skbuff.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037
  1. /*
  2. * Routines having to do with the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Florian La Roche <rzsfl@rz.uni-sb.de>
  6. *
  7. * Fixes:
  8. * Alan Cox : Fixed the worst of the load
  9. * balancer bugs.
  10. * Dave Platt : Interrupt stacking fix.
  11. * Richard Kooijman : Timestamp fixes.
  12. * Alan Cox : Changed buffer format.
  13. * Alan Cox : destructor hook for AF_UNIX etc.
  14. * Linus Torvalds : Better skb_clone.
  15. * Alan Cox : Added skb_copy.
  16. * Alan Cox : Added all the changed routines Linus
  17. * only put in the headers
  18. * Ray VanTassle : Fixed --skb->lock in free
  19. * Alan Cox : skb_copy copy arp field
  20. * Andi Kleen : slabified it.
  21. * Robert Olsson : Removed skb_head_pool
  22. *
  23. * NOTE:
  24. * The __skb_ routines should be called with interrupts
  25. * disabled, or you better be *real* sure that the operation is atomic
  26. * with respect to whatever list is being frobbed (e.g. via lock_sock()
  27. * or via disabling bottom half handlers, etc).
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. /*
  35. * The functions in this file will not compile correctly with gcc 2.4.x
  36. */
  37. #include <linux/module.h>
  38. #include <linux/types.h>
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/in.h>
  43. #include <linux/inet.h>
  44. #include <linux/slab.h>
  45. #include <linux/netdevice.h>
  46. #ifdef CONFIG_NET_CLS_ACT
  47. #include <net/pkt_sched.h>
  48. #endif
  49. #include <linux/string.h>
  50. #include <linux/skbuff.h>
  51. #include <linux/splice.h>
  52. #include <linux/cache.h>
  53. #include <linux/rtnetlink.h>
  54. #include <linux/init.h>
  55. #include <linux/scatterlist.h>
  56. #include <linux/errqueue.h>
  57. #include <net/protocol.h>
  58. #include <net/dst.h>
  59. #include <net/sock.h>
  60. #include <net/checksum.h>
  61. #include <net/xfrm.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #include <trace/skb.h>
  65. #include "kmap_skb.h"
  66. static struct kmem_cache *skbuff_head_cache __read_mostly;
  67. static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  68. static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
  69. struct pipe_buffer *buf)
  70. {
  71. put_page(buf->page);
  72. }
  73. static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
  74. struct pipe_buffer *buf)
  75. {
  76. get_page(buf->page);
  77. }
  78. static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
  79. struct pipe_buffer *buf)
  80. {
  81. return 1;
  82. }
  83. /* Pipe buffer operations for a socket. */
  84. static struct pipe_buf_operations sock_pipe_buf_ops = {
  85. .can_merge = 0,
  86. .map = generic_pipe_buf_map,
  87. .unmap = generic_pipe_buf_unmap,
  88. .confirm = generic_pipe_buf_confirm,
  89. .release = sock_pipe_buf_release,
  90. .steal = sock_pipe_buf_steal,
  91. .get = sock_pipe_buf_get,
  92. };
  93. /*
  94. * Keep out-of-line to prevent kernel bloat.
  95. * __builtin_return_address is not used because it is not always
  96. * reliable.
  97. */
  98. /**
  99. * skb_over_panic - private function
  100. * @skb: buffer
  101. * @sz: size
  102. * @here: address
  103. *
  104. * Out of line support code for skb_put(). Not user callable.
  105. */
  106. void skb_over_panic(struct sk_buff *skb, int sz, void *here)
  107. {
  108. printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
  109. "data:%p tail:%#lx end:%#lx dev:%s\n",
  110. here, skb->len, sz, skb->head, skb->data,
  111. (unsigned long)skb->tail, (unsigned long)skb->end,
  112. skb->dev ? skb->dev->name : "<NULL>");
  113. BUG();
  114. }
  115. EXPORT_SYMBOL(skb_over_panic);
  116. /**
  117. * skb_under_panic - private function
  118. * @skb: buffer
  119. * @sz: size
  120. * @here: address
  121. *
  122. * Out of line support code for skb_push(). Not user callable.
  123. */
  124. void skb_under_panic(struct sk_buff *skb, int sz, void *here)
  125. {
  126. printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
  127. "data:%p tail:%#lx end:%#lx dev:%s\n",
  128. here, skb->len, sz, skb->head, skb->data,
  129. (unsigned long)skb->tail, (unsigned long)skb->end,
  130. skb->dev ? skb->dev->name : "<NULL>");
  131. BUG();
  132. }
  133. EXPORT_SYMBOL(skb_under_panic);
  134. /* Allocate a new skbuff. We do this ourselves so we can fill in a few
  135. * 'private' fields and also do memory statistics to find all the
  136. * [BEEP] leaks.
  137. *
  138. */
  139. /**
  140. * __alloc_skb - allocate a network buffer
  141. * @size: size to allocate
  142. * @gfp_mask: allocation mask
  143. * @fclone: allocate from fclone cache instead of head cache
  144. * and allocate a cloned (child) skb
  145. * @node: numa node to allocate memory on
  146. *
  147. * Allocate a new &sk_buff. The returned buffer has no headroom and a
  148. * tail room of size bytes. The object has a reference count of one.
  149. * The return is the buffer. On a failure the return is %NULL.
  150. *
  151. * Buffers may only be allocated from interrupts using a @gfp_mask of
  152. * %GFP_ATOMIC.
  153. */
  154. struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
  155. int fclone, int node)
  156. {
  157. struct kmem_cache *cache;
  158. struct skb_shared_info *shinfo;
  159. struct sk_buff *skb;
  160. u8 *data;
  161. cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
  162. /* Get the HEAD */
  163. skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
  164. if (!skb)
  165. goto out;
  166. size = SKB_DATA_ALIGN(size);
  167. data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
  168. gfp_mask, node);
  169. if (!data)
  170. goto nodata;
  171. /*
  172. * Only clear those fields we need to clear, not those that we will
  173. * actually initialise below. Hence, don't put any more fields after
  174. * the tail pointer in struct sk_buff!
  175. */
  176. memset(skb, 0, offsetof(struct sk_buff, tail));
  177. skb->truesize = size + sizeof(struct sk_buff);
  178. atomic_set(&skb->users, 1);
  179. skb->head = data;
  180. skb->data = data;
  181. skb_reset_tail_pointer(skb);
  182. skb->end = skb->tail + size;
  183. /* make sure we initialize shinfo sequentially */
  184. shinfo = skb_shinfo(skb);
  185. atomic_set(&shinfo->dataref, 1);
  186. shinfo->nr_frags = 0;
  187. shinfo->gso_size = 0;
  188. shinfo->gso_segs = 0;
  189. shinfo->gso_type = 0;
  190. shinfo->ip6_frag_id = 0;
  191. shinfo->tx_flags.flags = 0;
  192. shinfo->frag_list = NULL;
  193. memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
  194. if (fclone) {
  195. struct sk_buff *child = skb + 1;
  196. atomic_t *fclone_ref = (atomic_t *) (child + 1);
  197. skb->fclone = SKB_FCLONE_ORIG;
  198. atomic_set(fclone_ref, 1);
  199. child->fclone = SKB_FCLONE_UNAVAILABLE;
  200. }
  201. out:
  202. return skb;
  203. nodata:
  204. kmem_cache_free(cache, skb);
  205. skb = NULL;
  206. goto out;
  207. }
  208. EXPORT_SYMBOL(__alloc_skb);
  209. /**
  210. * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
  211. * @dev: network device to receive on
  212. * @length: length to allocate
  213. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  214. *
  215. * Allocate a new &sk_buff and assign it a usage count of one. The
  216. * buffer has unspecified headroom built in. Users should allocate
  217. * the headroom they think they need without accounting for the
  218. * built in space. The built in space is used for optimisations.
  219. *
  220. * %NULL is returned if there is no free memory.
  221. */
  222. struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  223. unsigned int length, gfp_t gfp_mask)
  224. {
  225. int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
  226. struct sk_buff *skb;
  227. skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
  228. if (likely(skb)) {
  229. skb_reserve(skb, NET_SKB_PAD);
  230. skb->dev = dev;
  231. }
  232. return skb;
  233. }
  234. EXPORT_SYMBOL(__netdev_alloc_skb);
  235. struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
  236. {
  237. int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
  238. struct page *page;
  239. page = alloc_pages_node(node, gfp_mask, 0);
  240. return page;
  241. }
  242. EXPORT_SYMBOL(__netdev_alloc_page);
  243. void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  244. int size)
  245. {
  246. skb_fill_page_desc(skb, i, page, off, size);
  247. skb->len += size;
  248. skb->data_len += size;
  249. skb->truesize += size;
  250. }
  251. EXPORT_SYMBOL(skb_add_rx_frag);
  252. /**
  253. * dev_alloc_skb - allocate an skbuff for receiving
  254. * @length: length to allocate
  255. *
  256. * Allocate a new &sk_buff and assign it a usage count of one. The
  257. * buffer has unspecified headroom built in. Users should allocate
  258. * the headroom they think they need without accounting for the
  259. * built in space. The built in space is used for optimisations.
  260. *
  261. * %NULL is returned if there is no free memory. Although this function
  262. * allocates memory it can be called from an interrupt.
  263. */
  264. struct sk_buff *dev_alloc_skb(unsigned int length)
  265. {
  266. /*
  267. * There is more code here than it seems:
  268. * __dev_alloc_skb is an inline
  269. */
  270. return __dev_alloc_skb(length, GFP_ATOMIC);
  271. }
  272. EXPORT_SYMBOL(dev_alloc_skb);
  273. static void skb_drop_list(struct sk_buff **listp)
  274. {
  275. struct sk_buff *list = *listp;
  276. *listp = NULL;
  277. do {
  278. struct sk_buff *this = list;
  279. list = list->next;
  280. kfree_skb(this);
  281. } while (list);
  282. }
  283. static inline void skb_drop_fraglist(struct sk_buff *skb)
  284. {
  285. skb_drop_list(&skb_shinfo(skb)->frag_list);
  286. }
  287. static void skb_clone_fraglist(struct sk_buff *skb)
  288. {
  289. struct sk_buff *list;
  290. for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
  291. skb_get(list);
  292. }
  293. static void skb_release_data(struct sk_buff *skb)
  294. {
  295. if (!skb->cloned ||
  296. !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
  297. &skb_shinfo(skb)->dataref)) {
  298. if (skb_shinfo(skb)->nr_frags) {
  299. int i;
  300. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  301. put_page(skb_shinfo(skb)->frags[i].page);
  302. }
  303. if (skb_shinfo(skb)->frag_list)
  304. skb_drop_fraglist(skb);
  305. kfree(skb->head);
  306. }
  307. }
  308. /*
  309. * Free an skbuff by memory without cleaning the state.
  310. */
  311. static void kfree_skbmem(struct sk_buff *skb)
  312. {
  313. struct sk_buff *other;
  314. atomic_t *fclone_ref;
  315. switch (skb->fclone) {
  316. case SKB_FCLONE_UNAVAILABLE:
  317. kmem_cache_free(skbuff_head_cache, skb);
  318. break;
  319. case SKB_FCLONE_ORIG:
  320. fclone_ref = (atomic_t *) (skb + 2);
  321. if (atomic_dec_and_test(fclone_ref))
  322. kmem_cache_free(skbuff_fclone_cache, skb);
  323. break;
  324. case SKB_FCLONE_CLONE:
  325. fclone_ref = (atomic_t *) (skb + 1);
  326. other = skb - 1;
  327. /* The clone portion is available for
  328. * fast-cloning again.
  329. */
  330. skb->fclone = SKB_FCLONE_UNAVAILABLE;
  331. if (atomic_dec_and_test(fclone_ref))
  332. kmem_cache_free(skbuff_fclone_cache, other);
  333. break;
  334. }
  335. }
  336. static void skb_release_head_state(struct sk_buff *skb)
  337. {
  338. dst_release(skb->dst);
  339. #ifdef CONFIG_XFRM
  340. secpath_put(skb->sp);
  341. #endif
  342. if (skb->destructor) {
  343. WARN_ON(in_irq());
  344. skb->destructor(skb);
  345. }
  346. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  347. nf_conntrack_put(skb->nfct);
  348. nf_conntrack_put_reasm(skb->nfct_reasm);
  349. #endif
  350. #ifdef CONFIG_BRIDGE_NETFILTER
  351. nf_bridge_put(skb->nf_bridge);
  352. #endif
  353. /* XXX: IS this still necessary? - JHS */
  354. #ifdef CONFIG_NET_SCHED
  355. skb->tc_index = 0;
  356. #ifdef CONFIG_NET_CLS_ACT
  357. skb->tc_verd = 0;
  358. #endif
  359. #endif
  360. }
  361. /* Free everything but the sk_buff shell. */
  362. static void skb_release_all(struct sk_buff *skb)
  363. {
  364. skb_release_head_state(skb);
  365. skb_release_data(skb);
  366. }
  367. /**
  368. * __kfree_skb - private function
  369. * @skb: buffer
  370. *
  371. * Free an sk_buff. Release anything attached to the buffer.
  372. * Clean the state. This is an internal helper function. Users should
  373. * always call kfree_skb
  374. */
  375. void __kfree_skb(struct sk_buff *skb)
  376. {
  377. skb_release_all(skb);
  378. kfree_skbmem(skb);
  379. }
  380. EXPORT_SYMBOL(__kfree_skb);
  381. /**
  382. * kfree_skb - free an sk_buff
  383. * @skb: buffer to free
  384. *
  385. * Drop a reference to the buffer and free it if the usage count has
  386. * hit zero.
  387. */
  388. void kfree_skb(struct sk_buff *skb)
  389. {
  390. if (unlikely(!skb))
  391. return;
  392. if (likely(atomic_read(&skb->users) == 1))
  393. smp_rmb();
  394. else if (likely(!atomic_dec_and_test(&skb->users)))
  395. return;
  396. trace_kfree_skb(skb, __builtin_return_address(0));
  397. __kfree_skb(skb);
  398. }
  399. EXPORT_SYMBOL(kfree_skb);
  400. /**
  401. * consume_skb - free an skbuff
  402. * @skb: buffer to free
  403. *
  404. * Drop a ref to the buffer and free it if the usage count has hit zero
  405. * Functions identically to kfree_skb, but kfree_skb assumes that the frame
  406. * is being dropped after a failure and notes that
  407. */
  408. void consume_skb(struct sk_buff *skb)
  409. {
  410. if (unlikely(!skb))
  411. return;
  412. if (likely(atomic_read(&skb->users) == 1))
  413. smp_rmb();
  414. else if (likely(!atomic_dec_and_test(&skb->users)))
  415. return;
  416. __kfree_skb(skb);
  417. }
  418. EXPORT_SYMBOL(consume_skb);
  419. /**
  420. * skb_recycle_check - check if skb can be reused for receive
  421. * @skb: buffer
  422. * @skb_size: minimum receive buffer size
  423. *
  424. * Checks that the skb passed in is not shared or cloned, and
  425. * that it is linear and its head portion at least as large as
  426. * skb_size so that it can be recycled as a receive buffer.
  427. * If these conditions are met, this function does any necessary
  428. * reference count dropping and cleans up the skbuff as if it
  429. * just came from __alloc_skb().
  430. */
  431. int skb_recycle_check(struct sk_buff *skb, int skb_size)
  432. {
  433. struct skb_shared_info *shinfo;
  434. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  435. return 0;
  436. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  437. if (skb_end_pointer(skb) - skb->head < skb_size)
  438. return 0;
  439. if (skb_shared(skb) || skb_cloned(skb))
  440. return 0;
  441. skb_release_head_state(skb);
  442. shinfo = skb_shinfo(skb);
  443. atomic_set(&shinfo->dataref, 1);
  444. shinfo->nr_frags = 0;
  445. shinfo->gso_size = 0;
  446. shinfo->gso_segs = 0;
  447. shinfo->gso_type = 0;
  448. shinfo->ip6_frag_id = 0;
  449. shinfo->frag_list = NULL;
  450. memset(skb, 0, offsetof(struct sk_buff, tail));
  451. skb->data = skb->head + NET_SKB_PAD;
  452. skb_reset_tail_pointer(skb);
  453. return 1;
  454. }
  455. EXPORT_SYMBOL(skb_recycle_check);
  456. static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  457. {
  458. new->tstamp = old->tstamp;
  459. new->dev = old->dev;
  460. new->transport_header = old->transport_header;
  461. new->network_header = old->network_header;
  462. new->mac_header = old->mac_header;
  463. new->dst = dst_clone(old->dst);
  464. #ifdef CONFIG_XFRM
  465. new->sp = secpath_get(old->sp);
  466. #endif
  467. memcpy(new->cb, old->cb, sizeof(old->cb));
  468. new->csum_start = old->csum_start;
  469. new->csum_offset = old->csum_offset;
  470. new->local_df = old->local_df;
  471. new->pkt_type = old->pkt_type;
  472. new->ip_summed = old->ip_summed;
  473. skb_copy_queue_mapping(new, old);
  474. new->priority = old->priority;
  475. #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
  476. new->ipvs_property = old->ipvs_property;
  477. #endif
  478. new->protocol = old->protocol;
  479. new->mark = old->mark;
  480. __nf_copy(new, old);
  481. #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
  482. defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
  483. new->nf_trace = old->nf_trace;
  484. #endif
  485. #ifdef CONFIG_NET_SCHED
  486. new->tc_index = old->tc_index;
  487. #ifdef CONFIG_NET_CLS_ACT
  488. new->tc_verd = old->tc_verd;
  489. #endif
  490. #endif
  491. new->vlan_tci = old->vlan_tci;
  492. skb_copy_secmark(new, old);
  493. }
  494. static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
  495. {
  496. #define C(x) n->x = skb->x
  497. n->next = n->prev = NULL;
  498. n->sk = NULL;
  499. __copy_skb_header(n, skb);
  500. C(len);
  501. C(data_len);
  502. C(mac_len);
  503. n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
  504. n->cloned = 1;
  505. n->nohdr = 0;
  506. n->destructor = NULL;
  507. C(iif);
  508. C(tail);
  509. C(end);
  510. C(head);
  511. C(data);
  512. C(truesize);
  513. #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
  514. C(do_not_encrypt);
  515. C(requeue);
  516. #endif
  517. atomic_set(&n->users, 1);
  518. atomic_inc(&(skb_shinfo(skb)->dataref));
  519. skb->cloned = 1;
  520. return n;
  521. #undef C
  522. }
  523. /**
  524. * skb_morph - morph one skb into another
  525. * @dst: the skb to receive the contents
  526. * @src: the skb to supply the contents
  527. *
  528. * This is identical to skb_clone except that the target skb is
  529. * supplied by the user.
  530. *
  531. * The target skb is returned upon exit.
  532. */
  533. struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
  534. {
  535. skb_release_all(dst);
  536. return __skb_clone(dst, src);
  537. }
  538. EXPORT_SYMBOL_GPL(skb_morph);
  539. /**
  540. * skb_clone - duplicate an sk_buff
  541. * @skb: buffer to clone
  542. * @gfp_mask: allocation priority
  543. *
  544. * Duplicate an &sk_buff. The new one is not owned by a socket. Both
  545. * copies share the same packet data but not structure. The new
  546. * buffer has a reference count of 1. If the allocation fails the
  547. * function returns %NULL otherwise the new buffer is returned.
  548. *
  549. * If this function is called from an interrupt gfp_mask() must be
  550. * %GFP_ATOMIC.
  551. */
  552. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
  553. {
  554. struct sk_buff *n;
  555. n = skb + 1;
  556. if (skb->fclone == SKB_FCLONE_ORIG &&
  557. n->fclone == SKB_FCLONE_UNAVAILABLE) {
  558. atomic_t *fclone_ref = (atomic_t *) (n + 1);
  559. n->fclone = SKB_FCLONE_CLONE;
  560. atomic_inc(fclone_ref);
  561. } else {
  562. n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
  563. if (!n)
  564. return NULL;
  565. n->fclone = SKB_FCLONE_UNAVAILABLE;
  566. }
  567. return __skb_clone(n, skb);
  568. }
  569. EXPORT_SYMBOL(skb_clone);
  570. static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  571. {
  572. #ifndef NET_SKBUFF_DATA_USES_OFFSET
  573. /*
  574. * Shift between the two data areas in bytes
  575. */
  576. unsigned long offset = new->data - old->data;
  577. #endif
  578. __copy_skb_header(new, old);
  579. #ifndef NET_SKBUFF_DATA_USES_OFFSET
  580. /* {transport,network,mac}_header are relative to skb->head */
  581. new->transport_header += offset;
  582. new->network_header += offset;
  583. new->mac_header += offset;
  584. #endif
  585. skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
  586. skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
  587. skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
  588. }
  589. /**
  590. * skb_copy - create private copy of an sk_buff
  591. * @skb: buffer to copy
  592. * @gfp_mask: allocation priority
  593. *
  594. * Make a copy of both an &sk_buff and its data. This is used when the
  595. * caller wishes to modify the data and needs a private copy of the
  596. * data to alter. Returns %NULL on failure or the pointer to the buffer
  597. * on success. The returned buffer has a reference count of 1.
  598. *
  599. * As by-product this function converts non-linear &sk_buff to linear
  600. * one, so that &sk_buff becomes completely private and caller is allowed
  601. * to modify all the data of returned buffer. This means that this
  602. * function is not recommended for use in circumstances when only
  603. * header is going to be modified. Use pskb_copy() instead.
  604. */
  605. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
  606. {
  607. int headerlen = skb->data - skb->head;
  608. /*
  609. * Allocate the copy buffer
  610. */
  611. struct sk_buff *n;
  612. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  613. n = alloc_skb(skb->end + skb->data_len, gfp_mask);
  614. #else
  615. n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
  616. #endif
  617. if (!n)
  618. return NULL;
  619. /* Set the data pointer */
  620. skb_reserve(n, headerlen);
  621. /* Set the tail pointer and length */
  622. skb_put(n, skb->len);
  623. if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
  624. BUG();
  625. copy_skb_header(n, skb);
  626. return n;
  627. }
  628. EXPORT_SYMBOL(skb_copy);
  629. /**
  630. * pskb_copy - create copy of an sk_buff with private head.
  631. * @skb: buffer to copy
  632. * @gfp_mask: allocation priority
  633. *
  634. * Make a copy of both an &sk_buff and part of its data, located
  635. * in header. Fragmented data remain shared. This is used when
  636. * the caller wishes to modify only header of &sk_buff and needs
  637. * private copy of the header to alter. Returns %NULL on failure
  638. * or the pointer to the buffer on success.
  639. * The returned buffer has a reference count of 1.
  640. */
  641. struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
  642. {
  643. /*
  644. * Allocate the copy buffer
  645. */
  646. struct sk_buff *n;
  647. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  648. n = alloc_skb(skb->end, gfp_mask);
  649. #else
  650. n = alloc_skb(skb->end - skb->head, gfp_mask);
  651. #endif
  652. if (!n)
  653. goto out;
  654. /* Set the data pointer */
  655. skb_reserve(n, skb->data - skb->head);
  656. /* Set the tail pointer and length */
  657. skb_put(n, skb_headlen(skb));
  658. /* Copy the bytes */
  659. skb_copy_from_linear_data(skb, n->data, n->len);
  660. n->truesize += skb->data_len;
  661. n->data_len = skb->data_len;
  662. n->len = skb->len;
  663. if (skb_shinfo(skb)->nr_frags) {
  664. int i;
  665. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  666. skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
  667. get_page(skb_shinfo(n)->frags[i].page);
  668. }
  669. skb_shinfo(n)->nr_frags = i;
  670. }
  671. if (skb_shinfo(skb)->frag_list) {
  672. skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
  673. skb_clone_fraglist(n);
  674. }
  675. copy_skb_header(n, skb);
  676. out:
  677. return n;
  678. }
  679. EXPORT_SYMBOL(pskb_copy);
  680. /**
  681. * pskb_expand_head - reallocate header of &sk_buff
  682. * @skb: buffer to reallocate
  683. * @nhead: room to add at head
  684. * @ntail: room to add at tail
  685. * @gfp_mask: allocation priority
  686. *
  687. * Expands (or creates identical copy, if &nhead and &ntail are zero)
  688. * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
  689. * reference count of 1. Returns zero in the case of success or error,
  690. * if expansion failed. In the last case, &sk_buff is not changed.
  691. *
  692. * All the pointers pointing into skb header may change and must be
  693. * reloaded after call to this function.
  694. */
  695. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
  696. gfp_t gfp_mask)
  697. {
  698. int i;
  699. u8 *data;
  700. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  701. int size = nhead + skb->end + ntail;
  702. #else
  703. int size = nhead + (skb->end - skb->head) + ntail;
  704. #endif
  705. long off;
  706. BUG_ON(nhead < 0);
  707. if (skb_shared(skb))
  708. BUG();
  709. size = SKB_DATA_ALIGN(size);
  710. data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
  711. if (!data)
  712. goto nodata;
  713. /* Copy only real data... and, alas, header. This should be
  714. * optimized for the cases when header is void. */
  715. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  716. memcpy(data + nhead, skb->head, skb->tail);
  717. #else
  718. memcpy(data + nhead, skb->head, skb->tail - skb->head);
  719. #endif
  720. memcpy(data + size, skb_end_pointer(skb),
  721. sizeof(struct skb_shared_info));
  722. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  723. get_page(skb_shinfo(skb)->frags[i].page);
  724. if (skb_shinfo(skb)->frag_list)
  725. skb_clone_fraglist(skb);
  726. skb_release_data(skb);
  727. off = (data + nhead) - skb->head;
  728. skb->head = data;
  729. skb->data += off;
  730. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  731. skb->end = size;
  732. off = nhead;
  733. #else
  734. skb->end = skb->head + size;
  735. #endif
  736. /* {transport,network,mac}_header and tail are relative to skb->head */
  737. skb->tail += off;
  738. skb->transport_header += off;
  739. skb->network_header += off;
  740. skb->mac_header += off;
  741. skb->csum_start += nhead;
  742. skb->cloned = 0;
  743. skb->hdr_len = 0;
  744. skb->nohdr = 0;
  745. atomic_set(&skb_shinfo(skb)->dataref, 1);
  746. return 0;
  747. nodata:
  748. return -ENOMEM;
  749. }
  750. EXPORT_SYMBOL(pskb_expand_head);
  751. /* Make private copy of skb with writable head and some headroom */
  752. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
  753. {
  754. struct sk_buff *skb2;
  755. int delta = headroom - skb_headroom(skb);
  756. if (delta <= 0)
  757. skb2 = pskb_copy(skb, GFP_ATOMIC);
  758. else {
  759. skb2 = skb_clone(skb, GFP_ATOMIC);
  760. if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
  761. GFP_ATOMIC)) {
  762. kfree_skb(skb2);
  763. skb2 = NULL;
  764. }
  765. }
  766. return skb2;
  767. }
  768. EXPORT_SYMBOL(skb_realloc_headroom);
  769. /**
  770. * skb_copy_expand - copy and expand sk_buff
  771. * @skb: buffer to copy
  772. * @newheadroom: new free bytes at head
  773. * @newtailroom: new free bytes at tail
  774. * @gfp_mask: allocation priority
  775. *
  776. * Make a copy of both an &sk_buff and its data and while doing so
  777. * allocate additional space.
  778. *
  779. * This is used when the caller wishes to modify the data and needs a
  780. * private copy of the data to alter as well as more space for new fields.
  781. * Returns %NULL on failure or the pointer to the buffer
  782. * on success. The returned buffer has a reference count of 1.
  783. *
  784. * You must pass %GFP_ATOMIC as the allocation priority if this function
  785. * is called from an interrupt.
  786. */
  787. struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  788. int newheadroom, int newtailroom,
  789. gfp_t gfp_mask)
  790. {
  791. /*
  792. * Allocate the copy buffer
  793. */
  794. struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
  795. gfp_mask);
  796. int oldheadroom = skb_headroom(skb);
  797. int head_copy_len, head_copy_off;
  798. int off;
  799. if (!n)
  800. return NULL;
  801. skb_reserve(n, newheadroom);
  802. /* Set the tail pointer and length */
  803. skb_put(n, skb->len);
  804. head_copy_len = oldheadroom;
  805. head_copy_off = 0;
  806. if (newheadroom <= head_copy_len)
  807. head_copy_len = newheadroom;
  808. else
  809. head_copy_off = newheadroom - head_copy_len;
  810. /* Copy the linear header and data. */
  811. if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
  812. skb->len + head_copy_len))
  813. BUG();
  814. copy_skb_header(n, skb);
  815. off = newheadroom - oldheadroom;
  816. n->csum_start += off;
  817. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  818. n->transport_header += off;
  819. n->network_header += off;
  820. n->mac_header += off;
  821. #endif
  822. return n;
  823. }
  824. EXPORT_SYMBOL(skb_copy_expand);
  825. /**
  826. * skb_pad - zero pad the tail of an skb
  827. * @skb: buffer to pad
  828. * @pad: space to pad
  829. *
  830. * Ensure that a buffer is followed by a padding area that is zero
  831. * filled. Used by network drivers which may DMA or transfer data
  832. * beyond the buffer end onto the wire.
  833. *
  834. * May return error in out of memory cases. The skb is freed on error.
  835. */
  836. int skb_pad(struct sk_buff *skb, int pad)
  837. {
  838. int err;
  839. int ntail;
  840. /* If the skbuff is non linear tailroom is always zero.. */
  841. if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
  842. memset(skb->data+skb->len, 0, pad);
  843. return 0;
  844. }
  845. ntail = skb->data_len + pad - (skb->end - skb->tail);
  846. if (likely(skb_cloned(skb) || ntail > 0)) {
  847. err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
  848. if (unlikely(err))
  849. goto free_skb;
  850. }
  851. /* FIXME: The use of this function with non-linear skb's really needs
  852. * to be audited.
  853. */
  854. err = skb_linearize(skb);
  855. if (unlikely(err))
  856. goto free_skb;
  857. memset(skb->data + skb->len, 0, pad);
  858. return 0;
  859. free_skb:
  860. kfree_skb(skb);
  861. return err;
  862. }
  863. EXPORT_SYMBOL(skb_pad);
  864. /**
  865. * skb_put - add data to a buffer
  866. * @skb: buffer to use
  867. * @len: amount of data to add
  868. *
  869. * This function extends the used data area of the buffer. If this would
  870. * exceed the total buffer size the kernel will panic. A pointer to the
  871. * first byte of the extra data is returned.
  872. */
  873. unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
  874. {
  875. unsigned char *tmp = skb_tail_pointer(skb);
  876. SKB_LINEAR_ASSERT(skb);
  877. skb->tail += len;
  878. skb->len += len;
  879. if (unlikely(skb->tail > skb->end))
  880. skb_over_panic(skb, len, __builtin_return_address(0));
  881. return tmp;
  882. }
  883. EXPORT_SYMBOL(skb_put);
  884. /**
  885. * skb_push - add data to the start of a buffer
  886. * @skb: buffer to use
  887. * @len: amount of data to add
  888. *
  889. * This function extends the used data area of the buffer at the buffer
  890. * start. If this would exceed the total buffer headroom the kernel will
  891. * panic. A pointer to the first byte of the extra data is returned.
  892. */
  893. unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
  894. {
  895. skb->data -= len;
  896. skb->len += len;
  897. if (unlikely(skb->data<skb->head))
  898. skb_under_panic(skb, len, __builtin_return_address(0));
  899. return skb->data;
  900. }
  901. EXPORT_SYMBOL(skb_push);
  902. /**
  903. * skb_pull - remove data from the start of a buffer
  904. * @skb: buffer to use
  905. * @len: amount of data to remove
  906. *
  907. * This function removes data from the start of a buffer, returning
  908. * the memory to the headroom. A pointer to the next data in the buffer
  909. * is returned. Once the data has been pulled future pushes will overwrite
  910. * the old data.
  911. */
  912. unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
  913. {
  914. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  915. }
  916. EXPORT_SYMBOL(skb_pull);
  917. /**
  918. * skb_trim - remove end from a buffer
  919. * @skb: buffer to alter
  920. * @len: new length
  921. *
  922. * Cut the length of a buffer down by removing data from the tail. If
  923. * the buffer is already under the length specified it is not modified.
  924. * The skb must be linear.
  925. */
  926. void skb_trim(struct sk_buff *skb, unsigned int len)
  927. {
  928. if (skb->len > len)
  929. __skb_trim(skb, len);
  930. }
  931. EXPORT_SYMBOL(skb_trim);
  932. /* Trims skb to length len. It can change skb pointers.
  933. */
  934. int ___pskb_trim(struct sk_buff *skb, unsigned int len)
  935. {
  936. struct sk_buff **fragp;
  937. struct sk_buff *frag;
  938. int offset = skb_headlen(skb);
  939. int nfrags = skb_shinfo(skb)->nr_frags;
  940. int i;
  941. int err;
  942. if (skb_cloned(skb) &&
  943. unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
  944. return err;
  945. i = 0;
  946. if (offset >= len)
  947. goto drop_pages;
  948. for (; i < nfrags; i++) {
  949. int end = offset + skb_shinfo(skb)->frags[i].size;
  950. if (end < len) {
  951. offset = end;
  952. continue;
  953. }
  954. skb_shinfo(skb)->frags[i++].size = len - offset;
  955. drop_pages:
  956. skb_shinfo(skb)->nr_frags = i;
  957. for (; i < nfrags; i++)
  958. put_page(skb_shinfo(skb)->frags[i].page);
  959. if (skb_shinfo(skb)->frag_list)
  960. skb_drop_fraglist(skb);
  961. goto done;
  962. }
  963. for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
  964. fragp = &frag->next) {
  965. int end = offset + frag->len;
  966. if (skb_shared(frag)) {
  967. struct sk_buff *nfrag;
  968. nfrag = skb_clone(frag, GFP_ATOMIC);
  969. if (unlikely(!nfrag))
  970. return -ENOMEM;
  971. nfrag->next = frag->next;
  972. kfree_skb(frag);
  973. frag = nfrag;
  974. *fragp = frag;
  975. }
  976. if (end < len) {
  977. offset = end;
  978. continue;
  979. }
  980. if (end > len &&
  981. unlikely((err = pskb_trim(frag, len - offset))))
  982. return err;
  983. if (frag->next)
  984. skb_drop_list(&frag->next);
  985. break;
  986. }
  987. done:
  988. if (len > skb_headlen(skb)) {
  989. skb->data_len -= skb->len - len;
  990. skb->len = len;
  991. } else {
  992. skb->len = len;
  993. skb->data_len = 0;
  994. skb_set_tail_pointer(skb, len);
  995. }
  996. return 0;
  997. }
  998. EXPORT_SYMBOL(___pskb_trim);
  999. /**
  1000. * __pskb_pull_tail - advance tail of skb header
  1001. * @skb: buffer to reallocate
  1002. * @delta: number of bytes to advance tail
  1003. *
  1004. * The function makes a sense only on a fragmented &sk_buff,
  1005. * it expands header moving its tail forward and copying necessary
  1006. * data from fragmented part.
  1007. *
  1008. * &sk_buff MUST have reference count of 1.
  1009. *
  1010. * Returns %NULL (and &sk_buff does not change) if pull failed
  1011. * or value of new tail of skb in the case of success.
  1012. *
  1013. * All the pointers pointing into skb header may change and must be
  1014. * reloaded after call to this function.
  1015. */
  1016. /* Moves tail of skb head forward, copying data from fragmented part,
  1017. * when it is necessary.
  1018. * 1. It may fail due to malloc failure.
  1019. * 2. It may change skb pointers.
  1020. *
  1021. * It is pretty complicated. Luckily, it is called only in exceptional cases.
  1022. */
  1023. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
  1024. {
  1025. /* If skb has not enough free space at tail, get new one
  1026. * plus 128 bytes for future expansions. If we have enough
  1027. * room at tail, reallocate without expansion only if skb is cloned.
  1028. */
  1029. int i, k, eat = (skb->tail + delta) - skb->end;
  1030. if (eat > 0 || skb_cloned(skb)) {
  1031. if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
  1032. GFP_ATOMIC))
  1033. return NULL;
  1034. }
  1035. if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
  1036. BUG();
  1037. /* Optimization: no fragments, no reasons to preestimate
  1038. * size of pulled pages. Superb.
  1039. */
  1040. if (!skb_shinfo(skb)->frag_list)
  1041. goto pull_pages;
  1042. /* Estimate size of pulled pages. */
  1043. eat = delta;
  1044. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1045. if (skb_shinfo(skb)->frags[i].size >= eat)
  1046. goto pull_pages;
  1047. eat -= skb_shinfo(skb)->frags[i].size;
  1048. }
  1049. /* If we need update frag list, we are in troubles.
  1050. * Certainly, it possible to add an offset to skb data,
  1051. * but taking into account that pulling is expected to
  1052. * be very rare operation, it is worth to fight against
  1053. * further bloating skb head and crucify ourselves here instead.
  1054. * Pure masohism, indeed. 8)8)
  1055. */
  1056. if (eat) {
  1057. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1058. struct sk_buff *clone = NULL;
  1059. struct sk_buff *insp = NULL;
  1060. do {
  1061. BUG_ON(!list);
  1062. if (list->len <= eat) {
  1063. /* Eaten as whole. */
  1064. eat -= list->len;
  1065. list = list->next;
  1066. insp = list;
  1067. } else {
  1068. /* Eaten partially. */
  1069. if (skb_shared(list)) {
  1070. /* Sucks! We need to fork list. :-( */
  1071. clone = skb_clone(list, GFP_ATOMIC);
  1072. if (!clone)
  1073. return NULL;
  1074. insp = list->next;
  1075. list = clone;
  1076. } else {
  1077. /* This may be pulled without
  1078. * problems. */
  1079. insp = list;
  1080. }
  1081. if (!pskb_pull(list, eat)) {
  1082. kfree_skb(clone);
  1083. return NULL;
  1084. }
  1085. break;
  1086. }
  1087. } while (eat);
  1088. /* Free pulled out fragments. */
  1089. while ((list = skb_shinfo(skb)->frag_list) != insp) {
  1090. skb_shinfo(skb)->frag_list = list->next;
  1091. kfree_skb(list);
  1092. }
  1093. /* And insert new clone at head. */
  1094. if (clone) {
  1095. clone->next = list;
  1096. skb_shinfo(skb)->frag_list = clone;
  1097. }
  1098. }
  1099. /* Success! Now we may commit changes to skb data. */
  1100. pull_pages:
  1101. eat = delta;
  1102. k = 0;
  1103. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1104. if (skb_shinfo(skb)->frags[i].size <= eat) {
  1105. put_page(skb_shinfo(skb)->frags[i].page);
  1106. eat -= skb_shinfo(skb)->frags[i].size;
  1107. } else {
  1108. skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
  1109. if (eat) {
  1110. skb_shinfo(skb)->frags[k].page_offset += eat;
  1111. skb_shinfo(skb)->frags[k].size -= eat;
  1112. eat = 0;
  1113. }
  1114. k++;
  1115. }
  1116. }
  1117. skb_shinfo(skb)->nr_frags = k;
  1118. skb->tail += delta;
  1119. skb->data_len -= delta;
  1120. return skb_tail_pointer(skb);
  1121. }
  1122. EXPORT_SYMBOL(__pskb_pull_tail);
  1123. /* Copy some data bits from skb to kernel buffer. */
  1124. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
  1125. {
  1126. int i, copy;
  1127. int start = skb_headlen(skb);
  1128. if (offset > (int)skb->len - len)
  1129. goto fault;
  1130. /* Copy header. */
  1131. if ((copy = start - offset) > 0) {
  1132. if (copy > len)
  1133. copy = len;
  1134. skb_copy_from_linear_data_offset(skb, offset, to, copy);
  1135. if ((len -= copy) == 0)
  1136. return 0;
  1137. offset += copy;
  1138. to += copy;
  1139. }
  1140. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1141. int end;
  1142. WARN_ON(start > offset + len);
  1143. end = start + skb_shinfo(skb)->frags[i].size;
  1144. if ((copy = end - offset) > 0) {
  1145. u8 *vaddr;
  1146. if (copy > len)
  1147. copy = len;
  1148. vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
  1149. memcpy(to,
  1150. vaddr + skb_shinfo(skb)->frags[i].page_offset+
  1151. offset - start, copy);
  1152. kunmap_skb_frag(vaddr);
  1153. if ((len -= copy) == 0)
  1154. return 0;
  1155. offset += copy;
  1156. to += copy;
  1157. }
  1158. start = end;
  1159. }
  1160. if (skb_shinfo(skb)->frag_list) {
  1161. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1162. for (; list; list = list->next) {
  1163. int end;
  1164. WARN_ON(start > offset + len);
  1165. end = start + list->len;
  1166. if ((copy = end - offset) > 0) {
  1167. if (copy > len)
  1168. copy = len;
  1169. if (skb_copy_bits(list, offset - start,
  1170. to, copy))
  1171. goto fault;
  1172. if ((len -= copy) == 0)
  1173. return 0;
  1174. offset += copy;
  1175. to += copy;
  1176. }
  1177. start = end;
  1178. }
  1179. }
  1180. if (!len)
  1181. return 0;
  1182. fault:
  1183. return -EFAULT;
  1184. }
  1185. EXPORT_SYMBOL(skb_copy_bits);
  1186. /*
  1187. * Callback from splice_to_pipe(), if we need to release some pages
  1188. * at the end of the spd in case we error'ed out in filling the pipe.
  1189. */
  1190. static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
  1191. {
  1192. put_page(spd->pages[i]);
  1193. }
  1194. static inline struct page *linear_to_page(struct page *page, unsigned int *len,
  1195. unsigned int *offset,
  1196. struct sk_buff *skb)
  1197. {
  1198. struct sock *sk = skb->sk;
  1199. struct page *p = sk->sk_sndmsg_page;
  1200. unsigned int off;
  1201. if (!p) {
  1202. new_page:
  1203. p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
  1204. if (!p)
  1205. return NULL;
  1206. off = sk->sk_sndmsg_off = 0;
  1207. /* hold one ref to this page until it's full */
  1208. } else {
  1209. unsigned int mlen;
  1210. off = sk->sk_sndmsg_off;
  1211. mlen = PAGE_SIZE - off;
  1212. if (mlen < 64 && mlen < *len) {
  1213. put_page(p);
  1214. goto new_page;
  1215. }
  1216. *len = min_t(unsigned int, *len, mlen);
  1217. }
  1218. memcpy(page_address(p) + off, page_address(page) + *offset, *len);
  1219. sk->sk_sndmsg_off += *len;
  1220. *offset = off;
  1221. get_page(p);
  1222. return p;
  1223. }
  1224. /*
  1225. * Fill page/offset/length into spd, if it can hold more pages.
  1226. */
  1227. static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
  1228. unsigned int *len, unsigned int offset,
  1229. struct sk_buff *skb, int linear)
  1230. {
  1231. if (unlikely(spd->nr_pages == PIPE_BUFFERS))
  1232. return 1;
  1233. if (linear) {
  1234. page = linear_to_page(page, len, &offset, skb);
  1235. if (!page)
  1236. return 1;
  1237. } else
  1238. get_page(page);
  1239. spd->pages[spd->nr_pages] = page;
  1240. spd->partial[spd->nr_pages].len = *len;
  1241. spd->partial[spd->nr_pages].offset = offset;
  1242. spd->nr_pages++;
  1243. return 0;
  1244. }
  1245. static inline void __segment_seek(struct page **page, unsigned int *poff,
  1246. unsigned int *plen, unsigned int off)
  1247. {
  1248. unsigned long n;
  1249. *poff += off;
  1250. n = *poff / PAGE_SIZE;
  1251. if (n)
  1252. *page = nth_page(*page, n);
  1253. *poff = *poff % PAGE_SIZE;
  1254. *plen -= off;
  1255. }
  1256. static inline int __splice_segment(struct page *page, unsigned int poff,
  1257. unsigned int plen, unsigned int *off,
  1258. unsigned int *len, struct sk_buff *skb,
  1259. struct splice_pipe_desc *spd, int linear)
  1260. {
  1261. if (!*len)
  1262. return 1;
  1263. /* skip this segment if already processed */
  1264. if (*off >= plen) {
  1265. *off -= plen;
  1266. return 0;
  1267. }
  1268. /* ignore any bits we already processed */
  1269. if (*off) {
  1270. __segment_seek(&page, &poff, &plen, *off);
  1271. *off = 0;
  1272. }
  1273. do {
  1274. unsigned int flen = min(*len, plen);
  1275. /* the linear region may spread across several pages */
  1276. flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
  1277. if (spd_fill_page(spd, page, &flen, poff, skb, linear))
  1278. return 1;
  1279. __segment_seek(&page, &poff, &plen, flen);
  1280. *len -= flen;
  1281. } while (*len && plen);
  1282. return 0;
  1283. }
  1284. /*
  1285. * Map linear and fragment data from the skb to spd. It reports failure if the
  1286. * pipe is full or if we already spliced the requested length.
  1287. */
  1288. static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
  1289. unsigned int *len,
  1290. struct splice_pipe_desc *spd)
  1291. {
  1292. int seg;
  1293. /*
  1294. * map the linear part
  1295. */
  1296. if (__splice_segment(virt_to_page(skb->data),
  1297. (unsigned long) skb->data & (PAGE_SIZE - 1),
  1298. skb_headlen(skb),
  1299. offset, len, skb, spd, 1))
  1300. return 1;
  1301. /*
  1302. * then map the fragments
  1303. */
  1304. for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
  1305. const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
  1306. if (__splice_segment(f->page, f->page_offset, f->size,
  1307. offset, len, skb, spd, 0))
  1308. return 1;
  1309. }
  1310. return 0;
  1311. }
  1312. /*
  1313. * Map data from the skb to a pipe. Should handle both the linear part,
  1314. * the fragments, and the frag list. It does NOT handle frag lists within
  1315. * the frag list, if such a thing exists. We'd probably need to recurse to
  1316. * handle that cleanly.
  1317. */
  1318. int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
  1319. struct pipe_inode_info *pipe, unsigned int tlen,
  1320. unsigned int flags)
  1321. {
  1322. struct partial_page partial[PIPE_BUFFERS];
  1323. struct page *pages[PIPE_BUFFERS];
  1324. struct splice_pipe_desc spd = {
  1325. .pages = pages,
  1326. .partial = partial,
  1327. .flags = flags,
  1328. .ops = &sock_pipe_buf_ops,
  1329. .spd_release = sock_spd_release,
  1330. };
  1331. /*
  1332. * __skb_splice_bits() only fails if the output has no room left,
  1333. * so no point in going over the frag_list for the error case.
  1334. */
  1335. if (__skb_splice_bits(skb, &offset, &tlen, &spd))
  1336. goto done;
  1337. else if (!tlen)
  1338. goto done;
  1339. /*
  1340. * now see if we have a frag_list to map
  1341. */
  1342. if (skb_shinfo(skb)->frag_list) {
  1343. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1344. for (; list && tlen; list = list->next) {
  1345. if (__skb_splice_bits(list, &offset, &tlen, &spd))
  1346. break;
  1347. }
  1348. }
  1349. done:
  1350. if (spd.nr_pages) {
  1351. struct sock *sk = skb->sk;
  1352. int ret;
  1353. /*
  1354. * Drop the socket lock, otherwise we have reverse
  1355. * locking dependencies between sk_lock and i_mutex
  1356. * here as compared to sendfile(). We enter here
  1357. * with the socket lock held, and splice_to_pipe() will
  1358. * grab the pipe inode lock. For sendfile() emulation,
  1359. * we call into ->sendpage() with the i_mutex lock held
  1360. * and networking will grab the socket lock.
  1361. */
  1362. release_sock(sk);
  1363. ret = splice_to_pipe(pipe, &spd);
  1364. lock_sock(sk);
  1365. return ret;
  1366. }
  1367. return 0;
  1368. }
  1369. /**
  1370. * skb_store_bits - store bits from kernel buffer to skb
  1371. * @skb: destination buffer
  1372. * @offset: offset in destination
  1373. * @from: source buffer
  1374. * @len: number of bytes to copy
  1375. *
  1376. * Copy the specified number of bytes from the source buffer to the
  1377. * destination skb. This function handles all the messy bits of
  1378. * traversing fragment lists and such.
  1379. */
  1380. int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
  1381. {
  1382. int i, copy;
  1383. int start = skb_headlen(skb);
  1384. if (offset > (int)skb->len - len)
  1385. goto fault;
  1386. if ((copy = start - offset) > 0) {
  1387. if (copy > len)
  1388. copy = len;
  1389. skb_copy_to_linear_data_offset(skb, offset, from, copy);
  1390. if ((len -= copy) == 0)
  1391. return 0;
  1392. offset += copy;
  1393. from += copy;
  1394. }
  1395. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1396. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1397. int end;
  1398. WARN_ON(start > offset + len);
  1399. end = start + frag->size;
  1400. if ((copy = end - offset) > 0) {
  1401. u8 *vaddr;
  1402. if (copy > len)
  1403. copy = len;
  1404. vaddr = kmap_skb_frag(frag);
  1405. memcpy(vaddr + frag->page_offset + offset - start,
  1406. from, copy);
  1407. kunmap_skb_frag(vaddr);
  1408. if ((len -= copy) == 0)
  1409. return 0;
  1410. offset += copy;
  1411. from += copy;
  1412. }
  1413. start = end;
  1414. }
  1415. if (skb_shinfo(skb)->frag_list) {
  1416. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1417. for (; list; list = list->next) {
  1418. int end;
  1419. WARN_ON(start > offset + len);
  1420. end = start + list->len;
  1421. if ((copy = end - offset) > 0) {
  1422. if (copy > len)
  1423. copy = len;
  1424. if (skb_store_bits(list, offset - start,
  1425. from, copy))
  1426. goto fault;
  1427. if ((len -= copy) == 0)
  1428. return 0;
  1429. offset += copy;
  1430. from += copy;
  1431. }
  1432. start = end;
  1433. }
  1434. }
  1435. if (!len)
  1436. return 0;
  1437. fault:
  1438. return -EFAULT;
  1439. }
  1440. EXPORT_SYMBOL(skb_store_bits);
  1441. /* Checksum skb data. */
  1442. __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1443. int len, __wsum csum)
  1444. {
  1445. int start = skb_headlen(skb);
  1446. int i, copy = start - offset;
  1447. int pos = 0;
  1448. /* Checksum header. */
  1449. if (copy > 0) {
  1450. if (copy > len)
  1451. copy = len;
  1452. csum = csum_partial(skb->data + offset, copy, csum);
  1453. if ((len -= copy) == 0)
  1454. return csum;
  1455. offset += copy;
  1456. pos = copy;
  1457. }
  1458. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1459. int end;
  1460. WARN_ON(start > offset + len);
  1461. end = start + skb_shinfo(skb)->frags[i].size;
  1462. if ((copy = end - offset) > 0) {
  1463. __wsum csum2;
  1464. u8 *vaddr;
  1465. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1466. if (copy > len)
  1467. copy = len;
  1468. vaddr = kmap_skb_frag(frag);
  1469. csum2 = csum_partial(vaddr + frag->page_offset +
  1470. offset - start, copy, 0);
  1471. kunmap_skb_frag(vaddr);
  1472. csum = csum_block_add(csum, csum2, pos);
  1473. if (!(len -= copy))
  1474. return csum;
  1475. offset += copy;
  1476. pos += copy;
  1477. }
  1478. start = end;
  1479. }
  1480. if (skb_shinfo(skb)->frag_list) {
  1481. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1482. for (; list; list = list->next) {
  1483. int end;
  1484. WARN_ON(start > offset + len);
  1485. end = start + list->len;
  1486. if ((copy = end - offset) > 0) {
  1487. __wsum csum2;
  1488. if (copy > len)
  1489. copy = len;
  1490. csum2 = skb_checksum(list, offset - start,
  1491. copy, 0);
  1492. csum = csum_block_add(csum, csum2, pos);
  1493. if ((len -= copy) == 0)
  1494. return csum;
  1495. offset += copy;
  1496. pos += copy;
  1497. }
  1498. start = end;
  1499. }
  1500. }
  1501. BUG_ON(len);
  1502. return csum;
  1503. }
  1504. EXPORT_SYMBOL(skb_checksum);
  1505. /* Both of above in one bottle. */
  1506. __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
  1507. u8 *to, int len, __wsum csum)
  1508. {
  1509. int start = skb_headlen(skb);
  1510. int i, copy = start - offset;
  1511. int pos = 0;
  1512. /* Copy header. */
  1513. if (copy > 0) {
  1514. if (copy > len)
  1515. copy = len;
  1516. csum = csum_partial_copy_nocheck(skb->data + offset, to,
  1517. copy, csum);
  1518. if ((len -= copy) == 0)
  1519. return csum;
  1520. offset += copy;
  1521. to += copy;
  1522. pos = copy;
  1523. }
  1524. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1525. int end;
  1526. WARN_ON(start > offset + len);
  1527. end = start + skb_shinfo(skb)->frags[i].size;
  1528. if ((copy = end - offset) > 0) {
  1529. __wsum csum2;
  1530. u8 *vaddr;
  1531. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1532. if (copy > len)
  1533. copy = len;
  1534. vaddr = kmap_skb_frag(frag);
  1535. csum2 = csum_partial_copy_nocheck(vaddr +
  1536. frag->page_offset +
  1537. offset - start, to,
  1538. copy, 0);
  1539. kunmap_skb_frag(vaddr);
  1540. csum = csum_block_add(csum, csum2, pos);
  1541. if (!(len -= copy))
  1542. return csum;
  1543. offset += copy;
  1544. to += copy;
  1545. pos += copy;
  1546. }
  1547. start = end;
  1548. }
  1549. if (skb_shinfo(skb)->frag_list) {
  1550. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1551. for (; list; list = list->next) {
  1552. __wsum csum2;
  1553. int end;
  1554. WARN_ON(start > offset + len);
  1555. end = start + list->len;
  1556. if ((copy = end - offset) > 0) {
  1557. if (copy > len)
  1558. copy = len;
  1559. csum2 = skb_copy_and_csum_bits(list,
  1560. offset - start,
  1561. to, copy, 0);
  1562. csum = csum_block_add(csum, csum2, pos);
  1563. if ((len -= copy) == 0)
  1564. return csum;
  1565. offset += copy;
  1566. to += copy;
  1567. pos += copy;
  1568. }
  1569. start = end;
  1570. }
  1571. }
  1572. BUG_ON(len);
  1573. return csum;
  1574. }
  1575. EXPORT_SYMBOL(skb_copy_and_csum_bits);
  1576. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
  1577. {
  1578. __wsum csum;
  1579. long csstart;
  1580. if (skb->ip_summed == CHECKSUM_PARTIAL)
  1581. csstart = skb->csum_start - skb_headroom(skb);
  1582. else
  1583. csstart = skb_headlen(skb);
  1584. BUG_ON(csstart > skb_headlen(skb));
  1585. skb_copy_from_linear_data(skb, to, csstart);
  1586. csum = 0;
  1587. if (csstart != skb->len)
  1588. csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
  1589. skb->len - csstart, 0);
  1590. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1591. long csstuff = csstart + skb->csum_offset;
  1592. *((__sum16 *)(to + csstuff)) = csum_fold(csum);
  1593. }
  1594. }
  1595. EXPORT_SYMBOL(skb_copy_and_csum_dev);
  1596. /**
  1597. * skb_dequeue - remove from the head of the queue
  1598. * @list: list to dequeue from
  1599. *
  1600. * Remove the head of the list. The list lock is taken so the function
  1601. * may be used safely with other locking list functions. The head item is
  1602. * returned or %NULL if the list is empty.
  1603. */
  1604. struct sk_buff *skb_dequeue(struct sk_buff_head *list)
  1605. {
  1606. unsigned long flags;
  1607. struct sk_buff *result;
  1608. spin_lock_irqsave(&list->lock, flags);
  1609. result = __skb_dequeue(list);
  1610. spin_unlock_irqrestore(&list->lock, flags);
  1611. return result;
  1612. }
  1613. EXPORT_SYMBOL(skb_dequeue);
  1614. /**
  1615. * skb_dequeue_tail - remove from the tail of the queue
  1616. * @list: list to dequeue from
  1617. *
  1618. * Remove the tail of the list. The list lock is taken so the function
  1619. * may be used safely with other locking list functions. The tail item is
  1620. * returned or %NULL if the list is empty.
  1621. */
  1622. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
  1623. {
  1624. unsigned long flags;
  1625. struct sk_buff *result;
  1626. spin_lock_irqsave(&list->lock, flags);
  1627. result = __skb_dequeue_tail(list);
  1628. spin_unlock_irqrestore(&list->lock, flags);
  1629. return result;
  1630. }
  1631. EXPORT_SYMBOL(skb_dequeue_tail);
  1632. /**
  1633. * skb_queue_purge - empty a list
  1634. * @list: list to empty
  1635. *
  1636. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1637. * the list and one reference dropped. This function takes the list
  1638. * lock and is atomic with respect to other list locking functions.
  1639. */
  1640. void skb_queue_purge(struct sk_buff_head *list)
  1641. {
  1642. struct sk_buff *skb;
  1643. while ((skb = skb_dequeue(list)) != NULL)
  1644. kfree_skb(skb);
  1645. }
  1646. EXPORT_SYMBOL(skb_queue_purge);
  1647. /**
  1648. * skb_queue_head - queue a buffer at the list head
  1649. * @list: list to use
  1650. * @newsk: buffer to queue
  1651. *
  1652. * Queue a buffer at the start of the list. This function takes the
  1653. * list lock and can be used safely with other locking &sk_buff functions
  1654. * safely.
  1655. *
  1656. * A buffer cannot be placed on two lists at the same time.
  1657. */
  1658. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
  1659. {
  1660. unsigned long flags;
  1661. spin_lock_irqsave(&list->lock, flags);
  1662. __skb_queue_head(list, newsk);
  1663. spin_unlock_irqrestore(&list->lock, flags);
  1664. }
  1665. EXPORT_SYMBOL(skb_queue_head);
  1666. /**
  1667. * skb_queue_tail - queue a buffer at the list tail
  1668. * @list: list to use
  1669. * @newsk: buffer to queue
  1670. *
  1671. * Queue a buffer at the tail of the list. This function takes the
  1672. * list lock and can be used safely with other locking &sk_buff functions
  1673. * safely.
  1674. *
  1675. * A buffer cannot be placed on two lists at the same time.
  1676. */
  1677. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
  1678. {
  1679. unsigned long flags;
  1680. spin_lock_irqsave(&list->lock, flags);
  1681. __skb_queue_tail(list, newsk);
  1682. spin_unlock_irqrestore(&list->lock, flags);
  1683. }
  1684. EXPORT_SYMBOL(skb_queue_tail);
  1685. /**
  1686. * skb_unlink - remove a buffer from a list
  1687. * @skb: buffer to remove
  1688. * @list: list to use
  1689. *
  1690. * Remove a packet from a list. The list locks are taken and this
  1691. * function is atomic with respect to other list locked calls
  1692. *
  1693. * You must know what list the SKB is on.
  1694. */
  1695. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1696. {
  1697. unsigned long flags;
  1698. spin_lock_irqsave(&list->lock, flags);
  1699. __skb_unlink(skb, list);
  1700. spin_unlock_irqrestore(&list->lock, flags);
  1701. }
  1702. EXPORT_SYMBOL(skb_unlink);
  1703. /**
  1704. * skb_append - append a buffer
  1705. * @old: buffer to insert after
  1706. * @newsk: buffer to insert
  1707. * @list: list to use
  1708. *
  1709. * Place a packet after a given packet in a list. The list locks are taken
  1710. * and this function is atomic with respect to other list locked calls.
  1711. * A buffer cannot be placed on two lists at the same time.
  1712. */
  1713. void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1714. {
  1715. unsigned long flags;
  1716. spin_lock_irqsave(&list->lock, flags);
  1717. __skb_queue_after(list, old, newsk);
  1718. spin_unlock_irqrestore(&list->lock, flags);
  1719. }
  1720. EXPORT_SYMBOL(skb_append);
  1721. /**
  1722. * skb_insert - insert a buffer
  1723. * @old: buffer to insert before
  1724. * @newsk: buffer to insert
  1725. * @list: list to use
  1726. *
  1727. * Place a packet before a given packet in a list. The list locks are
  1728. * taken and this function is atomic with respect to other list locked
  1729. * calls.
  1730. *
  1731. * A buffer cannot be placed on two lists at the same time.
  1732. */
  1733. void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1734. {
  1735. unsigned long flags;
  1736. spin_lock_irqsave(&list->lock, flags);
  1737. __skb_insert(newsk, old->prev, old, list);
  1738. spin_unlock_irqrestore(&list->lock, flags);
  1739. }
  1740. EXPORT_SYMBOL(skb_insert);
  1741. static inline void skb_split_inside_header(struct sk_buff *skb,
  1742. struct sk_buff* skb1,
  1743. const u32 len, const int pos)
  1744. {
  1745. int i;
  1746. skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
  1747. pos - len);
  1748. /* And move data appendix as is. */
  1749. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  1750. skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
  1751. skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
  1752. skb_shinfo(skb)->nr_frags = 0;
  1753. skb1->data_len = skb->data_len;
  1754. skb1->len += skb1->data_len;
  1755. skb->data_len = 0;
  1756. skb->len = len;
  1757. skb_set_tail_pointer(skb, len);
  1758. }
  1759. static inline void skb_split_no_header(struct sk_buff *skb,
  1760. struct sk_buff* skb1,
  1761. const u32 len, int pos)
  1762. {
  1763. int i, k = 0;
  1764. const int nfrags = skb_shinfo(skb)->nr_frags;
  1765. skb_shinfo(skb)->nr_frags = 0;
  1766. skb1->len = skb1->data_len = skb->len - len;
  1767. skb->len = len;
  1768. skb->data_len = len - pos;
  1769. for (i = 0; i < nfrags; i++) {
  1770. int size = skb_shinfo(skb)->frags[i].size;
  1771. if (pos + size > len) {
  1772. skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
  1773. if (pos < len) {
  1774. /* Split frag.
  1775. * We have two variants in this case:
  1776. * 1. Move all the frag to the second
  1777. * part, if it is possible. F.e.
  1778. * this approach is mandatory for TUX,
  1779. * where splitting is expensive.
  1780. * 2. Split is accurately. We make this.
  1781. */
  1782. get_page(skb_shinfo(skb)->frags[i].page);
  1783. skb_shinfo(skb1)->frags[0].page_offset += len - pos;
  1784. skb_shinfo(skb1)->frags[0].size -= len - pos;
  1785. skb_shinfo(skb)->frags[i].size = len - pos;
  1786. skb_shinfo(skb)->nr_frags++;
  1787. }
  1788. k++;
  1789. } else
  1790. skb_shinfo(skb)->nr_frags++;
  1791. pos += size;
  1792. }
  1793. skb_shinfo(skb1)->nr_frags = k;
  1794. }
  1795. /**
  1796. * skb_split - Split fragmented skb to two parts at length len.
  1797. * @skb: the buffer to split
  1798. * @skb1: the buffer to receive the second part
  1799. * @len: new length for skb
  1800. */
  1801. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
  1802. {
  1803. int pos = skb_headlen(skb);
  1804. if (len < pos) /* Split line is inside header. */
  1805. skb_split_inside_header(skb, skb1, len, pos);
  1806. else /* Second chunk has no header, nothing to copy. */
  1807. skb_split_no_header(skb, skb1, len, pos);
  1808. }
  1809. EXPORT_SYMBOL(skb_split);
  1810. /* Shifting from/to a cloned skb is a no-go.
  1811. *
  1812. * Caller cannot keep skb_shinfo related pointers past calling here!
  1813. */
  1814. static int skb_prepare_for_shift(struct sk_buff *skb)
  1815. {
  1816. return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1817. }
  1818. /**
  1819. * skb_shift - Shifts paged data partially from skb to another
  1820. * @tgt: buffer into which tail data gets added
  1821. * @skb: buffer from which the paged data comes from
  1822. * @shiftlen: shift up to this many bytes
  1823. *
  1824. * Attempts to shift up to shiftlen worth of bytes, which may be less than
  1825. * the length of the skb, from tgt to skb. Returns number bytes shifted.
  1826. * It's up to caller to free skb if everything was shifted.
  1827. *
  1828. * If @tgt runs out of frags, the whole operation is aborted.
  1829. *
  1830. * Skb cannot include anything else but paged data while tgt is allowed
  1831. * to have non-paged data as well.
  1832. *
  1833. * TODO: full sized shift could be optimized but that would need
  1834. * specialized skb free'er to handle frags without up-to-date nr_frags.
  1835. */
  1836. int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
  1837. {
  1838. int from, to, merge, todo;
  1839. struct skb_frag_struct *fragfrom, *fragto;
  1840. BUG_ON(shiftlen > skb->len);
  1841. BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
  1842. todo = shiftlen;
  1843. from = 0;
  1844. to = skb_shinfo(tgt)->nr_frags;
  1845. fragfrom = &skb_shinfo(skb)->frags[from];
  1846. /* Actual merge is delayed until the point when we know we can
  1847. * commit all, so that we don't have to undo partial changes
  1848. */
  1849. if (!to ||
  1850. !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
  1851. merge = -1;
  1852. } else {
  1853. merge = to - 1;
  1854. todo -= fragfrom->size;
  1855. if (todo < 0) {
  1856. if (skb_prepare_for_shift(skb) ||
  1857. skb_prepare_for_shift(tgt))
  1858. return 0;
  1859. /* All previous frag pointers might be stale! */
  1860. fragfrom = &skb_shinfo(skb)->frags[from];
  1861. fragto = &skb_shinfo(tgt)->frags[merge];
  1862. fragto->size += shiftlen;
  1863. fragfrom->size -= shiftlen;
  1864. fragfrom->page_offset += shiftlen;
  1865. goto onlymerged;
  1866. }
  1867. from++;
  1868. }
  1869. /* Skip full, not-fitting skb to avoid expensive operations */
  1870. if ((shiftlen == skb->len) &&
  1871. (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
  1872. return 0;
  1873. if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
  1874. return 0;
  1875. while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
  1876. if (to == MAX_SKB_FRAGS)
  1877. return 0;
  1878. fragfrom = &skb_shinfo(skb)->frags[from];
  1879. fragto = &skb_shinfo(tgt)->frags[to];
  1880. if (todo >= fragfrom->size) {
  1881. *fragto = *fragfrom;
  1882. todo -= fragfrom->size;
  1883. from++;
  1884. to++;
  1885. } else {
  1886. get_page(fragfrom->page);
  1887. fragto->page = fragfrom->page;
  1888. fragto->page_offset = fragfrom->page_offset;
  1889. fragto->size = todo;
  1890. fragfrom->page_offset += todo;
  1891. fragfrom->size -= todo;
  1892. todo = 0;
  1893. to++;
  1894. break;
  1895. }
  1896. }
  1897. /* Ready to "commit" this state change to tgt */
  1898. skb_shinfo(tgt)->nr_frags = to;
  1899. if (merge >= 0) {
  1900. fragfrom = &skb_shinfo(skb)->frags[0];
  1901. fragto = &skb_shinfo(tgt)->frags[merge];
  1902. fragto->size += fragfrom->size;
  1903. put_page(fragfrom->page);
  1904. }
  1905. /* Reposition in the original skb */
  1906. to = 0;
  1907. while (from < skb_shinfo(skb)->nr_frags)
  1908. skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
  1909. skb_shinfo(skb)->nr_frags = to;
  1910. BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
  1911. onlymerged:
  1912. /* Most likely the tgt won't ever need its checksum anymore, skb on
  1913. * the other hand might need it if it needs to be resent
  1914. */
  1915. tgt->ip_summed = CHECKSUM_PARTIAL;
  1916. skb->ip_summed = CHECKSUM_PARTIAL;
  1917. /* Yak, is it really working this way? Some helper please? */
  1918. skb->len -= shiftlen;
  1919. skb->data_len -= shiftlen;
  1920. skb->truesize -= shiftlen;
  1921. tgt->len += shiftlen;
  1922. tgt->data_len += shiftlen;
  1923. tgt->truesize += shiftlen;
  1924. return shiftlen;
  1925. }
  1926. /**
  1927. * skb_prepare_seq_read - Prepare a sequential read of skb data
  1928. * @skb: the buffer to read
  1929. * @from: lower offset of data to be read
  1930. * @to: upper offset of data to be read
  1931. * @st: state variable
  1932. *
  1933. * Initializes the specified state variable. Must be called before
  1934. * invoking skb_seq_read() for the first time.
  1935. */
  1936. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  1937. unsigned int to, struct skb_seq_state *st)
  1938. {
  1939. st->lower_offset = from;
  1940. st->upper_offset = to;
  1941. st->root_skb = st->cur_skb = skb;
  1942. st->frag_idx = st->stepped_offset = 0;
  1943. st->frag_data = NULL;
  1944. }
  1945. EXPORT_SYMBOL(skb_prepare_seq_read);
  1946. /**
  1947. * skb_seq_read - Sequentially read skb data
  1948. * @consumed: number of bytes consumed by the caller so far
  1949. * @data: destination pointer for data to be returned
  1950. * @st: state variable
  1951. *
  1952. * Reads a block of skb data at &consumed relative to the
  1953. * lower offset specified to skb_prepare_seq_read(). Assigns
  1954. * the head of the data block to &data and returns the length
  1955. * of the block or 0 if the end of the skb data or the upper
  1956. * offset has been reached.
  1957. *
  1958. * The caller is not required to consume all of the data
  1959. * returned, i.e. &consumed is typically set to the number
  1960. * of bytes already consumed and the next call to
  1961. * skb_seq_read() will return the remaining part of the block.
  1962. *
  1963. * Note 1: The size of each block of data returned can be arbitary,
  1964. * this limitation is the cost for zerocopy seqeuental
  1965. * reads of potentially non linear data.
  1966. *
  1967. * Note 2: Fragment lists within fragments are not implemented
  1968. * at the moment, state->root_skb could be replaced with
  1969. * a stack for this purpose.
  1970. */
  1971. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  1972. struct skb_seq_state *st)
  1973. {
  1974. unsigned int block_limit, abs_offset = consumed + st->lower_offset;
  1975. skb_frag_t *frag;
  1976. if (unlikely(abs_offset >= st->upper_offset))
  1977. return 0;
  1978. next_skb:
  1979. block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
  1980. if (abs_offset < block_limit) {
  1981. *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
  1982. return block_limit - abs_offset;
  1983. }
  1984. if (st->frag_idx == 0 && !st->frag_data)
  1985. st->stepped_offset += skb_headlen(st->cur_skb);
  1986. while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
  1987. frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
  1988. block_limit = frag->size + st->stepped_offset;
  1989. if (abs_offset < block_limit) {
  1990. if (!st->frag_data)
  1991. st->frag_data = kmap_skb_frag(frag);
  1992. *data = (u8 *) st->frag_data + frag->page_offset +
  1993. (abs_offset - st->stepped_offset);
  1994. return block_limit - abs_offset;
  1995. }
  1996. if (st->frag_data) {
  1997. kunmap_skb_frag(st->frag_data);
  1998. st->frag_data = NULL;
  1999. }
  2000. st->frag_idx++;
  2001. st->stepped_offset += frag->size;
  2002. }
  2003. if (st->frag_data) {
  2004. kunmap_skb_frag(st->frag_data);
  2005. st->frag_data = NULL;
  2006. }
  2007. if (st->root_skb == st->cur_skb &&
  2008. skb_shinfo(st->root_skb)->frag_list) {
  2009. st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
  2010. st->frag_idx = 0;
  2011. goto next_skb;
  2012. } else if (st->cur_skb->next) {
  2013. st->cur_skb = st->cur_skb->next;
  2014. st->frag_idx = 0;
  2015. goto next_skb;
  2016. }
  2017. return 0;
  2018. }
  2019. EXPORT_SYMBOL(skb_seq_read);
  2020. /**
  2021. * skb_abort_seq_read - Abort a sequential read of skb data
  2022. * @st: state variable
  2023. *
  2024. * Must be called if skb_seq_read() was not called until it
  2025. * returned 0.
  2026. */
  2027. void skb_abort_seq_read(struct skb_seq_state *st)
  2028. {
  2029. if (st->frag_data)
  2030. kunmap_skb_frag(st->frag_data);
  2031. }
  2032. EXPORT_SYMBOL(skb_abort_seq_read);
  2033. #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
  2034. static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
  2035. struct ts_config *conf,
  2036. struct ts_state *state)
  2037. {
  2038. return skb_seq_read(offset, text, TS_SKB_CB(state));
  2039. }
  2040. static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
  2041. {
  2042. skb_abort_seq_read(TS_SKB_CB(state));
  2043. }
  2044. /**
  2045. * skb_find_text - Find a text pattern in skb data
  2046. * @skb: the buffer to look in
  2047. * @from: search offset
  2048. * @to: search limit
  2049. * @config: textsearch configuration
  2050. * @state: uninitialized textsearch state variable
  2051. *
  2052. * Finds a pattern in the skb data according to the specified
  2053. * textsearch configuration. Use textsearch_next() to retrieve
  2054. * subsequent occurrences of the pattern. Returns the offset
  2055. * to the first occurrence or UINT_MAX if no match was found.
  2056. */
  2057. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  2058. unsigned int to, struct ts_config *config,
  2059. struct ts_state *state)
  2060. {
  2061. unsigned int ret;
  2062. config->get_next_block = skb_ts_get_next_block;
  2063. config->finish = skb_ts_finish;
  2064. skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
  2065. ret = textsearch_find(config, state);
  2066. return (ret <= to - from ? ret : UINT_MAX);
  2067. }
  2068. EXPORT_SYMBOL(skb_find_text);
  2069. /**
  2070. * skb_append_datato_frags: - append the user data to a skb
  2071. * @sk: sock structure
  2072. * @skb: skb structure to be appened with user data.
  2073. * @getfrag: call back function to be used for getting the user data
  2074. * @from: pointer to user message iov
  2075. * @length: length of the iov message
  2076. *
  2077. * Description: This procedure append the user data in the fragment part
  2078. * of the skb if any page alloc fails user this procedure returns -ENOMEM
  2079. */
  2080. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  2081. int (*getfrag)(void *from, char *to, int offset,
  2082. int len, int odd, struct sk_buff *skb),
  2083. void *from, int length)
  2084. {
  2085. int frg_cnt = 0;
  2086. skb_frag_t *frag = NULL;
  2087. struct page *page = NULL;
  2088. int copy, left;
  2089. int offset = 0;
  2090. int ret;
  2091. do {
  2092. /* Return error if we don't have space for new frag */
  2093. frg_cnt = skb_shinfo(skb)->nr_frags;
  2094. if (frg_cnt >= MAX_SKB_FRAGS)
  2095. return -EFAULT;
  2096. /* allocate a new page for next frag */
  2097. page = alloc_pages(sk->sk_allocation, 0);
  2098. /* If alloc_page fails just return failure and caller will
  2099. * free previous allocated pages by doing kfree_skb()
  2100. */
  2101. if (page == NULL)
  2102. return -ENOMEM;
  2103. /* initialize the next frag */
  2104. sk->sk_sndmsg_page = page;
  2105. sk->sk_sndmsg_off = 0;
  2106. skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
  2107. skb->truesize += PAGE_SIZE;
  2108. atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
  2109. /* get the new initialized frag */
  2110. frg_cnt = skb_shinfo(skb)->nr_frags;
  2111. frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
  2112. /* copy the user data to page */
  2113. left = PAGE_SIZE - frag->page_offset;
  2114. copy = (length > left)? left : length;
  2115. ret = getfrag(from, (page_address(frag->page) +
  2116. frag->page_offset + frag->size),
  2117. offset, copy, 0, skb);
  2118. if (ret < 0)
  2119. return -EFAULT;
  2120. /* copy was successful so update the size parameters */
  2121. sk->sk_sndmsg_off += copy;
  2122. frag->size += copy;
  2123. skb->len += copy;
  2124. skb->data_len += copy;
  2125. offset += copy;
  2126. length -= copy;
  2127. } while (length > 0);
  2128. return 0;
  2129. }
  2130. EXPORT_SYMBOL(skb_append_datato_frags);
  2131. /**
  2132. * skb_pull_rcsum - pull skb and update receive checksum
  2133. * @skb: buffer to update
  2134. * @len: length of data pulled
  2135. *
  2136. * This function performs an skb_pull on the packet and updates
  2137. * the CHECKSUM_COMPLETE checksum. It should be used on
  2138. * receive path processing instead of skb_pull unless you know
  2139. * that the checksum difference is zero (e.g., a valid IP header)
  2140. * or you are setting ip_summed to CHECKSUM_NONE.
  2141. */
  2142. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
  2143. {
  2144. BUG_ON(len > skb->len);
  2145. skb->len -= len;
  2146. BUG_ON(skb->len < skb->data_len);
  2147. skb_postpull_rcsum(skb, skb->data, len);
  2148. return skb->data += len;
  2149. }
  2150. EXPORT_SYMBOL_GPL(skb_pull_rcsum);
  2151. /**
  2152. * skb_segment - Perform protocol segmentation on skb.
  2153. * @skb: buffer to segment
  2154. * @features: features for the output path (see dev->features)
  2155. *
  2156. * This function performs segmentation on the given skb. It returns
  2157. * a pointer to the first in a list of new skbs for the segments.
  2158. * In case of error it returns ERR_PTR(err).
  2159. */
  2160. struct sk_buff *skb_segment(struct sk_buff *skb, int features)
  2161. {
  2162. struct sk_buff *segs = NULL;
  2163. struct sk_buff *tail = NULL;
  2164. struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
  2165. unsigned int mss = skb_shinfo(skb)->gso_size;
  2166. unsigned int doffset = skb->data - skb_mac_header(skb);
  2167. unsigned int offset = doffset;
  2168. unsigned int headroom;
  2169. unsigned int len;
  2170. int sg = features & NETIF_F_SG;
  2171. int nfrags = skb_shinfo(skb)->nr_frags;
  2172. int err = -ENOMEM;
  2173. int i = 0;
  2174. int pos;
  2175. __skb_push(skb, doffset);
  2176. headroom = skb_headroom(skb);
  2177. pos = skb_headlen(skb);
  2178. do {
  2179. struct sk_buff *nskb;
  2180. skb_frag_t *frag;
  2181. int hsize;
  2182. int size;
  2183. len = skb->len - offset;
  2184. if (len > mss)
  2185. len = mss;
  2186. hsize = skb_headlen(skb) - offset;
  2187. if (hsize < 0)
  2188. hsize = 0;
  2189. if (hsize > len || !sg)
  2190. hsize = len;
  2191. if (!hsize && i >= nfrags) {
  2192. BUG_ON(fskb->len != len);
  2193. pos += len;
  2194. nskb = skb_clone(fskb, GFP_ATOMIC);
  2195. fskb = fskb->next;
  2196. if (unlikely(!nskb))
  2197. goto err;
  2198. hsize = skb_end_pointer(nskb) - nskb->head;
  2199. if (skb_cow_head(nskb, doffset + headroom)) {
  2200. kfree_skb(nskb);
  2201. goto err;
  2202. }
  2203. nskb->truesize += skb_end_pointer(nskb) - nskb->head -
  2204. hsize;
  2205. skb_release_head_state(nskb);
  2206. __skb_push(nskb, doffset);
  2207. } else {
  2208. nskb = alloc_skb(hsize + doffset + headroom,
  2209. GFP_ATOMIC);
  2210. if (unlikely(!nskb))
  2211. goto err;
  2212. skb_reserve(nskb, headroom);
  2213. __skb_put(nskb, doffset);
  2214. }
  2215. if (segs)
  2216. tail->next = nskb;
  2217. else
  2218. segs = nskb;
  2219. tail = nskb;
  2220. __copy_skb_header(nskb, skb);
  2221. nskb->mac_len = skb->mac_len;
  2222. skb_reset_mac_header(nskb);
  2223. skb_set_network_header(nskb, skb->mac_len);
  2224. nskb->transport_header = (nskb->network_header +
  2225. skb_network_header_len(skb));
  2226. skb_copy_from_linear_data(skb, nskb->data, doffset);
  2227. if (fskb != skb_shinfo(skb)->frag_list)
  2228. continue;
  2229. if (!sg) {
  2230. nskb->ip_summed = CHECKSUM_NONE;
  2231. nskb->csum = skb_copy_and_csum_bits(skb, offset,
  2232. skb_put(nskb, len),
  2233. len, 0);
  2234. continue;
  2235. }
  2236. frag = skb_shinfo(nskb)->frags;
  2237. skb_copy_from_linear_data_offset(skb, offset,
  2238. skb_put(nskb, hsize), hsize);
  2239. while (pos < offset + len && i < nfrags) {
  2240. *frag = skb_shinfo(skb)->frags[i];
  2241. get_page(frag->page);
  2242. size = frag->size;
  2243. if (pos < offset) {
  2244. frag->page_offset += offset - pos;
  2245. frag->size -= offset - pos;
  2246. }
  2247. skb_shinfo(nskb)->nr_frags++;
  2248. if (pos + size <= offset + len) {
  2249. i++;
  2250. pos += size;
  2251. } else {
  2252. frag->size -= pos + size - (offset + len);
  2253. goto skip_fraglist;
  2254. }
  2255. frag++;
  2256. }
  2257. if (pos < offset + len) {
  2258. struct sk_buff *fskb2 = fskb;
  2259. BUG_ON(pos + fskb->len != offset + len);
  2260. pos += fskb->len;
  2261. fskb = fskb->next;
  2262. if (fskb2->next) {
  2263. fskb2 = skb_clone(fskb2, GFP_ATOMIC);
  2264. if (!fskb2)
  2265. goto err;
  2266. } else
  2267. skb_get(fskb2);
  2268. BUG_ON(skb_shinfo(nskb)->frag_list);
  2269. skb_shinfo(nskb)->frag_list = fskb2;
  2270. }
  2271. skip_fraglist:
  2272. nskb->data_len = len - hsize;
  2273. nskb->len += nskb->data_len;
  2274. nskb->truesize += nskb->data_len;
  2275. } while ((offset += len) < skb->len);
  2276. return segs;
  2277. err:
  2278. while ((skb = segs)) {
  2279. segs = skb->next;
  2280. kfree_skb(skb);
  2281. }
  2282. return ERR_PTR(err);
  2283. }
  2284. EXPORT_SYMBOL_GPL(skb_segment);
  2285. int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
  2286. {
  2287. struct sk_buff *p = *head;
  2288. struct sk_buff *nskb;
  2289. unsigned int headroom;
  2290. unsigned int len = skb_gro_len(skb);
  2291. if (p->len + len >= 65536)
  2292. return -E2BIG;
  2293. if (skb_shinfo(p)->frag_list)
  2294. goto merge;
  2295. else if (skb_headlen(skb) <= skb_gro_offset(skb)) {
  2296. if (skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags >
  2297. MAX_SKB_FRAGS)
  2298. return -E2BIG;
  2299. skb_shinfo(skb)->frags[0].page_offset +=
  2300. skb_gro_offset(skb) - skb_headlen(skb);
  2301. skb_shinfo(skb)->frags[0].size -=
  2302. skb_gro_offset(skb) - skb_headlen(skb);
  2303. memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags,
  2304. skb_shinfo(skb)->frags,
  2305. skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
  2306. skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags;
  2307. skb_shinfo(skb)->nr_frags = 0;
  2308. skb->truesize -= skb->data_len;
  2309. skb->len -= skb->data_len;
  2310. skb->data_len = 0;
  2311. NAPI_GRO_CB(skb)->free = 1;
  2312. goto done;
  2313. }
  2314. headroom = skb_headroom(p);
  2315. nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
  2316. if (unlikely(!nskb))
  2317. return -ENOMEM;
  2318. __copy_skb_header(nskb, p);
  2319. nskb->mac_len = p->mac_len;
  2320. skb_reserve(nskb, headroom);
  2321. __skb_put(nskb, skb_gro_offset(p));
  2322. skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
  2323. skb_set_network_header(nskb, skb_network_offset(p));
  2324. skb_set_transport_header(nskb, skb_transport_offset(p));
  2325. __skb_pull(p, skb_gro_offset(p));
  2326. memcpy(skb_mac_header(nskb), skb_mac_header(p),
  2327. p->data - skb_mac_header(p));
  2328. *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
  2329. skb_shinfo(nskb)->frag_list = p;
  2330. skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size;
  2331. skb_header_release(p);
  2332. nskb->prev = p;
  2333. nskb->data_len += p->len;
  2334. nskb->truesize += p->len;
  2335. nskb->len += p->len;
  2336. *head = nskb;
  2337. nskb->next = p->next;
  2338. p->next = NULL;
  2339. p = nskb;
  2340. merge:
  2341. if (skb_gro_offset(skb) > skb_headlen(skb)) {
  2342. skb_shinfo(skb)->frags[0].page_offset +=
  2343. skb_gro_offset(skb) - skb_headlen(skb);
  2344. skb_shinfo(skb)->frags[0].size -=
  2345. skb_gro_offset(skb) - skb_headlen(skb);
  2346. skb_gro_reset_offset(skb);
  2347. skb_gro_pull(skb, skb_headlen(skb));
  2348. }
  2349. __skb_pull(skb, skb_gro_offset(skb));
  2350. p->prev->next = skb;
  2351. p->prev = skb;
  2352. skb_header_release(skb);
  2353. done:
  2354. NAPI_GRO_CB(p)->count++;
  2355. p->data_len += len;
  2356. p->truesize += len;
  2357. p->len += len;
  2358. NAPI_GRO_CB(skb)->same_flow = 1;
  2359. return 0;
  2360. }
  2361. EXPORT_SYMBOL_GPL(skb_gro_receive);
  2362. void __init skb_init(void)
  2363. {
  2364. skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
  2365. sizeof(struct sk_buff),
  2366. 0,
  2367. SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  2368. NULL);
  2369. skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
  2370. (2*sizeof(struct sk_buff)) +
  2371. sizeof(atomic_t),
  2372. 0,
  2373. SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  2374. NULL);
  2375. }
  2376. /**
  2377. * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
  2378. * @skb: Socket buffer containing the buffers to be mapped
  2379. * @sg: The scatter-gather list to map into
  2380. * @offset: The offset into the buffer's contents to start mapping
  2381. * @len: Length of buffer space to be mapped
  2382. *
  2383. * Fill the specified scatter-gather list with mappings/pointers into a
  2384. * region of the buffer space attached to a socket buffer.
  2385. */
  2386. static int
  2387. __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
  2388. {
  2389. int start = skb_headlen(skb);
  2390. int i, copy = start - offset;
  2391. int elt = 0;
  2392. if (copy > 0) {
  2393. if (copy > len)
  2394. copy = len;
  2395. sg_set_buf(sg, skb->data + offset, copy);
  2396. elt++;
  2397. if ((len -= copy) == 0)
  2398. return elt;
  2399. offset += copy;
  2400. }
  2401. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2402. int end;
  2403. WARN_ON(start > offset + len);
  2404. end = start + skb_shinfo(skb)->frags[i].size;
  2405. if ((copy = end - offset) > 0) {
  2406. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2407. if (copy > len)
  2408. copy = len;
  2409. sg_set_page(&sg[elt], frag->page, copy,
  2410. frag->page_offset+offset-start);
  2411. elt++;
  2412. if (!(len -= copy))
  2413. return elt;
  2414. offset += copy;
  2415. }
  2416. start = end;
  2417. }
  2418. if (skb_shinfo(skb)->frag_list) {
  2419. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  2420. for (; list; list = list->next) {
  2421. int end;
  2422. WARN_ON(start > offset + len);
  2423. end = start + list->len;
  2424. if ((copy = end - offset) > 0) {
  2425. if (copy > len)
  2426. copy = len;
  2427. elt += __skb_to_sgvec(list, sg+elt, offset - start,
  2428. copy);
  2429. if ((len -= copy) == 0)
  2430. return elt;
  2431. offset += copy;
  2432. }
  2433. start = end;
  2434. }
  2435. }
  2436. BUG_ON(len);
  2437. return elt;
  2438. }
  2439. int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
  2440. {
  2441. int nsg = __skb_to_sgvec(skb, sg, offset, len);
  2442. sg_mark_end(&sg[nsg - 1]);
  2443. return nsg;
  2444. }
  2445. EXPORT_SYMBOL_GPL(skb_to_sgvec);
  2446. /**
  2447. * skb_cow_data - Check that a socket buffer's data buffers are writable
  2448. * @skb: The socket buffer to check.
  2449. * @tailbits: Amount of trailing space to be added
  2450. * @trailer: Returned pointer to the skb where the @tailbits space begins
  2451. *
  2452. * Make sure that the data buffers attached to a socket buffer are
  2453. * writable. If they are not, private copies are made of the data buffers
  2454. * and the socket buffer is set to use these instead.
  2455. *
  2456. * If @tailbits is given, make sure that there is space to write @tailbits
  2457. * bytes of data beyond current end of socket buffer. @trailer will be
  2458. * set to point to the skb in which this space begins.
  2459. *
  2460. * The number of scatterlist elements required to completely map the
  2461. * COW'd and extended socket buffer will be returned.
  2462. */
  2463. int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
  2464. {
  2465. int copyflag;
  2466. int elt;
  2467. struct sk_buff *skb1, **skb_p;
  2468. /* If skb is cloned or its head is paged, reallocate
  2469. * head pulling out all the pages (pages are considered not writable
  2470. * at the moment even if they are anonymous).
  2471. */
  2472. if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
  2473. __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
  2474. return -ENOMEM;
  2475. /* Easy case. Most of packets will go this way. */
  2476. if (!skb_shinfo(skb)->frag_list) {
  2477. /* A little of trouble, not enough of space for trailer.
  2478. * This should not happen, when stack is tuned to generate
  2479. * good frames. OK, on miss we reallocate and reserve even more
  2480. * space, 128 bytes is fair. */
  2481. if (skb_tailroom(skb) < tailbits &&
  2482. pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
  2483. return -ENOMEM;
  2484. /* Voila! */
  2485. *trailer = skb;
  2486. return 1;
  2487. }
  2488. /* Misery. We are in troubles, going to mincer fragments... */
  2489. elt = 1;
  2490. skb_p = &skb_shinfo(skb)->frag_list;
  2491. copyflag = 0;
  2492. while ((skb1 = *skb_p) != NULL) {
  2493. int ntail = 0;
  2494. /* The fragment is partially pulled by someone,
  2495. * this can happen on input. Copy it and everything
  2496. * after it. */
  2497. if (skb_shared(skb1))
  2498. copyflag = 1;
  2499. /* If the skb is the last, worry about trailer. */
  2500. if (skb1->next == NULL && tailbits) {
  2501. if (skb_shinfo(skb1)->nr_frags ||
  2502. skb_shinfo(skb1)->frag_list ||
  2503. skb_tailroom(skb1) < tailbits)
  2504. ntail = tailbits + 128;
  2505. }
  2506. if (copyflag ||
  2507. skb_cloned(skb1) ||
  2508. ntail ||
  2509. skb_shinfo(skb1)->nr_frags ||
  2510. skb_shinfo(skb1)->frag_list) {
  2511. struct sk_buff *skb2;
  2512. /* Fuck, we are miserable poor guys... */
  2513. if (ntail == 0)
  2514. skb2 = skb_copy(skb1, GFP_ATOMIC);
  2515. else
  2516. skb2 = skb_copy_expand(skb1,
  2517. skb_headroom(skb1),
  2518. ntail,
  2519. GFP_ATOMIC);
  2520. if (unlikely(skb2 == NULL))
  2521. return -ENOMEM;
  2522. if (skb1->sk)
  2523. skb_set_owner_w(skb2, skb1->sk);
  2524. /* Looking around. Are we still alive?
  2525. * OK, link new skb, drop old one */
  2526. skb2->next = skb1->next;
  2527. *skb_p = skb2;
  2528. kfree_skb(skb1);
  2529. skb1 = skb2;
  2530. }
  2531. elt++;
  2532. *trailer = skb1;
  2533. skb_p = &skb1->next;
  2534. }
  2535. return elt;
  2536. }
  2537. EXPORT_SYMBOL_GPL(skb_cow_data);
  2538. void skb_tstamp_tx(struct sk_buff *orig_skb,
  2539. struct skb_shared_hwtstamps *hwtstamps)
  2540. {
  2541. struct sock *sk = orig_skb->sk;
  2542. struct sock_exterr_skb *serr;
  2543. struct sk_buff *skb;
  2544. int err;
  2545. if (!sk)
  2546. return;
  2547. skb = skb_clone(orig_skb, GFP_ATOMIC);
  2548. if (!skb)
  2549. return;
  2550. if (hwtstamps) {
  2551. *skb_hwtstamps(skb) =
  2552. *hwtstamps;
  2553. } else {
  2554. /*
  2555. * no hardware time stamps available,
  2556. * so keep the skb_shared_tx and only
  2557. * store software time stamp
  2558. */
  2559. skb->tstamp = ktime_get_real();
  2560. }
  2561. serr = SKB_EXT_ERR(skb);
  2562. memset(serr, 0, sizeof(*serr));
  2563. serr->ee.ee_errno = ENOMSG;
  2564. serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
  2565. err = sock_queue_err_skb(sk, skb);
  2566. if (err)
  2567. kfree_skb(skb);
  2568. }
  2569. EXPORT_SYMBOL_GPL(skb_tstamp_tx);
  2570. /**
  2571. * skb_partial_csum_set - set up and verify partial csum values for packet
  2572. * @skb: the skb to set
  2573. * @start: the number of bytes after skb->data to start checksumming.
  2574. * @off: the offset from start to place the checksum.
  2575. *
  2576. * For untrusted partially-checksummed packets, we need to make sure the values
  2577. * for skb->csum_start and skb->csum_offset are valid so we don't oops.
  2578. *
  2579. * This function checks and sets those values and skb->ip_summed: if this
  2580. * returns false you should drop the packet.
  2581. */
  2582. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
  2583. {
  2584. if (unlikely(start > skb->len - 2) ||
  2585. unlikely((int)start + off > skb->len - 2)) {
  2586. if (net_ratelimit())
  2587. printk(KERN_WARNING
  2588. "bad partial csum: csum=%u/%u len=%u\n",
  2589. start, off, skb->len);
  2590. return false;
  2591. }
  2592. skb->ip_summed = CHECKSUM_PARTIAL;
  2593. skb->csum_start = skb_headroom(skb) + start;
  2594. skb->csum_offset = off;
  2595. return true;
  2596. }
  2597. EXPORT_SYMBOL_GPL(skb_partial_csum_set);
  2598. void __skb_warn_lro_forwarding(const struct sk_buff *skb)
  2599. {
  2600. if (net_ratelimit())
  2601. pr_warning("%s: received packets cannot be forwarded"
  2602. " while LRO is enabled\n", skb->dev->name);
  2603. }
  2604. EXPORT_SYMBOL(__skb_warn_lro_forwarding);