amd64_edac.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
  22. * later.
  23. */
  24. static int ddr2_dbam_revCG[] = {
  25. [0] = 32,
  26. [1] = 64,
  27. [2] = 128,
  28. [3] = 256,
  29. [4] = 512,
  30. [5] = 1024,
  31. [6] = 2048,
  32. };
  33. static int ddr2_dbam_revD[] = {
  34. [0] = 32,
  35. [1] = 64,
  36. [2 ... 3] = 128,
  37. [4] = 256,
  38. [5] = 512,
  39. [6] = 256,
  40. [7] = 512,
  41. [8 ... 9] = 1024,
  42. [10] = 2048,
  43. };
  44. static int ddr2_dbam[] = { [0] = 128,
  45. [1] = 256,
  46. [2 ... 4] = 512,
  47. [5 ... 6] = 1024,
  48. [7 ... 8] = 2048,
  49. [9 ... 10] = 4096,
  50. [11] = 8192,
  51. };
  52. static int ddr3_dbam[] = { [0] = -1,
  53. [1] = 256,
  54. [2] = 512,
  55. [3 ... 4] = -1,
  56. [5 ... 6] = 1024,
  57. [7 ... 8] = 2048,
  58. [9 ... 10] = 4096,
  59. [11] = 8192,
  60. };
  61. /*
  62. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  63. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  64. * or higher value'.
  65. *
  66. *FIXME: Produce a better mapping/linearisation.
  67. */
  68. struct scrubrate {
  69. u32 scrubval; /* bit pattern for scrub rate */
  70. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  71. } scrubrates[] = {
  72. { 0x01, 1600000000UL},
  73. { 0x02, 800000000UL},
  74. { 0x03, 400000000UL},
  75. { 0x04, 200000000UL},
  76. { 0x05, 100000000UL},
  77. { 0x06, 50000000UL},
  78. { 0x07, 25000000UL},
  79. { 0x08, 12284069UL},
  80. { 0x09, 6274509UL},
  81. { 0x0A, 3121951UL},
  82. { 0x0B, 1560975UL},
  83. { 0x0C, 781440UL},
  84. { 0x0D, 390720UL},
  85. { 0x0E, 195300UL},
  86. { 0x0F, 97650UL},
  87. { 0x10, 48854UL},
  88. { 0x11, 24427UL},
  89. { 0x12, 12213UL},
  90. { 0x13, 6101UL},
  91. { 0x14, 3051UL},
  92. { 0x15, 1523UL},
  93. { 0x16, 761UL},
  94. { 0x00, 0UL}, /* scrubbing off */
  95. };
  96. static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  97. u32 *val, const char *func)
  98. {
  99. int err = 0;
  100. err = pci_read_config_dword(pdev, offset, val);
  101. if (err)
  102. amd64_warn("%s: error reading F%dx%03x.\n",
  103. func, PCI_FUNC(pdev->devfn), offset);
  104. return err;
  105. }
  106. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  107. u32 val, const char *func)
  108. {
  109. int err = 0;
  110. err = pci_write_config_dword(pdev, offset, val);
  111. if (err)
  112. amd64_warn("%s: error writing to F%dx%03x.\n",
  113. func, PCI_FUNC(pdev->devfn), offset);
  114. return err;
  115. }
  116. /*
  117. *
  118. * Depending on the family, F2 DCT reads need special handling:
  119. *
  120. * K8: has a single DCT only
  121. *
  122. * F10h: each DCT has its own set of regs
  123. * DCT0 -> F2x040..
  124. * DCT1 -> F2x140..
  125. *
  126. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  127. *
  128. */
  129. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  130. const char *func)
  131. {
  132. if (addr >= 0x100)
  133. return -EINVAL;
  134. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  135. }
  136. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  137. const char *func)
  138. {
  139. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  140. }
  141. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  142. const char *func)
  143. {
  144. u32 reg = 0;
  145. u8 dct = 0;
  146. if (addr >= 0x140 && addr <= 0x1a0) {
  147. dct = 1;
  148. addr -= 0x100;
  149. }
  150. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  151. reg &= 0xfffffffe;
  152. reg |= dct;
  153. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  154. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  155. }
  156. /*
  157. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  158. * hardware and can involve L2 cache, dcache as well as the main memory. With
  159. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  160. * functionality.
  161. *
  162. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  163. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  164. * bytes/sec for the setting.
  165. *
  166. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  167. * other archs, we might not have access to the caches directly.
  168. */
  169. /*
  170. * scan the scrub rate mapping table for a close or matching bandwidth value to
  171. * issue. If requested is too big, then use last maximum value found.
  172. */
  173. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  174. {
  175. u32 scrubval;
  176. int i;
  177. /*
  178. * map the configured rate (new_bw) to a value specific to the AMD64
  179. * memory controller and apply to register. Search for the first
  180. * bandwidth entry that is greater or equal than the setting requested
  181. * and program that. If at last entry, turn off DRAM scrubbing.
  182. */
  183. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  184. /*
  185. * skip scrub rates which aren't recommended
  186. * (see F10 BKDG, F3x58)
  187. */
  188. if (scrubrates[i].scrubval < min_rate)
  189. continue;
  190. if (scrubrates[i].bandwidth <= new_bw)
  191. break;
  192. /*
  193. * if no suitable bandwidth found, turn off DRAM scrubbing
  194. * entirely by falling back to the last element in the
  195. * scrubrates array.
  196. */
  197. }
  198. scrubval = scrubrates[i].scrubval;
  199. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  200. if (scrubval)
  201. return scrubrates[i].bandwidth;
  202. return 0;
  203. }
  204. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  205. {
  206. struct amd64_pvt *pvt = mci->pvt_info;
  207. return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
  208. }
  209. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  210. {
  211. struct amd64_pvt *pvt = mci->pvt_info;
  212. u32 scrubval = 0;
  213. int i, retval = -EINVAL;
  214. amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
  215. scrubval = scrubval & 0x001F;
  216. amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
  217. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  218. if (scrubrates[i].scrubval == scrubval) {
  219. retval = scrubrates[i].bandwidth;
  220. break;
  221. }
  222. }
  223. return retval;
  224. }
  225. /*
  226. * returns true if the SysAddr given by sys_addr matches the
  227. * DRAM base/limit associated with node_id
  228. */
  229. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
  230. {
  231. u64 addr;
  232. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  233. * all ones if the most significant implemented address bit is 1.
  234. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  235. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  236. * Application Programming.
  237. */
  238. addr = sys_addr & 0x000000ffffffffffull;
  239. return ((addr >= get_dram_base(pvt, nid)) &&
  240. (addr <= get_dram_limit(pvt, nid)));
  241. }
  242. /*
  243. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  244. * mem_ctl_info structure for the node that the SysAddr maps to.
  245. *
  246. * On failure, return NULL.
  247. */
  248. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  249. u64 sys_addr)
  250. {
  251. struct amd64_pvt *pvt;
  252. int node_id;
  253. u32 intlv_en, bits;
  254. /*
  255. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  256. * 3.4.4.2) registers to map the SysAddr to a node ID.
  257. */
  258. pvt = mci->pvt_info;
  259. /*
  260. * The value of this field should be the same for all DRAM Base
  261. * registers. Therefore we arbitrarily choose to read it from the
  262. * register for node 0.
  263. */
  264. intlv_en = dram_intlv_en(pvt, 0);
  265. if (intlv_en == 0) {
  266. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  267. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  268. goto found;
  269. }
  270. goto err_no_match;
  271. }
  272. if (unlikely((intlv_en != 0x01) &&
  273. (intlv_en != 0x03) &&
  274. (intlv_en != 0x07))) {
  275. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  276. return NULL;
  277. }
  278. bits = (((u32) sys_addr) >> 12) & intlv_en;
  279. for (node_id = 0; ; ) {
  280. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  281. break; /* intlv_sel field matches */
  282. if (++node_id >= DRAM_RANGES)
  283. goto err_no_match;
  284. }
  285. /* sanity test for sys_addr */
  286. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  287. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  288. "range for node %d with node interleaving enabled.\n",
  289. __func__, sys_addr, node_id);
  290. return NULL;
  291. }
  292. found:
  293. return edac_mc_find(node_id);
  294. err_no_match:
  295. debugf2("sys_addr 0x%lx doesn't match any node\n",
  296. (unsigned long)sys_addr);
  297. return NULL;
  298. }
  299. /*
  300. * compute the CS base address of the @csrow on the DRAM controller @dct.
  301. * For details see F2x[5C:40] in the processor's BKDG
  302. */
  303. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  304. u64 *base, u64 *mask)
  305. {
  306. u64 csbase, csmask, base_bits, mask_bits;
  307. u8 addr_shift;
  308. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  309. csbase = pvt->csels[dct].csbases[csrow];
  310. csmask = pvt->csels[dct].csmasks[csrow];
  311. base_bits = GENMASK(21, 31) | GENMASK(9, 15);
  312. mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
  313. addr_shift = 4;
  314. } else {
  315. csbase = pvt->csels[dct].csbases[csrow];
  316. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  317. addr_shift = 8;
  318. if (boot_cpu_data.x86 == 0x15)
  319. base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
  320. else
  321. base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
  322. }
  323. *base = (csbase & base_bits) << addr_shift;
  324. *mask = ~0ULL;
  325. /* poke holes for the csmask */
  326. *mask &= ~(mask_bits << addr_shift);
  327. /* OR them in */
  328. *mask |= (csmask & mask_bits) << addr_shift;
  329. }
  330. #define for_each_chip_select(i, dct, pvt) \
  331. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  332. #define for_each_chip_select_mask(i, dct, pvt) \
  333. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  334. /*
  335. * @input_addr is an InputAddr associated with the node given by mci. Return the
  336. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  337. */
  338. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  339. {
  340. struct amd64_pvt *pvt;
  341. int csrow;
  342. u64 base, mask;
  343. pvt = mci->pvt_info;
  344. for_each_chip_select(csrow, 0, pvt) {
  345. if (!csrow_enabled(csrow, 0, pvt))
  346. continue;
  347. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  348. mask = ~mask;
  349. if ((input_addr & mask) == (base & mask)) {
  350. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  351. (unsigned long)input_addr, csrow,
  352. pvt->mc_node_id);
  353. return csrow;
  354. }
  355. }
  356. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  357. (unsigned long)input_addr, pvt->mc_node_id);
  358. return -1;
  359. }
  360. /*
  361. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  362. * for the node represented by mci. Info is passed back in *hole_base,
  363. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  364. * info is invalid. Info may be invalid for either of the following reasons:
  365. *
  366. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  367. * Address Register does not exist.
  368. *
  369. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  370. * indicating that its contents are not valid.
  371. *
  372. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  373. * complete 32-bit values despite the fact that the bitfields in the DHAR
  374. * only represent bits 31-24 of the base and offset values.
  375. */
  376. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  377. u64 *hole_offset, u64 *hole_size)
  378. {
  379. struct amd64_pvt *pvt = mci->pvt_info;
  380. u64 base;
  381. /* only revE and later have the DRAM Hole Address Register */
  382. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  383. debugf1(" revision %d for node %d does not support DHAR\n",
  384. pvt->ext_model, pvt->mc_node_id);
  385. return 1;
  386. }
  387. /* valid for Fam10h and above */
  388. if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  389. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  390. return 1;
  391. }
  392. if (!dhar_valid(pvt)) {
  393. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  394. pvt->mc_node_id);
  395. return 1;
  396. }
  397. /* This node has Memory Hoisting */
  398. /* +------------------+--------------------+--------------------+-----
  399. * | memory | DRAM hole | relocated |
  400. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  401. * | | | DRAM hole |
  402. * | | | [0x100000000, |
  403. * | | | (0x100000000+ |
  404. * | | | (0xffffffff-x))] |
  405. * +------------------+--------------------+--------------------+-----
  406. *
  407. * Above is a diagram of physical memory showing the DRAM hole and the
  408. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  409. * starts at address x (the base address) and extends through address
  410. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  411. * addresses in the hole so that they start at 0x100000000.
  412. */
  413. base = dhar_base(pvt);
  414. *hole_base = base;
  415. *hole_size = (0x1ull << 32) - base;
  416. if (boot_cpu_data.x86 > 0xf)
  417. *hole_offset = f10_dhar_offset(pvt);
  418. else
  419. *hole_offset = k8_dhar_offset(pvt);
  420. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  421. pvt->mc_node_id, (unsigned long)*hole_base,
  422. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  423. return 0;
  424. }
  425. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  426. /*
  427. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  428. * assumed that sys_addr maps to the node given by mci.
  429. *
  430. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  431. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  432. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  433. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  434. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  435. * These parts of the documentation are unclear. I interpret them as follows:
  436. *
  437. * When node n receives a SysAddr, it processes the SysAddr as follows:
  438. *
  439. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  440. * Limit registers for node n. If the SysAddr is not within the range
  441. * specified by the base and limit values, then node n ignores the Sysaddr
  442. * (since it does not map to node n). Otherwise continue to step 2 below.
  443. *
  444. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  445. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  446. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  447. * hole. If not, skip to step 3 below. Else get the value of the
  448. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  449. * offset defined by this value from the SysAddr.
  450. *
  451. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  452. * Base register for node n. To obtain the DramAddr, subtract the base
  453. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  454. */
  455. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  456. {
  457. struct amd64_pvt *pvt = mci->pvt_info;
  458. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  459. int ret = 0;
  460. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  461. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  462. &hole_size);
  463. if (!ret) {
  464. if ((sys_addr >= (1ull << 32)) &&
  465. (sys_addr < ((1ull << 32) + hole_size))) {
  466. /* use DHAR to translate SysAddr to DramAddr */
  467. dram_addr = sys_addr - hole_offset;
  468. debugf2("using DHAR to translate SysAddr 0x%lx to "
  469. "DramAddr 0x%lx\n",
  470. (unsigned long)sys_addr,
  471. (unsigned long)dram_addr);
  472. return dram_addr;
  473. }
  474. }
  475. /*
  476. * Translate the SysAddr to a DramAddr as shown near the start of
  477. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  478. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  479. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  480. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  481. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  482. * Programmer's Manual Volume 1 Application Programming.
  483. */
  484. dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
  485. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  486. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  487. (unsigned long)dram_addr);
  488. return dram_addr;
  489. }
  490. /*
  491. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  492. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  493. * for node interleaving.
  494. */
  495. static int num_node_interleave_bits(unsigned intlv_en)
  496. {
  497. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  498. int n;
  499. BUG_ON(intlv_en > 7);
  500. n = intlv_shift_table[intlv_en];
  501. return n;
  502. }
  503. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  504. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  505. {
  506. struct amd64_pvt *pvt;
  507. int intlv_shift;
  508. u64 input_addr;
  509. pvt = mci->pvt_info;
  510. /*
  511. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  512. * concerning translating a DramAddr to an InputAddr.
  513. */
  514. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  515. input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
  516. (dram_addr & 0xfff);
  517. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  518. intlv_shift, (unsigned long)dram_addr,
  519. (unsigned long)input_addr);
  520. return input_addr;
  521. }
  522. /*
  523. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  524. * assumed that @sys_addr maps to the node given by mci.
  525. */
  526. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  527. {
  528. u64 input_addr;
  529. input_addr =
  530. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  531. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  532. (unsigned long)sys_addr, (unsigned long)input_addr);
  533. return input_addr;
  534. }
  535. /*
  536. * @input_addr is an InputAddr associated with the node represented by mci.
  537. * Translate @input_addr to a DramAddr and return the result.
  538. */
  539. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  540. {
  541. struct amd64_pvt *pvt;
  542. int node_id, intlv_shift;
  543. u64 bits, dram_addr;
  544. u32 intlv_sel;
  545. /*
  546. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  547. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  548. * this procedure. When translating from a DramAddr to an InputAddr, the
  549. * bits used for node interleaving are discarded. Here we recover these
  550. * bits from the IntlvSel field of the DRAM Limit register (section
  551. * 3.4.4.2) for the node that input_addr is associated with.
  552. */
  553. pvt = mci->pvt_info;
  554. node_id = pvt->mc_node_id;
  555. BUG_ON((node_id < 0) || (node_id > 7));
  556. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  557. if (intlv_shift == 0) {
  558. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  559. "same value\n", (unsigned long)input_addr);
  560. return input_addr;
  561. }
  562. bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
  563. (input_addr & 0xfff);
  564. intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
  565. dram_addr = bits + (intlv_sel << 12);
  566. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  567. "(%d node interleave bits)\n", (unsigned long)input_addr,
  568. (unsigned long)dram_addr, intlv_shift);
  569. return dram_addr;
  570. }
  571. /*
  572. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  573. * @dram_addr to a SysAddr.
  574. */
  575. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  576. {
  577. struct amd64_pvt *pvt = mci->pvt_info;
  578. u64 hole_base, hole_offset, hole_size, base, sys_addr;
  579. int ret = 0;
  580. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  581. &hole_size);
  582. if (!ret) {
  583. if ((dram_addr >= hole_base) &&
  584. (dram_addr < (hole_base + hole_size))) {
  585. sys_addr = dram_addr + hole_offset;
  586. debugf1("using DHAR to translate DramAddr 0x%lx to "
  587. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  588. (unsigned long)sys_addr);
  589. return sys_addr;
  590. }
  591. }
  592. base = get_dram_base(pvt, pvt->mc_node_id);
  593. sys_addr = dram_addr + base;
  594. /*
  595. * The sys_addr we have computed up to this point is a 40-bit value
  596. * because the k8 deals with 40-bit values. However, the value we are
  597. * supposed to return is a full 64-bit physical address. The AMD
  598. * x86-64 architecture specifies that the most significant implemented
  599. * address bit through bit 63 of a physical address must be either all
  600. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  601. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  602. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  603. * Programming.
  604. */
  605. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  606. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  607. pvt->mc_node_id, (unsigned long)dram_addr,
  608. (unsigned long)sys_addr);
  609. return sys_addr;
  610. }
  611. /*
  612. * @input_addr is an InputAddr associated with the node given by mci. Translate
  613. * @input_addr to a SysAddr.
  614. */
  615. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  616. u64 input_addr)
  617. {
  618. return dram_addr_to_sys_addr(mci,
  619. input_addr_to_dram_addr(mci, input_addr));
  620. }
  621. /*
  622. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  623. * Pass back these values in *input_addr_min and *input_addr_max.
  624. */
  625. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  626. u64 *input_addr_min, u64 *input_addr_max)
  627. {
  628. struct amd64_pvt *pvt;
  629. u64 base, mask;
  630. pvt = mci->pvt_info;
  631. BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
  632. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  633. *input_addr_min = base & ~mask;
  634. *input_addr_max = base | mask;
  635. }
  636. /* Map the Error address to a PAGE and PAGE OFFSET. */
  637. static inline void error_address_to_page_and_offset(u64 error_address,
  638. u32 *page, u32 *offset)
  639. {
  640. *page = (u32) (error_address >> PAGE_SHIFT);
  641. *offset = ((u32) error_address) & ~PAGE_MASK;
  642. }
  643. /*
  644. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  645. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  646. * of a node that detected an ECC memory error. mci represents the node that
  647. * the error address maps to (possibly different from the node that detected
  648. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  649. * error.
  650. */
  651. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  652. {
  653. int csrow;
  654. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  655. if (csrow == -1)
  656. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  657. "address 0x%lx\n", (unsigned long)sys_addr);
  658. return csrow;
  659. }
  660. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  661. static u16 extract_syndrome(struct err_regs *err)
  662. {
  663. return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
  664. }
  665. /*
  666. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  667. * are ECC capable.
  668. */
  669. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  670. {
  671. u8 bit;
  672. enum dev_type edac_cap = EDAC_FLAG_NONE;
  673. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  674. ? 19
  675. : 17;
  676. if (pvt->dclr0 & BIT(bit))
  677. edac_cap = EDAC_FLAG_SECDED;
  678. return edac_cap;
  679. }
  680. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
  681. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  682. {
  683. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  684. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  685. (dclr & BIT(16)) ? "un" : "",
  686. (dclr & BIT(19)) ? "yes" : "no");
  687. debugf1(" PAR/ERR parity: %s\n",
  688. (dclr & BIT(8)) ? "enabled" : "disabled");
  689. if (boot_cpu_data.x86 == 0x10)
  690. debugf1(" DCT 128bit mode width: %s\n",
  691. (dclr & BIT(11)) ? "128b" : "64b");
  692. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  693. (dclr & BIT(12)) ? "yes" : "no",
  694. (dclr & BIT(13)) ? "yes" : "no",
  695. (dclr & BIT(14)) ? "yes" : "no",
  696. (dclr & BIT(15)) ? "yes" : "no");
  697. }
  698. /* Display and decode various NB registers for debug purposes. */
  699. static void dump_misc_regs(struct amd64_pvt *pvt)
  700. {
  701. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  702. debugf1(" NB two channel DRAM capable: %s\n",
  703. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
  704. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  705. (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
  706. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
  707. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  708. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  709. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  710. "offset: 0x%08x\n",
  711. pvt->dhar, dhar_base(pvt),
  712. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
  713. : f10_dhar_offset(pvt));
  714. debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  715. amd64_debug_display_dimm_sizes(0, pvt);
  716. /* everything below this point is Fam10h and above */
  717. if (boot_cpu_data.x86 == 0xf)
  718. return;
  719. amd64_debug_display_dimm_sizes(1, pvt);
  720. amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
  721. /* Only if NOT ganged does dclr1 have valid info */
  722. if (!dct_ganging_enabled(pvt))
  723. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  724. }
  725. /*
  726. * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  727. */
  728. static void prep_chip_selects(struct amd64_pvt *pvt)
  729. {
  730. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  731. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  732. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  733. } else {
  734. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  735. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  736. }
  737. }
  738. /*
  739. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  740. */
  741. static void read_dct_base_mask(struct amd64_pvt *pvt)
  742. {
  743. int cs;
  744. prep_chip_selects(pvt);
  745. for_each_chip_select(cs, 0, pvt) {
  746. u32 reg0 = DCSB0 + (cs * 4);
  747. u32 reg1 = DCSB1 + (cs * 4);
  748. u32 *base0 = &pvt->csels[0].csbases[cs];
  749. u32 *base1 = &pvt->csels[1].csbases[cs];
  750. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  751. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  752. cs, *base0, reg0);
  753. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  754. continue;
  755. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  756. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  757. cs, *base1, reg1);
  758. }
  759. for_each_chip_select_mask(cs, 0, pvt) {
  760. u32 reg0 = DCSM0 + (cs * 4);
  761. u32 reg1 = DCSM1 + (cs * 4);
  762. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  763. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  764. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  765. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  766. cs, *mask0, reg0);
  767. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  768. continue;
  769. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  770. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  771. cs, *mask1, reg1);
  772. }
  773. }
  774. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  775. {
  776. enum mem_type type;
  777. /* F15h supports only DDR3 */
  778. if (boot_cpu_data.x86 >= 0x15)
  779. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  780. else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
  781. if (pvt->dchr0 & DDR3_MODE)
  782. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  783. else
  784. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  785. } else {
  786. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  787. }
  788. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  789. return type;
  790. }
  791. /* Get the number of DCT channels the memory controller is using. */
  792. static int k8_early_channel_count(struct amd64_pvt *pvt)
  793. {
  794. int flag;
  795. if (pvt->ext_model >= K8_REV_F)
  796. /* RevF (NPT) and later */
  797. flag = pvt->dclr0 & F10_WIDTH_128;
  798. else
  799. /* RevE and earlier */
  800. flag = pvt->dclr0 & REVE_WIDTH_128;
  801. /* not used */
  802. pvt->dclr1 = 0;
  803. return (flag) ? 2 : 1;
  804. }
  805. /* Extract the ERROR ADDRESS for the K8 CPUs */
  806. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  807. struct err_regs *info)
  808. {
  809. return (((u64) (info->nbeah & 0xff)) << 32) +
  810. (info->nbeal & ~0x03);
  811. }
  812. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  813. {
  814. u32 off = range << 3;
  815. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  816. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  817. if (boot_cpu_data.x86 == 0xf)
  818. return;
  819. if (!dram_rw(pvt, range))
  820. return;
  821. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  822. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  823. }
  824. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  825. struct err_regs *err_info, u64 sys_addr)
  826. {
  827. struct mem_ctl_info *src_mci;
  828. int channel, csrow;
  829. u32 page, offset;
  830. u16 syndrome;
  831. syndrome = extract_syndrome(err_info);
  832. /* CHIPKILL enabled */
  833. if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
  834. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  835. if (channel < 0) {
  836. /*
  837. * Syndrome didn't map, so we don't know which of the
  838. * 2 DIMMs is in error. So we need to ID 'both' of them
  839. * as suspect.
  840. */
  841. amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
  842. "error reporting race\n", syndrome);
  843. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  844. return;
  845. }
  846. } else {
  847. /*
  848. * non-chipkill ecc mode
  849. *
  850. * The k8 documentation is unclear about how to determine the
  851. * channel number when using non-chipkill memory. This method
  852. * was obtained from email communication with someone at AMD.
  853. * (Wish the email was placed in this comment - norsk)
  854. */
  855. channel = ((sys_addr & BIT(3)) != 0);
  856. }
  857. /*
  858. * Find out which node the error address belongs to. This may be
  859. * different from the node that detected the error.
  860. */
  861. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  862. if (!src_mci) {
  863. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  864. (unsigned long)sys_addr);
  865. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  866. return;
  867. }
  868. /* Now map the sys_addr to a CSROW */
  869. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  870. if (csrow < 0) {
  871. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  872. } else {
  873. error_address_to_page_and_offset(sys_addr, &page, &offset);
  874. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  875. channel, EDAC_MOD_STR);
  876. }
  877. }
  878. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  879. {
  880. int *dbam_map;
  881. if (pvt->ext_model >= K8_REV_F)
  882. dbam_map = ddr2_dbam;
  883. else if (pvt->ext_model >= K8_REV_D)
  884. dbam_map = ddr2_dbam_revD;
  885. else
  886. dbam_map = ddr2_dbam_revCG;
  887. return dbam_map[cs_mode];
  888. }
  889. /*
  890. * Get the number of DCT channels in use.
  891. *
  892. * Return:
  893. * number of Memory Channels in operation
  894. * Pass back:
  895. * contents of the DCL0_LOW register
  896. */
  897. static int f10_early_channel_count(struct amd64_pvt *pvt)
  898. {
  899. int i, j, channels = 0;
  900. /* If we are in 128 bit mode, then we are using 2 channels */
  901. if (pvt->dclr0 & F10_WIDTH_128) {
  902. channels = 2;
  903. return channels;
  904. }
  905. /*
  906. * Need to check if in unganged mode: In such, there are 2 channels,
  907. * but they are not in 128 bit mode and thus the above 'dclr0' status
  908. * bit will be OFF.
  909. *
  910. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  911. * their CSEnable bit on. If so, then SINGLE DIMM case.
  912. */
  913. debugf0("Data width is not 128 bits - need more decoding\n");
  914. /*
  915. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  916. * is more than just one DIMM present in unganged mode. Need to check
  917. * both controllers since DIMMs can be placed in either one.
  918. */
  919. for (i = 0; i < 2; i++) {
  920. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  921. for (j = 0; j < 4; j++) {
  922. if (DBAM_DIMM(j, dbam) > 0) {
  923. channels++;
  924. break;
  925. }
  926. }
  927. }
  928. if (channels > 2)
  929. channels = 2;
  930. amd64_info("MCT channel count: %d\n", channels);
  931. return channels;
  932. }
  933. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  934. {
  935. int *dbam_map;
  936. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  937. dbam_map = ddr3_dbam;
  938. else
  939. dbam_map = ddr2_dbam;
  940. return dbam_map[cs_mode];
  941. }
  942. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  943. struct err_regs *info)
  944. {
  945. return (((u64) (info->nbeah & 0xffff)) << 32) +
  946. (info->nbeal & ~0x01);
  947. }
  948. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  949. {
  950. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  951. debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  952. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  953. debugf0(" mode: %s, All DCTs on: %s\n",
  954. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
  955. (dct_dram_enabled(pvt) ? "yes" : "no"));
  956. if (!dct_ganging_enabled(pvt))
  957. debugf0(" Address range split per DCT: %s\n",
  958. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  959. debugf0(" data interleave for ECC: %s, "
  960. "DRAM cleared since last warm reset: %s\n",
  961. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  962. (dct_memory_cleared(pvt) ? "yes" : "no"));
  963. debugf0(" channel interleave: %s, "
  964. "interleave bits selector: 0x%x\n",
  965. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  966. dct_sel_interleave_addr(pvt));
  967. }
  968. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  969. }
  970. /*
  971. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  972. * Interleaving Modes.
  973. */
  974. static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  975. bool hi_range_sel, u8 intlv_en)
  976. {
  977. u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  978. if (dct_ganging_enabled(pvt))
  979. return 0;
  980. if (hi_range_sel)
  981. return dct_sel_high;
  982. /*
  983. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  984. */
  985. if (dct_interleave_enabled(pvt)) {
  986. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  987. /* return DCT select function: 0=DCT0, 1=DCT1 */
  988. if (!intlv_addr)
  989. return sys_addr >> 6 & 1;
  990. if (intlv_addr & 0x2) {
  991. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  992. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  993. return ((sys_addr >> shift) & 1) ^ temp;
  994. }
  995. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  996. }
  997. if (dct_high_range_enabled(pvt))
  998. return ~dct_sel_high & 1;
  999. return 0;
  1000. }
  1001. /* Convert the sys_addr to the normalized DCT address */
  1002. static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
  1003. u64 sys_addr, bool hi_rng,
  1004. u32 dct_sel_base_addr)
  1005. {
  1006. u64 chan_off;
  1007. u64 dram_base = get_dram_base(pvt, range);
  1008. u64 hole_off = f10_dhar_offset(pvt);
  1009. u32 hole_valid = dhar_valid(pvt);
  1010. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1011. if (hi_rng) {
  1012. /*
  1013. * if
  1014. * base address of high range is below 4Gb
  1015. * (bits [47:27] at [31:11])
  1016. * DRAM address space on this DCT is hoisted above 4Gb &&
  1017. * sys_addr > 4Gb
  1018. *
  1019. * remove hole offset from sys_addr
  1020. * else
  1021. * remove high range offset from sys_addr
  1022. */
  1023. if ((!(dct_sel_base_addr >> 16) ||
  1024. dct_sel_base_addr < dhar_base(pvt)) &&
  1025. hole_valid &&
  1026. (sys_addr >= BIT_64(32)))
  1027. chan_off = hole_off;
  1028. else
  1029. chan_off = dct_sel_base_off;
  1030. } else {
  1031. /*
  1032. * if
  1033. * we have a valid hole &&
  1034. * sys_addr > 4Gb
  1035. *
  1036. * remove hole
  1037. * else
  1038. * remove dram base to normalize to DCT address
  1039. */
  1040. if (hole_valid && (sys_addr >= BIT_64(32)))
  1041. chan_off = hole_off;
  1042. else
  1043. chan_off = dram_base;
  1044. }
  1045. return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
  1046. }
  1047. /* Hack for the time being - Can we get this from BIOS?? */
  1048. #define CH0SPARE_RANK 0
  1049. #define CH1SPARE_RANK 1
  1050. /*
  1051. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1052. * spare row
  1053. */
  1054. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1055. {
  1056. u32 swap_done;
  1057. u32 bad_dram_cs;
  1058. /* Depending on channel, isolate respective SPARING info */
  1059. if (dct) {
  1060. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1061. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1062. if (swap_done && (csrow == bad_dram_cs))
  1063. csrow = CH1SPARE_RANK;
  1064. } else {
  1065. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1066. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1067. if (swap_done && (csrow == bad_dram_cs))
  1068. csrow = CH0SPARE_RANK;
  1069. }
  1070. return csrow;
  1071. }
  1072. /*
  1073. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1074. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1075. *
  1076. * Return:
  1077. * -EINVAL: NOT FOUND
  1078. * 0..csrow = Chip-Select Row
  1079. */
  1080. static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
  1081. {
  1082. struct mem_ctl_info *mci;
  1083. struct amd64_pvt *pvt;
  1084. u64 cs_base, cs_mask;
  1085. int cs_found = -EINVAL;
  1086. int csrow;
  1087. mci = mcis[nid];
  1088. if (!mci)
  1089. return cs_found;
  1090. pvt = mci->pvt_info;
  1091. debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1092. for_each_chip_select(csrow, dct, pvt) {
  1093. if (!csrow_enabled(csrow, dct, pvt))
  1094. continue;
  1095. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1096. debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1097. csrow, cs_base, cs_mask);
  1098. cs_mask = ~cs_mask;
  1099. debugf1(" (InputAddr & ~CSMask)=0x%llx "
  1100. "(CSBase & ~CSMask)=0x%llx\n",
  1101. (in_addr & cs_mask), (cs_base & cs_mask));
  1102. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1103. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1104. debugf1(" MATCH csrow=%d\n", cs_found);
  1105. break;
  1106. }
  1107. }
  1108. return cs_found;
  1109. }
  1110. /* For a given @dram_range, check if @sys_addr falls within it. */
  1111. static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
  1112. u64 sys_addr, int *nid, int *chan_sel)
  1113. {
  1114. int cs_found = -EINVAL;
  1115. u64 chan_addr;
  1116. u32 tmp, dct_sel_base;
  1117. u8 channel;
  1118. bool high_range = false;
  1119. u8 node_id = dram_dst_node(pvt, range);
  1120. u8 intlv_en = dram_intlv_en(pvt, range);
  1121. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1122. debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1123. range, sys_addr, get_dram_limit(pvt, range));
  1124. if (intlv_en &&
  1125. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1126. return -EINVAL;
  1127. dct_sel_base = dct_sel_baseaddr(pvt);
  1128. /*
  1129. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1130. * select between DCT0 and DCT1.
  1131. */
  1132. if (dct_high_range_enabled(pvt) &&
  1133. !dct_ganging_enabled(pvt) &&
  1134. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1135. high_range = true;
  1136. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1137. chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr,
  1138. high_range, dct_sel_base);
  1139. /* remove Node ID (in case of node interleaving) */
  1140. tmp = chan_addr & 0xFC0;
  1141. chan_addr = ((chan_addr >> hweight8(intlv_en)) & GENMASK(12, 47)) | tmp;
  1142. /* remove channel interleave and hash */
  1143. if (dct_interleave_enabled(pvt) &&
  1144. !dct_high_range_enabled(pvt) &&
  1145. !dct_ganging_enabled(pvt)) {
  1146. if (dct_sel_interleave_addr(pvt) != 1)
  1147. chan_addr = (chan_addr >> 1) & GENMASK(6, 63);
  1148. else {
  1149. tmp = chan_addr & 0xFC0;
  1150. chan_addr = ((chan_addr & GENMASK(14, 63)) >> 1) | tmp;
  1151. }
  1152. }
  1153. debugf1(" (ChannelAddrLong=0x%llx)\n", chan_addr);
  1154. cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
  1155. if (cs_found >= 0) {
  1156. *nid = node_id;
  1157. *chan_sel = channel;
  1158. }
  1159. return cs_found;
  1160. }
  1161. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1162. int *node, int *chan_sel)
  1163. {
  1164. int range, cs_found = -EINVAL;
  1165. for (range = 0; range < DRAM_RANGES; range++) {
  1166. if (!dram_rw(pvt, range))
  1167. continue;
  1168. if ((get_dram_base(pvt, range) <= sys_addr) &&
  1169. (get_dram_limit(pvt, range) >= sys_addr)) {
  1170. cs_found = f10_match_to_this_node(pvt, range,
  1171. sys_addr, node,
  1172. chan_sel);
  1173. if (cs_found >= 0)
  1174. break;
  1175. }
  1176. }
  1177. return cs_found;
  1178. }
  1179. /*
  1180. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1181. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1182. *
  1183. * The @sys_addr is usually an error address received from the hardware
  1184. * (MCX_ADDR).
  1185. */
  1186. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1187. struct err_regs *err_info,
  1188. u64 sys_addr)
  1189. {
  1190. struct amd64_pvt *pvt = mci->pvt_info;
  1191. u32 page, offset;
  1192. int nid, csrow, chan = 0;
  1193. u16 syndrome;
  1194. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1195. if (csrow < 0) {
  1196. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1197. return;
  1198. }
  1199. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1200. syndrome = extract_syndrome(err_info);
  1201. /*
  1202. * We need the syndromes for channel detection only when we're
  1203. * ganged. Otherwise @chan should already contain the channel at
  1204. * this point.
  1205. */
  1206. if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
  1207. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1208. if (chan >= 0)
  1209. edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
  1210. EDAC_MOD_STR);
  1211. else
  1212. /*
  1213. * Channel unknown, report all channels on this CSROW as failed.
  1214. */
  1215. for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
  1216. edac_mc_handle_ce(mci, page, offset, syndrome,
  1217. csrow, chan, EDAC_MOD_STR);
  1218. }
  1219. /*
  1220. * debug routine to display the memory sizes of all logical DIMMs and its
  1221. * CSROWs
  1222. */
  1223. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
  1224. {
  1225. int dimm, size0, size1, factor = 0;
  1226. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1227. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1228. if (boot_cpu_data.x86 == 0xf) {
  1229. if (pvt->dclr0 & F10_WIDTH_128)
  1230. factor = 1;
  1231. /* K8 families < revF not supported yet */
  1232. if (pvt->ext_model < K8_REV_F)
  1233. return;
  1234. else
  1235. WARN_ON(ctrl != 0);
  1236. }
  1237. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1238. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1239. : pvt->csels[0].csbases;
  1240. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
  1241. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1242. /* Dump memory sizes for DIMM and its CSROWs */
  1243. for (dimm = 0; dimm < 4; dimm++) {
  1244. size0 = 0;
  1245. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1246. size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1247. size1 = 0;
  1248. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1249. size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1250. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1251. dimm * 2, size0 << factor,
  1252. dimm * 2 + 1, size1 << factor);
  1253. }
  1254. }
  1255. static struct amd64_family_type amd64_family_types[] = {
  1256. [K8_CPUS] = {
  1257. .ctl_name = "K8",
  1258. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1259. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1260. .ops = {
  1261. .early_channel_count = k8_early_channel_count,
  1262. .get_error_address = k8_get_error_address,
  1263. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1264. .dbam_to_cs = k8_dbam_to_chip_select,
  1265. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1266. }
  1267. },
  1268. [F10_CPUS] = {
  1269. .ctl_name = "F10h",
  1270. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1271. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1272. .ops = {
  1273. .early_channel_count = f10_early_channel_count,
  1274. .get_error_address = f10_get_error_address,
  1275. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1276. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1277. .dbam_to_cs = f10_dbam_to_chip_select,
  1278. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1279. }
  1280. },
  1281. [F15_CPUS] = {
  1282. .ctl_name = "F15h",
  1283. .ops = {
  1284. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1285. }
  1286. },
  1287. };
  1288. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1289. unsigned int device,
  1290. struct pci_dev *related)
  1291. {
  1292. struct pci_dev *dev = NULL;
  1293. dev = pci_get_device(vendor, device, dev);
  1294. while (dev) {
  1295. if ((dev->bus->number == related->bus->number) &&
  1296. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1297. break;
  1298. dev = pci_get_device(vendor, device, dev);
  1299. }
  1300. return dev;
  1301. }
  1302. /*
  1303. * These are tables of eigenvectors (one per line) which can be used for the
  1304. * construction of the syndrome tables. The modified syndrome search algorithm
  1305. * uses those to find the symbol in error and thus the DIMM.
  1306. *
  1307. * Algorithm courtesy of Ross LaFetra from AMD.
  1308. */
  1309. static u16 x4_vectors[] = {
  1310. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1311. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1312. 0x0001, 0x0002, 0x0004, 0x0008,
  1313. 0x1013, 0x3032, 0x4044, 0x8088,
  1314. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1315. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1316. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1317. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1318. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1319. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1320. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1321. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1322. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1323. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1324. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1325. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1326. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1327. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1328. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1329. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1330. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1331. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1332. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1333. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1334. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1335. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1336. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1337. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1338. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1339. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1340. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1341. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1342. 0x4807, 0xc40e, 0x130c, 0x3208,
  1343. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1344. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1345. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1346. };
  1347. static u16 x8_vectors[] = {
  1348. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1349. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1350. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1351. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1352. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1353. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1354. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1355. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1356. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1357. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1358. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1359. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1360. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1361. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1362. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1363. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1364. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1365. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1366. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1367. };
  1368. static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
  1369. int v_dim)
  1370. {
  1371. unsigned int i, err_sym;
  1372. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1373. u16 s = syndrome;
  1374. int v_idx = err_sym * v_dim;
  1375. int v_end = (err_sym + 1) * v_dim;
  1376. /* walk over all 16 bits of the syndrome */
  1377. for (i = 1; i < (1U << 16); i <<= 1) {
  1378. /* if bit is set in that eigenvector... */
  1379. if (v_idx < v_end && vectors[v_idx] & i) {
  1380. u16 ev_comp = vectors[v_idx++];
  1381. /* ... and bit set in the modified syndrome, */
  1382. if (s & i) {
  1383. /* remove it. */
  1384. s ^= ev_comp;
  1385. if (!s)
  1386. return err_sym;
  1387. }
  1388. } else if (s & i)
  1389. /* can't get to zero, move to next symbol */
  1390. break;
  1391. }
  1392. }
  1393. debugf0("syndrome(%x) not found\n", syndrome);
  1394. return -1;
  1395. }
  1396. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1397. {
  1398. if (sym_size == 4)
  1399. switch (err_sym) {
  1400. case 0x20:
  1401. case 0x21:
  1402. return 0;
  1403. break;
  1404. case 0x22:
  1405. case 0x23:
  1406. return 1;
  1407. break;
  1408. default:
  1409. return err_sym >> 4;
  1410. break;
  1411. }
  1412. /* x8 symbols */
  1413. else
  1414. switch (err_sym) {
  1415. /* imaginary bits not in a DIMM */
  1416. case 0x10:
  1417. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1418. err_sym);
  1419. return -1;
  1420. break;
  1421. case 0x11:
  1422. return 0;
  1423. break;
  1424. case 0x12:
  1425. return 1;
  1426. break;
  1427. default:
  1428. return err_sym >> 3;
  1429. break;
  1430. }
  1431. return -1;
  1432. }
  1433. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1434. {
  1435. struct amd64_pvt *pvt = mci->pvt_info;
  1436. int err_sym = -1;
  1437. if (pvt->syn_type == 8)
  1438. err_sym = decode_syndrome(syndrome, x8_vectors,
  1439. ARRAY_SIZE(x8_vectors),
  1440. pvt->syn_type);
  1441. else if (pvt->syn_type == 4)
  1442. err_sym = decode_syndrome(syndrome, x4_vectors,
  1443. ARRAY_SIZE(x4_vectors),
  1444. pvt->syn_type);
  1445. else {
  1446. amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
  1447. return err_sym;
  1448. }
  1449. return map_err_sym_to_channel(err_sym, pvt->syn_type);
  1450. }
  1451. /*
  1452. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1453. * ADDRESS and process.
  1454. */
  1455. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1456. struct err_regs *info)
  1457. {
  1458. struct amd64_pvt *pvt = mci->pvt_info;
  1459. u64 sys_addr;
  1460. /* Ensure that the Error Address is VALID */
  1461. if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
  1462. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1463. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1464. return;
  1465. }
  1466. sys_addr = pvt->ops->get_error_address(mci, info);
  1467. amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1468. pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
  1469. }
  1470. /* Handle any Un-correctable Errors (UEs) */
  1471. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1472. struct err_regs *info)
  1473. {
  1474. struct amd64_pvt *pvt = mci->pvt_info;
  1475. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1476. int csrow;
  1477. u64 sys_addr;
  1478. u32 page, offset;
  1479. log_mci = mci;
  1480. if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
  1481. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1482. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1483. return;
  1484. }
  1485. sys_addr = pvt->ops->get_error_address(mci, info);
  1486. /*
  1487. * Find out which node the error address belongs to. This may be
  1488. * different from the node that detected the error.
  1489. */
  1490. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1491. if (!src_mci) {
  1492. amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
  1493. (unsigned long)sys_addr);
  1494. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1495. return;
  1496. }
  1497. log_mci = src_mci;
  1498. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1499. if (csrow < 0) {
  1500. amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
  1501. (unsigned long)sys_addr);
  1502. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1503. } else {
  1504. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1505. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1506. }
  1507. }
  1508. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1509. struct err_regs *info)
  1510. {
  1511. u16 ec = EC(info->nbsl);
  1512. u8 xec = XEC(info->nbsl, 0x1f);
  1513. int ecc_type = (info->nbsh >> 13) & 0x3;
  1514. /* Bail early out if this was an 'observed' error */
  1515. if (PP(ec) == K8_NBSL_PP_OBS)
  1516. return;
  1517. /* Do only ECC errors */
  1518. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1519. return;
  1520. if (ecc_type == 2)
  1521. amd64_handle_ce(mci, info);
  1522. else if (ecc_type == 1)
  1523. amd64_handle_ue(mci, info);
  1524. }
  1525. void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
  1526. {
  1527. struct mem_ctl_info *mci = mcis[node_id];
  1528. struct err_regs regs;
  1529. regs.nbsl = (u32) m->status;
  1530. regs.nbsh = (u32)(m->status >> 32);
  1531. regs.nbeal = (u32) m->addr;
  1532. regs.nbeah = (u32)(m->addr >> 32);
  1533. regs.nbcfg = nbcfg;
  1534. __amd64_decode_bus_error(mci, &regs);
  1535. /*
  1536. * Check the UE bit of the NB status high register, if set generate some
  1537. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  1538. * If it was a GART error, skip that process.
  1539. *
  1540. * FIXME: this should go somewhere else, if at all.
  1541. */
  1542. if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  1543. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  1544. }
  1545. /*
  1546. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1547. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1548. */
  1549. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1550. {
  1551. /* Reserve the ADDRESS MAP Device */
  1552. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1553. if (!pvt->F1) {
  1554. amd64_err("error address map device not found: "
  1555. "vendor %x device 0x%x (broken BIOS?)\n",
  1556. PCI_VENDOR_ID_AMD, f1_id);
  1557. return -ENODEV;
  1558. }
  1559. /* Reserve the MISC Device */
  1560. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1561. if (!pvt->F3) {
  1562. pci_dev_put(pvt->F1);
  1563. pvt->F1 = NULL;
  1564. amd64_err("error F3 device not found: "
  1565. "vendor %x device 0x%x (broken BIOS?)\n",
  1566. PCI_VENDOR_ID_AMD, f3_id);
  1567. return -ENODEV;
  1568. }
  1569. debugf1("F1: %s\n", pci_name(pvt->F1));
  1570. debugf1("F2: %s\n", pci_name(pvt->F2));
  1571. debugf1("F3: %s\n", pci_name(pvt->F3));
  1572. return 0;
  1573. }
  1574. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1575. {
  1576. pci_dev_put(pvt->F1);
  1577. pci_dev_put(pvt->F3);
  1578. }
  1579. /*
  1580. * Retrieve the hardware registers of the memory controller (this includes the
  1581. * 'Address Map' and 'Misc' device regs)
  1582. */
  1583. static void read_mc_regs(struct amd64_pvt *pvt)
  1584. {
  1585. u64 msr_val;
  1586. u32 tmp;
  1587. int range;
  1588. /*
  1589. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1590. * those are Read-As-Zero
  1591. */
  1592. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1593. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1594. /* check first whether TOP_MEM2 is enabled */
  1595. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1596. if (msr_val & (1U << 21)) {
  1597. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1598. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1599. } else
  1600. debugf0(" TOP_MEM2 disabled.\n");
  1601. amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
  1602. if (pvt->ops->read_dram_ctl_register)
  1603. pvt->ops->read_dram_ctl_register(pvt);
  1604. for (range = 0; range < DRAM_RANGES; range++) {
  1605. u8 rw;
  1606. /* read settings for this DRAM range */
  1607. read_dram_base_limit_regs(pvt, range);
  1608. rw = dram_rw(pvt, range);
  1609. if (!rw)
  1610. continue;
  1611. debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1612. range,
  1613. get_dram_base(pvt, range),
  1614. get_dram_limit(pvt, range));
  1615. debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1616. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1617. (rw & 0x1) ? "R" : "-",
  1618. (rw & 0x2) ? "W" : "-",
  1619. dram_intlv_sel(pvt, range),
  1620. dram_dst_node(pvt, range));
  1621. }
  1622. read_dct_base_mask(pvt);
  1623. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1624. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1625. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1626. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1627. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1628. if (!dct_ganging_enabled(pvt)) {
  1629. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1630. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1631. }
  1632. if (boot_cpu_data.x86 >= 0x10) {
  1633. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1634. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1635. }
  1636. if (boot_cpu_data.x86 == 0x10 &&
  1637. boot_cpu_data.x86_model > 7 &&
  1638. /* F3x180[EccSymbolSize]=1 => x8 symbols */
  1639. tmp & BIT(25))
  1640. pvt->syn_type = 8;
  1641. else
  1642. pvt->syn_type = 4;
  1643. dump_misc_regs(pvt);
  1644. }
  1645. /*
  1646. * NOTE: CPU Revision Dependent code
  1647. *
  1648. * Input:
  1649. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1650. * k8 private pointer to -->
  1651. * DRAM Bank Address mapping register
  1652. * node_id
  1653. * DCL register where dual_channel_active is
  1654. *
  1655. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1656. *
  1657. * Bits: CSROWs
  1658. * 0-3 CSROWs 0 and 1
  1659. * 4-7 CSROWs 2 and 3
  1660. * 8-11 CSROWs 4 and 5
  1661. * 12-15 CSROWs 6 and 7
  1662. *
  1663. * Values range from: 0 to 15
  1664. * The meaning of the values depends on CPU revision and dual-channel state,
  1665. * see relevant BKDG more info.
  1666. *
  1667. * The memory controller provides for total of only 8 CSROWs in its current
  1668. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1669. * single channel or two (2) DIMMs in dual channel mode.
  1670. *
  1671. * The following code logic collapses the various tables for CSROW based on CPU
  1672. * revision.
  1673. *
  1674. * Returns:
  1675. * The number of PAGE_SIZE pages on the specified CSROW number it
  1676. * encompasses
  1677. *
  1678. */
  1679. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  1680. {
  1681. u32 cs_mode, nr_pages;
  1682. /*
  1683. * The math on this doesn't look right on the surface because x/2*4 can
  1684. * be simplified to x*2 but this expression makes use of the fact that
  1685. * it is integral math where 1/2=0. This intermediate value becomes the
  1686. * number of bits to shift the DBAM register to extract the proper CSROW
  1687. * field.
  1688. */
  1689. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  1690. nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
  1691. /*
  1692. * If dual channel then double the memory size of single channel.
  1693. * Channel count is 1 or 2
  1694. */
  1695. nr_pages <<= (pvt->channel_count - 1);
  1696. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  1697. debugf0(" nr_pages= %u channel-count = %d\n",
  1698. nr_pages, pvt->channel_count);
  1699. return nr_pages;
  1700. }
  1701. /*
  1702. * Initialize the array of csrow attribute instances, based on the values
  1703. * from pci config hardware registers.
  1704. */
  1705. static int init_csrows(struct mem_ctl_info *mci)
  1706. {
  1707. struct csrow_info *csrow;
  1708. struct amd64_pvt *pvt = mci->pvt_info;
  1709. u64 input_addr_min, input_addr_max, sys_addr, base, mask;
  1710. u32 val;
  1711. int i, empty = 1;
  1712. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
  1713. pvt->nbcfg = val;
  1714. pvt->ctl_error_info.nbcfg = val;
  1715. debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1716. pvt->mc_node_id, val,
  1717. !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
  1718. for_each_chip_select(i, 0, pvt) {
  1719. csrow = &mci->csrows[i];
  1720. if (!csrow_enabled(i, 0, pvt)) {
  1721. debugf1("----CSROW %d EMPTY for node %d\n", i,
  1722. pvt->mc_node_id);
  1723. continue;
  1724. }
  1725. debugf1("----CSROW %d VALID for MC node %d\n",
  1726. i, pvt->mc_node_id);
  1727. empty = 0;
  1728. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  1729. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  1730. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  1731. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  1732. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  1733. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  1734. get_cs_base_and_mask(pvt, i, 0, &base, &mask);
  1735. csrow->page_mask = ~mask;
  1736. /* 8 bytes of resolution */
  1737. csrow->mtype = amd64_determine_memory_type(pvt, i);
  1738. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  1739. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  1740. (unsigned long)input_addr_min,
  1741. (unsigned long)input_addr_max);
  1742. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  1743. (unsigned long)sys_addr, csrow->page_mask);
  1744. debugf1(" nr_pages: %u first_page: 0x%lx "
  1745. "last_page: 0x%lx\n",
  1746. (unsigned)csrow->nr_pages,
  1747. csrow->first_page, csrow->last_page);
  1748. /*
  1749. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1750. */
  1751. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  1752. csrow->edac_mode =
  1753. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  1754. EDAC_S4ECD4ED : EDAC_SECDED;
  1755. else
  1756. csrow->edac_mode = EDAC_NONE;
  1757. }
  1758. return empty;
  1759. }
  1760. /* get all cores on this DCT */
  1761. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
  1762. {
  1763. int cpu;
  1764. for_each_online_cpu(cpu)
  1765. if (amd_get_nb_id(cpu) == nid)
  1766. cpumask_set_cpu(cpu, mask);
  1767. }
  1768. /* check MCG_CTL on all the cpus on this node */
  1769. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  1770. {
  1771. cpumask_var_t mask;
  1772. int cpu, nbe;
  1773. bool ret = false;
  1774. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1775. amd64_warn("%s: Error allocating mask\n", __func__);
  1776. return false;
  1777. }
  1778. get_cpus_on_this_dct_cpumask(mask, nid);
  1779. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1780. for_each_cpu(cpu, mask) {
  1781. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1782. nbe = reg->l & K8_MSR_MCGCTL_NBE;
  1783. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1784. cpu, reg->q,
  1785. (nbe ? "enabled" : "disabled"));
  1786. if (!nbe)
  1787. goto out;
  1788. }
  1789. ret = true;
  1790. out:
  1791. free_cpumask_var(mask);
  1792. return ret;
  1793. }
  1794. static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
  1795. {
  1796. cpumask_var_t cmask;
  1797. int cpu;
  1798. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1799. amd64_warn("%s: error allocating mask\n", __func__);
  1800. return false;
  1801. }
  1802. get_cpus_on_this_dct_cpumask(cmask, nid);
  1803. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1804. for_each_cpu(cpu, cmask) {
  1805. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1806. if (on) {
  1807. if (reg->l & K8_MSR_MCGCTL_NBE)
  1808. s->flags.nb_mce_enable = 1;
  1809. reg->l |= K8_MSR_MCGCTL_NBE;
  1810. } else {
  1811. /*
  1812. * Turn off NB MCE reporting only when it was off before
  1813. */
  1814. if (!s->flags.nb_mce_enable)
  1815. reg->l &= ~K8_MSR_MCGCTL_NBE;
  1816. }
  1817. }
  1818. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1819. free_cpumask_var(cmask);
  1820. return 0;
  1821. }
  1822. static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1823. struct pci_dev *F3)
  1824. {
  1825. bool ret = true;
  1826. u32 value, mask = 0x3; /* UECC/CECC enable */
  1827. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1828. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1829. return false;
  1830. }
  1831. amd64_read_pci_cfg(F3, NBCTL, &value);
  1832. s->old_nbctl = value & mask;
  1833. s->nbctl_valid = true;
  1834. value |= mask;
  1835. amd64_write_pci_cfg(F3, NBCTL, value);
  1836. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  1837. debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1838. nid, value,
  1839. !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
  1840. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  1841. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1842. s->flags.nb_ecc_prev = 0;
  1843. /* Attempt to turn on DRAM ECC Enable */
  1844. value |= K8_NBCFG_ECC_ENABLE;
  1845. amd64_write_pci_cfg(F3, K8_NBCFG, value);
  1846. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  1847. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  1848. amd64_warn("Hardware rejected DRAM ECC enable,"
  1849. "check memory DIMM configuration.\n");
  1850. ret = false;
  1851. } else {
  1852. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1853. }
  1854. } else {
  1855. s->flags.nb_ecc_prev = 1;
  1856. }
  1857. debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1858. nid, value,
  1859. !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
  1860. return ret;
  1861. }
  1862. static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1863. struct pci_dev *F3)
  1864. {
  1865. u32 value, mask = 0x3; /* UECC/CECC enable */
  1866. if (!s->nbctl_valid)
  1867. return;
  1868. amd64_read_pci_cfg(F3, NBCTL, &value);
  1869. value &= ~mask;
  1870. value |= s->old_nbctl;
  1871. amd64_write_pci_cfg(F3, NBCTL, value);
  1872. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  1873. if (!s->flags.nb_ecc_prev) {
  1874. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  1875. value &= ~K8_NBCFG_ECC_ENABLE;
  1876. amd64_write_pci_cfg(F3, K8_NBCFG, value);
  1877. }
  1878. /* restore the NB Enable MCGCTL bit */
  1879. if (toggle_ecc_err_reporting(s, nid, OFF))
  1880. amd64_warn("Error restoring NB MCGCTL settings!\n");
  1881. }
  1882. /*
  1883. * EDAC requires that the BIOS have ECC enabled before
  1884. * taking over the processing of ECC errors. A command line
  1885. * option allows to force-enable hardware ECC later in
  1886. * enable_ecc_error_reporting().
  1887. */
  1888. static const char *ecc_msg =
  1889. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  1890. " Either enable ECC checking or force module loading by setting "
  1891. "'ecc_enable_override'.\n"
  1892. " (Note that use of the override may cause unknown side effects.)\n";
  1893. static bool ecc_enabled(struct pci_dev *F3, u8 nid)
  1894. {
  1895. u32 value;
  1896. u8 ecc_en = 0;
  1897. bool nb_mce_en = false;
  1898. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  1899. ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
  1900. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  1901. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  1902. if (!nb_mce_en)
  1903. amd64_notice("NB MCE bank disabled, set MSR "
  1904. "0x%08x[4] on node %d to enable.\n",
  1905. MSR_IA32_MCG_CTL, nid);
  1906. if (!ecc_en || !nb_mce_en) {
  1907. amd64_notice("%s", ecc_msg);
  1908. return false;
  1909. }
  1910. return true;
  1911. }
  1912. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  1913. ARRAY_SIZE(amd64_inj_attrs) +
  1914. 1];
  1915. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  1916. static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  1917. {
  1918. unsigned int i = 0, j = 0;
  1919. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  1920. sysfs_attrs[i] = amd64_dbg_attrs[i];
  1921. if (boot_cpu_data.x86 >= 0x10)
  1922. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  1923. sysfs_attrs[i] = amd64_inj_attrs[j];
  1924. sysfs_attrs[i] = terminator;
  1925. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  1926. }
  1927. static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
  1928. {
  1929. struct amd64_pvt *pvt = mci->pvt_info;
  1930. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  1931. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1932. if (pvt->nbcap & K8_NBCAP_SECDED)
  1933. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  1934. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  1935. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  1936. mci->edac_cap = amd64_determine_edac_cap(pvt);
  1937. mci->mod_name = EDAC_MOD_STR;
  1938. mci->mod_ver = EDAC_AMD64_VERSION;
  1939. mci->ctl_name = pvt->ctl_name;
  1940. mci->dev_name = pci_name(pvt->F2);
  1941. mci->ctl_page_to_phys = NULL;
  1942. /* memory scrubber interface */
  1943. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  1944. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  1945. }
  1946. /*
  1947. * returns a pointer to the family descriptor on success, NULL otherwise.
  1948. */
  1949. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  1950. {
  1951. u8 fam = boot_cpu_data.x86;
  1952. struct amd64_family_type *fam_type = NULL;
  1953. switch (fam) {
  1954. case 0xf:
  1955. fam_type = &amd64_family_types[K8_CPUS];
  1956. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  1957. pvt->ctl_name = fam_type->ctl_name;
  1958. pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  1959. break;
  1960. case 0x10:
  1961. fam_type = &amd64_family_types[F10_CPUS];
  1962. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  1963. pvt->ctl_name = fam_type->ctl_name;
  1964. pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  1965. break;
  1966. default:
  1967. amd64_err("Unsupported family!\n");
  1968. return NULL;
  1969. }
  1970. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  1971. amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
  1972. (fam == 0xf ?
  1973. (pvt->ext_model >= K8_REV_F ? "revF or later "
  1974. : "revE or earlier ")
  1975. : ""), pvt->mc_node_id);
  1976. return fam_type;
  1977. }
  1978. static int amd64_init_one_instance(struct pci_dev *F2)
  1979. {
  1980. struct amd64_pvt *pvt = NULL;
  1981. struct amd64_family_type *fam_type = NULL;
  1982. struct mem_ctl_info *mci = NULL;
  1983. int err = 0, ret;
  1984. u8 nid = get_node_id(F2);
  1985. ret = -ENOMEM;
  1986. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  1987. if (!pvt)
  1988. goto err_ret;
  1989. pvt->mc_node_id = nid;
  1990. pvt->F2 = F2;
  1991. ret = -EINVAL;
  1992. fam_type = amd64_per_family_init(pvt);
  1993. if (!fam_type)
  1994. goto err_free;
  1995. ret = -ENODEV;
  1996. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  1997. if (err)
  1998. goto err_free;
  1999. read_mc_regs(pvt);
  2000. /*
  2001. * We need to determine how many memory channels there are. Then use
  2002. * that information for calculating the size of the dynamic instance
  2003. * tables in the 'mci' structure.
  2004. */
  2005. ret = -EINVAL;
  2006. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2007. if (pvt->channel_count < 0)
  2008. goto err_siblings;
  2009. ret = -ENOMEM;
  2010. mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
  2011. if (!mci)
  2012. goto err_siblings;
  2013. mci->pvt_info = pvt;
  2014. mci->dev = &pvt->F2->dev;
  2015. setup_mci_misc_attrs(mci);
  2016. if (init_csrows(mci))
  2017. mci->edac_cap = EDAC_FLAG_NONE;
  2018. set_mc_sysfs_attrs(mci);
  2019. ret = -ENODEV;
  2020. if (edac_mc_add_mc(mci)) {
  2021. debugf1("failed edac_mc_add_mc()\n");
  2022. goto err_add_mc;
  2023. }
  2024. /* register stuff with EDAC MCE */
  2025. if (report_gart_errors)
  2026. amd_report_gart_errors(true);
  2027. amd_register_ecc_decoder(amd64_decode_bus_error);
  2028. mcis[nid] = mci;
  2029. atomic_inc(&drv_instances);
  2030. return 0;
  2031. err_add_mc:
  2032. edac_mc_free(mci);
  2033. err_siblings:
  2034. free_mc_sibling_devs(pvt);
  2035. err_free:
  2036. kfree(pvt);
  2037. err_ret:
  2038. return ret;
  2039. }
  2040. static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
  2041. const struct pci_device_id *mc_type)
  2042. {
  2043. u8 nid = get_node_id(pdev);
  2044. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2045. struct ecc_settings *s;
  2046. int ret = 0;
  2047. ret = pci_enable_device(pdev);
  2048. if (ret < 0) {
  2049. debugf0("ret=%d\n", ret);
  2050. return -EIO;
  2051. }
  2052. ret = -ENOMEM;
  2053. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2054. if (!s)
  2055. goto err_out;
  2056. ecc_stngs[nid] = s;
  2057. if (!ecc_enabled(F3, nid)) {
  2058. ret = -ENODEV;
  2059. if (!ecc_enable_override)
  2060. goto err_enable;
  2061. amd64_warn("Forcing ECC on!\n");
  2062. if (!enable_ecc_error_reporting(s, nid, F3))
  2063. goto err_enable;
  2064. }
  2065. ret = amd64_init_one_instance(pdev);
  2066. if (ret < 0) {
  2067. amd64_err("Error probing instance: %d\n", nid);
  2068. restore_ecc_error_reporting(s, nid, F3);
  2069. }
  2070. return ret;
  2071. err_enable:
  2072. kfree(s);
  2073. ecc_stngs[nid] = NULL;
  2074. err_out:
  2075. return ret;
  2076. }
  2077. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2078. {
  2079. struct mem_ctl_info *mci;
  2080. struct amd64_pvt *pvt;
  2081. u8 nid = get_node_id(pdev);
  2082. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2083. struct ecc_settings *s = ecc_stngs[nid];
  2084. /* Remove from EDAC CORE tracking list */
  2085. mci = edac_mc_del_mc(&pdev->dev);
  2086. if (!mci)
  2087. return;
  2088. pvt = mci->pvt_info;
  2089. restore_ecc_error_reporting(s, nid, F3);
  2090. free_mc_sibling_devs(pvt);
  2091. /* unregister from EDAC MCE */
  2092. amd_report_gart_errors(false);
  2093. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2094. kfree(ecc_stngs[nid]);
  2095. ecc_stngs[nid] = NULL;
  2096. /* Free the EDAC CORE resources */
  2097. mci->pvt_info = NULL;
  2098. mcis[nid] = NULL;
  2099. kfree(pvt);
  2100. edac_mc_free(mci);
  2101. }
  2102. /*
  2103. * This table is part of the interface for loading drivers for PCI devices. The
  2104. * PCI core identifies what devices are on a system during boot, and then
  2105. * inquiry this table to see if this driver is for a given device found.
  2106. */
  2107. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2108. {
  2109. .vendor = PCI_VENDOR_ID_AMD,
  2110. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2111. .subvendor = PCI_ANY_ID,
  2112. .subdevice = PCI_ANY_ID,
  2113. .class = 0,
  2114. .class_mask = 0,
  2115. },
  2116. {
  2117. .vendor = PCI_VENDOR_ID_AMD,
  2118. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2119. .subvendor = PCI_ANY_ID,
  2120. .subdevice = PCI_ANY_ID,
  2121. .class = 0,
  2122. .class_mask = 0,
  2123. },
  2124. {0, }
  2125. };
  2126. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2127. static struct pci_driver amd64_pci_driver = {
  2128. .name = EDAC_MOD_STR,
  2129. .probe = amd64_probe_one_instance,
  2130. .remove = __devexit_p(amd64_remove_one_instance),
  2131. .id_table = amd64_pci_table,
  2132. };
  2133. static void setup_pci_device(void)
  2134. {
  2135. struct mem_ctl_info *mci;
  2136. struct amd64_pvt *pvt;
  2137. if (amd64_ctl_pci)
  2138. return;
  2139. mci = mcis[0];
  2140. if (mci) {
  2141. pvt = mci->pvt_info;
  2142. amd64_ctl_pci =
  2143. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2144. if (!amd64_ctl_pci) {
  2145. pr_warning("%s(): Unable to create PCI control\n",
  2146. __func__);
  2147. pr_warning("%s(): PCI error report via EDAC not set\n",
  2148. __func__);
  2149. }
  2150. }
  2151. }
  2152. static int __init amd64_edac_init(void)
  2153. {
  2154. int err = -ENODEV;
  2155. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2156. opstate_init();
  2157. if (amd_cache_northbridges() < 0)
  2158. goto err_ret;
  2159. err = -ENOMEM;
  2160. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2161. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2162. if (!(mcis && ecc_stngs))
  2163. goto err_ret;
  2164. msrs = msrs_alloc();
  2165. if (!msrs)
  2166. goto err_free;
  2167. err = pci_register_driver(&amd64_pci_driver);
  2168. if (err)
  2169. goto err_pci;
  2170. err = -ENODEV;
  2171. if (!atomic_read(&drv_instances))
  2172. goto err_no_instances;
  2173. setup_pci_device();
  2174. return 0;
  2175. err_no_instances:
  2176. pci_unregister_driver(&amd64_pci_driver);
  2177. err_pci:
  2178. msrs_free(msrs);
  2179. msrs = NULL;
  2180. err_free:
  2181. kfree(mcis);
  2182. mcis = NULL;
  2183. kfree(ecc_stngs);
  2184. ecc_stngs = NULL;
  2185. err_ret:
  2186. return err;
  2187. }
  2188. static void __exit amd64_edac_exit(void)
  2189. {
  2190. if (amd64_ctl_pci)
  2191. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2192. pci_unregister_driver(&amd64_pci_driver);
  2193. kfree(ecc_stngs);
  2194. ecc_stngs = NULL;
  2195. kfree(mcis);
  2196. mcis = NULL;
  2197. msrs_free(msrs);
  2198. msrs = NULL;
  2199. }
  2200. module_init(amd64_edac_init);
  2201. module_exit(amd64_edac_exit);
  2202. MODULE_LICENSE("GPL");
  2203. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2204. "Dave Peterson, Thayne Harbaugh");
  2205. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2206. EDAC_AMD64_VERSION);
  2207. module_param(edac_op_state, int, 0444);
  2208. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");