sata_mv.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189
  1. /*
  2. * sata_mv.c - Marvell SATA support
  3. *
  4. * Copyright 2005: EMC Corporation, all rights reserved.
  5. *
  6. * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; version 2 of the License.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. *
  21. */
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/pci.h>
  25. #include <linux/init.h>
  26. #include <linux/blkdev.h>
  27. #include <linux/delay.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/sched.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/device.h>
  32. #include <scsi/scsi_host.h>
  33. #include <scsi/scsi_cmnd.h>
  34. #include <linux/libata.h>
  35. #include <asm/io.h>
  36. #define DRV_NAME "sata_mv"
  37. #define DRV_VERSION "0.25"
  38. enum {
  39. /* BAR's are enumerated in terms of pci_resource_start() terms */
  40. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  41. MV_IO_BAR = 2, /* offset 0x18: IO space */
  42. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  43. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  44. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  45. MV_PCI_REG_BASE = 0,
  46. MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
  47. MV_SATAHC0_REG_BASE = 0x20000,
  48. MV_FLASH_CTL = 0x1046c,
  49. MV_GPIO_PORT_CTL = 0x104f0,
  50. MV_RESET_CFG = 0x180d8,
  51. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  52. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  53. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  54. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  55. MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
  56. MV_MAX_Q_DEPTH = 32,
  57. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  58. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  59. * CRPB needs alignment on a 256B boundary. Size == 256B
  60. * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
  61. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  62. */
  63. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  64. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  65. MV_MAX_SG_CT = 176,
  66. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  67. MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
  68. MV_PORTS_PER_HC = 4,
  69. /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
  70. MV_PORT_HC_SHIFT = 2,
  71. /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
  72. MV_PORT_MASK = 3,
  73. /* Host Flags */
  74. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  75. MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
  76. MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
  77. ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO),
  78. MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
  79. CRQB_FLAG_READ = (1 << 0),
  80. CRQB_TAG_SHIFT = 1,
  81. CRQB_CMD_ADDR_SHIFT = 8,
  82. CRQB_CMD_CS = (0x2 << 11),
  83. CRQB_CMD_LAST = (1 << 15),
  84. CRPB_FLAG_STATUS_SHIFT = 8,
  85. EPRD_FLAG_END_OF_TBL = (1 << 31),
  86. /* PCI interface registers */
  87. PCI_COMMAND_OFS = 0xc00,
  88. PCI_MAIN_CMD_STS_OFS = 0xd30,
  89. STOP_PCI_MASTER = (1 << 2),
  90. PCI_MASTER_EMPTY = (1 << 3),
  91. GLOB_SFT_RST = (1 << 4),
  92. MV_PCI_MODE = 0xd00,
  93. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  94. MV_PCI_DISC_TIMER = 0xd04,
  95. MV_PCI_MSI_TRIGGER = 0xc38,
  96. MV_PCI_SERR_MASK = 0xc28,
  97. MV_PCI_XBAR_TMOUT = 0x1d04,
  98. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  99. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  100. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  101. MV_PCI_ERR_COMMAND = 0x1d50,
  102. PCI_IRQ_CAUSE_OFS = 0x1d58,
  103. PCI_IRQ_MASK_OFS = 0x1d5c,
  104. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  105. HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
  106. HC_MAIN_IRQ_MASK_OFS = 0x1d64,
  107. PORT0_ERR = (1 << 0), /* shift by port # */
  108. PORT0_DONE = (1 << 1), /* shift by port # */
  109. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  110. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  111. PCI_ERR = (1 << 18),
  112. TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
  113. TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
  114. PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
  115. GPIO_INT = (1 << 22),
  116. SELF_INT = (1 << 23),
  117. TWSI_INT = (1 << 24),
  118. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  119. HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
  120. PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
  121. HC_MAIN_RSVD),
  122. /* SATAHC registers */
  123. HC_CFG_OFS = 0,
  124. HC_IRQ_CAUSE_OFS = 0x14,
  125. CRPB_DMA_DONE = (1 << 0), /* shift by port # */
  126. HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
  127. DEV_IRQ = (1 << 8), /* shift by port # */
  128. /* Shadow block registers */
  129. SHD_BLK_OFS = 0x100,
  130. SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
  131. /* SATA registers */
  132. SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
  133. SATA_ACTIVE_OFS = 0x350,
  134. PHY_MODE3 = 0x310,
  135. PHY_MODE4 = 0x314,
  136. PHY_MODE2 = 0x330,
  137. MV5_PHY_MODE = 0x74,
  138. MV5_LT_MODE = 0x30,
  139. MV5_PHY_CTL = 0x0C,
  140. SATA_INTERFACE_CTL = 0x050,
  141. MV_M2_PREAMP_MASK = 0x7e0,
  142. /* Port registers */
  143. EDMA_CFG_OFS = 0,
  144. EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
  145. EDMA_CFG_NCQ = (1 << 5),
  146. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  147. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  148. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  149. EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
  150. EDMA_ERR_IRQ_MASK_OFS = 0xc,
  151. EDMA_ERR_D_PAR = (1 << 0),
  152. EDMA_ERR_PRD_PAR = (1 << 1),
  153. EDMA_ERR_DEV = (1 << 2),
  154. EDMA_ERR_DEV_DCON = (1 << 3),
  155. EDMA_ERR_DEV_CON = (1 << 4),
  156. EDMA_ERR_SERR = (1 << 5),
  157. EDMA_ERR_SELF_DIS = (1 << 7),
  158. EDMA_ERR_BIST_ASYNC = (1 << 8),
  159. EDMA_ERR_CRBQ_PAR = (1 << 9),
  160. EDMA_ERR_CRPB_PAR = (1 << 10),
  161. EDMA_ERR_INTRL_PAR = (1 << 11),
  162. EDMA_ERR_IORDY = (1 << 12),
  163. EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
  164. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
  165. EDMA_ERR_LNK_DATA_RX = (0xf << 17),
  166. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
  167. EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
  168. EDMA_ERR_TRANS_PROTO = (1 << 31),
  169. EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  170. EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
  171. EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
  172. EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
  173. EDMA_ERR_LNK_DATA_RX |
  174. EDMA_ERR_LNK_DATA_TX |
  175. EDMA_ERR_TRANS_PROTO),
  176. EDMA_REQ_Q_BASE_HI_OFS = 0x10,
  177. EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
  178. EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
  179. EDMA_REQ_Q_PTR_SHIFT = 5,
  180. EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
  181. EDMA_RSP_Q_IN_PTR_OFS = 0x20,
  182. EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
  183. EDMA_RSP_Q_PTR_SHIFT = 3,
  184. EDMA_CMD_OFS = 0x28,
  185. EDMA_EN = (1 << 0),
  186. EDMA_DS = (1 << 1),
  187. ATA_RST = (1 << 2),
  188. EDMA_IORDY_TMOUT = 0x34,
  189. EDMA_ARB_CFG = 0x38,
  190. /* Host private flags (hp_flags) */
  191. MV_HP_FLAG_MSI = (1 << 0),
  192. MV_HP_ERRATA_50XXB0 = (1 << 1),
  193. MV_HP_ERRATA_50XXB2 = (1 << 2),
  194. MV_HP_ERRATA_60X1B2 = (1 << 3),
  195. MV_HP_ERRATA_60X1C0 = (1 << 4),
  196. MV_HP_50XX = (1 << 5),
  197. /* Port private flags (pp_flags) */
  198. MV_PP_FLAG_EDMA_EN = (1 << 0),
  199. MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
  200. };
  201. #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
  202. #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
  203. enum {
  204. /* Our DMA boundary is determined by an ePRD being unable to handle
  205. * anything larger than 64KB
  206. */
  207. MV_DMA_BOUNDARY = 0xffffU,
  208. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  209. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  210. };
  211. enum chip_type {
  212. chip_504x,
  213. chip_508x,
  214. chip_5080,
  215. chip_604x,
  216. chip_608x,
  217. };
  218. /* Command ReQuest Block: 32B */
  219. struct mv_crqb {
  220. u32 sg_addr;
  221. u32 sg_addr_hi;
  222. u16 ctrl_flags;
  223. u16 ata_cmd[11];
  224. };
  225. /* Command ResPonse Block: 8B */
  226. struct mv_crpb {
  227. u16 id;
  228. u16 flags;
  229. u32 tmstmp;
  230. };
  231. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  232. struct mv_sg {
  233. u32 addr;
  234. u32 flags_size;
  235. u32 addr_hi;
  236. u32 reserved;
  237. };
  238. struct mv_port_priv {
  239. struct mv_crqb *crqb;
  240. dma_addr_t crqb_dma;
  241. struct mv_crpb *crpb;
  242. dma_addr_t crpb_dma;
  243. struct mv_sg *sg_tbl;
  244. dma_addr_t sg_tbl_dma;
  245. unsigned req_producer; /* cp of req_in_ptr */
  246. unsigned rsp_consumer; /* cp of rsp_out_ptr */
  247. u32 pp_flags;
  248. };
  249. struct mv_port_signal {
  250. u32 amps;
  251. u32 pre;
  252. };
  253. struct mv_host_priv;
  254. struct mv_hw_ops {
  255. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  256. unsigned int port);
  257. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  258. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  259. void __iomem *mmio);
  260. int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
  261. unsigned int n_hc);
  262. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  263. void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
  264. };
  265. struct mv_host_priv {
  266. u32 hp_flags;
  267. struct mv_port_signal signal[8];
  268. const struct mv_hw_ops *ops;
  269. };
  270. static void mv_irq_clear(struct ata_port *ap);
  271. static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
  272. static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
  273. static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
  274. static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
  275. static void mv_phy_reset(struct ata_port *ap);
  276. static void mv_host_stop(struct ata_host_set *host_set);
  277. static int mv_port_start(struct ata_port *ap);
  278. static void mv_port_stop(struct ata_port *ap);
  279. static void mv_qc_prep(struct ata_queued_cmd *qc);
  280. static int mv_qc_issue(struct ata_queued_cmd *qc);
  281. static irqreturn_t mv_interrupt(int irq, void *dev_instance,
  282. struct pt_regs *regs);
  283. static void mv_eng_timeout(struct ata_port *ap);
  284. static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
  285. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  286. unsigned int port);
  287. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  288. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  289. void __iomem *mmio);
  290. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  291. unsigned int n_hc);
  292. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  293. static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
  294. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  295. unsigned int port);
  296. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  297. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  298. void __iomem *mmio);
  299. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  300. unsigned int n_hc);
  301. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  302. static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
  303. static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
  304. unsigned int port_no);
  305. static void mv_stop_and_reset(struct ata_port *ap);
  306. static struct scsi_host_template mv_sht = {
  307. .module = THIS_MODULE,
  308. .name = DRV_NAME,
  309. .ioctl = ata_scsi_ioctl,
  310. .queuecommand = ata_scsi_queuecmd,
  311. .eh_strategy_handler = ata_scsi_error,
  312. .can_queue = MV_USE_Q_DEPTH,
  313. .this_id = ATA_SHT_THIS_ID,
  314. .sg_tablesize = MV_MAX_SG_CT,
  315. .max_sectors = ATA_MAX_SECTORS,
  316. .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
  317. .emulated = ATA_SHT_EMULATED,
  318. .use_clustering = ATA_SHT_USE_CLUSTERING,
  319. .proc_name = DRV_NAME,
  320. .dma_boundary = MV_DMA_BOUNDARY,
  321. .slave_configure = ata_scsi_slave_config,
  322. .bios_param = ata_std_bios_param,
  323. .ordered_flush = 1,
  324. };
  325. static const struct ata_port_operations mv5_ops = {
  326. .port_disable = ata_port_disable,
  327. .tf_load = ata_tf_load,
  328. .tf_read = ata_tf_read,
  329. .check_status = ata_check_status,
  330. .exec_command = ata_exec_command,
  331. .dev_select = ata_std_dev_select,
  332. .phy_reset = mv_phy_reset,
  333. .qc_prep = mv_qc_prep,
  334. .qc_issue = mv_qc_issue,
  335. .eng_timeout = mv_eng_timeout,
  336. .irq_handler = mv_interrupt,
  337. .irq_clear = mv_irq_clear,
  338. .scr_read = mv5_scr_read,
  339. .scr_write = mv5_scr_write,
  340. .port_start = mv_port_start,
  341. .port_stop = mv_port_stop,
  342. .host_stop = mv_host_stop,
  343. };
  344. static const struct ata_port_operations mv6_ops = {
  345. .port_disable = ata_port_disable,
  346. .tf_load = ata_tf_load,
  347. .tf_read = ata_tf_read,
  348. .check_status = ata_check_status,
  349. .exec_command = ata_exec_command,
  350. .dev_select = ata_std_dev_select,
  351. .phy_reset = mv_phy_reset,
  352. .qc_prep = mv_qc_prep,
  353. .qc_issue = mv_qc_issue,
  354. .eng_timeout = mv_eng_timeout,
  355. .irq_handler = mv_interrupt,
  356. .irq_clear = mv_irq_clear,
  357. .scr_read = mv_scr_read,
  358. .scr_write = mv_scr_write,
  359. .port_start = mv_port_start,
  360. .port_stop = mv_port_stop,
  361. .host_stop = mv_host_stop,
  362. };
  363. static struct ata_port_info mv_port_info[] = {
  364. { /* chip_504x */
  365. .sht = &mv_sht,
  366. .host_flags = MV_COMMON_FLAGS,
  367. .pio_mask = 0x1f, /* pio0-4 */
  368. .udma_mask = 0x7f, /* udma0-6 */
  369. .port_ops = &mv5_ops,
  370. },
  371. { /* chip_508x */
  372. .sht = &mv_sht,
  373. .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
  374. .pio_mask = 0x1f, /* pio0-4 */
  375. .udma_mask = 0x7f, /* udma0-6 */
  376. .port_ops = &mv5_ops,
  377. },
  378. { /* chip_5080 */
  379. .sht = &mv_sht,
  380. .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
  381. .pio_mask = 0x1f, /* pio0-4 */
  382. .udma_mask = 0x7f, /* udma0-6 */
  383. .port_ops = &mv5_ops,
  384. },
  385. { /* chip_604x */
  386. .sht = &mv_sht,
  387. .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
  388. .pio_mask = 0x1f, /* pio0-4 */
  389. .udma_mask = 0x7f, /* udma0-6 */
  390. .port_ops = &mv6_ops,
  391. },
  392. { /* chip_608x */
  393. .sht = &mv_sht,
  394. .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
  395. MV_FLAG_DUAL_HC),
  396. .pio_mask = 0x1f, /* pio0-4 */
  397. .udma_mask = 0x7f, /* udma0-6 */
  398. .port_ops = &mv6_ops,
  399. },
  400. };
  401. static const struct pci_device_id mv_pci_tbl[] = {
  402. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
  403. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
  404. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_5080},
  405. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},
  406. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
  407. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
  408. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
  409. {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
  410. {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x},
  411. {} /* terminate list */
  412. };
  413. static struct pci_driver mv_pci_driver = {
  414. .name = DRV_NAME,
  415. .id_table = mv_pci_tbl,
  416. .probe = mv_init_one,
  417. .remove = ata_pci_remove_one,
  418. };
  419. static const struct mv_hw_ops mv5xxx_ops = {
  420. .phy_errata = mv5_phy_errata,
  421. .enable_leds = mv5_enable_leds,
  422. .read_preamp = mv5_read_preamp,
  423. .reset_hc = mv5_reset_hc,
  424. .reset_flash = mv5_reset_flash,
  425. .reset_bus = mv5_reset_bus,
  426. };
  427. static const struct mv_hw_ops mv6xxx_ops = {
  428. .phy_errata = mv6_phy_errata,
  429. .enable_leds = mv6_enable_leds,
  430. .read_preamp = mv6_read_preamp,
  431. .reset_hc = mv6_reset_hc,
  432. .reset_flash = mv6_reset_flash,
  433. .reset_bus = mv_reset_pci_bus,
  434. };
  435. /*
  436. * Functions
  437. */
  438. static inline void writelfl(unsigned long data, void __iomem *addr)
  439. {
  440. writel(data, addr);
  441. (void) readl(addr); /* flush to avoid PCI posted write */
  442. }
  443. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  444. {
  445. return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  446. }
  447. static inline unsigned int mv_hc_from_port(unsigned int port)
  448. {
  449. return port >> MV_PORT_HC_SHIFT;
  450. }
  451. static inline unsigned int mv_hardport_from_port(unsigned int port)
  452. {
  453. return port & MV_PORT_MASK;
  454. }
  455. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  456. unsigned int port)
  457. {
  458. return mv_hc_base(base, mv_hc_from_port(port));
  459. }
  460. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  461. {
  462. return mv_hc_base_from_port(base, port) +
  463. MV_SATAHC_ARBTR_REG_SZ +
  464. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  465. }
  466. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  467. {
  468. return mv_port_base(ap->host_set->mmio_base, ap->port_no);
  469. }
  470. static inline int mv_get_hc_count(unsigned long host_flags)
  471. {
  472. return ((host_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  473. }
  474. static void mv_irq_clear(struct ata_port *ap)
  475. {
  476. }
  477. /**
  478. * mv_start_dma - Enable eDMA engine
  479. * @base: port base address
  480. * @pp: port private data
  481. *
  482. * Verify the local cache of the eDMA state is accurate with an
  483. * assert.
  484. *
  485. * LOCKING:
  486. * Inherited from caller.
  487. */
  488. static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
  489. {
  490. if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
  491. writelfl(EDMA_EN, base + EDMA_CMD_OFS);
  492. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  493. }
  494. assert(EDMA_EN & readl(base + EDMA_CMD_OFS));
  495. }
  496. /**
  497. * mv_stop_dma - Disable eDMA engine
  498. * @ap: ATA channel to manipulate
  499. *
  500. * Verify the local cache of the eDMA state is accurate with an
  501. * assert.
  502. *
  503. * LOCKING:
  504. * Inherited from caller.
  505. */
  506. static void mv_stop_dma(struct ata_port *ap)
  507. {
  508. void __iomem *port_mmio = mv_ap_base(ap);
  509. struct mv_port_priv *pp = ap->private_data;
  510. u32 reg;
  511. int i;
  512. if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
  513. /* Disable EDMA if active. The disable bit auto clears.
  514. */
  515. writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
  516. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  517. } else {
  518. assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
  519. }
  520. /* now properly wait for the eDMA to stop */
  521. for (i = 1000; i > 0; i--) {
  522. reg = readl(port_mmio + EDMA_CMD_OFS);
  523. if (!(EDMA_EN & reg)) {
  524. break;
  525. }
  526. udelay(100);
  527. }
  528. if (EDMA_EN & reg) {
  529. printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
  530. /* FIXME: Consider doing a reset here to recover */
  531. }
  532. }
  533. #ifdef ATA_DEBUG
  534. static void mv_dump_mem(void __iomem *start, unsigned bytes)
  535. {
  536. int b, w;
  537. for (b = 0; b < bytes; ) {
  538. DPRINTK("%p: ", start + b);
  539. for (w = 0; b < bytes && w < 4; w++) {
  540. printk("%08x ",readl(start + b));
  541. b += sizeof(u32);
  542. }
  543. printk("\n");
  544. }
  545. }
  546. #endif
  547. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  548. {
  549. #ifdef ATA_DEBUG
  550. int b, w;
  551. u32 dw;
  552. for (b = 0; b < bytes; ) {
  553. DPRINTK("%02x: ", b);
  554. for (w = 0; b < bytes && w < 4; w++) {
  555. (void) pci_read_config_dword(pdev,b,&dw);
  556. printk("%08x ",dw);
  557. b += sizeof(u32);
  558. }
  559. printk("\n");
  560. }
  561. #endif
  562. }
  563. static void mv_dump_all_regs(void __iomem *mmio_base, int port,
  564. struct pci_dev *pdev)
  565. {
  566. #ifdef ATA_DEBUG
  567. void __iomem *hc_base = mv_hc_base(mmio_base,
  568. port >> MV_PORT_HC_SHIFT);
  569. void __iomem *port_base;
  570. int start_port, num_ports, p, start_hc, num_hcs, hc;
  571. if (0 > port) {
  572. start_hc = start_port = 0;
  573. num_ports = 8; /* shld be benign for 4 port devs */
  574. num_hcs = 2;
  575. } else {
  576. start_hc = port >> MV_PORT_HC_SHIFT;
  577. start_port = port;
  578. num_ports = num_hcs = 1;
  579. }
  580. DPRINTK("All registers for port(s) %u-%u:\n", start_port,
  581. num_ports > 1 ? num_ports - 1 : start_port);
  582. if (NULL != pdev) {
  583. DPRINTK("PCI config space regs:\n");
  584. mv_dump_pci_cfg(pdev, 0x68);
  585. }
  586. DPRINTK("PCI regs:\n");
  587. mv_dump_mem(mmio_base+0xc00, 0x3c);
  588. mv_dump_mem(mmio_base+0xd00, 0x34);
  589. mv_dump_mem(mmio_base+0xf00, 0x4);
  590. mv_dump_mem(mmio_base+0x1d00, 0x6c);
  591. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  592. hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
  593. DPRINTK("HC regs (HC %i):\n", hc);
  594. mv_dump_mem(hc_base, 0x1c);
  595. }
  596. for (p = start_port; p < start_port + num_ports; p++) {
  597. port_base = mv_port_base(mmio_base, p);
  598. DPRINTK("EDMA regs (port %i):\n",p);
  599. mv_dump_mem(port_base, 0x54);
  600. DPRINTK("SATA regs (port %i):\n",p);
  601. mv_dump_mem(port_base+0x300, 0x60);
  602. }
  603. #endif
  604. }
  605. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  606. {
  607. unsigned int ofs;
  608. switch (sc_reg_in) {
  609. case SCR_STATUS:
  610. case SCR_CONTROL:
  611. case SCR_ERROR:
  612. ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
  613. break;
  614. case SCR_ACTIVE:
  615. ofs = SATA_ACTIVE_OFS; /* active is not with the others */
  616. break;
  617. default:
  618. ofs = 0xffffffffU;
  619. break;
  620. }
  621. return ofs;
  622. }
  623. static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
  624. {
  625. unsigned int ofs = mv_scr_offset(sc_reg_in);
  626. if (0xffffffffU != ofs) {
  627. return readl(mv_ap_base(ap) + ofs);
  628. } else {
  629. return (u32) ofs;
  630. }
  631. }
  632. static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
  633. {
  634. unsigned int ofs = mv_scr_offset(sc_reg_in);
  635. if (0xffffffffU != ofs) {
  636. writelfl(val, mv_ap_base(ap) + ofs);
  637. }
  638. }
  639. /**
  640. * mv_host_stop - Host specific cleanup/stop routine.
  641. * @host_set: host data structure
  642. *
  643. * Disable ints, cleanup host memory, call general purpose
  644. * host_stop.
  645. *
  646. * LOCKING:
  647. * Inherited from caller.
  648. */
  649. static void mv_host_stop(struct ata_host_set *host_set)
  650. {
  651. struct mv_host_priv *hpriv = host_set->private_data;
  652. struct pci_dev *pdev = to_pci_dev(host_set->dev);
  653. if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
  654. pci_disable_msi(pdev);
  655. } else {
  656. pci_intx(pdev, 0);
  657. }
  658. kfree(hpriv);
  659. ata_host_stop(host_set);
  660. }
  661. static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
  662. {
  663. dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
  664. }
  665. /**
  666. * mv_port_start - Port specific init/start routine.
  667. * @ap: ATA channel to manipulate
  668. *
  669. * Allocate and point to DMA memory, init port private memory,
  670. * zero indices.
  671. *
  672. * LOCKING:
  673. * Inherited from caller.
  674. */
  675. static int mv_port_start(struct ata_port *ap)
  676. {
  677. struct device *dev = ap->host_set->dev;
  678. struct mv_port_priv *pp;
  679. void __iomem *port_mmio = mv_ap_base(ap);
  680. void *mem;
  681. dma_addr_t mem_dma;
  682. int rc = -ENOMEM;
  683. pp = kmalloc(sizeof(*pp), GFP_KERNEL);
  684. if (!pp)
  685. goto err_out;
  686. memset(pp, 0, sizeof(*pp));
  687. mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
  688. GFP_KERNEL);
  689. if (!mem)
  690. goto err_out_pp;
  691. memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
  692. rc = ata_pad_alloc(ap, dev);
  693. if (rc)
  694. goto err_out_priv;
  695. /* First item in chunk of DMA memory:
  696. * 32-slot command request table (CRQB), 32 bytes each in size
  697. */
  698. pp->crqb = mem;
  699. pp->crqb_dma = mem_dma;
  700. mem += MV_CRQB_Q_SZ;
  701. mem_dma += MV_CRQB_Q_SZ;
  702. /* Second item:
  703. * 32-slot command response table (CRPB), 8 bytes each in size
  704. */
  705. pp->crpb = mem;
  706. pp->crpb_dma = mem_dma;
  707. mem += MV_CRPB_Q_SZ;
  708. mem_dma += MV_CRPB_Q_SZ;
  709. /* Third item:
  710. * Table of scatter-gather descriptors (ePRD), 16 bytes each
  711. */
  712. pp->sg_tbl = mem;
  713. pp->sg_tbl_dma = mem_dma;
  714. writelfl(EDMA_CFG_Q_DEPTH | EDMA_CFG_RD_BRST_EXT |
  715. EDMA_CFG_WR_BUFF_LEN, port_mmio + EDMA_CFG_OFS);
  716. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
  717. writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
  718. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  719. writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
  720. writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
  721. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
  722. writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
  723. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  724. pp->req_producer = pp->rsp_consumer = 0;
  725. /* Don't turn on EDMA here...do it before DMA commands only. Else
  726. * we'll be unable to send non-data, PIO, etc due to restricted access
  727. * to shadow regs.
  728. */
  729. ap->private_data = pp;
  730. return 0;
  731. err_out_priv:
  732. mv_priv_free(pp, dev);
  733. err_out_pp:
  734. kfree(pp);
  735. err_out:
  736. return rc;
  737. }
  738. /**
  739. * mv_port_stop - Port specific cleanup/stop routine.
  740. * @ap: ATA channel to manipulate
  741. *
  742. * Stop DMA, cleanup port memory.
  743. *
  744. * LOCKING:
  745. * This routine uses the host_set lock to protect the DMA stop.
  746. */
  747. static void mv_port_stop(struct ata_port *ap)
  748. {
  749. struct device *dev = ap->host_set->dev;
  750. struct mv_port_priv *pp = ap->private_data;
  751. unsigned long flags;
  752. spin_lock_irqsave(&ap->host_set->lock, flags);
  753. mv_stop_dma(ap);
  754. spin_unlock_irqrestore(&ap->host_set->lock, flags);
  755. ap->private_data = NULL;
  756. ata_pad_free(ap, dev);
  757. mv_priv_free(pp, dev);
  758. kfree(pp);
  759. }
  760. /**
  761. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  762. * @qc: queued command whose SG list to source from
  763. *
  764. * Populate the SG list and mark the last entry.
  765. *
  766. * LOCKING:
  767. * Inherited from caller.
  768. */
  769. static void mv_fill_sg(struct ata_queued_cmd *qc)
  770. {
  771. struct mv_port_priv *pp = qc->ap->private_data;
  772. unsigned int i = 0;
  773. struct scatterlist *sg;
  774. ata_for_each_sg(sg, qc) {
  775. u32 sg_len;
  776. dma_addr_t addr;
  777. addr = sg_dma_address(sg);
  778. sg_len = sg_dma_len(sg);
  779. pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
  780. pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
  781. assert(0 == (sg_len & ~MV_DMA_BOUNDARY));
  782. pp->sg_tbl[i].flags_size = cpu_to_le32(sg_len);
  783. if (ata_sg_is_last(sg, qc))
  784. pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  785. i++;
  786. }
  787. }
  788. static inline unsigned mv_inc_q_index(unsigned *index)
  789. {
  790. *index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
  791. return *index;
  792. }
  793. static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
  794. {
  795. *cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  796. (last ? CRQB_CMD_LAST : 0);
  797. }
  798. /**
  799. * mv_qc_prep - Host specific command preparation.
  800. * @qc: queued command to prepare
  801. *
  802. * This routine simply redirects to the general purpose routine
  803. * if command is not DMA. Else, it handles prep of the CRQB
  804. * (command request block), does some sanity checking, and calls
  805. * the SG load routine.
  806. *
  807. * LOCKING:
  808. * Inherited from caller.
  809. */
  810. static void mv_qc_prep(struct ata_queued_cmd *qc)
  811. {
  812. struct ata_port *ap = qc->ap;
  813. struct mv_port_priv *pp = ap->private_data;
  814. u16 *cw;
  815. struct ata_taskfile *tf;
  816. u16 flags = 0;
  817. if (ATA_PROT_DMA != qc->tf.protocol) {
  818. return;
  819. }
  820. /* the req producer index should be the same as we remember it */
  821. assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
  822. EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
  823. pp->req_producer);
  824. /* Fill in command request block
  825. */
  826. if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
  827. flags |= CRQB_FLAG_READ;
  828. }
  829. assert(MV_MAX_Q_DEPTH > qc->tag);
  830. flags |= qc->tag << CRQB_TAG_SHIFT;
  831. pp->crqb[pp->req_producer].sg_addr =
  832. cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
  833. pp->crqb[pp->req_producer].sg_addr_hi =
  834. cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
  835. pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);
  836. cw = &pp->crqb[pp->req_producer].ata_cmd[0];
  837. tf = &qc->tf;
  838. /* Sadly, the CRQB cannot accomodate all registers--there are
  839. * only 11 bytes...so we must pick and choose required
  840. * registers based on the command. So, we drop feature and
  841. * hob_feature for [RW] DMA commands, but they are needed for
  842. * NCQ. NCQ will drop hob_nsect.
  843. */
  844. switch (tf->command) {
  845. case ATA_CMD_READ:
  846. case ATA_CMD_READ_EXT:
  847. case ATA_CMD_WRITE:
  848. case ATA_CMD_WRITE_EXT:
  849. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  850. break;
  851. #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
  852. case ATA_CMD_FPDMA_READ:
  853. case ATA_CMD_FPDMA_WRITE:
  854. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  855. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  856. break;
  857. #endif /* FIXME: remove this line when NCQ added */
  858. default:
  859. /* The only other commands EDMA supports in non-queued and
  860. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  861. * of which are defined/used by Linux. If we get here, this
  862. * driver needs work.
  863. *
  864. * FIXME: modify libata to give qc_prep a return value and
  865. * return error here.
  866. */
  867. BUG_ON(tf->command);
  868. break;
  869. }
  870. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  871. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  872. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  873. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  874. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  875. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  876. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  877. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  878. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  879. if (!(qc->flags & ATA_QCFLAG_DMAMAP)) {
  880. return;
  881. }
  882. mv_fill_sg(qc);
  883. }
  884. /**
  885. * mv_qc_issue - Initiate a command to the host
  886. * @qc: queued command to start
  887. *
  888. * This routine simply redirects to the general purpose routine
  889. * if command is not DMA. Else, it sanity checks our local
  890. * caches of the request producer/consumer indices then enables
  891. * DMA and bumps the request producer index.
  892. *
  893. * LOCKING:
  894. * Inherited from caller.
  895. */
  896. static int mv_qc_issue(struct ata_queued_cmd *qc)
  897. {
  898. void __iomem *port_mmio = mv_ap_base(qc->ap);
  899. struct mv_port_priv *pp = qc->ap->private_data;
  900. u32 in_ptr;
  901. if (ATA_PROT_DMA != qc->tf.protocol) {
  902. /* We're about to send a non-EDMA capable command to the
  903. * port. Turn off EDMA so there won't be problems accessing
  904. * shadow block, etc registers.
  905. */
  906. mv_stop_dma(qc->ap);
  907. return ata_qc_issue_prot(qc);
  908. }
  909. in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  910. /* the req producer index should be the same as we remember it */
  911. assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
  912. pp->req_producer);
  913. /* until we do queuing, the queue should be empty at this point */
  914. assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
  915. ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
  916. EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
  917. mv_inc_q_index(&pp->req_producer); /* now incr producer index */
  918. mv_start_dma(port_mmio, pp);
  919. /* and write the request in pointer to kick the EDMA to life */
  920. in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
  921. in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
  922. writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  923. return 0;
  924. }
  925. /**
  926. * mv_get_crpb_status - get status from most recently completed cmd
  927. * @ap: ATA channel to manipulate
  928. *
  929. * This routine is for use when the port is in DMA mode, when it
  930. * will be using the CRPB (command response block) method of
  931. * returning command completion information. We assert indices
  932. * are good, grab status, and bump the response consumer index to
  933. * prove that we're up to date.
  934. *
  935. * LOCKING:
  936. * Inherited from caller.
  937. */
  938. static u8 mv_get_crpb_status(struct ata_port *ap)
  939. {
  940. void __iomem *port_mmio = mv_ap_base(ap);
  941. struct mv_port_priv *pp = ap->private_data;
  942. u32 out_ptr;
  943. out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  944. /* the response consumer index should be the same as we remember it */
  945. assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
  946. pp->rsp_consumer);
  947. /* increment our consumer index... */
  948. pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
  949. /* and, until we do NCQ, there should only be 1 CRPB waiting */
  950. assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
  951. EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
  952. pp->rsp_consumer);
  953. /* write out our inc'd consumer index so EDMA knows we're caught up */
  954. out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
  955. out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
  956. writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  957. /* Return ATA status register for completed CRPB */
  958. return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
  959. }
  960. /**
  961. * mv_err_intr - Handle error interrupts on the port
  962. * @ap: ATA channel to manipulate
  963. *
  964. * In most cases, just clear the interrupt and move on. However,
  965. * some cases require an eDMA reset, which is done right before
  966. * the COMRESET in mv_phy_reset(). The SERR case requires a
  967. * clear of pending errors in the SATA SERROR register. Finally,
  968. * if the port disabled DMA, update our cached copy to match.
  969. *
  970. * LOCKING:
  971. * Inherited from caller.
  972. */
  973. static void mv_err_intr(struct ata_port *ap)
  974. {
  975. void __iomem *port_mmio = mv_ap_base(ap);
  976. u32 edma_err_cause, serr = 0;
  977. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  978. if (EDMA_ERR_SERR & edma_err_cause) {
  979. serr = scr_read(ap, SCR_ERROR);
  980. scr_write_flush(ap, SCR_ERROR, serr);
  981. }
  982. if (EDMA_ERR_SELF_DIS & edma_err_cause) {
  983. struct mv_port_priv *pp = ap->private_data;
  984. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  985. }
  986. DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
  987. "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
  988. /* Clear EDMA now that SERR cleanup done */
  989. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  990. /* check for fatal here and recover if needed */
  991. if (EDMA_ERR_FATAL & edma_err_cause) {
  992. mv_stop_and_reset(ap);
  993. }
  994. }
  995. /**
  996. * mv_host_intr - Handle all interrupts on the given host controller
  997. * @host_set: host specific structure
  998. * @relevant: port error bits relevant to this host controller
  999. * @hc: which host controller we're to look at
  1000. *
  1001. * Read then write clear the HC interrupt status then walk each
  1002. * port connected to the HC and see if it needs servicing. Port
  1003. * success ints are reported in the HC interrupt status reg, the
  1004. * port error ints are reported in the higher level main
  1005. * interrupt status register and thus are passed in via the
  1006. * 'relevant' argument.
  1007. *
  1008. * LOCKING:
  1009. * Inherited from caller.
  1010. */
  1011. static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
  1012. unsigned int hc)
  1013. {
  1014. void __iomem *mmio = host_set->mmio_base;
  1015. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  1016. struct ata_port *ap;
  1017. struct ata_queued_cmd *qc;
  1018. u32 hc_irq_cause;
  1019. int shift, port, port0, hard_port, handled;
  1020. unsigned int err_mask;
  1021. u8 ata_status = 0;
  1022. if (hc == 0) {
  1023. port0 = 0;
  1024. } else {
  1025. port0 = MV_PORTS_PER_HC;
  1026. }
  1027. /* we'll need the HC success int register in most cases */
  1028. hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
  1029. if (hc_irq_cause) {
  1030. writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  1031. }
  1032. VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
  1033. hc,relevant,hc_irq_cause);
  1034. for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
  1035. ap = host_set->ports[port];
  1036. hard_port = port & MV_PORT_MASK; /* range 0-3 */
  1037. handled = 0; /* ensure ata_status is set if handled++ */
  1038. if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
  1039. /* new CRPB on the queue; just one at a time until NCQ
  1040. */
  1041. ata_status = mv_get_crpb_status(ap);
  1042. handled++;
  1043. } else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
  1044. /* received ATA IRQ; read the status reg to clear INTRQ
  1045. */
  1046. ata_status = readb((void __iomem *)
  1047. ap->ioaddr.status_addr);
  1048. handled++;
  1049. }
  1050. err_mask = ac_err_mask(ata_status);
  1051. shift = port << 1; /* (port * 2) */
  1052. if (port >= MV_PORTS_PER_HC) {
  1053. shift++; /* skip bit 8 in the HC Main IRQ reg */
  1054. }
  1055. if ((PORT0_ERR << shift) & relevant) {
  1056. mv_err_intr(ap);
  1057. err_mask |= AC_ERR_OTHER;
  1058. handled++;
  1059. }
  1060. if (handled && ap) {
  1061. qc = ata_qc_from_tag(ap, ap->active_tag);
  1062. if (NULL != qc) {
  1063. VPRINTK("port %u IRQ found for qc, "
  1064. "ata_status 0x%x\n", port,ata_status);
  1065. /* mark qc status appropriately */
  1066. ata_qc_complete(qc, err_mask);
  1067. }
  1068. }
  1069. }
  1070. VPRINTK("EXIT\n");
  1071. }
  1072. /**
  1073. * mv_interrupt -
  1074. * @irq: unused
  1075. * @dev_instance: private data; in this case the host structure
  1076. * @regs: unused
  1077. *
  1078. * Read the read only register to determine if any host
  1079. * controllers have pending interrupts. If so, call lower level
  1080. * routine to handle. Also check for PCI errors which are only
  1081. * reported here.
  1082. *
  1083. * LOCKING:
  1084. * This routine holds the host_set lock while processing pending
  1085. * interrupts.
  1086. */
  1087. static irqreturn_t mv_interrupt(int irq, void *dev_instance,
  1088. struct pt_regs *regs)
  1089. {
  1090. struct ata_host_set *host_set = dev_instance;
  1091. unsigned int hc, handled = 0, n_hcs;
  1092. void __iomem *mmio = host_set->mmio_base;
  1093. u32 irq_stat;
  1094. irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
  1095. /* check the cases where we either have nothing pending or have read
  1096. * a bogus register value which can indicate HW removal or PCI fault
  1097. */
  1098. if (!irq_stat || (0xffffffffU == irq_stat)) {
  1099. return IRQ_NONE;
  1100. }
  1101. n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
  1102. spin_lock(&host_set->lock);
  1103. for (hc = 0; hc < n_hcs; hc++) {
  1104. u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
  1105. if (relevant) {
  1106. mv_host_intr(host_set, relevant, hc);
  1107. handled++;
  1108. }
  1109. }
  1110. if (PCI_ERR & irq_stat) {
  1111. printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
  1112. readl(mmio + PCI_IRQ_CAUSE_OFS));
  1113. DPRINTK("All regs @ PCI error\n");
  1114. mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
  1115. writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
  1116. handled++;
  1117. }
  1118. spin_unlock(&host_set->lock);
  1119. return IRQ_RETVAL(handled);
  1120. }
  1121. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  1122. {
  1123. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  1124. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  1125. return hc_mmio + ofs;
  1126. }
  1127. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  1128. {
  1129. unsigned int ofs;
  1130. switch (sc_reg_in) {
  1131. case SCR_STATUS:
  1132. case SCR_ERROR:
  1133. case SCR_CONTROL:
  1134. ofs = sc_reg_in * sizeof(u32);
  1135. break;
  1136. default:
  1137. ofs = 0xffffffffU;
  1138. break;
  1139. }
  1140. return ofs;
  1141. }
  1142. static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
  1143. {
  1144. void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
  1145. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  1146. if (ofs != 0xffffffffU)
  1147. return readl(mmio + ofs);
  1148. else
  1149. return (u32) ofs;
  1150. }
  1151. static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
  1152. {
  1153. void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
  1154. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  1155. if (ofs != 0xffffffffU)
  1156. writelfl(val, mmio + ofs);
  1157. }
  1158. static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
  1159. {
  1160. u8 rev_id;
  1161. int early_5080;
  1162. pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
  1163. early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
  1164. if (!early_5080) {
  1165. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1166. tmp |= (1 << 0);
  1167. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1168. }
  1169. mv_reset_pci_bus(pdev, mmio);
  1170. }
  1171. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  1172. {
  1173. writel(0x0fcfffff, mmio + MV_FLASH_CTL);
  1174. }
  1175. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  1176. void __iomem *mmio)
  1177. {
  1178. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  1179. u32 tmp;
  1180. tmp = readl(phy_mmio + MV5_PHY_MODE);
  1181. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  1182. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  1183. }
  1184. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  1185. {
  1186. u32 tmp;
  1187. writel(0, mmio + MV_GPIO_PORT_CTL);
  1188. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  1189. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1190. tmp |= ~(1 << 0);
  1191. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  1192. }
  1193. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  1194. unsigned int port)
  1195. {
  1196. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  1197. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  1198. u32 tmp;
  1199. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  1200. if (fix_apm_sq) {
  1201. tmp = readl(phy_mmio + MV5_LT_MODE);
  1202. tmp |= (1 << 19);
  1203. writel(tmp, phy_mmio + MV5_LT_MODE);
  1204. tmp = readl(phy_mmio + MV5_PHY_CTL);
  1205. tmp &= ~0x3;
  1206. tmp |= 0x1;
  1207. writel(tmp, phy_mmio + MV5_PHY_CTL);
  1208. }
  1209. tmp = readl(phy_mmio + MV5_PHY_MODE);
  1210. tmp &= ~mask;
  1211. tmp |= hpriv->signal[port].pre;
  1212. tmp |= hpriv->signal[port].amps;
  1213. writel(tmp, phy_mmio + MV5_PHY_MODE);
  1214. }
  1215. #undef ZERO
  1216. #define ZERO(reg) writel(0, port_mmio + (reg))
  1217. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  1218. unsigned int port)
  1219. {
  1220. void __iomem *port_mmio = mv_port_base(mmio, port);
  1221. writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
  1222. mv_channel_reset(hpriv, mmio, port);
  1223. ZERO(0x028); /* command */
  1224. writel(0x11f, port_mmio + EDMA_CFG_OFS);
  1225. ZERO(0x004); /* timer */
  1226. ZERO(0x008); /* irq err cause */
  1227. ZERO(0x00c); /* irq err mask */
  1228. ZERO(0x010); /* rq bah */
  1229. ZERO(0x014); /* rq inp */
  1230. ZERO(0x018); /* rq outp */
  1231. ZERO(0x01c); /* respq bah */
  1232. ZERO(0x024); /* respq outp */
  1233. ZERO(0x020); /* respq inp */
  1234. ZERO(0x02c); /* test control */
  1235. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
  1236. }
  1237. #undef ZERO
  1238. #define ZERO(reg) writel(0, hc_mmio + (reg))
  1239. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  1240. unsigned int hc)
  1241. {
  1242. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  1243. u32 tmp;
  1244. ZERO(0x00c);
  1245. ZERO(0x010);
  1246. ZERO(0x014);
  1247. ZERO(0x018);
  1248. tmp = readl(hc_mmio + 0x20);
  1249. tmp &= 0x1c1c1c1c;
  1250. tmp |= 0x03030303;
  1251. writel(tmp, hc_mmio + 0x20);
  1252. }
  1253. #undef ZERO
  1254. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  1255. unsigned int n_hc)
  1256. {
  1257. unsigned int hc, port;
  1258. for (hc = 0; hc < n_hc; hc++) {
  1259. for (port = 0; port < MV_PORTS_PER_HC; port++)
  1260. mv5_reset_hc_port(hpriv, mmio,
  1261. (hc * MV_PORTS_PER_HC) + port);
  1262. mv5_reset_one_hc(hpriv, mmio, hc);
  1263. }
  1264. return 0;
  1265. }
  1266. #undef ZERO
  1267. #define ZERO(reg) writel(0, mmio + (reg))
  1268. static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
  1269. {
  1270. u32 tmp;
  1271. tmp = readl(mmio + MV_PCI_MODE);
  1272. tmp &= 0xff00ffff;
  1273. writel(tmp, mmio + MV_PCI_MODE);
  1274. ZERO(MV_PCI_DISC_TIMER);
  1275. ZERO(MV_PCI_MSI_TRIGGER);
  1276. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
  1277. ZERO(HC_MAIN_IRQ_MASK_OFS);
  1278. ZERO(MV_PCI_SERR_MASK);
  1279. ZERO(PCI_IRQ_CAUSE_OFS);
  1280. ZERO(PCI_IRQ_MASK_OFS);
  1281. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  1282. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  1283. ZERO(MV_PCI_ERR_ATTRIBUTE);
  1284. ZERO(MV_PCI_ERR_COMMAND);
  1285. }
  1286. #undef ZERO
  1287. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  1288. {
  1289. u32 tmp;
  1290. mv5_reset_flash(hpriv, mmio);
  1291. tmp = readl(mmio + MV_GPIO_PORT_CTL);
  1292. tmp &= 0x3;
  1293. tmp |= (1 << 5) | (1 << 6);
  1294. writel(tmp, mmio + MV_GPIO_PORT_CTL);
  1295. }
  1296. /**
  1297. * mv6_reset_hc - Perform the 6xxx global soft reset
  1298. * @mmio: base address of the HBA
  1299. *
  1300. * This routine only applies to 6xxx parts.
  1301. *
  1302. * LOCKING:
  1303. * Inherited from caller.
  1304. */
  1305. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  1306. unsigned int n_hc)
  1307. {
  1308. void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
  1309. int i, rc = 0;
  1310. u32 t;
  1311. /* Following procedure defined in PCI "main command and status
  1312. * register" table.
  1313. */
  1314. t = readl(reg);
  1315. writel(t | STOP_PCI_MASTER, reg);
  1316. for (i = 0; i < 1000; i++) {
  1317. udelay(1);
  1318. t = readl(reg);
  1319. if (PCI_MASTER_EMPTY & t) {
  1320. break;
  1321. }
  1322. }
  1323. if (!(PCI_MASTER_EMPTY & t)) {
  1324. printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
  1325. rc = 1;
  1326. goto done;
  1327. }
  1328. /* set reset */
  1329. i = 5;
  1330. do {
  1331. writel(t | GLOB_SFT_RST, reg);
  1332. t = readl(reg);
  1333. udelay(1);
  1334. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  1335. if (!(GLOB_SFT_RST & t)) {
  1336. printk(KERN_ERR DRV_NAME ": can't set global reset\n");
  1337. rc = 1;
  1338. goto done;
  1339. }
  1340. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  1341. i = 5;
  1342. do {
  1343. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  1344. t = readl(reg);
  1345. udelay(1);
  1346. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  1347. if (GLOB_SFT_RST & t) {
  1348. printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
  1349. rc = 1;
  1350. }
  1351. done:
  1352. return rc;
  1353. }
  1354. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  1355. void __iomem *mmio)
  1356. {
  1357. void __iomem *port_mmio;
  1358. u32 tmp;
  1359. tmp = readl(mmio + MV_RESET_CFG);
  1360. if ((tmp & (1 << 0)) == 0) {
  1361. hpriv->signal[idx].amps = 0x7 << 8;
  1362. hpriv->signal[idx].pre = 0x1 << 5;
  1363. return;
  1364. }
  1365. port_mmio = mv_port_base(mmio, idx);
  1366. tmp = readl(port_mmio + PHY_MODE2);
  1367. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  1368. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  1369. }
  1370. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  1371. {
  1372. writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
  1373. }
  1374. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  1375. unsigned int port)
  1376. {
  1377. void __iomem *port_mmio = mv_port_base(mmio, port);
  1378. u32 hp_flags = hpriv->hp_flags;
  1379. int fix_phy_mode2 =
  1380. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  1381. int fix_phy_mode4 =
  1382. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  1383. u32 m2, tmp;
  1384. if (fix_phy_mode2) {
  1385. m2 = readl(port_mmio + PHY_MODE2);
  1386. m2 &= ~(1 << 16);
  1387. m2 |= (1 << 31);
  1388. writel(m2, port_mmio + PHY_MODE2);
  1389. udelay(200);
  1390. m2 = readl(port_mmio + PHY_MODE2);
  1391. m2 &= ~((1 << 16) | (1 << 31));
  1392. writel(m2, port_mmio + PHY_MODE2);
  1393. udelay(200);
  1394. }
  1395. /* who knows what this magic does */
  1396. tmp = readl(port_mmio + PHY_MODE3);
  1397. tmp &= ~0x7F800000;
  1398. tmp |= 0x2A800000;
  1399. writel(tmp, port_mmio + PHY_MODE3);
  1400. if (fix_phy_mode4) {
  1401. u32 m4;
  1402. m4 = readl(port_mmio + PHY_MODE4);
  1403. if (hp_flags & MV_HP_ERRATA_60X1B2)
  1404. tmp = readl(port_mmio + 0x310);
  1405. m4 = (m4 & ~(1 << 1)) | (1 << 0);
  1406. writel(m4, port_mmio + PHY_MODE4);
  1407. if (hp_flags & MV_HP_ERRATA_60X1B2)
  1408. writel(tmp, port_mmio + 0x310);
  1409. }
  1410. /* Revert values of pre-emphasis and signal amps to the saved ones */
  1411. m2 = readl(port_mmio + PHY_MODE2);
  1412. m2 &= ~MV_M2_PREAMP_MASK;
  1413. m2 |= hpriv->signal[port].amps;
  1414. m2 |= hpriv->signal[port].pre;
  1415. m2 &= ~(1 << 16);
  1416. writel(m2, port_mmio + PHY_MODE2);
  1417. }
  1418. static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
  1419. unsigned int port_no)
  1420. {
  1421. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  1422. writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
  1423. if (IS_60XX(hpriv)) {
  1424. u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
  1425. ifctl |= (1 << 12) | (1 << 7);
  1426. writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
  1427. }
  1428. udelay(25); /* allow reset propagation */
  1429. /* Spec never mentions clearing the bit. Marvell's driver does
  1430. * clear the bit, however.
  1431. */
  1432. writelfl(0, port_mmio + EDMA_CMD_OFS);
  1433. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  1434. if (IS_50XX(hpriv))
  1435. mdelay(1);
  1436. }
  1437. static void mv_stop_and_reset(struct ata_port *ap)
  1438. {
  1439. struct mv_host_priv *hpriv = ap->host_set->private_data;
  1440. void __iomem *mmio = ap->host_set->mmio_base;
  1441. mv_stop_dma(ap);
  1442. mv_channel_reset(hpriv, mmio, ap->port_no);
  1443. mv_phy_reset(ap);
  1444. }
  1445. /**
  1446. * mv_phy_reset - Perform eDMA reset followed by COMRESET
  1447. * @ap: ATA channel to manipulate
  1448. *
  1449. * Part of this is taken from __sata_phy_reset and modified to
  1450. * not sleep since this routine gets called from interrupt level.
  1451. *
  1452. * LOCKING:
  1453. * Inherited from caller. This is coded to safe to call at
  1454. * interrupt level, i.e. it does not sleep.
  1455. */
  1456. static void mv_phy_reset(struct ata_port *ap)
  1457. {
  1458. struct mv_port_priv *pp = ap->private_data;
  1459. void __iomem *port_mmio = mv_ap_base(ap);
  1460. struct ata_taskfile tf;
  1461. struct ata_device *dev = &ap->device[0];
  1462. unsigned long timeout;
  1463. VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
  1464. DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
  1465. "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
  1466. mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
  1467. /* proceed to init communications via the scr_control reg */
  1468. scr_write_flush(ap, SCR_CONTROL, 0x301);
  1469. mdelay(1);
  1470. scr_write_flush(ap, SCR_CONTROL, 0x300);
  1471. timeout = jiffies + (HZ * 1);
  1472. do {
  1473. mdelay(10);
  1474. if ((scr_read(ap, SCR_STATUS) & 0xf) != 1)
  1475. break;
  1476. } while (time_before(jiffies, timeout));
  1477. mv_scr_write(ap, SCR_ERROR, mv_scr_read(ap, SCR_ERROR));
  1478. DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
  1479. "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
  1480. mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
  1481. if (sata_dev_present(ap)) {
  1482. ata_port_probe(ap);
  1483. } else {
  1484. printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
  1485. ap->id, scr_read(ap, SCR_STATUS));
  1486. ata_port_disable(ap);
  1487. return;
  1488. }
  1489. ap->cbl = ATA_CBL_SATA;
  1490. tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
  1491. tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
  1492. tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
  1493. tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
  1494. dev->class = ata_dev_classify(&tf);
  1495. if (!ata_dev_present(dev)) {
  1496. VPRINTK("Port disabled post-sig: No device present.\n");
  1497. ata_port_disable(ap);
  1498. }
  1499. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1500. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1501. VPRINTK("EXIT\n");
  1502. }
  1503. /**
  1504. * mv_eng_timeout - Routine called by libata when SCSI times out I/O
  1505. * @ap: ATA channel to manipulate
  1506. *
  1507. * Intent is to clear all pending error conditions, reset the
  1508. * chip/bus, fail the command, and move on.
  1509. *
  1510. * LOCKING:
  1511. * This routine holds the host_set lock while failing the command.
  1512. */
  1513. static void mv_eng_timeout(struct ata_port *ap)
  1514. {
  1515. struct ata_queued_cmd *qc;
  1516. unsigned long flags;
  1517. printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
  1518. DPRINTK("All regs @ start of eng_timeout\n");
  1519. mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
  1520. to_pci_dev(ap->host_set->dev));
  1521. qc = ata_qc_from_tag(ap, ap->active_tag);
  1522. printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
  1523. ap->host_set->mmio_base, ap, qc, qc->scsicmd,
  1524. &qc->scsicmd->cmnd);
  1525. mv_err_intr(ap);
  1526. mv_stop_and_reset(ap);
  1527. if (!qc) {
  1528. printk(KERN_ERR "ata%u: BUG: timeout without command\n",
  1529. ap->id);
  1530. } else {
  1531. /* hack alert! We cannot use the supplied completion
  1532. * function from inside the ->eh_strategy_handler() thread.
  1533. * libata is the only user of ->eh_strategy_handler() in
  1534. * any kernel, so the default scsi_done() assumes it is
  1535. * not being called from the SCSI EH.
  1536. */
  1537. spin_lock_irqsave(&ap->host_set->lock, flags);
  1538. qc->scsidone = scsi_finish_command;
  1539. ata_qc_complete(qc, AC_ERR_OTHER);
  1540. spin_unlock_irqrestore(&ap->host_set->lock, flags);
  1541. }
  1542. }
  1543. /**
  1544. * mv_port_init - Perform some early initialization on a single port.
  1545. * @port: libata data structure storing shadow register addresses
  1546. * @port_mmio: base address of the port
  1547. *
  1548. * Initialize shadow register mmio addresses, clear outstanding
  1549. * interrupts on the port, and unmask interrupts for the future
  1550. * start of the port.
  1551. *
  1552. * LOCKING:
  1553. * Inherited from caller.
  1554. */
  1555. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  1556. {
  1557. unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
  1558. unsigned serr_ofs;
  1559. /* PIO related setup
  1560. */
  1561. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  1562. port->error_addr =
  1563. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  1564. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  1565. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  1566. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  1567. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  1568. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  1569. port->status_addr =
  1570. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  1571. /* special case: control/altstatus doesn't have ATA_REG_ address */
  1572. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
  1573. /* unused: */
  1574. port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
  1575. /* Clear any currently outstanding port interrupt conditions */
  1576. serr_ofs = mv_scr_offset(SCR_ERROR);
  1577. writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
  1578. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1579. /* unmask all EDMA error interrupts */
  1580. writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
  1581. VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
  1582. readl(port_mmio + EDMA_CFG_OFS),
  1583. readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
  1584. readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
  1585. }
  1586. static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
  1587. unsigned int board_idx)
  1588. {
  1589. u8 rev_id;
  1590. u32 hp_flags = hpriv->hp_flags;
  1591. pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
  1592. switch(board_idx) {
  1593. case chip_5080:
  1594. hpriv->ops = &mv5xxx_ops;
  1595. hp_flags |= MV_HP_50XX;
  1596. switch (rev_id) {
  1597. case 0x1:
  1598. hp_flags |= MV_HP_ERRATA_50XXB0;
  1599. break;
  1600. case 0x3:
  1601. hp_flags |= MV_HP_ERRATA_50XXB2;
  1602. break;
  1603. default:
  1604. dev_printk(KERN_WARNING, &pdev->dev,
  1605. "Applying 50XXB2 workarounds to unknown rev\n");
  1606. hp_flags |= MV_HP_ERRATA_50XXB2;
  1607. break;
  1608. }
  1609. break;
  1610. case chip_504x:
  1611. case chip_508x:
  1612. hpriv->ops = &mv5xxx_ops;
  1613. hp_flags |= MV_HP_50XX;
  1614. switch (rev_id) {
  1615. case 0x0:
  1616. hp_flags |= MV_HP_ERRATA_50XXB0;
  1617. break;
  1618. case 0x3:
  1619. hp_flags |= MV_HP_ERRATA_50XXB2;
  1620. break;
  1621. default:
  1622. dev_printk(KERN_WARNING, &pdev->dev,
  1623. "Applying B2 workarounds to unknown rev\n");
  1624. hp_flags |= MV_HP_ERRATA_50XXB2;
  1625. break;
  1626. }
  1627. break;
  1628. case chip_604x:
  1629. case chip_608x:
  1630. hpriv->ops = &mv6xxx_ops;
  1631. switch (rev_id) {
  1632. case 0x7:
  1633. hp_flags |= MV_HP_ERRATA_60X1B2;
  1634. break;
  1635. case 0x9:
  1636. hp_flags |= MV_HP_ERRATA_60X1C0;
  1637. break;
  1638. default:
  1639. dev_printk(KERN_WARNING, &pdev->dev,
  1640. "Applying B2 workarounds to unknown rev\n");
  1641. hp_flags |= MV_HP_ERRATA_60X1B2;
  1642. break;
  1643. }
  1644. break;
  1645. default:
  1646. printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
  1647. return 1;
  1648. }
  1649. hpriv->hp_flags = hp_flags;
  1650. return 0;
  1651. }
  1652. /**
  1653. * mv_init_host - Perform some early initialization of the host.
  1654. * @pdev: host PCI device
  1655. * @probe_ent: early data struct representing the host
  1656. *
  1657. * If possible, do an early global reset of the host. Then do
  1658. * our port init and clear/unmask all/relevant host interrupts.
  1659. *
  1660. * LOCKING:
  1661. * Inherited from caller.
  1662. */
  1663. static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
  1664. unsigned int board_idx)
  1665. {
  1666. int rc = 0, n_hc, port, hc;
  1667. void __iomem *mmio = probe_ent->mmio_base;
  1668. struct mv_host_priv *hpriv = probe_ent->private_data;
  1669. /* global interrupt mask */
  1670. writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
  1671. rc = mv_chip_id(pdev, hpriv, board_idx);
  1672. if (rc)
  1673. goto done;
  1674. n_hc = mv_get_hc_count(probe_ent->host_flags);
  1675. probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
  1676. for (port = 0; port < probe_ent->n_ports; port++)
  1677. hpriv->ops->read_preamp(hpriv, port, mmio);
  1678. rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
  1679. if (rc)
  1680. goto done;
  1681. hpriv->ops->reset_flash(hpriv, mmio);
  1682. hpriv->ops->reset_bus(pdev, mmio);
  1683. hpriv->ops->enable_leds(hpriv, mmio);
  1684. for (port = 0; port < probe_ent->n_ports; port++) {
  1685. if (IS_60XX(hpriv)) {
  1686. void __iomem *port_mmio = mv_port_base(mmio, port);
  1687. u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
  1688. ifctl |= (1 << 12);
  1689. writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
  1690. }
  1691. hpriv->ops->phy_errata(hpriv, mmio, port);
  1692. }
  1693. for (port = 0; port < probe_ent->n_ports; port++) {
  1694. void __iomem *port_mmio = mv_port_base(mmio, port);
  1695. mv_port_init(&probe_ent->port[port], port_mmio);
  1696. }
  1697. for (hc = 0; hc < n_hc; hc++) {
  1698. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  1699. VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
  1700. "(before clear)=0x%08x\n", hc,
  1701. readl(hc_mmio + HC_CFG_OFS),
  1702. readl(hc_mmio + HC_IRQ_CAUSE_OFS));
  1703. /* Clear any currently outstanding hc interrupt conditions */
  1704. writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
  1705. }
  1706. /* Clear any currently outstanding host interrupt conditions */
  1707. writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
  1708. /* and unmask interrupt generation for host regs */
  1709. writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
  1710. writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
  1711. VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
  1712. "PCI int cause/mask=0x%08x/0x%08x\n",
  1713. readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
  1714. readl(mmio + HC_MAIN_IRQ_MASK_OFS),
  1715. readl(mmio + PCI_IRQ_CAUSE_OFS),
  1716. readl(mmio + PCI_IRQ_MASK_OFS));
  1717. done:
  1718. return rc;
  1719. }
  1720. /**
  1721. * mv_print_info - Dump key info to kernel log for perusal.
  1722. * @probe_ent: early data struct representing the host
  1723. *
  1724. * FIXME: complete this.
  1725. *
  1726. * LOCKING:
  1727. * Inherited from caller.
  1728. */
  1729. static void mv_print_info(struct ata_probe_ent *probe_ent)
  1730. {
  1731. struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
  1732. struct mv_host_priv *hpriv = probe_ent->private_data;
  1733. u8 rev_id, scc;
  1734. const char *scc_s;
  1735. /* Use this to determine the HW stepping of the chip so we know
  1736. * what errata to workaround
  1737. */
  1738. pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
  1739. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  1740. if (scc == 0)
  1741. scc_s = "SCSI";
  1742. else if (scc == 0x01)
  1743. scc_s = "RAID";
  1744. else
  1745. scc_s = "unknown";
  1746. dev_printk(KERN_INFO, &pdev->dev,
  1747. "%u slots %u ports %s mode IRQ via %s\n",
  1748. (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
  1749. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  1750. }
  1751. /**
  1752. * mv_init_one - handle a positive probe of a Marvell host
  1753. * @pdev: PCI device found
  1754. * @ent: PCI device ID entry for the matched host
  1755. *
  1756. * LOCKING:
  1757. * Inherited from caller.
  1758. */
  1759. static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  1760. {
  1761. static int printed_version = 0;
  1762. struct ata_probe_ent *probe_ent = NULL;
  1763. struct mv_host_priv *hpriv;
  1764. unsigned int board_idx = (unsigned int)ent->driver_data;
  1765. void __iomem *mmio_base;
  1766. int pci_dev_busy = 0, rc;
  1767. if (!printed_version++)
  1768. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  1769. rc = pci_enable_device(pdev);
  1770. if (rc) {
  1771. return rc;
  1772. }
  1773. rc = pci_request_regions(pdev, DRV_NAME);
  1774. if (rc) {
  1775. pci_dev_busy = 1;
  1776. goto err_out;
  1777. }
  1778. probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
  1779. if (probe_ent == NULL) {
  1780. rc = -ENOMEM;
  1781. goto err_out_regions;
  1782. }
  1783. memset(probe_ent, 0, sizeof(*probe_ent));
  1784. probe_ent->dev = pci_dev_to_dev(pdev);
  1785. INIT_LIST_HEAD(&probe_ent->node);
  1786. mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
  1787. if (mmio_base == NULL) {
  1788. rc = -ENOMEM;
  1789. goto err_out_free_ent;
  1790. }
  1791. hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
  1792. if (!hpriv) {
  1793. rc = -ENOMEM;
  1794. goto err_out_iounmap;
  1795. }
  1796. memset(hpriv, 0, sizeof(*hpriv));
  1797. probe_ent->sht = mv_port_info[board_idx].sht;
  1798. probe_ent->host_flags = mv_port_info[board_idx].host_flags;
  1799. probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
  1800. probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
  1801. probe_ent->port_ops = mv_port_info[board_idx].port_ops;
  1802. probe_ent->irq = pdev->irq;
  1803. probe_ent->irq_flags = SA_SHIRQ;
  1804. probe_ent->mmio_base = mmio_base;
  1805. probe_ent->private_data = hpriv;
  1806. /* initialize adapter */
  1807. rc = mv_init_host(pdev, probe_ent, board_idx);
  1808. if (rc) {
  1809. goto err_out_hpriv;
  1810. }
  1811. /* Enable interrupts */
  1812. if (pci_enable_msi(pdev) == 0) {
  1813. hpriv->hp_flags |= MV_HP_FLAG_MSI;
  1814. } else {
  1815. pci_intx(pdev, 1);
  1816. }
  1817. mv_dump_pci_cfg(pdev, 0x68);
  1818. mv_print_info(probe_ent);
  1819. if (ata_device_add(probe_ent) == 0) {
  1820. rc = -ENODEV; /* No devices discovered */
  1821. goto err_out_dev_add;
  1822. }
  1823. kfree(probe_ent);
  1824. return 0;
  1825. err_out_dev_add:
  1826. if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
  1827. pci_disable_msi(pdev);
  1828. } else {
  1829. pci_intx(pdev, 0);
  1830. }
  1831. err_out_hpriv:
  1832. kfree(hpriv);
  1833. err_out_iounmap:
  1834. pci_iounmap(pdev, mmio_base);
  1835. err_out_free_ent:
  1836. kfree(probe_ent);
  1837. err_out_regions:
  1838. pci_release_regions(pdev);
  1839. err_out:
  1840. if (!pci_dev_busy) {
  1841. pci_disable_device(pdev);
  1842. }
  1843. return rc;
  1844. }
  1845. static int __init mv_init(void)
  1846. {
  1847. return pci_module_init(&mv_pci_driver);
  1848. }
  1849. static void __exit mv_exit(void)
  1850. {
  1851. pci_unregister_driver(&mv_pci_driver);
  1852. }
  1853. MODULE_AUTHOR("Brett Russ");
  1854. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  1855. MODULE_LICENSE("GPL");
  1856. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  1857. MODULE_VERSION(DRV_VERSION);
  1858. module_init(mv_init);
  1859. module_exit(mv_exit);