var(cpu_hw_events);
  818. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  819. if (!test_bit(idx, cpuc->active_mask))
  820. continue;
  821. event = cpuc->events[idx];
  822. hwc = &event->hw;
  823. val = x86_perf_event_update(event);
  824. if (val & (1ULL << (x86_pmu.event_bits - 1)))
  825. continue;
  826. /*
  827. * event overflow
  828. */
  829. handled = 1;
  830. data.period = event->hw.last_period;
  831. if (!x86_perf_event_set_period(event))
  832. continue;
  833. if (perf_event_overflow(event, 1, &data, regs))
  834. x86_pmu_stop(event);
  835. }
  836. if (handled)
  837. inc_irq_stat(apic_perf_irqs);
  838. return handled;
  839. }
  840. void smp_perf_pending_interrupt(struct pt_regs *regs)
  841. {
  842. irq_enter();
  843. ack_APIC_irq();
  844. inc_irq_stat(apic_pending_irqs);
  845. perf_event_do_pending();
  846. irq_exit();
  847. }
  848. void set_perf_event_pending(void)
  849. {
  850. #ifdef CONFIG_X86_LOCAL_APIC
  851. if (!x86_pmu.apic || !x86_pmu_initialized())
  852. return;
  853. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  854. #endif
  855. }
  856. void perf_events_lapic_init(void)
  857. {
  858. #ifdef CONFIG_X86_LOCAL_APIC
  859. if (!x86_pmu.apic || !x86_pmu_initialized())
  860. return;
  861. /*
  862. * Always use NMI for PMU
  863. */
  864. apic_write(APIC_LVTPC, APIC_DM_NMI);
  865. #endif
  866. }
  867. static int __kprobes
  868. perf_event_nmi_handler(struct notifier_block *self,
  869. unsigned long cmd, void *__args)
  870. {
  871. struct die_args *args = __args;
  872. struct pt_regs *regs;
  873. if (!atomic_read(&active_events))
  874. return NOTIFY_DONE;
  875. switch (cmd) {
  876. case DIE_NMI:
  877. case DIE_NMI_IPI:
  878. break;
  879. default:
  880. return NOTIFY_DONE;
  881. }
  882. regs = args->regs;
  883. #ifdef CONFIG_X86_LOCAL_APIC
  884. apic_write(APIC_LVTPC, APIC_DM_NMI);
  885. #endif
  886. /*
  887. * Can't rely on the handled return value to say it was our NMI, two
  888. * events could trigger 'simultaneously' raising two back-to-back NMIs.
  889. *
  890. * If the first NMI handles both, the latter will be empty and daze
  891. * the CPU.
  892. */
  893. x86_pmu.handle_irq(regs);
  894. return NOTIFY_STOP;
  895. }
  896. static __read_mostly struct notifier_block perf_event_nmi_notifier = {
  897. .notifier_call = perf_event_nmi_handler,
  898. .next = NULL,
  899. .priority = 1
  900. };
  901. static struct event_constraint unconstrained;
  902. static struct event_constraint emptyconstraint;
  903. static struct event_constraint *
  904. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  905. {
  906. struct event_constraint *c;
  907. if (x86_pmu.event_constraints) {
  908. for_each_event_constraint(c, x86_pmu.event_constraints) {
  909. if ((event->hw.config & c->cmask) == c->code)
  910. return c;
  911. }
  912. }
  913. return &unconstrained;
  914. }
  915. static int x86_event_sched_in(struct perf_event *event,
  916. struct perf_cpu_context *cpuctx)
  917. {
  918. int ret = 0;
  919. event->state = PERF_EVENT_STATE_ACTIVE;
  920. event->oncpu = smp_processor_id();
  921. event->tstamp_running += event->ctx->time - event->tstamp_stopped;
  922. if (!is_x86_event(event))
  923. ret = event->pmu->enable(event);
  924. if (!ret && !is_software_event(event))
  925. cpuctx->active_oncpu++;
  926. if (!ret && event->attr.exclusive)
  927. cpuctx->exclusive = 1;
  928. return ret;
  929. }
  930. static void x86_event_sched_out(struct perf_event *event,
  931. struct perf_cpu_context *cpuctx)
  932. {
  933. event->state = PERF_EVENT_STATE_INACTIVE;
  934. event->oncpu = -1;
  935. if (!is_x86_event(event))
  936. event->pmu->disable(event);
  937. event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
  938. if (!is_software_event(event))
  939. cpuctx->active_oncpu--;
  940. if (event->attr.exclusive || !cpuctx->active_oncpu)
  941. cpuctx->exclusive = 0;
  942. }
  943. /*
  944. * Called to enable a whole group of events.
  945. * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
  946. * Assumes the caller has disabled interrupts and has
  947. * frozen the PMU with hw_perf_save_disable.
  948. *
  949. * called with PMU disabled. If successful and return value 1,
  950. * then guaranteed to call perf_enable() and hw_perf_enable()
  951. */
  952. int hw_perf_group_sched_in(struct perf_event *leader,
  953. struct perf_cpu_context *cpuctx,
  954. struct perf_event_context *ctx)
  955. {
  956. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  957. struct perf_event *sub;
  958. int assign[X86_PMC_IDX_MAX];
  959. int n0, n1, ret;
  960. /* n0 = total number of events */
  961. n0 = collect_events(cpuc, leader, true);
  962. if (n0 < 0)
  963. return n0;
  964. ret = x86_schedule_events(cpuc, n0, assign);
  965. if (ret)
  966. return ret;
  967. ret = x86_event_sched_in(leader, cpuctx);
  968. if (ret)
  969. return ret;
  970. n1 = 1;
  971. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  972. if (sub->state > PERF_EVENT_STATE_OFF) {
  973. ret = x86_event_sched_in(sub, cpuctx);
  974. if (ret)
  975. goto undo;
  976. ++n1;
  977. }
  978. }
  979. /*
  980. * copy new assignment, now we know it is possible
  981. * will be used by hw_perf_enable()
  982. */
  983. memcpy(cpuc->assign, assign, n0*sizeof(int));
  984. cpuc->n_events = n0;
  985. cpuc->n_added += n1;
  986. ctx->nr_active += n1;
  987. /*
  988. * 1 means successful and events are active
  989. * This is not quite true because we defer
  990. * actual activation until hw_perf_enable() but
  991. * this way we* ensure caller won't try to enable
  992. * individual events
  993. */
  994. return 1;
  995. undo:
  996. x86_event_sched_out(leader, cpuctx);
  997. n0 = 1;
  998. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  999. if (sub->state == PERF_EVENT_STATE_ACTIVE) {
  1000. x86_event_sched_out(sub, cpuctx);
  1001. if (++n0 == n1)
  1002. break;
  1003. }
  1004. }
  1005. return ret;
  1006. }
  1007. #include "perf_event_amd.c"
  1008. #include "perf_event_p6.c"
  1009. #include "perf_event_intel_ds.c"
  1010. #include "perf_event_intel.c"
  1011. static int __cpuinit
  1012. x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  1013. {
  1014. unsigned int cpu = (long)hcpu;
  1015. switch (action & ~CPU_TASKS_FROZEN) {
  1016. case CPU_UP_PREPARE:
  1017. if (x86_pmu.cpu_prepare)
  1018. x86_pmu.cpu_prepare(cpu);
  1019. break;
  1020. case CPU_STARTING:
  1021. if (x86_pmu.cpu_starting)
  1022. x86_pmu.cpu_starting(cpu);
  1023. break;
  1024. case CPU_DYING:
  1025. if (x86_pmu.cpu_dying)
  1026. x86_pmu.cpu_dying(cpu);
  1027. break;
  1028. case CPU_DEAD:
  1029. if (x86_pmu.cpu_dead)
  1030. x86_pmu.cpu_dead(cpu);
  1031. break;
  1032. default:
  1033. break;
  1034. }
  1035. return NOTIFY_OK;
  1036. }
  1037. static void __init pmu_check_apic(void)
  1038. {
  1039. if (cpu_has_apic)
  1040. return;
  1041. x86_pmu.apic = 0;
  1042. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1043. pr_info("no hardware sampling interrupt available.\n");
  1044. }
  1045. void __init init_hw_perf_events(void)
  1046. {
  1047. struct event_constraint *c;
  1048. int err;
  1049. pr_info("Performance Events: ");
  1050. switch (boot_cpu_data.x86_vendor) {
  1051. case X86_VENDOR_INTEL:
  1052. err = intel_pmu_init();
  1053. break;
  1054. case X86_VENDOR_AMD:
  1055. err = amd_pmu_init();
  1056. break;
  1057. default:
  1058. return;
  1059. }
  1060. if (err != 0) {
  1061. pr_cont("no PMU driver, software events only.\n");
  1062. return;
  1063. }
  1064. pmu_check_apic();
  1065. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1066. if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
  1067. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  1068. x86_pmu.num_events, X86_PMC_MAX_GENERIC);
  1069. x86_pmu.num_events = X86_PMC_MAX_GENERIC;
  1070. }
  1071. perf_event_mask = (1 << x86_pmu.num_events) - 1;
  1072. perf_max_events = x86_pmu.num_events;
  1073. if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
  1074. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  1075. x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
  1076. x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
  1077. }
  1078. perf_event_mask |=
  1079. ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
  1080. x86_pmu.intel_ctrl = perf_event_mask;
  1081. perf_events_lapic_init();
  1082. register_die_notifier(&perf_event_nmi_notifier);
  1083. unconstrained = (struct event_constraint)
  1084. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
  1085. 0, x86_pmu.num_events);
  1086. if (x86_pmu.event_constraints) {
  1087. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1088. if (c->cmask != INTEL_ARCH_FIXED_MASK)
  1089. continue;
  1090. c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
  1091. c->weight += x86_pmu.num_events;
  1092. }
  1093. }
  1094. pr_info("... version: %d\n", x86_pmu.version);
  1095. pr_info("... bit width: %d\n", x86_pmu.event_bits);
  1096. pr_info("... generic registers: %d\n", x86_pmu.num_events);
  1097. pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
  1098. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1099. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
  1100. pr_info("... event mask: %016Lx\n", perf_event_mask);
  1101. perf_cpu_notifier(x86_pmu_notifier);
  1102. }
  1103. static inline void x86_pmu_read(struct perf_event *event)
  1104. {
  1105. x86_perf_event_update(event);
  1106. }
  1107. static const struct pmu pmu = {
  1108. .enable = x86_pmu_enable,
  1109. .disable = x86_pmu_disable,
  1110. .start = x86_pmu_start,
  1111. .stop = x86_pmu_stop,
  1112. .read = x86_pmu_read,
  1113. .unthrottle = x86_pmu_unthrottle,
  1114. };
  1115. /*
  1116. * validate that we can schedule this event
  1117. */
  1118. static int validate_event(struct perf_event *event)
  1119. {
  1120. struct cpu_hw_events *fake_cpuc;
  1121. struct event_constraint *c;
  1122. int ret = 0;
  1123. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1124. if (!fake_cpuc)
  1125. return -ENOMEM;
  1126. c = x86_pmu.get_event_constraints(fake_cpuc, event);
  1127. if (!c || !c->weight)
  1128. ret = -ENOSPC;
  1129. if (x86_pmu.put_event_constraints)
  1130. x86_pmu.put_event_constraints(fake_cpuc, event);
  1131. kfree(fake_cpuc);
  1132. return ret;
  1133. }
  1134. /*
  1135. * validate a single event group
  1136. *
  1137. * validation include:
  1138. * - check events are compatible which each other
  1139. * - events do not compete for the same counter
  1140. * - number of events <= number of counters
  1141. *
  1142. * validation ensures the group can be loaded onto the
  1143. * PMU if it was the only group available.
  1144. */
  1145. static int validate_group(struct perf_event *event)
  1146. {
  1147. struct perf_event *leader = event->group_leader;
  1148. struct cpu_hw_events *fake_cpuc;
  1149. int ret, n;
  1150. ret = -ENOMEM;
  1151. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1152. if (!fake_cpuc)
  1153. goto out;
  1154. /*
  1155. * the event is not yet connected with its
  1156. * siblings therefore we must first collect
  1157. * existing siblings, then add the new event
  1158. * before we can simulate the scheduling
  1159. */
  1160. ret = -ENOSPC;
  1161. n = collect_events(fake_cpuc, leader, true);
  1162. if (n < 0)
  1163. goto out_free;
  1164. fake_cpuc->n_events = n;
  1165. n = collect_events(fake_cpuc, event, false);
  1166. if (n < 0)
  1167. goto out_free;
  1168. fake_cpuc->n_events = n;
  1169. ret = x86_schedule_events(fake_cpuc, n, NULL);
  1170. out_free:
  1171. kfree(fake_cpuc);
  1172. out:
  1173. return ret;
  1174. }
  1175. const struct pmu *hw_perf_event_init(struct perf_event *event)
  1176. {
  1177. const struct pmu *tmp;
  1178. int err;
  1179. err = __hw_perf_event_init(event);
  1180. if (!err) {
  1181. /*
  1182. * we temporarily connect event to its pmu
  1183. * such that validate_group() can classify
  1184. * it as an x86 event using is_x86_event()
  1185. */
  1186. tmp = event->pmu;
  1187. event->pmu = &pmu;
  1188. if (event->group_leader != event)
  1189. err = validate_group(event);
  1190. else
  1191. err = validate_event(event);
  1192. event->pmu = tmp;
  1193. }
  1194. if (err) {
  1195. if (event->destroy)
  1196. event->destroy(event);
  1197. return ERR_PTR(err);
  1198. }
  1199. return &pmu;
  1200. }
  1201. /*
  1202. * callchain support
  1203. */
  1204. static inline
  1205. void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  1206. {
  1207. if (entry->nr < PERF_MAX_STACK_DEPTH)
  1208. entry->ip[entry->nr++] = ip;
  1209. }
  1210. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
  1211. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
  1212. static void
  1213. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  1214. {
  1215. /* Ignore warnings */
  1216. }
  1217. static void backtrace_warning(void *data, char *msg)
  1218. {
  1219. /* Ignore warnings */
  1220. }
  1221. static int backtrace_stack(void *data, char *name)
  1222. {
  1223. return 0;
  1224. }
  1225. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1226. {
  1227. struct perf_callchain_entry *entry = data;
  1228. if (reliable)
  1229. callchain_store(entry, addr);
  1230. }
  1231. static const struct stacktrace_ops backtrace_ops = {
  1232. .warning = backtrace_warning,
  1233. .warning_symbol = backtrace_warning_symbol,
  1234. .stack = backtrace_stack,
  1235. .address = backtrace_address,
  1236. .walk_stack = print_context_stack_bp,
  1237. };
  1238. #include "../dumpstack.h"
  1239. static void
  1240. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1241. {
  1242. callchain_store(entry, PERF_CONTEXT_KERNEL);
  1243. callchain_store(entry, regs->ip);
  1244. dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
  1245. }
  1246. /*
  1247. * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
  1248. */
  1249. static unsigned long
  1250. copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
  1251. {
  1252. unsigned long offset, addr = (unsigned long)from;
  1253. int type = in_nmi() ? KM_NMI : KM_IRQ0;
  1254. unsigned long size, len = 0;
  1255. struct page *page;
  1256. void *map;
  1257. int ret;
  1258. do {
  1259. ret = __get_user_pages_fast(addr, 1, 0, &page);
  1260. if (!ret)
  1261. break;
  1262. offset = addr & (PAGE_SIZE - 1);
  1263. size = min(PAGE_SIZE - offset, n - len);
  1264. map = kmap_atomic(page, type);
  1265. memcpy(to, map+offset, size);
  1266. kunmap_atomic(map, type);
  1267. put_page(page);
  1268. len += size;
  1269. to += size;
  1270. addr += size;
  1271. } while (len < n);
  1272. return len;
  1273. }
  1274. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  1275. {
  1276. unsigned long bytes;
  1277. bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
  1278. return bytes == sizeof(*frame);
  1279. }
  1280. static void
  1281. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1282. {
  1283. struct stack_frame frame;
  1284. const void __user *fp;
  1285. if (!user_mode(regs))
  1286. regs = task_pt_regs(current);
  1287. fp = (void __user *)regs->bp;
  1288. callchain_store(entry, PERF_CONTEXT_USER);
  1289. callchain_store(entry, regs->ip);
  1290. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1291. frame.next_frame = NULL;
  1292. frame.return_address = 0;
  1293. if (!copy_stack_frame(fp, &frame))
  1294. break;
  1295. if ((unsigned long)fp < regs->sp)
  1296. break;
  1297. callchain_store(entry, frame.return_address);
  1298. fp = frame.next_frame;
  1299. }
  1300. }
  1301. static void
  1302. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1303. {
  1304. int is_user;
  1305. if (!regs)
  1306. return;
  1307. is_user = user_mode(regs);
  1308. if (is_user && current->state != TASK_RUNNING)
  1309. return;
  1310. if (!is_user)
  1311. perf_callchain_kernel(regs, entry);
  1312. if (current->mm)
  1313. perf_callchain_user(regs, entry);
  1314. }
  1315. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1316. {
  1317. struct perf_callchain_entry *entry;
  1318. if (in_nmi())
  1319. entry = &__get_cpu_var(pmc_nmi_entry);
  1320. else
  1321. entry = &__get_cpu_var(pmc_irq_entry);
  1322. entry->nr = 0;
  1323. perf_do_callchain(regs, entry);
  1324. return entry;
  1325. }